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Thermal equilibrium of warm clouds of charge with small aspect ratio
Deborah L. Paulson and Ross L. Spencera)

Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602

~Received 12 August 1997; accepted 22 October 1997!

Global thermal equilibrium computations are presented for non-neutral plasmas whose radial size is
much larger than their axial thickness. Axial and radial density profiles are computed for both ideal
and nonideal Penning trap fields. Simple results are obtained in the limits of both low and high
central density. Comparison is made to the grid calculations of Masonet al. @Phys. Plasmas3 ~5!,
1502 ~1996!#. © 1998 American Institute of Physics.@S1070-664X~98!00402-9#
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I. INTRODUCTION

When charged particles are loaded into a Penning t
the initial density profile can be almost anything, depend
on the details of the loading process. Slow transport, h
ever, gradually causes the radius of the cloud to increase
drives the plasma toward global thermal equilibrium. If t
plasma is cold enough that the Debye length is small co
pared to the cloud, the approach to global thermal equi
rium also causes the density profile to become uniform
the plasma shape to become a thin oblate spheroid.1

A warm plasma, however, behaves differently. Beca
of the kinetic energy of the particles, the plasma reache
limit at which its thickness is on the order of the Deb
length in the axial confining field. At this point, the plasm
thickness can no longer decrease. As the radius grows,
ticle conservation requires the density to drop. This eff
was observed in numerical simulations by Mason2 et al. and
is the subject of this paper.

Such pancake-like plasmas were studied in an exp
ment performed at the National Institute of Standards
Technology~NIST! in Boulder, Colorado by Weimer1 et al.
In the experiment~consisting of about 43 000 electrons th
were reported to be held at a temperature of approximate
K! the tenuous nature of the plasma made it necessary to
a nondestructive method of measuring its physical prop
ties. The method used by Weimeret al. involved measuring
the mode frequencies of the plasma and comparing th
with the cold fluid theory of Dubin3 to find the plasma aspec
ratio a, defined as the ratio of the axial half-widthzp to the
radius r p of the plasma. This method worked reasona
well, but resulted in a systematic error of approximately 20
in the determination ofa using different modes.

The Dubin theory is based on a zero-temperatu
constant-density, non-neutral plasma confined axially by
electrostatic quadrupole potential. This externally impos
potential causes the cold plasma to assume a spher
shape. Given this uniform-density spheroidal plasma, Du
used cold fluid theory to calculate the oscillation frequenc
of the plasma. These frequencies are functions of the e
trostatic confining field and the plasma aspect ratio.

Since the plasmas in Weimer’s experiment were
warm for thermal effects to be negligible, a possible sou

a!Electronic mail: spencerr@maxwell.byu.edu
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of the disagreement between the experimental results
Dubin’s theory is the nonzero temperature. This possibi
was studied in numerical simulations by Mason2 et al. They
found that the experimental plasmas should have had sig
cant variations in density due to thermal effects. Masonet al.
were able to study these thermal effects for some
Weimer’s plasmas by using numerical grid calculations,
both computer memory and running time limitations made
difficult to handle the very thin plasmas of the experiment.
this paper a calculation that does not require a grid, a
hence uses only small amounts of computer memory, will
described. The key idea of this calculation is to exploit t
small aspect ratio of these thin plasmas to separate the
culation of the density profile into axial and radial par
Because the calculation is somewhat analytic, it also p
vides interesting physical insights as well as analytic res
in special limits.

Although Weimer’s experiment served as the motivati
for this study, there is one difficulty in comparing the resu
for a thin spheroid to Weimer’s data. It was assumed in
experiment that the plasma remained spheroidal as the ra
increased. Masonet al.demonstrated, however, that the no
ideal components of the Penning trap field caused a dis
tion in the plasma shape, particularly at a small aspect ra
For the sake of simplicity, most of the calculation presen
here uses ideal confining fields. The more complicated n
ideal fields encountered in experiments are discussed in
Appendices of this paper. In Sect. II we discuss global th
mal equilibrium for a thin plasma confined by an extern
quadrupole field. Both axial and radial density profile calc
lations are presented. In Secs. III and IV we discuss
special cases of low and high central density, and in Sec
we conclude the paper. The same calculations for nonid
fields are discussed in Appendices A and B.

