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PHYSICS OF PLASMAS VOLUME 5, NUMBER 2 FEBRUARY 1998

Thermal equilibrium of warm clouds of charge with small aspect ratio

Deborah L. Paulson and Ross L. Spencer®
Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602

(Received 12 August 1997; accepted 22 October 1997

Global thermal equilibrium computations are presented for non-neutral plasmas whose radial size is
much larger than their axial thickness. Axial and radial density profiles are computed for both ideal
and nonideal Penning trap fields. Simple results are obtained in the limits of both low and high
central density. Comparison is made to the grid calculations of Masah [Phys. Plasmas3 (5),
1502(1996]. © 1998 American Institute of Physids$1070-664X98)00402-9

I. INTRODUCTION of the disagreement between the experimental results and

. , . Dubin’s theory is the nonzero temperature. This possibility
When charged particles are loaded into a Penning traRyas studied in numerical simulations by Madet al. They

the initial density profile can be almost anything, dependingq,;ng that the experimental plasmas should have had signifi-
on the details of the loading process. Slow transport, NOWgan variations in density due to thermal effects. Masbal.
ever, gradually causes the radius of the cloud to increase anghre aple to study these thermal effects for some of
drives the plasma toward global thermal equili_brium. If theyweimers plasmas by using numerical grid calculations, but
plasma is cold enough that the Debye length is small compq computer memory and running time limitations made it
Pared to the cloud, the ap.proach.to global thermql equilibyitticult to handle the very thin plasmas of the experiment. In
rium also causes the density profl_le to become umform an%iS paper a calculation that does not require a grid, and
the plasma shape to become a thin oblatg spheroid. hence uses only small amounts of computer memory, will be
A warm plasma, however, behaves differently. Becausgjescriped. The key idea of this calculation is to exploit the
of the kinetic energy of the particles, the plasma reaches gnq| aspect ratio of these thin plasmas to separate the cal-
limit at which its thickness is on the order of the Debye ¢ jation of the density profile into axial and radial parts.
length in the axial confining field. At this point, the plasma ggcqyse the calculation is somewhat analytic, it also pro-

thickness can no longer decrease. As the radius grows, pafiqes interesting physical insights as well as analytic results
ticle conservation requires the density to drop. This effect, special limits.

was observed in numerical simulations by Maksenal. and Although Weimer’s experiment served as the motivation
is the subject of this paper. o for this study, there is one difficulty in comparing the results
Such pancake-like plasmas were studied in an expericy, 4 thin spheroid to Weimer’s data. It was assumed in the
ment performed at the National Institute of Standards andyperiment that the plasma remained spheroidal as the radius
Technology(NIST) in Boulder, Colorado by Weiméetal.  creased. Masost al.demonstrated, however, that the non-
In the experimentconsisting of about 43 000 electrqns that jjeal components of the Penning trap field caused a distor-
were reported to be held at a temperature of approximately o, in the plasma shape, particularly at a small aspect ratio.
K) the tenuous nature of the plasma made it necessary to fifgy, the sake of simplicity, most of the calculation presented
a nondestructive method of measuring its physical properpere yses ideal confining fields. The more complicated non-
ties. The method used by Weimer al. involved measuring  jgeq fields encountered in experiments are discussed in the

with the cold fluid theory of Dubifto find the plasma aspect mal equilibrium for a thin plasma confined by an external
ratio «, defined as the ratio of the axial half-widty to the o, 5qrupole field. Both axial and radial density profile calcu-
radiusr,, of the plasma. This method worked reasonablyjaiions are presented. In Secs. Iil and IV we discuss the
well, but resulted in a systematic error of approximately 20%gpeia| cases of low and high central density, and in Sec. V,
in the determination ok using different modes. we conclude the paper. The same calculations for nonideal

The Dubin theory is based on a zero-temperaturefiq|qs are discussed in Appendices A and B.
constant-density, non-neutral plasma confined axially by an

electrostatic quadrupole potential. This externally imposed
potential causes the cold plasma to assume a spheroididl GLOBAL THERMAL EQUILIBRIUM FOR THIN
shape. Given this uniform-density spheroidal plasma, DubifPLASMAS

used cold fluid theory to calculate the oscillation frequencies

of the plasma. These frequencies are functions of the ele(fc')wing form of Poisson’s equaticht where the potentialb

trostatic confining field and the plasma aspect ratio. — e+ b, represents the sum of the external potental

Since the plasmas in Weimer's experiment were too .
. : nd th ntial he pl
warm for thermal effects to be negligible, a possible sourcea d the potential due to the plasrig,

A plasma in global thermal equilibrium obeys the fol-

V2¢:_ﬂ%—q¢/kT+Cr2, (1)
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anz,

an ’

wherek is Boltzmann’'s constant) is the particle charge, 1

and n is the central density. The consta@t is related T

to the canonical angular momentum and is given by

C=—(m/2kT)w(w+ o), where w is the rigid-rotor fre- Wwhere the radial derivatives have simply been estimated by

quency of the global thermal equilibrium and whergis the  dividing by a.

cyclotron frequency including the sign of the chafgeSince The ratio of this part ofV?¢, to the full V¢,

we are not interested here ) it is convenient to work only = —dn/€g is thus on the order af,/a= «, which is small.

with C. It is assumed that the plasma is isolated in infiniteln other words,

space in the presence of an ideal external electrostatic quad- P 140 a¢

rupole field. The boundary condition afy, at infinity is that azzp Tor r a_rp

it has the constant value that mak#g(0,0)=0.
The external potential is the quadrupole field of a Pendt is easy to show that this result holds to an accuracy of

a  dy 2
ErWN(l__

)

ko

>

®

ning trap, which can be written as order « for cold spheroids, and it was also checked for small
m 1 aspect ratio thermal plasmas by using a grid codais in-
de(r,2)= ﬁ wf (22— 3 rz), 2 equality is the basis of the thin approximation used through-

out this paper and is synonymous with a low aspect ratio.
where w, is the Penning frequency, the axial bounce fre-  Using this thin approximation, the electrostatic problem
guency of a single particle of mass, and chargey in the  can be separated into axial and radial parts. The axial equa-
trap. This frequency is related to the dengity,y of a cold  tion is obtained simply by neglecting the radial partVsfin

spheroid of aspect ratia by® Eq. (2).
—F(a) 3 To obtain an equation for the axial density profile, it is
wz=F(a)wp, useful to describe the radial density profile in the plasma
where midplane with the dimensionless functig{r):
224 Mo " n(r,0=B(r)n, )
P em where the scale density, is given by
For low aspect ratio oblate spheroigsancakeg w2em
0
- No=——7—. (10)
2 2 q
Fla)=1— = a+2a”. (5)

