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PHYSICS OF PLASMAS VOLUME 6, NUMBER 5 MAY 1999

Modes and quasi-modes for m=1,2 in a gyrokinetic model
for a non-neutral plasma

S. Neil Rasband and Ross L. Spencer
Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602

(Received 27 October 1998; accepted 16 February)1999

Modes and quasi-modes for=1,2 are studied in a gyro-kinetic model for a pure-electron plasma.
Only zindependent perturbations are considered. Numerical methods are used to solve the relevant
differential equations for smooth, analytic density profiles. Different temperatures and
representative profiles are considered and comparison is made with the familiar cold fluid model
from which the results depart but little, except at higher temperatures. A continuum component to
the spectrum, present in the cold-fluid model, remains in the gyro-kinetic model to the order
considered. ©1999 American Institute of Physid$1070-664X99)04005-7

I. INTRODUCTION Ld| dF®| me. 1. [ mra? nor
— |t |-z ¢V SV —
Some recent investigations have demonstrated renewddd’ ! dr r r @®=Mag N
interest in damped quasi-modes @independent perturba- AmignV(r,0+)
tions of a non-neutral plasma studied nearly 30 years ago by =— ————, 2

Briggs, Daugherty and Lev{Corngold published an ana- @~ Mwo

lytic analysis for some special density profiles and the
present authors published a study using numerical methodgherem is the axial mode number from the assumed depen-
for more general profile$This recent theoretical interest has dence of the form expi¢). The unperturbed density is de-
been stimulated, at least in part, by experimental observanoted asn(®)(r), its derivativedn®/dr asn(®’, and the
tions of such modes by Pillai and Gofildnd investigations corresponding plasma frequemyg(r):47.,q2n(0)(r)/|\/|,
of similar behavior at University of California, San Diego with qthe charge an¥ the mass. The rotation profitey(r)
(UCsD).® _ _ is given by v®=rwy(r)¢p, wherev(® is the equilibrium

We have been partly motivated by a desire to understang;is velocity, v@=(q/MQ)2xV$©, and Q=qB/Mc is
how some of the special features of the cold flWldF)  he signed gyrofrequency. Angular frequencies with a tilde
model, the continuum modes and quasi-modes, are modifiegl,er them denote that they have been scaled by the gyrofre-

when additional physical effects are included. quency, e.9.#2= w2/Q2. The scaled transform frequency is
. . . . . 1 p p
The plan of this article is to discuss the physical models; — /0. The quantityn®(r,0+) denotes the initial density
in Sec. Il, the numerical codes and tools used in our study i'berturbation.

Sec. lll, and in Sec. IV we considen=1 andm=2 modes For the gyrokinetidGK) model the reader is referred to
in re':presenta'tlve hollow gnd monotonlc.eqwllbrlum densityihe Appendix where a sketch and summary of an earlier cal-
profiles. Section V contains our conclusions. culation by one of us is givehin the GK model the differ-
ential equation for the Laplace transfoih)(r, ») takes the
form
Il. THE COLD FLUID AND GYROKINETIC MODELS 1d d?"s(l) m?2 b b d'és(l)
- - W __1“(%1)__2
: Ordr\ dr r2 r2 rodr
The cold fluid (CF) model has been documented and
discussed in the references given earlier. We use the defini- dl d/n©r_
tion of the Laplace transform given by —bgr a[ra(T&“IZ”
. o ) d (n©@ _ o
Flw)= fo f(t)e'“'dt, (1) —byr E(T&”Il) =4mign(r,0+)l, ®

where the inversion integral is along a contour in the uppeghere
half of the complexw-plane lying above all singularities. In
the CF model for the Laplace transforgf!)(r,w) of the
perturbed potentiap(*)(x,t) we use the differential equation
in the form

o mp? n(©’
2(w0+wp)+TW|2 , (4)