II. GLOBAL THERMAL EQUILIBRIUM FOR THIN
PLASMAS

A plasma in global thermal equilibrium obeys the fo
lowing form of Poisson’s equation,4,5 where the potentialf
5fe1fp represents the sum of the external potentialfe

and the potential due to the plasmafp ,

¹2f52
q

e0
n̄e2qf/kT1Cr2

, ~1!
© 1998 American Institute of Physics
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where k is Boltzmann’s constant,q is the particle charge
and n̄ is the central density. The constantC is related
to the canonical angular momentum and is given
C52(m/2kT)v(v1vc), where v is the rigid-rotor fre-
quency of the global thermal equilibrium and wherevc is the
cyclotron frequency including the sign of the charge.4,5 Since
we are not interested here inv, it is convenient to work only
with C. It is assumed that the plasma is isolated in infin
space in the presence of an ideal external electrostatic q
rupole field. The boundary condition onfp at infinity is that
it has the constant value that makesfp(0,0)50.

The external potential is the quadrupole field of a P
ning trap, which can be written as

fe~r ,z!5
m

2q
vz

2 S z22
1

2
r 2D , ~2!

where vz is the Penning frequency, the axial bounce f
quency of a single particle of massm, and chargeq in the
trap. This frequency is related to the densityncold of a cold
spheroid of aspect ratioa by6

vz5F~a!vp , ~3!

where

vp
25

q2ncold

e0m
. ~4!

For low aspect ratio oblate spheroids~pancakes!6

F2~a!'12
p

2
a12a2. ~5!

Cold spheroids will often be mentioned in the remaind
of this paper. In fact, the point of most of this paper is
study what happens to a cold spheroid of radiusr p , half-
length zp , and central densityncold when its temperature is
raised. This problem is quite difficult to solve for spheroi
of an arbitrary aspect ratio, requiring the use of grid code5

~Note, however, that in the limit that the Debye length
small compared to the plasma thickness, Dubin has c
puted thermal corrections to cold equilibria.7! However,
when the aspect ratio is small, it is possible to find an
proximate separable form for the axial and radial dens
profiles for arbitrary values of the Debye length. These se
rate profile calculations will now be presented.

A. Axial density profile: Thin approximation

When the axisymmetric plasma is thin, the axial var
tion of the plasma potential in the neighborhood of t
plasma is greater than the variation in the radial directi
This can be illustrated by solving the simple electrosta
problem of the distribution of potential across a uniform
charged infinitely thin disk with surface charge densitys and
radiusa. The potential difference between the center and
outer edge is found to be

Df5
sa

e0
S 12

2

p D . ~6!

To apply this result to a thin plasma of densityn and thick-
nesszp , we uses'qnzp , so that
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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p D qnzp

e0a
, ~7!

where the radial derivatives have simply been estimated
dividing by a2.

The ratio of this part of¹2fp to the full ¹2fp

52qn/e0 is thus on the order ofzp /a5a, which is small.
In other words,

U]2fp

]z2 U@U1r ]

]r
r

]fp

]r U. ~8!

It is easy to show that this result holds to an accuracy
ordera for cold spheroids, and it was also checked for sm
aspect ratio thermal plasmas by using a grid code.5 This in-
equality is the basis of the thin approximation used throu
out this paper and is synonymous with a low aspect ratio

Using this thin approximation, the electrostatic proble
can be separated into axial and radial parts. The axial eq
tion is obtained simply by neglecting the radial part of¹2 in
Eq. ~1!.

To obtain an equation for the axial density profile, it
useful to describe the radial density profile in the plas
midplane with the dimensionless functionb(r ):

n~r ,0!5b~r !n0 , ~9!

where the scale densityn0 is given by

n05
vz

2e0m

q2 . ~10!

This density is nearly the same asncold @n05F2(a)ncold# but
makes the resulting formulas simpler. It also simplifies co
parisons with experiments because it depends only on
easily measured frequencyvz .

It is also useful to define the dimensionless poten
g(z) at each radius:

g~z!5
qf~r ,z!

kT
2

qf~r ,0!

kT
, ~11!

wheref is the total potential. Althoughg(z) is actually a
function of bothr andz, it is used to define the axial densit
profile at a given radius, so in order to simplify the notati
it will be referred to simply asg(z). With this definition for
g(z), the density profile can be written as

n~r ,z!5n0b~r !e2g~z!. ~12!

In a further effort to make the equations dimensionle
we use a natural length scalelD0 . This is a Debye length
that depends onn0 and on the temperatureT of the plasma:

lD05Ae0kT

q2n0
5A kT

mvz
2. ~13!