2 This density is nearly the same Bg,4 [ Ng=F2( @) Ncoiq] but

Cold spheroids will often be mentioned in the remaindermakes the resulting formulas simpler. It also simplifies com-
of this paper. In fact, the point of most of this paper is toparisons with experiments because it depends only on the
study what happens to a cold spheroid of radiys half-  easily measured frequeney, .
lengthz,, and central density.,q when its temperature is It is also useful to define the dimensionless potential
raised. This problem is quite difficult to solve for spheroidsg(z) at each radius:
of an arbitrary aspect ratio, requiring the use of grid cades.

(Note, however, that in the limit that the Debye length is 9(z)= q¢(r,z)_ q¢(r,0)' (12)
small compared to the plasma thickness, Dubin has com- kT KT

puted thermal corrections to cold equilibfia.However, where ¢ is the total potential. Althougly(z) is actually a

when the aspect ratio is small, it is possible to find an apsynction of bothr andz, it is used to define the axial density
proximate separable form for the axial and radial denS|typroﬁ|e at a given radius, so in order to simplify the notation

profiles for arbitrary values of the Debye length. These sepa yj|| pe referred to simply ag(z). With this definition for
rate profile calculations will now be presented. 9(2), the density profile can be written as

A. Axial density profile: Thin approximation n(r,z)=neB(r)e 9. (12)

When the axisymmetric plasma is thin, the axial varia- In a further effort to make the equations dimensionless,
tion of the plasma potential in the neighborhood of theWe Use a natural length scalg,. This is a Debye length
plasma is greater than the variation in the radial directionthat depends ong and on the temperatufe of the plasma:
This can be illustrated by solving the simple electrostatic kT KT
problem of the distribution of potential across a uniformly Apo=\/ 7= 5. (13

o - : . g°ng Mo
charged infinitely thin disk with surface charge densttgnd z

radiusa. The potential difference between the center and therhe reason that this unusual definition for the Debye length

outer edge is found to be is natural is that the axial confining electric field of the Pen-
oa 2 ning trap is equivalent to the field of a uniform slab of con-
Ap= — |1~ ;) (6) stant charge densityi, with a sign opposite to that of the
0

confined particles. This is similar to the case of global ther-
To apply this result to a thin plasma of densityand thick-  mal equilibrium in infinite cylinder geomet#r where the
nessz,, we uses~qnz,, so that confining magnetic field is equivalent to a uniform charge
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Notice also that the solutions to E{.4) have the prop-
erty that until 8 is very close to unity, the width of the
density profilee™? is characterized by p,. As 8 approaches
unity, Eq.(14) implies a uniform axial density near the cen-
ter of the plasma. This prediction that the plasma density
becomes uniform ag approaches 1 is in error, for the cor-

1 rect limiting value of B8 obtained from EQ.(3) is B
=1/F?(a)~1+ mwal2. This error, however, is only of order
] «, as expected from using the thin approximation.

(x1 0'3) Axial Profiles
5 .

ngBoe? (m™>)

. B. Radial density profile

In order to obtain the form for the midplane radial den-
T2 sity profile n(r,0), we must first determine the midplane
(x107% plasma potential¢,(r,0) [see Eq(1)]. Because of the thin
approximation we have already madeg. (8)], it is difficult
FIG. 1. A series of axial density profiles is shown for the following param- tg yse Eq(1) in differential form to obtaing, (r,0). Instead,

eters: a 43 000 electron plasmaTat 4 K, confined in an ideal trap with : ; ) : ;
w,=3.867x 10° s™. The shape of the axial profile depends on the value ofWe will use the electrostatic Green's function appropriate for

Bo=B(0). Profiles shown are for a scale densityof 4.7x 10'* m~3. They #5(0,0)=0,

correspond tQ3, values of 0.9, 0.75, 0.5, and 0.1. © oo
¢p(r,0) = f f 27[G(r,0r',2")
—»J0

0.8 1.0

0.6
2z (m)

density. The lengtf oo is useful in the thin spheroid calcu- —G(0,0r",2")]anA(r")e” 9" dr’ dz',
lation discussed here because the Debye length defined in (16)
terms of the plasma central density varies both with plasma N , L
size and temperature, whereas, only depends on tempera- where the cylindrical Green’s function is given by
ture and the Penning trap field. This length also has physical 1 \/ﬁ ()
- K(m
rr

meaning here, for we shall see later that in the limit of low ~ G(r,z,r’,z")= A€

17)
plasma density the plasma thickness is of ondgy.

With this definition for\pg, we change to the dimen- Here K(m) is the complete elliptic integral of the first kind
sionless variabl€=z/\Ap, and obtain an approximation to and
Eq. (1) at each radius in the form of an axial ordinary differ- arr’

ential equation. This differential equation is derived using m= 12 (=2)2" (18

VZhex=0 andV2¢,~d*¢,/3z°. When Eq.(11) is used to

evaluatea2¢>p/c722, the following differential equation fog In the limit that the Debye lengthp, is small compared

is obtained: to the plasma radius, we again use the thinness of the plasma

2 to treat it approximately as a disk with surface charge density

d“g _ _ e i g .
—~=1-8(r)e". (14)  o(r)=9-.n(r,z)dz Inthis limit, e 9 is highly localized so
d¢ that it may be treated as an unnormalized delta function. The

Because both the external and plasma potentials are chos@xial integration may then be performed to obtain

to vanish at the origin, it is clear tha(0)=0; and since = a(r')

both of these potentials are even functionszpfwe have ¢>p(r,0)=J — H(r,r’)r’ dr’, (19
g’ (0)=0. These are the initial conditions for E{.4). Note o €0

that Be 9 is the dimensionless axial density profile at awhere

given radius. " Vo ,
This second-order ordinary differential equation can be H(r.r")=2me[ G(r,0¢",00~G(0.0¢7,0)]. (20
solved numerically to obtain axial density profiles for vari- It is possible to obtain a fairly simple formula for(r)

ous choices of3(r). Figure 1 is a set of axial profiles at by using the axial density profile calculation of Sec. Il A as
=0 obtained numerically for several values®f0) ranging follows:
from 0.1 up to 0.9.