bo(r)=1+2€w;— €0
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n©- with ngq and E)f,(O) denoting values at=0 of the unper-
bi(r)=mra2{ —o14[1— €02+ 2D Do+ @2)] - i
1 p| (@ 'L p olwoT Wy turbed density and scaled plasma frequency, respectively.
The quantityl (z) denotes the integral
oM 2 2n(0), 3
D P R © e
+2€ r (2w0+ (J)p)+6 n(o) |(Z): fo _Z+§d§:eZEl(Z)7 (15)
2 2
| = iy mf L ] (5) where El(.z) is the exponential integral in the notation of
r Abramowitz and Steguh,
r (O)r~2 5 .y B E 3 ooe*td
b(r) =~ —o Wpel 1~ e(2wo+ W+ Mol 1)] (2)= | ——dt
—2€%03 (2o + B3), (6) o o(—1nn
pRETO T =—|y+inz+ > # (largg<m), (16
2022 =1 nhn!
€"Mp~wy
ba(r) = — o5z (7)  wherey=0.57721-- is Euler's constant.
In the limit thate—0 Eq. (3) becomes
27 2~ 2
€“Mwyw (1) 2 (0)r
b4(r)=—Tp. ® L1dfd¢) m UL SR Y
rdr\  dr Z r Pp® 'l
The right-hand side of Eq3) represents a combination Aarign(r,0+)
of initial value terms. Since we are not interested in follow- :#, a7
o — Mwqg

ing the time development of specific particular initial states,

this right-hand side is arbitrary to an extent and we choose twhere in this limitl ;— 1/(@— mwg), showing that Eq(17)

write it in a form similar to the right-hand side of E@). We  and therefore Eq3) are entirely consistent with E¢R) and

recall thate is simply an ordering parameter, a marker, tothe CF model.

keep track of ordering in the gyro-expansion. In calculations

eis set equal to 1. The coefficient functiolg(r), . . . ,b,(r)

of the differential Eq.(3), as given in Eqs(4)—(8), are the

same as given in Ref. 6 with a few minor corrections in

second order terms. Setting the right-hand side of E(B) equal to zero gives
Other symbols occurring in these equations @% a mode equation fop™):

=v2/Q2?, wherev3=2kT/M; T is temperature antl is the - , -

usual Boltzmann constant. The quantitigsandl , are phase 1 i( ; dil)) . (1)} by~ 1 _ b, d'

space integrals coming from the integration of the perturbe(?0 r dr dr

distribution function to obtain the perturbed density. If we

A. Persistence of a continuous spectrum in the GK
model

) d[ d[n@_
define Bl — | — | —— 3D
, b3rdr[rdr( ¢ IZ)
g:]._é’(:)o_ EZZ)Oa)p (9) d n(o)’
(1 —
and —b4ra(7¢( >|1>—o. (18
_ EW2min(0 Let r denote a value of the radial coordinate where a
o(r,W)=weg— T an@ (100 given w is such thatw=mMmaw(rs),0<r<<rq. We look at
solutions to Eq.(18) in the neighborhood of ; and letx
then =r—r,. With an expansion of all derivatives E(L8) can
. . 273 (1)/ 4 2
20 wWexp(—WZ/u$) be wrltter~1 1|n the stanNdaIrd formA(r,w)d“¢ /dr
1:_2J' T T aw=1/G, (1)  +B(r,w)déMidr+C(r,0) V=0 where the coefficient
v: Jo wo—mo(r,W)

functions are lengthy algebraic expressions. Singularities in
this mode equation occur through the phase space integrals
_ dw=(1-z1)/G, (12) 1, 15, gnd_their derivatives. F_or our purposes we note that
0o o—mo(r,W) A(r,w) is given by the expression fax, given in Eq.(4) but
with the 1/4 replaced by 5/4. Thus in the limit that-0 we
havez—0 and sincd ,~zInz A(r,) limits to just a num-
2mp2»2(0)n(©’ ber. Furthermore, it has no zeros fos@<r ;. The singu-
= P (13 larities are in the coefficienC(r,w). Since asx—0 I,
~Inz, the most singular term comes froth,/dr~dl,/dz
and ~1/z~1U(w— mwog)_and is thus_similar 'Fo the singu!arity in
the CF mode equatiofEq. (2) with the right-hand side set
z=[o—mwyg]/G, (14  equal to zerd

| 20 fw W2 exp( — W?/v2)
2T &

3
Ut

where

4rngg
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To elucidate the continuity conditions og® and  (13) and(14) and choose the branch cut foz) so that the
dé®idr at singularities we consider specifically an imegra_pathz(r) does not cross it. We restrict consideration of pro-

tion of the CF mode equation across the singular layer. Thiles or complex deformations to those for which such a
singular term is proportional to /and because this singu- Choice is possible.