The reason that this unusual definition for the Debye len
is natural is that the axial confining electric field of the Pe
ning trap is equivalent to the field of a uniform slab of co
stant charge densityn0 with a sign opposite to that of the
confined particles. This is similar to the case of global th
mal equilibrium in infinite cylinder geometry,4,5 where the
confining magnetic field is equivalent to a uniform char
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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density. The lengthlD0 is useful in the thin spheroid calcu
lation discussed here because the Debye length define
terms of the plasma central density varies both with plas
size and temperature, whereaslD0 only depends on tempera
ture and the Penning trap field. This length also has phys
meaning here, for we shall see later that in the limit of lo
plasma density the plasma thickness is of orderlD0 .

With this definition forlD0 , we change to the dimen
sionless variablez5z/lD0 and obtain an approximation t
Eq. ~1! at each radius in the form of an axial ordinary diffe
ential equation. This differential equation is derived usi
¹2fext50 and¹2fp']2fp /]z2. When Eq.~11! is used to
evaluate]2fp /]z2, the following differential equation forg
is obtained:

d2g

dz2 512b~r !e2g. ~14!

Because both the external and plasma potentials are ch
to vanish at the origin, it is clear thatg(0)50; and since
both of these potentials are even functions ofz, we have
g8(0)50. These are the initial conditions for Eq.~14!. Note
that be2g is the dimensionless axial density profile at
given radius.

This second-order ordinary differential equation can
solved numerically to obtain axial density profiles for va
ous choices ofb(r ). Figure 1 is a set of axial profiles atr
50 obtained numerically for several values ofb(0) ranging
from 0.1 up to 0.9.

Note that in the limit ofb(r )!1, the density profile
becomes

n~r ,z!;n0b~r !e2~1/2!z2
, ~15!

so that in this limit the axial density profile is a Gaussi
with a scale length oflD0 . Hence, it is clear that the plasm
can never be any thinner than aboutlD0 . This low-density
limit is discussed further in Sec. III.

FIG. 1. A series of axial density profiles is shown for the following para
eters: a 43 000 electron plasma atT54 K, confined in an ideal trap with
vz53.8673108 s21. The shape of the axial profile depends on the value
b05b(0). Profiles shown are for a scale densityn0 of 4.731013 m23. They
correspond tob0 values of 0.9, 0.75, 0.5, and 0.1.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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Notice also that the solutions to Eq.~14! have the prop-
erty that until b is very close to unity, the width of the
density profilee2g is characterized bylD0 . As b approaches
unity, Eq.~14! implies a uniform axial density near the ce
ter of the plasma. This prediction that the plasma den
becomes uniform asb approaches 1 is in error, for the co
rect limiting value of b obtained from Eq. ~3! is b
51/F2(a)'11pa/2. This error, however, is only of orde
a, as expected from using the thin approximation.

B. Radial density profile

In order to obtain the form for the midplane radial de
sity profile n(r ,0), we must first determine the midplan
plasma potential,fp(r ,0) @see Eq.~1!#. Because of the thin
approximation we have already made@Eq. ~8!#, it is difficult
to use Eq.~1! in differential form to obtainfp (r ,0). Instead,
we will use the electrostatic Green’s function appropriate
fp(0,0)50,

fp~r ,0!5E
2`

` E
0

`

2p@G~r ,0,r 8,z8!

2G~0,0,r 8,z8!#qn0b~r 8!e2g~z8!r 8 dr8 dz8,

~16!

where the cylindrical Green’s function is given by

G~r ,z,r 8,z8!5
1

4p2e0
A m

rr 8
K~m!. ~17!

HereK(m) is the complete elliptic integral of the first kin
and

m5
4rr 8

~r 1r 8!21~z2z8!2 . ~18!

In the limit that the Debye lengthlD0 is small compared
to the plasma radius, we again use the thinness of the pla
to treat it approximately as a disk with surface charge den
s(r )5q2`

` n(r ,z)dz. In this limit, e2g is highly localized so
that it may be treated as an unnormalized delta function.
axial integration may then be performed to obtain

fp~r ,0!5E
0

` s~r 8!

e0
H~r ,r 8!r 8 dr8, ~19!

where

H~r ,r 8!52pe0@G~r ,0,r 8,0!2G~0,0,r 8,0!#. ~20!

It is possible to obtain a fairly simple formula fors(r )
by using the axial density profile calculation of Sec. II A
follows:

s~r !5qn0E
2`

`

b~r !e2g dz, ~21!

52qn0lD0b~r !E
0

`

e2g dz. ~22!

This integral can be done more easily in the variableg. To
obtain the integral in this form, multiply Eq.~14! by g8 and
integrate to obtain

-

f
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g85&@g1b~r !~e2g21!#1/2, ~23!

so that the charge density becomes

s~r !5&qn0lD0b~r !E
0

` e2g dg

Ag2b~r !~12e2g!
. ~24!