Note that in the limit of 8(r)<1, the density profile g(r):qnofw B(rye 9dz, (21
becomes —
n(r,z)~neB(r)e” ¥2%, (15 =2qneApoB(r) J evde. (22
0

so that in this limit the axial density profile is a Gaussian

with a scale length okpg. Hence, it is clear that the plasma This integral can be done more easily in the variaiplelo
can never be any thinner than abaw,. This low-density  obtain the integral in this form, multiply Eq14) by g’ and
limit is discussed further in Sec. IIl. integrate to obtain
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g'=v2[g+p(r) (e 9-1)]*2 23 o [~
hn+1(P):(1_6)hn(P)+6)\_pf Bnlp")
so that the charge density becomes Do /0

. e9dg X Bn(p")H(p,p")p" dp’, (33
0(f)=‘/7qno)\oo,3(r)fo = oty (24 whereh,, is the nth iterate and where is a small under-
g-AN(1-e?) relaxation parameter on the orderXfy/r ;.
For simplicity, we define the function For specified values g8, andD, radial density profiles
can be obtained from E@33), but it is desirable to be able to
% e %9dg vary the temperature and have the computed plasma equilib-
S(X)=\/§J0 Jooxi=e (25 ria maintain the same total number of partichésand the

same canonical angular momentwypy as a reference cold
With the dimensionless radial variape=r/r,, wherer,is ~ Spheroid. Imposing these constraints determjgsandD,
the maximum radial extent of the cold plasma, the surfacénd their calculation will be discussed in the next section.
charge density may be written as

a(p)=dngApoB(p) S B(p)]- (26)
) o ) It is interesting to compare this model to a cold spheroi-
Before_proceedmg further, it is u_seful to haye availablegy) plasma to answer the question of what happens to the
an approximate form for the functio§(x) valid for x  ¢qig spheroid as its temperature is raised. If the temperature
<0.9. An approximate form is given by the following: is raised without adding or removing particles or applying
1+ps(1—x) any torques, then botN and p, must be conserved. In the

C. Constraints

1+px

S(X)~27 —-In(1-x), (27 limit of a small Larmor radiusi <r), Py (r?). This limit
1+px 14 pa(1-X%) is assumed in the following derivation.
where the four parameters are best giver(foy accuracy to For a cold spheroid and(r?) are given by
about 0.01% N= % 7rianc and(r?)=2r2. (34)
p1=—0.82328, p,=—0.26673, Note that knowledge of these two quantities and the Penning

B B frequency of the trapw, is sufficient to determine, z,,
P3=1.92765, p,=1.40425. andn, through Eq(34) together with Eqs(3) and(4). In the

Defining the dimensionless midplane plasma potentialémainder of this paper whem appears, it is assumed that it

h(p) by was determined fron\, (r?), andw, in this way.
For a thermal density profile, integration ovef(p)
_ 0ép(p,0) changes Eq934) to the following constraint equations. In-
h(p)= kT ' (28) sisting that particle number be conserved and us$ifg)
~1 yields

the electrostatic equation in the plasma midplane becomes

©

2z
e B(p)SLB(p)]p dp=5—, (39)
(P =3 > jo B(p")SLB(p) H(pp )’ do’s  (29) 0 00

where z, is the cold axial half-width such that,=ar.
whereg(p) depends oi(p) through the form for the density NSIsting on(r?) conservation yields

given in Eq.(1): JoB(p)SIB(p1p®dp 2

: p(c 0y L ooy : 30 JoB(P)S[B(p)lpdp 5
r)=pRq exp Cre+ ——r“—h(r)|, , . .
Ar)=Ba 4Npo ( These two constraint equations determine the valuegyof
; ; L andD.
and 8o=(0). This equation fog3(r) can be simplified by These constants are found by simultaneously solving
defining both the electrostatic equatiofggs.(29) and(32)] and the
(2 constraint equation€gs.(35) and(36)]. There are probably
D=Cr,2)+ -, (31) many ways to do this, but one successful algorithm will be
4\bo described here(1) Begin by iterating on Eq(33) a few

times.(2) Solve Eq.(36) for D using a nonlinear zero finder,
and then go back t@l), repeating(1) and(2) together until
B(p)=BoePr’ ). (32  an adequate level of convergence is achiev@dThis pro-
cedure is followed by an adjustment 8§ based on writing

For fixed 8y and D, Egs.(29) and (32) can be solved Eq. (35) in the form

simultaneously to obtain the radial density prof#€p). In 5 . 1

the calculation described here this is done by using succes- Bon+1== Bon P '
sive substitution with under-relaxation on H&9):® ' 377 Npo JoBn(p)S Bn(p)lp dp

so that

(37
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Comparison With Grid Calculation Using this form in the constraint equations, E¢85 and
(36), and noting thaS(0)= 27, By andD are determined
to be

B(0)

] B 10 dD——2 (39)
=——— and D=— .
1“5 2.0 0 3\/277}\D0 2

This result combined with the low-density limit for the axial
profile [see Eq.(15)], yields a density profile that is double
0.6 : : : Gaussian,

_ 2_ 2
o4 - N(p,¢)=Bonoe™ 124 2" (40
0.2}

B(R)

This limit of small B, applies potentially to plasmas in
0.0 . s . an experiment such as Weimer’s. As the plasma sits in the
-5 ? > trap, the root-mean-squa¢ems) plasma radius grows due to
transportt A cold plasma under these conditions would
FIG. 2. A comparison with the memory intensive grid calculation of Mason maintain its density and flatterz{—0) to compensate for
et al. is shown. The case is a plasma consisting of 41 888 electrofs at the increasing radius. When the plasma is warm, however, its
=2.1Kinan idgg' trap witho, =5.5905< 10" 5. The cold spheroid den-  thjckness, or better, its thinness, is limited by the Debye
Sity Negq is 1X 10 m™>. The cold aspect ratio is 0.01 and the cold plasma .
radius is 0.01 m. The top graph is a plot of the radial density profile. Thelength)‘DO' Because the plasma cannot become Fhmner than
open circles correspond to the data from the grid calculation, while the solid®@POUtA g as the radius grows, the central density is forced to
line represents the results from the calculation described in this paper. Thdrop in order to conserve the particle number. In time, the
lower graph is a plot of the axial density profile taken at the radius markedpka_sn.'a would reach a state where the Smﬁ” limit de-
on the top graph with a solid square. . . . . L
scribes its density profile. However, this limit is not reached