larity is nonintegrable, no continuity conditions digp)/dr

are obtained. Consequently, the jumpdig)/dr across the

singular layer can be arbitrarily large. As a consequence, to

the right ofx=0 the constants multiplying the two linearly |, tHE NUMERICAL TOOLS
independent solutions to the mode equation in the CF model

can be chosen to provide continuity fgf") atr=r and for We have used a number of codes to explore the behavior
$M=0 atr=r,, . This holds for any choice of in the  of solutions to Eq.(3) and the homogeneous eigenvalue
rangewg(r), O<r=<r,,, and hence the continuous part of equation obtained from E¢3) by setting the right-hand side
the spectrum. equal to zero. To study the eigensolutions to the homoge-
In the GK model this picture does not change substanneous equation we have used a cd¢@d) based on finite
tially. If we take the first order limit of Eq(18) (e—1, €? elements and a Galerkin approximation to the differential
—0), the singularity is still proportional to 2/ Keeping equation. The potential perturbati@hf) is expanded in set
terms to second ordek(z) is proportional to—Inx and the  of cubic B-splines and then the homogeneous set of equa-
lowest order term in the mode equation from the GK expantions obtained from the Galerkin approximation is solved by
sion is integrable. However, second order terms, which nownatrix shooting The purpose of this code is to find the
enter into the mode equation, have nonintegrable singulariguasi-modes by deforming the interval over which the dif-
ties of the form I¥ precluding convergence of the GK ex- ferential equation is solved into the complex plane following
pansion atx=0. This leads again to an absence of a contithe method suggested in Ref. 1. The intervatG<r,, is
nuity condition ond$")/dr atr. As a specific example, the analytically continued into the complex plane by choosing
term in Eq. (18) with the coefficientb, has a term with
dl,/dr which expan(_js near the si_ngular layer into a number r(S)=ryalST+ih(s)],
of terms, one of which is proportional toxl/Thus for the
same reason as in the CF model there is a continuous range
of w’s for which a solution exists. h(0)=0; h(1)=0; h(s)=0; O=s<1
The usual Frobenius analysis near the singular layer of

the CF limit for Eq.(18) shows the solution in the CF model
to be of the form The effect of the substitution represented by E2{l) is to

push, i.e., analytically continue, the curmew(r) into the
V(=D (ro[1+cxIn|x|+---]+cx+--. (19  lower half of the complexs-plane. With a sufficiently large
. ) ) . deformation the complex frequencies of any existing quasi-
For the GK model, discarding the terms with coefficient ) qeg are left exposed above it. Some additional detail on

functionsb,,bs,b, and keeping only the lowest order term o hmerical method for finding the quasi-modes is given in
in €in by, we find Ref. 3.

(1)

In order to follow the changes in for modes and quasi-
modes as profile parameters are changed, we have coupled
Thus we see that in the complexplane the line of points the code described above with a continuation algorithm
a|ong the real axis where= mwo(r)g(r) for Ogrgrwa” given by A“gOWGI’ and Geor@.This code(C2) allows us to
represents a line of branch points, and this is true for eithegxplore mode dependencies on profile shapes and identify
the CF or the GK model. Thus the rationale for deformingmodes and quasi-modes with those obtained analytically for
the r-contour off the real axis into the complex plane to sharp-boundary profiles.
uncover quasi-modes, as discussed in Refs. 1-3, is as valid The third code(C3) we use solves Eq3) for a given
for the differential equatiol8) as it is for differential equa- N(r,0+) and a sequence ofs approximating the Bromwich
tion (2), with right-hand side equal to 0. contour which surrounds the line of branch poinig(r)

There is one additional complexity in solving E§) as  for 0<r=<r,,. Again ¢*) is decomposed into a set of cu-
compared to Eq(2). The functionl (z) occurring in the co- bic B-splines with the appropriate boundary conditions and
efficients of Eq.(3) has a branch cut from the origin to,  then a Galerkin approximation to the differential equation is
normally taken along the negative real axis. In solving Eq.made. The norm of this solution, as a function of th's,

(3) fromr=0 tor=r,,, it is necessary to avoid crossing the shows a peak at values afwith a real part near the real part
branch cut in the complexplane. Recall that is a function  of a (quasjmode frequency. The Laplace inversion is then
of r through Eq.(14), which can be a complicated path if the carried out to obtain the electric field at the wall. The decay
integration path is deformed into the compleplane. This in time of this field can give a good estimate of the imagi-
becomes an issue particularly when considering hollow denrary part of the(quasimode frequency when only a single
sity profiles with deformed-contours. In practice we moni- (quasjmode is present. This procedure is not sensitive to the
tor the path ofz(r) in the complex plane as defined by Egs. choice made fon(r,0+).