For simplicity, we define the function

S~x!5&E
0

` e2g dg

Ag2x~12e2g!
. ~25!

With the dimensionless radial variabler5r /r p , wherer p is
the maximum radial extent of the cold plasma, the surf
charge density may be written as

s~r!5qn0lD0b~r!S@b~r!#. ~26!

Before proceeding further, it is useful to have availab
an approximate form for the functionS(x) valid for x
,0.9. An approximate form is given by the following:

S~x!'A2p
11p1x

11p2x
22

11p3~12x!

11p4~12x!
ln~12x!, ~27!

where the four parameters are best given by~for accuracy to
about 0.01%!

p1520.823 28, p2520.266 73,

p351.927 65, p451.404 25.

Defining the dimensionless midplane plasma poten
h(r) by

h~r!5
qfp~r,0!

kT
, ~28!

the electrostatic equation in the plasma midplane becom

h~r!5
r p

lD0
E

0

`

b~r8!S@b~r8!#H~r,r8!r8 dr8, ~29!

whereb~r! depends onh(r) through the form for the density
given in Eq.~1!:

b~r !5b0 expS Cr21
1

4lD0
2 r 22h~r ! D , ~30!

andb05b(0). This equation forb(r ) can be simplified by
defining

D5Crp
21

r p
2

4lD0
2 , ~31!

so that

b~r!5b0eDr22h~r!. ~32!

For fixed b0 and D, Eqs. ~29! and ~32! can be solved
simultaneously to obtain the radial density profileb~r!. In
the calculation described here this is done by using suc
sive substitution with under-relaxation on Eq.~29!:5
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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hn11~r!5~12e!hn~r!1e
r p

lD0
E

0

`

bn~r8!

3S@bn~r8!#H~r,r8!r8 dp8, ~33!

where hn is the nth iterate and wheree is a small under-
relaxation parameter on the order oflD0 /r p .

For specified values ofb0 andD, radial density profiles
can be obtained from Eq.~33!, but it is desirable to be able to
vary the temperature and have the computed plasma equ
ria maintain the same total number of particlesN and the
same canonical angular momentumpu as a reference cold
spheroid. Imposing these constraints determinesb0 and D,
and their calculation will be discussed in the next section

C. Constraints

It is interesting to compare this model to a cold spher
dal plasma to answer the question of what happens to
cold spheroid as its temperature is raised. If the tempera
is raised without adding or removing particles or applyi
any torques, then bothN and pu must be conserved. In th
limit of a small Larmor radius (r L!r p), pu}^r 2&. This limit
is assumed in the following derivation.

For a cold spheroid,N and ^r 2& are given by

N5 4
3 pr p

3ancold and ^r 2&5 2
5 r p

2. ~34!

Note that knowledge of these two quantities and the Penn
frequency of the trapvz is sufficient to determiner p , zp ,
andn0 through Eq.~34! together with Eqs.~3! and~4!. In the
remainder of this paper whenzp appears, it is assumed that
was determined fromN, ^r 2&, andvz in this way.

For a thermal density profile, integration overs~r!
changes Eqs.~34! to the following constraint equations. In
sisting that particle number be conserved and usingF(a)
'1 yields

E
0

`

b~r!S@b~r!#r dp5
2zp

3lD0
, ~35!

where zp is the cold axial half-width such thatzp5ar p .
Insisting on^r 2& conservation yields

*0
`b~r!S@b~r!#r3 dr

*0
`b~r!S@b~r!#r dr

5
2

5
. ~36!

These two constraint equations determine the values ofb0

andD.
These constants are found by simultaneously solv

both the electrostatic equations@Eqs.~29! and ~32!# and the
constraint equations@Eqs.~35! and~36!#. There are probably
many ways to do this, but one successful algorithm will
described here.~1! Begin by iterating on Eq.~33! a few
times.~2! Solve Eq.~36! for D using a nonlinear zero finder
and then go back to~1!, repeating~1! and ~2! together until
an adequate level of convergence is achieved.~3! This pro-
cedure is followed by an adjustment ofb0 based on writing
Eq. ~35! in the form

b0,n115
2

3
b0,n

zp

lD0

1

*0
`bn~r!S@bn~r!#r dr

, ~37!
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after which the algorithm returns again to~1!. This entire
procedure is continued until both of the constraints and
electrostatic equation are well satisfied. In difficult cases~b0

approaching unity! it is necessary to under-relax in step~3!
as well.