until

after which the algorithm returns again (@). This entire h(p)<Dp®. (4D
procedure is continued until both of the constraints and théf g, is proportional toz,/\po andh(p) is proportional to
electrostatic equation are well satisfied. In difficult caggs  Bor,/Apo [see Egs(39) and(29)], then Eq.(41) implies that
approaching unityit is necessary to under-relax in sté€)  this limit is not reached until

as well.
.- . . . roZ
To test the validity of this calculation, the results from it p2 P <1. (42
have been compared to the results of memory-intensive grid  Abo
calculations®® A global thermal equilibrium was computed Numerical experiments with the equilibrium calculation

on a grid with 100 radial grid points and 12200 axial grid described in Sec. Il show that when the factge,/\3,
points for a pancake with the samié and(r<) as a cold <q.1, the density profile is within a few percent of the ap-
spheroid with an aspect ratio=0.01. The temperature cor- proximate double Gaussian in E@0).

responded tapgz,= 1. A graphical comparison between the  The approach to this limit can be seen in Fig. 3.
two methods for this case is shown in Fig. 2. The centrafor instance, for casdd) in this figure we haver ,

density of the grid calculation was about 1% higher than that- \/m: 0.0632 M, Ngyg=No=4.70x 1023 m™3, z,
of the calculation described here and the radial and axiak 5 46x 108 m, and\pe=6.37X10"°m. Hence, for this
profiles agreed to the same precision. The error caused %se,rpzp/)\%oz 0.85, which is not small. Still, the profile
using the thin approximation described in this paper is eXshown in Fig. 3d) is Gaussian to about 1098)=—2.8
pected to be of ordet#, which is consistent with the error in (about 10% different from 2)5 and 8, from Eq. (39) is

this and other comparisons. Since the thin approximation bey 0p1 14, about 10% higher than the actgal
comes more accurate as the aspect ratio of the plasma is

decreased, the radial density profile calculation described in
this section should be good to better than 1% for aspedV. LOW-TEMPERATURE LIMIT

ratios less than 0.01. In the opposite limit of the calculation, wherg,

=1/F?(a)~1, lies the cold plasma. AF=0, global thermal
equilibrium gives a constant density spherdft®. Following

IIl. LOW CENTRAL DENSITY LIMIT Bollinger® et al. we may therefore write for,,

It is possible to obtain the radial density profile in the m
special limit of low central density4,<1) using analytical $p(r,0)= q [w;—wj]r?, (43
methods. AsB, approaches zero, Eq29) indicates that
h(p) also approaches zero so that the prdfiee Eq.(32)] which in the thin limit wherea<<1 becomegusing Eq.(3)]
becomes a Gaussian, m™mz,

~_ T 202
B(p)=Boe"”’. (38) %~ g ar, 49
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Radiol § Profiles ~Dp?, then the charge density is nearly that of the cold
T —— T spheroid. But in the low-temperature limit bdthandD are
. very large, so even thoughp?~h(p), this does not imply
that B(p) is flat or even nearly flat, since the difference be-
J tween these two is the argument of an exponential. This
means that even thoughmay stay approximately the same
as it is for a cold spheroid, the density profile can change
quite drastically. In fact, as the axial density profile is altered
with an increase in temperature, the change in the radial
density profile is the means by whiehis able to remain the
same.

This condition thavr(p) yarm= 0(p) coiq Fequires that the

potential ¢,(r) also be the same as in the case of the cold
spheroid, giving

B(p)/Bo

m I’pr 2
FG. 3. A sari . . o . h(p)=—5 <7 p~ (48)
. 3. A series of radial density profiles is shown for the following param- 8 )\DO
eters: a 43 000 electron plasma is confined in an ideal trap ajth3.867
x 10 5. In this series, the root-mean-squan@s plasma radius is varied  Finally, becauséi(p)~Dp?, we have
from 1.6 to 40 mm. The outer profil@) corresponds to a rms plasma radius
of 1.6 mm withBy,=0.777 at a temperature &f=4 K. At this small radius, ™ I'pZp
the profile is approaching a uniform density step. The next prdsilés for D~-— ) P_’ (49
a rms plasma radius of 2.4 mm wif,=0.473 also aff =4 K. The third Do
profile (c) is for a rms plasma radius of 10 mm and has a low denglty:  valid When|D| is large.

=0.0364, withT=4 K. The fourth profile @) is a special case to demon- This approximation fob will be accurate as |0ng as the
strate the Gaussian limit. The rms plasma radius is 40 mm, the temperature

is 40 K, andg,=0.001 04. surface charge density is close to that of the cold spheroid.
We have already assumed thlgzp/)\%o> 1, so thatD must
be very large. The question is now this: how large niigte

and the surface charge density of the thin cold spheroid ofor this approximationi.e., the equality of the surface charge

radiusr,, o(r)=qf~.n(r,z)dz, can be written as densitie$ to remain valid?
2 One way to test the useful range of this approximation is
o (1) =20NcoZp [1— —. (45 to qalqulateﬁ(p) by iteration us_lngzr(p) as in Eq.(45). Here
M Bo is first found by iteration usingy= o(0) [see Eqs(25)—
Now imagine the temperature rising slightly. As long as(26)],
Apo<<Z, the plasma approximately maintains its cold spher- 2z,
oid shape. But, as the temperature continues to rise so that BO’”HZW' (50
Apo approachesz,, the axial density profile becomes DO=A /70N
rounded, as shown in Fig. 1. As this evolution occurs theThis is then used to obtaif(p),
constraint on(r?) must be maintained. Because the radial S(Bo)
density profile is proportional to ek p?—h(p)] and bothD Brii(p)= BoS(Bo) J1=p2. (51)
andh(p) are very large foipy~z,<r, [see Eqs(29) and SLBnlp)]
(31)], to maintain(r?) we must haven(p) ~Dp?. Numerical comparisons between density profiles calcu-