V() =dV(ro[1+cx®In|x|+- -]+ cox+---. (20)
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density(—) and omego (—--) profiles log|g|-vs-Re(w)
—— . . Y S —

n(o)(r) and we(r)
log|¢|
o

o.o i " 1 1 " " 1 1 L L _2 [ 1 A " n 1 " " 1 " 1
0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 1.2

r/rwoll Re(w)/Wmox

FIG: 1. An analytjc radial density prof_ile an_d the corresponding rotationFIG. 2. Form=1 and the density profile of Fig. 1 the norm of the Laplace
profile. These profiles age sﬁc3a|ed by their maximum value§.l The values at theansforma(Y(r, o) in arbitrary units is plotted as a function of normalized
center areng=3.6x10"2m * and wo(0)=0.8686<10° sec* and at the  frequencyw/wyg, as w varies around the Bromwich contour depicted in

peak wpma=1.099< 1 sec™. Fig. 3.

IV. REPRESENTATIVE DENSITY PROFILES the temperature are given; larger temperatures give, of

A. Hollow density profile course, a greater difference between the values of the CF and
GK models.

For our numerical studies we consider only electrons and
the first representative profilgy(r) we consider is depicted
in I_:ig. 1 z_ilong With the corresponding rotation profilg(r). 2 Resonances for m =2
This profile is given by the formula
) Using the same density profile as given in Fig. 1 but now
_} ) (22) with m=2, code C3 gives frequencies 0.97%4, and

r 2) ;{ r
—| lexd —
p p 1.94wa @S estimates for the real part of resonance frequen-
where w controls the hollowness of the profile, controls cies. Figure 3 displays the results of this~calculation in a way
the position of the peak, andcontrols the steepness of the different from that of Fig. 2. The norm ap™®) is plotted in
exponential decline in the density. The valyes1.35,r, arbitrary units along the normal direction away from the
=1.79, andv=4.5 were chosen for the profile depicted in point on the Bromwich contour where E@) is solved. The
Fig. 1. The numerical values are selected to give profilegnodes and quasi-mode are also indicated in this figure. Code
with some semblance of experimentally measured prdfiles. C1 gives the first as a quasi-mode with=(0.97753
The value of the density at the center is takemgg=3.6  —i1(0.01098))}v, and the second as an unstable mode
X 10?m~3. The value of the constant axial magnetic field iswith w=(1.9341-i(0.01592)}vm,, for a temperature of

taken as 375.0 G. The peak value of the rotation profile fol.O eV. For the two temperatures of 1.0 eV and 100.0 eV we
these values is 1.0991(F sec’L. have used code C2 to compute curves for the variation of the

mode frequencies as the hollowness of the density profile is

changed. To obtain the curves the depth of the central de-
1. Resonances form =1 pression in the density is changed by varying the parameter
g‘in Eq. (22) from 1.35 to 0.0. This corresponds to varying

nO(r)=ngo 1+ u

Figure 2 depicting results obtained from C3 shows tha e ratio of the peak density to the density at the center

we can expect two modes: one the usual diocotron mode ~ . o
with a frequency neaty(r,s) and the other near to the 'r—O) from 1.36 to 1.0. Figures 4 and 5 show the variation

peak value ofwo(r). The actual resonance frequencies fori the mode and quasi-mode frequencies for both the CF and

the GK model are “Doppler” shifted by the quantity of the GK(T=1.0 and 100.0 eymodels.

Eq. (8) and are slightly different from the corresponding fre-

guencies of the CF model, regardless of the temperature.

Also in the CF model the mode with the frequency resonanfABLE I. Mode frequencies ri=1) for hollow profile of Fig. 1 where
at the peak of thew, profile is the special mode with @ma=1.099<10sec’.

dV(r)ocAr(w—wp) that has been included in many studies Model DiOCOtrontoay Peak modes,
of CF resonances!' - and has no imaginary part to the

. : CF 0.2673 0.9998
resonance frequency. In the GK model this mode is weakly GK (1.0 eV) 0.2676 0.9996:i(0.0 009 492
unstable. Table | compares the frequencies for the CF and gk (100.0 ey 0.2766 0.9895i(0.008 591

the GK models. For the GK model results for two values of
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w-plane with Bromwich Contour