To find the surface charge density that could give rise tQated in this way and density profiles from the calculation
such a potential, we need only refer to the cold spheroidjescribed in Sec. Il show that this approximation is good to
solution in Eqs(44) and(45). These equations show that the wjithin a few percent ifD < —40. This is when ther(p) pro-
charge density that would make a quadratic potential acrossfes are very close to the cold spheraitp) profiles. Figure

disk is 4 shows a comparison between surface charge densities for a
2 cold spheroid and a thermal spheroid widk= —58.1.
a(rne\/1- . (46) The approach to this limit can be seen in Fig. 3. For
"o instance, for caséb) in this figure we have ,= V2.5r?)
In fact, the constraint oN, which implies the same total =0.00379m, ng~ne=4.73x10°m™3,  z,=151

charge for both thermal and cold spheroids, is all that is<10°> m, and\po=2.01x10 > m. Hence, for this case,
needed to see that the charge density for a thermal pIasmi@Zp/A%o: 142. The approximat® from Eq.(49) is —55.6,
with App~z, must be about the same as that for a coldabout 4% below its true value, and the valueBgfobtained

spheroid, i.e. from the iteration indicated in Eq50) is 0.468, about 1%
_ @7 below the actual value of 0.473. This same limit is discussed
a(p)warmt™(P) cold- for nonquadrupole confining fields in Appendices A and B.

Such a condition may seem to be obvious, since this Some final comments on the approachTie 0 are in
limit relies on\pg being very small, i.e., the spheroid being order here. As the temperature drops toward z@p.ap-
fairly cold, but it is, in fact, an interesting result. H(p) proaches 1 an&(3,) becomes logarithmically singulgsee
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APPENDIX A: NONIDEAL CONFINING FIELDS

A more general approach to this calculation is to con-
sider a thermal plasma in a nonidgabnquadrupolecon-
y fining field. To do so requires a knowledge of the external
field in the midplane of the plasma. This fiel, may be
L expressed using Legendre Polynomials:

[’

$e(R.O)= 2, CoR*"Py(c0s0), (A1)

FIG. 4. A comparison between surface charge densities of a cold spheroidal

plasma and a thermal plasma with= —58.1, corresponding to the radial : ; : _
density profileB(p) labeled(b) in Fig. 3, is shown. The cold{(p) corre- where R,®) are the radius and polar angle in spherical co

sponding to this case cuts off sharplygst 1. ordinates. _ _ _
For a thin plasma, high-order axial terms such as

z4,2%,..., may beneglected. Newton’s Second Law for a

charged particle of masa and chargey then implies that in
Eq.(27)]. The presence of this singularity makes the iterationyg field,

scheme indicated in Eq$50) and (51) not converge. How-
ever, if these two equations are solved by a more powerful C _m 20) (A2)
algorithm, such as Newton’s method, it is found that b8gh 27 2q @z\Y)s
and B(p) approach unity, except right at the edge where .
1— p?=0. The correct limit is T2(a)~1+ wal2, S0 once so the external potential may be expressed as
again using the thin approximation gives an answer correct m m )
to order a. This scheme is important computationally be- ¢e_2q wi(r) 2%~ q wy(0)rl+e(r)], (A3)
cause the more complex algorithm described in Secs. I B _ _
and Il C converges very poorly fg8,>0.8. Therefore, the Wherew,(r) is no longer a constant, but a function roin

only way to explore the approach to cold equilibrium is tothe midplane of the plasma, are(r) is a dimensionless
use the approximate equations of this section. parameter describing the higher-order corrections to the

quadrupole field. For an ideal quadrupalg(r) = w,(0) and
e(r)=0. For the nonideal fieldw,(r) ande(r) are calcu-

V. CONCLUSIONS lated from the trap parameters:
When a cloud of charge in a Penning trap expands radi- w2(r)= w?(0) 2n-2
. . . . z z
ally due to transport, it becomes thin axially. An important n=2 C,
transition occurs when the plasma thickness approaches the — w2(0)0(r) (Ad)
length A pg= \/kT/meZ. When this thickness is reached, ra- — ¢z '
dial expansion cannot further reduce the thickness and ther- o )
mal effects begin to dominate the equilibrium properties of  e(r)= >, C 4 P,n(0)r2"=2, (A5)
n=2 2

the plasma. This can be an important effect, even in cryo-
genic systems. In the limit that the plasma thickness is muckyhere
smaller than the plasma radius, an approximate theory that .
gives the equilibrium density as the product of an axial pro- (0)= (=D"2n)! (A6)
file and a radial profile gives good results, both for ideal and 2n [n1]%4"

nonideal electrostatic confining fieldsee the Appendices Note thatQ(r) in Eq. (A4) is a dimensionless radial profile

In this thin limit numerical calculations are required, but theydeflned in order to simplify the notation in the equations that
are much faster than full two-dimensional calculations. In thefollow

limit that the Debye length is sufficiently small\ g

<\rpz,), it is found that even though the plasma density

profile is quite different from the zero-temperature step-like (r)= n 2n(0)1 .

profile, the line density profilgn dzis nearly the same as at

zero temperature. In this case a simple nonlinear algebraic Oncew,(r) ande(r) are obtained from th€,, coeffi-
equation[see Eqs(50)—(51)] may be solved to find density cients, the calculation proceeds analogously to the perfect
profiles, both for ideal and nonideal confining fields. quadrupole calculation.
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1. Modified equations

Because there is no longer a cold spheroid to compare
with, the plasma is specified by the quantitiés (r?), and
T. The main changes in the equations arise from the fact th
w, and\pg are no longer constants, but functions of radius,
w,(r) andApo(r). For convenience, the scale dengityis

D. L. Paulson and R. L. Spencer

N=271gt s [ Mool £)B(P)SLB(P)I0(p)o dp
(A18)

J'5 Moolp) B(p)SLB(p)/Q(p)]p* dp _

given by
2
w5(0)egm
nOZZ(—ZO, (A8)
q
and the Debye lengthpy(r) is given by

KT
Apo(r)=1\/ moZ(r) (A9)

Defining the dimensionless coordinatésand p,

V4 r
nd p=-—-,

o0 (A0

wherer s is the root-mean-squafems) radial extent of the
plasma, the rest of the calculation is relatively straightfor-

ward.

With the new external field, the axial equatifsee Eq.