0.10 [ p——————— ——— (x106) unstaoble mode dependence on holiowness of profile
[ 2.2 — yeom—T
[ 1.0 eV 100.0 eV
0.05F - 2af i
E-3
$ ] 2.0} ]
"30.00} ] 3 O} ]
2 T
E ] Lo
3 1.9} ]
-0.05| J [
1.8F ]
-0.10 [ L el 1 ! I
0.5 1.0 1.5 2.0 1.7 1 P
wreol/woo, 0 1 2

w—-imog (x10%)
FIG. 3. The complexv-plane showing the Bromwich conto(dotted curve iation for th | h 0 of th K
on which the differential equatiof8) is solved, the mode eigenfrequencies F'C: > Frequency variation for the unstable mode as the ratio of the peal
(asterisks and quasi-modéstap found with code C1, the line of branch density to the central density varies from 1.36, as depicted in Fig. 1, to 1.0

oints along the real axiheavy bold, and finally in arbitrary units the where there is no central depression in the density. Different line styles
P 9 heavy bold Y Y distinguish the different curves for the cold fli@F) and the gyrokinetic

log(¢]) is plotted along the normal direction away from the Bromwich (GK) models and the GK curves are labeled with the chosen temperature.

contour.
) —okr? —2k(r2_—r?) 4 a—2kr2
B. Double-hump profile 2e “p[1-2e wall~ "p) + @7 “wall] 25
€= 2 2 2 7
) . —2k -2k -2k
As a second representative type, we consider a mono- 1—e 2p— e~ 2KMai+ g~ 2K(war*1p)

tonically decreasing profile but with two “shoulders” as it \yherek determines the sharpness of the step gnthe po-
decreases to zero. Figure 6 shows a typical example with th§tion of the step; at=r, we requiren(rp)=1/2. In the

co_rrespondinguo(r) profile. This profile is given by the ana-  f,ctions na(r) and n,(r) we choose respectively 0.5
lytic form: and 0.7, for r, wherer,,,=3.81cm withk=1 for the
©) Noo profile of Fig. 6.

n (r)=7[1+na(r)]nb(r), (23

1. Resonances for m =1

wheren,(r) andny(r) are functions of the form Figure 7 displays results from C3 which shows clearly

e—zkrz(l_e—2k(r§va”—r2))(1+ el(2—¢)) the existence of the familiar diocotrofwall) mode (W ey

n(r)= > > . (29 ~0.35x10° sec’) and suggests the existence of a heavily
(1—e 2Ma(e 2"+ el(2—¢)) damped mode or quasi-mode Withe,~0.64x 10° sec’t,
The parametee is given by the formula Code C1 finds the wall mode ab=(0.35306+i(0.0))

X 10° sec 1= (0.40649v1ax, Where wma=wo(r=0), but
finds no mode or quasi-mode associated with the bump cen-
(x10%)  quasi-mode dependence on hollowness of profile
1.1 —

———r—————r————
OO.‘% Z\\// density(—) ond omego (---) profiles
I 1.0 — T .
1.0 4
] 0.8
K : <
D oot - 5 ol
0
c
o 3
T 04}
0.8 4 S 0
| e
| | 0.2
0.7 . | I P R [ IR L
-3.0 =25 -2.0 -1.5 -1.9 i
w-imag (x107) 0.0 r , , . A
0.0 0.2 0.4 0.6 0.8 1.0
FIG. 4. Frequency variation for the quasi-mode as the ratio of the peak r/rwoll

density to the central density varies from 1.36, as depicted in Fig. 1, to 1.0

where there is no central depression in the density. Different line stylesIG. 6. An analytic radial density profile with two “shoulders” and corre-
distinguish the different curves for the cold flul@F) and the gyrokinetic ~ spondingly two quasi-modes. The values at the centerQ) are given by
(GK) models and the GK curves are labeled with the chosen temperatureng,=3.6x 102m~2 and w .= w,(0)=0.8686x 10~ ® sec’™.
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w—plone with Bromwich Contour

log|$|-vs-Re(w) .
10 — ———— — 0.10 — . it — —
8r ] 0.05[ -
: ] 3
6 E 3E ]
: "30.00} ]
g o
o 1 8
T . 3
[ ] -0.05f ]
2r ]
- L L , -0.10— - — —
0.2 0.4 0.6 0.8 1.0 1.2 0.5 1.0 . .