(14)] becomes
2

dg_Q 3 g
a2 = n=are s

The surface charge density(r) can then be written as

a(r)=aqnoApg(r)B(r)SB(r)/Q(r)].
For the radial equatiofsee Eq(30)], we obtain

(A11)

(A12)

2

r
4N5o(0)

[1+e(r)]—h(r)),
(A13)

B(r)= B, exp( Cr2+

where e(r) is calculated from theC,, coefficients as indi-

cated in Eq.(A5). DefiningD [see Eq(31)] as

2

r rms

D=Cr2 -+ 22,0)" (A14)
ande(r) as
|'2
e(r)=me(r), (A15)
we have[see Eq(32)]
B(p)=Bo exiDp’—h(p)+e(p)]. (A16)

The electrostatic equatidsee Eq.(29)] then becomes

r

)= 127 fo B(p" S B ) Q(p)]

2
)\D

XNpo(p )H(p,p")p" dp’, (A17)

and can be solved as before.
The new constraint equatiorisee Eqs(35) and (36)]
are

E3 1. Al19
T Mool B(p) S B(p)I2]p dp (A19)

2. Low-density limit for nonideal confining fields

As before, we consider the special limit of low central
density. Once again, we see that the dimensionless plasma
potentialh(p) is small, and we can approxima@p) as

B(p)=PBo exdDp?+e(p)]. (A20)

Using this form forB(p) in the constraint equation for the
number of particles yields

N

(2m)¥nor e 5 Noolp)eXd Dp®+e(p)lp dp’
(A21)

Unfortunately, this equation is more complicated than its
analog in the ideal quadrupole field. It is, however, possible
to solve it numerically after using the angular momentum
constraint and a nonlinear zero finder to solve for Al-
ready, however, one important feature of nonuniform exter-
nal fields can be seen in EGA20). If the nonideal terms in
€(p) are positive, then at large radius they will overcome the
Dp? term, giving a global thermal equilibrium state that is
unconfined. This is discussed further in Sec. 4 of this appen-
dix.

Bo=

3. Low-temperature limit for nonideal confining fields

The same argument made in Sec. IV holds for the case
of the nonideal confining field, so that once again we find

a(p)warm™=(P) cold (A22)

for sufficiently small\po(p). As before, the limit of low
temperature implies that the argument of the exponent in Eq.
(A16) is approximately zero,

Dp?—h(p)+e€(p)=0, (A23)

or

h(p)~Dp?+€(p). (A24)

This means that the plasma potential is no longer propor-
tional to p2, but has contributions from all even powerspof
The charge density(p).oq that would produce such a po-
tential is calculated in Appendix B.

By combining Eq.(A22) with the constraints o and
(r?), it is possible to determin® numerically and to per-
form the following iteration in analogy with Eq51) to de-
termine B(p):

o(p)cold
AdnoApo(p) SLBn(p)/Q(p)]

Bn+1(p)= (A25)
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Radiol Density Comparison in Low Temperature Limit This effect is most easily seen in the low-density limit

. — [see Eq.(A20)]. At radii for which the nonideal corrections
] in the functione(p) are not small, it will dominate the behav-
ior of B(p). [Note: strictly speakinge(p) always dominates at
. large radius, but real systems are of finite size, so only radii
] less than the system radius should be consideted(p) is
negative then it will cause the density profile to cut off
. sharply, making the global thermal equilibrium state toward
] which transport is driving the system better confined radially.
When this effect is important, the terp? in Eq. (A20)
0.2 1 must tend to become positive to keep the particle count con-
stant. This effect can give rise to hollow density profiles, as
L discussed in Appendix B and in Masoet al.
™ %5 1o s 20 This occurs typically wher€C, has the same sign &,

P [see Eq(A5)], although the higher-order terms often matter
too. If, however e(p) is positive(C, andC,, of opposite sign,
FIG. 5. A comparison between the radial density profig) from the  typically), the density profile will tend to blow up at large
Iow-'temperatu_re I!mlt |terat|orﬁEq: (A25)] and ,_B(p) from the full electrg- radius pOSSiny giving an unconfined global thermal equilib-
static calculation is shown. The iterated profile cuts off gt @f approxi- : ’ > ’ i .
mately 1.40, while the profile from the full calculation cuts off aiaf 1.44.  fium state if this effect is important at the radius of the con-
The profile corresponds to a plasma with 31 592 electrons held=dt K fining conductors. In practice, this would probably mean that
having ar s of 1.9x10"* m. See Fig. 6 in Appendix B for a comparison of eyolution toward global thermal equilibrium would tend to
(p)warm t0 () coia for this case. make the plasma concentrated near the outer ring of the trap
in this case.

This influence of the external field has been seen in nu-
valid for low temperaturesf;,=0.5). Using this iteration at mnerical grid experiments we have performed in which a real
different values ofp, it is possible to obtain thg(p) profile Penning trap geometry was used to solve for the vacuum
in this limit without performing the difficult electrostatic in- (externa) field for various trap tuningédifferent guard ring
tegration in Eq(A17). voltages; see Weimeret al). By solving for the potential

Figure 5 shows a comparison between the radial densitynqg subtracting away the ideal components of the field, we
profiles .calculated using E((]AZS). and the full electrostatic  found the higher-order contributions to the field. Then, by
calculathn. The case shown is for a temper'at.ure'l.'of plotting exg —q./KT], whereg, represents only the higher-
=1K, W'th 31592 electrorlsé in & nonideal confining field. order contributions, it is easily determined whether the trap
The radiusr ;s was 1.9<10" ° m, andS, was 0.637. The iy provide radial confinement or radial deconfinement for
coefficients of the external field as determined by analyzingy,o plasma in global thermal equilibrium. Using the same
the vacuum field from the code of Ref. 5 were geometry as in the experiment by Weingtral, we found

C,,C4, - =—4.1220x10°, —8.6641x 10, that with the guard ring voltage at 0.0 V, the higher-order
terms in the external potential were such as to cause decon-

6.5565< 10", —3.2567< 10", finement, but by raising the voltage on the ring, mak@y
—3.7686<10%  5.4069<1C%"... . (A26) larger and of t.he same sign &5, rgdial confinen_went was
enhanced. This effect was clear in the numerical experi-
Agreement is good to better than 1% for most of the profilements, but it was not possible to duplicate the numerical
Beyond the radius of the equivalent cold plasma, howeverg|yes ofC, given in Weimeret al. This may be due to a
the approximate iteration of course fails to give the correcjifference between the experimental apparatus and the nu-
nonzero value fop in the thermal tail of the density distri- merical version of it used in the grid calculation, or perhaps
bution. due to different ways of calculating,. It would be nice to
perform another experiment to test these ideas.