i?e(u) /wm; w-real/w.,

_ . ) . FIG. 8. The complexs-plane showing the Bromwich conto(dotted curve
FIG. 7. FETE* ahd the_ densny_prc_)flle of Fig. 6 the no_rm of the Laplace on which the differential equatiof8) is solved, the quasi-mode frequencies
transforme¢'~/(r,w) in arbitrary units is plotted as a function of normalized (star$ found with code C1, the line of branch points along the real axis

E_equ:ncyw/wmax as  varies around the Bromwich contour depicted in (heavy bold, and finally in arbitrary units the lofi$)]) is plotted along the
9. & normal direction away from the Bromwich contour.

tered on 0.64 10° sec . Results from running C3 on a cor- expansion sheds no further light on the continuum modes
responding CF model show a similar bump. However, forextant in the CF model. The procedure of inverting the
m=1 no other mode than the wall mode exists. The secontlaplace transform by integrating around the Bromwich con-
step in the density profile seems to have an enhanced effetrur, as embodied in code C3, proved to be very useful in
on the dynamics without giving rise to a mode or quasi-obtaining initial estimates for the frequencies of modes and
mode. quasi-modes.

2. Resonances form =2 APPENDIX: RESULTS FOR THE GK MODEL

Figure 8 from code C3 suggests two quasi-modes with  In this appendix we summarize results from Ref. 6 nec-
the real part of the frequencies approximately 0.90essary to obtain the differential equati®) for the gyroki-
x10°sec?! and 1.3% 10°sec’. Table Il gives the results netic model of a nonneutral plasma. We reference equations
from code C1 in terms of the central frequency for threefrom this article by giving equation numbers preceded by an
different temperatures. We see little change from the CR, e.g., Eq.(R12.
model,~1% even for 100.0 eV. We assume that the unperturbed, time independent dis-

tribution function is a simple Maxwellian:
V. CONCLUSIONS (0)
n(r)

In qualitative terms there is little to be gained by using ~ F O(r,U,W)= Wexd—(uz+wz)/v$], (A1)
the GK model instead of the CF model, certainly for tem- T
peratures in the range of those seen experimentally. With thand that perturbed and unperturbed fields and distributions
exception of the weakly unstabl=1 mode for hollow are independent of the coordinatalong the direction of the
profiles, the modes and quasi-modes have frequencies, bofiposed magnetic field.
real and imaginary parts, that differ by at most a few percent ~From the Laplace transform of the Vlasov equation for
in the two models. The instability for thm=1 modes in the perturbed distribution function, E(R14), we obtain for
hollow profiles has been noted beforand gives a growth the Laplace transfornk ()(x, w;U, W), of the perturbed dis-
rate only about 10% of that seen experiment&lliffthe GK tribution function

TABLE Il. Quasi-mode frequenciesn(=2) for the double-hump profile of Fig. 6 wher@,,=0.8686

x 10 sec™.
Model w1/ ®Omax Wyl Omax TemperaturgeV) P22
CF 1.036-i(0.002501 1.577-i(0.02445 NA NA
GK 1.036-i(0.002507 1.577-i(0.02444 1.0 5.56x10°°
GK 1.037-i(0.002510 1.579-i(0.02445 10.0 5.56<10°°

GK 1.048-i(0.002433 1.592-i(0.02419 100.0 5.56¢ 107
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The quantityw is defined in Eq(8) and

19 (9¢(1) m?._
- __ (1)
D2 ¢> C (r T . (A3)

From Eqg.(R2J) in the zindependent case we obtain for the Laplace transform of the perturbed density
2

- 2 ~ 2
TO(x,0) =Ty(F )+ 5 (2 WO LED) + 5 (2 ) T(FO) +

r2

LEI(Z )24V (v V)]
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VAR ~
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where the velocity integral,(---) andZ(---) are given by the formula

Ik(n-)EZwM?‘fw dufmt--)Wde- (A0)
— 0

We also recall that,=(q/MQ)2X V¢, =V XV,, andD/Dt=d/t+Vv,- V. SubstitutingF") from Eq. (A2) into Eq. (A4)

and using the definitions given, we obtain for the Laplace transform of the perturbed density

(0)/
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This result foi*) is then substituted into Poisson’s equation tron Plasmas as 2D Fluids,” from Department of Physics, University of
(1) ; ; California San Diego.
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