B(p)

4. Possible effects of nonideal fields on radial
confinement

. . . . APPENDIX B: LD EQUILIBRIA IN NONIDEAL
It is interesting to note that Weimet al. discovered that FIELDS co QU ©

a large|C,4| actually seemed to slow the radial expansion of
the plasmas, making it possible to measure the mode fre- To fully explore the problem of what thin thermal
quencies for a longer timeEquations(1), (A3), and (A5)  plasma equilibria look like when the confining field is not
indicate thatC, can significantly affect the radial density ideal, it is necessary to solve the equilibrium problem in such
profile. For instance, iC, andC, are of the same sign, the fields at zero temperature. AB approaches zero, Eql)
non-ideal part of the external field can help drive the densityequires that

toward zero at large radius. F@r, andC, of opposite sign,
however, this same non-ideal part of the field tends to make

CkT
= 2
the density profile become infinite at large radius. $p(1,0)= = ¢e(r,0)+ q a (B1)
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which means that the form of the potential produced by the AC

plasma is known(The constanC must be determined self- X(p)=A+Bp+Cp? k= IAC—B (B7)
consistently by the radial size of the plasma, but thae-

pendence of the term in which it appears is knc)vBecause It will be shown that this integral can be applled to the pl'Ob-
the plasma equilibria are assumed to be thin, the cold equiem given by Eq(B4) by choosing surface charge distribu-
librium problem can be stated this way: given a known dis-tions proportional to iﬁz—fz)_nﬂlz (note that other choices
tribution of potentialé,(r) across a disk of radius, what ~ may be possible and choosing

surface charge density distributian(r) _produces it? Thls X=a2—r'2=a2—r2—2rp cos f— p>. (B8)
problem can be approached by assuming that the degiged . _ o

is represented by a power Seriesrﬁ] and by f|nd|ng the This means thalX vanishes on the Edge of the d|Sk, l.e.,
correspondingr for each power. Hence, the problem of cold X[p(6)1=0 [see Eq.(B3)], and thatk=1/(a*~r? sir? 6).
thin plasma in global thermal equilibrium can be solved if The integral in Eq(B6) can now be used to perform the
the following electrostatic problem can be solved: given alntegration in Eq(B4). In this integral the following simpli-
charged disk of radiug, what surface charge distribution fications occur{(1) the complicated term containing the sum
o(r) will produce a potentiakp(r)=Vy(r/a)®" on the sur- onr vanishes at the upper limit becauXevanishes there,
face of the disk? The solution of this problem is the mainand(2) the lower limit gives a function that integrates to 0
subject of this Appendix, but physical consequences are digvhen thed integral in Eq.(B4) is performed. The remaining
cussed at the end of the AppendiRemember that through- term can be integrated:

out the paper it is a'lssumed thaf0)=0, Whlgh means that o(0) dp _ —2p—2r cos6 p(6)

the constant potential at the center of the disk is always sub- —— = _—sin? (B9)
tracted awayl. 0 \/Y 4(ac—r* sir 6) 0

1. Surface charge distributions for cold equilibria The upper limit is simplym/2 while the lower limit gives a

To solve for the surface charge distribution, the axisym_function of 6 that is. annihilateq by the.integral in Eq.(B4).
metric Green’s function used in Sec. Il B is inconvenientti€nce, the following useful integration formula related to

because it involves an elliptic integral. It is easier to obtainEd- (B4) is obtained:

an analytic connection betweer(r) and ¢(r) by perform- 27 oo (2n+2)! T
ing a two-dimensional integral over the surface of the diskJ daf XM dp= SUTNEEE)
. . : T 0 0 [(n+D)](4H)" " 2
using a cylindrical coordinate systeim 6) whose origin is at
x=r. Using this coordinate system, the distam¢drom the L, hi1
center of the disk is given by X fo (a®—r?sirf )" * de.
r'=\r?+2pr cos 6+ p? (B2) (B10)
and the equation of the edge of the disk is The remaining integral can be performed by using the bino-

mial expansion:

p(6)=—r cosf++a’—r? sirt 6. (B3)

2
The potential at a distanae from the center of the disk is f (a®—r?sir* 9)"" 1 do
then given by 0

(n+1) 2m
1 27 (p(6) _ 2+ 1) (n—i—l r
_ ; =2wa > B =, (B11)
0= |7 [ ot 84 2 Bl om /i3
We already know the answer in the case dffr)ocr? where 1) is the binomial coefficient and
from Egs.(44)—(45) in Sec. IV: (=1)™2m)!
2 BmZWZsz(O), (B12)

a (BS)

a
o(r)=ogVl—-r?la’=¢(r)=— :gz
0

In the process of obtaining this result from EB4) an inte-
gral of a special type is encountered, which leads to th

andP,(x) is the Legendre polynomial.
Using this result, we may now write down the potential
gﬁ(r) produced by the family of surface charge densities that

i 2__ ,2yn+1/2.
solution of the desired problem for all powers G This ~ 2'¢ Proportional tod”—r5)m ==
integral is o(r)=on(1—r3a2)n+v2
n+1 2

| xermap- (@ne2t [K(2Cp+B)VX —on=2"218,,3 B (nﬂ e

[(n+1)!11%(4k)"F 1| C 4 g Dl Polom )l

D! dp (B13
X 20 (2r+2)! (4kX) +j \/_Y . (B6) Now we are quite close to solving the problem of finding

what surface charge distribution makes the potential
where V,(r/a)?" across its surface, because we have found a family
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of surface charge densities that make potentials that are poly- (x10%
nomials in ¢/a)?. Note from Eq.(B13) that any given value 2.0 —
of n produces a polynomiad(r) whose highest power is [
(r/a)?("* ). Hence, to producep(r)=Vy(r/a)>" we may
chooseo,_4 to match it in Eq.(B13), then find the proper 1.5}
values ofo, for 0O=m<n—1 to eliminate the lower powers I
of (r/a)™ in the expression fowp(r) in Eq. (B13). This

linear algebra problem may be solved to obtain the follow- fg: 1.0
ing:

Surface Charge Density

on - 4€0Vo 0.5 .
d(r)y=Vo(rla)" is produced byo(r)= gy sy(r/a),
(B14)
. . . 0.0

where the functiors,(x) is given by 0.0 ) . . 2.0

n—1 (— 1)m+1 n

sp(Xx)= 2 —_— ( (1- Xz)m+ 172 (B15) FIG. 6. The computed surface charge densities fronTth@ calculation of
m=0 |Ban+ 1| m+1 Appendix B (b) and from a low-temperaturel& 1 K) grid calculation(a)

) are compared. The case is a plasma consisting of 31592 electrons in a
Equations(B14) and (B15) may now be used to solve nonideal trap.

the problem of whatr(r) corresponds to thin global thermal
equilibrium asT approaches zero. It will be assumed that the
external confining field is known through the coefficients
C,, in the expansion

_ 8a60 V— 1
- T 3B%
$e(R,0)= 2, ConR*"Pp(c0sO), (B16)
n=1 n
cond (_1)m+n(m+1)
where R,®) are the radius and polar angle in spherical co- + 2 2 Cppa" , (B20)
ordinates. It is also assumed that the total number of particles n=2 m=0 By al(2m+3)
N in the equilibrium is known, as well as the rms plasma
radiusr ms. As in the ideal case, the? term in ¢, and the 16a3€ _ 1
angular momentum term involving in Eq. (B1) combine P= ol —v —
together to give the following form fop,(r) atz=0: q 158:
o n
_r2 r 2n % n-1 (_1)m+n( )
¢p(r):V 3.7_ 22 C2n"~;'12n|:)2n(0) a) (817) + 2 2 C,.a2" m+1
" n=2 m=0 2n |Bm+l|(2m+3)(2m+5)
whereV corresponds to the constabtdefined in Sec. Il B (B21)

and wherea is the as-yet-unknown outer radius of the cold Unfortunately, this is as far as analysis can take us. Even if

plasma. These two constants are to be determined by the : o
. ; only one nonideal term@,) is included, a seventh-order
particle number and the rms plasma radius.

! polynomial equation must be solved to determéneThere-
To make the connection betweeN',@) and (N.rmJ, f to determind/ anda it is necessary to solve Eq819
and to findo(r), we use Eqs(B14), (B15), and(B17): ore, to sary
numerically. Note, however, that & is known, then the
. * equation forP may be ignored an¥f may easily be obtained
Vs, (r/a)— >, C2na2“P2n(O)sn(r/a)). from Eq. (B20).
n=2 Figure 6 shows how this calculation compares with a
(B18)  plasma equilibrium calculation done with the finite-
The particle number and,, may now be determined by difference code described in Ref. 5. The calculation was car-
taking radial moments of(r) as follows: ried out in the geometry of Weimer’'s experiméres used in
the calculations of Masdret al. The voltage on the guard
ring was+8.7 V, w,=3.81x 10° s ! and the coefficients of
the external field are as given in Appendix [Aee Eq.
(A26)]. The plasma consists of 31592 electrons at a tem-
Fims= VP/N. (819  Perature of 1 K, withr ,e=1.9<10 3 m. The calculation
was performed on a grid with 300 radial points and 1000
Since Eq.(B18) gives an explicit form foro(r), these inte- axial points. The two calculations should not agree exactly
grals may be performed to obtain the following formulas forbecause of the nonzero temperature in the grid calculation,
N andP: but they are quite similar.

460
O'(I')Z E

27 [a 27 (a
N=—f a(r)rdr; Pz—f a(r)yrddr;
a Jo q Jo
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2. Cold plasma shapes in presence of nonzero C, valid, as it implies(at r=0) negative charge density, or
charge of the opposite sign, which would not be confined
axially. This probably means that the plasma would form
into a ring for C, beyond this limit. Because the plasmas
being considered are thim is very small ¢<1), and Eq.
(B28) provides a stringent limit oiC,.
The reader may have noticed the possibility of a zero in
w3(r)€eom the denominator folC,r?/C,=1/3. This implies a loss of
Neoid(T) = g (B22)  axial confinement at the outer edge of the profila3€,/C,
gets as big as 1/3, aa’C,=C,/3. However, it is evident
from Eq.(B28) that the critical point at which the plasma is
no longer a disk is reached long before this occurs.
If C, andC, have opposite signs, increasif@,| has a
o(r) curious effect. If|C,| is large enoughof the same order as
= m (B23) in Eq. (B28)], then Eq.(B24) implies negative charge den-
sity beyond a certain radius. This suggests that as the plasma
This makes it possible to calculate plasma shapes in nonidegkpands radially and approaches thermal equilibrium in the
traps after the plasma has expanded into a pancake shape.dfésence of some nonze@y, it may form into rings around

the following discussion it is assumed that ofly is impor- g central disk, or collect on the walls of the trap, as discussed
tant to simplify things. In general, the higher-order terms arqn sec. A 4.

One interesting application of this result is found in the
calculation of the plasma shapeTat 0. If the plasma is thin
enough that the nonideal analog of the approximakdn)
~1 is valid[see Eq(5)], then at each radius =0 plasma
would condense to the cold density,

wherewﬁ(r) is given in Eq.(A4). However, if bothn(r) and
o(r) are known, then the axial half-width,(r) is easily
determined to be

zp(r)

also important. Some of these physical effects may be seen in the radial
For example, in a trap with nonzeiG,, the plasma density profile of a warmT>0) plasma a€, (same sign as
shape aff =0 would be given by C,) is changed. A$C,| approaches the critical value in Eq.
2 4 (B28), both the warm and cold plasmas exhibit the same
32a%C,eq| = (r/a)®— —} general behavior: the charge densitf0) approaches zero.
Zigea(T) 3 15 . : o .
zp(N=—F~7~ | 1+ , The cold theory predicts that the plasma will maintain uni-
1-3C4r7/Cy 3Nq form density, thereby being forced to cave in near0 until
(B24) it eventually becomes a ring in order to satisfy the condition
wherezige,(r) is zy(r) for the ideal quadrupole: that 0(0)=0. The warm plasma, unable to get any thinner
7 than about pg, must also satisfy this condition, and it does
Zigeal ) = w. (B25) so by dropping the central density until it, too, has formed a
8ma“Cyeo ring. For theT>0 case shown in Fig. 5C, is at about

Careful examination of EqB24) provides an interesting One-twentieth of its critical value, suggesting that|@,|
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