To test the validity of this calculation, the results from
have been compared to the results of memory-intensive
calculations.2,5 A global thermal equilibrium was compute
on a grid with 100 radial grid points and 1200 axial gr
points for a pancake with the sameN and ^r 2& as a cold
spheroid with an aspect ratioa50.01. The temperature cor
responded tolD0zp51. A graphical comparison between th
two methods for this case is shown in Fig. 2. The cen
density of the grid calculation was about 1% higher than t
of the calculation described here and the radial and a
profiles agreed to the same precision. The error cause
using the thin approximation described in this paper is
pected to be of ordera, which is consistent with the error in
this and other comparisons. Since the thin approximation
comes more accurate as the aspect ratio of the plasm
decreased, the radial density profile calculation describe
this section should be good to better than 1% for asp
ratios less than 0.01.

III. LOW CENTRAL DENSITY LIMIT

It is possible to obtain the radial density profile in th
special limit of low central density (b0!1) using analytical
methods. Asb0 approaches zero, Eq.~29! indicates that
h(r) also approaches zero so that the profile@see Eq.~32!#
becomes a Gaussian,

b~r!5b0eDr2
. ~38!

FIG. 2. A comparison with the memory intensive grid calculation of Mas
et al. is shown. The case is a plasma consisting of 41 888 electronsT
52.1 K in an ideal trap withvz55.59053107 s21. The cold spheroid den-
sity ncold is 131012 m23. The cold aspect ratio is 0.01 and the cold plas
radius is 0.01 m. The top graph is a plot of the radial density profile. T
open circles correspond to the data from the grid calculation, while the s
line represents the results from the calculation described in this paper.
lower graph is a plot of the axial density profile taken at the radius mar
on the top graph with a solid square.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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Using this form in the constraint equations, Eqs.~35! and
~36!, and noting thatS(0)5A2p, b0 andD are determined
to be

b05
10zp

3A2plD0

and D52
5

2
. ~39!

This result combined with the low-density limit for the axi
profile @see Eq.~15!#, yields a density profile that is doubl
Gaussian,

n~r,z!5b0n0e2~1/2!z22~5/2!r2
. ~40!

This limit of small b0 applies potentially to plasmas i
an experiment such as Weimer’s. As the plasma sits in
trap, the root-mean-square~rms! plasma radius grows due t
transport.1 A cold plasma under these conditions wou
maintain its density and flatten (zp→0) to compensate for
the increasing radius. When the plasma is warm, however
thickness, or better, its thinness, is limited by the Deb
lengthlD0 . Because the plasma cannot become thinner t
aboutlD0 as the radius grows, the central density is forced
drop in order to conserve the particle number. In time,
plasma would reach a state where the smallb0 limit de-
scribes its density profile. However, this limit is not reach
until

h~r!!Dr2. ~41!

If b0 is proportional tozp /lD0 and h(r) is proportional to
b0r p /lD0 @see Eqs.~39! and~29!#, then Eq.~41! implies that
this limit is not reached until

r pzp

lD0
2 !1. ~42!

Numerical experiments with the equilibrium calculatio
described in Sec. II show that when the factorr pzp /lD0

2

<0.1, the density profile is within a few percent of the a
proximate double Gaussian in Eq.~40!.

The approach to this limit can be seen in Fig.
For instance, for case~d! in this figure we haver p

5A2.5̂ r 2&50.0632 m, ncold.n054.7031013 m23, zp

55.4631028 m, and lD056.3731025 m. Hence, for this
case,r pzp /lD0

2 50.85, which is not small. Still, the profile
shown in Fig. 3~d! is Gaussian to about 10%,D522.8
~about 10% different from 2.5!, and b0 from Eq. ~39! is
0.001 14, about 10% higher than the actualb0 .

IV. LOW-TEMPERATURE LIMIT

In the opposite limit of the calculation, whereb0

51/F2(a)'1, lies the cold plasma. AtT50, global thermal
equilibrium gives a constant density spheroid.6,8,9 Following
Bollinger6 et al. we may therefore write forfp ,

fp~r ,0!5
m

4q
@vz

22vp
2#r 2, ~43!

which in the thin limit wherea!1 becomes@using Eq.~3!#

fp'2
p

8

mzp

qrp
vp

2r 2, ~44!

e
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and the surface charge density of the thin cold spheroid
radiusr p , s(r )5q*2`

` n(r ,z)dz, can be written as

s~r !52qncoldzp A12
r 2

r p
2. ~45!

Now imagine the temperature rising slightly. As long
lD0!zp the plasma approximately maintains its cold sph
oid shape. But, as the temperature continues to rise so
lD0 approacheszp , the axial density profile become
rounded, as shown in Fig. 1. As this evolution occurs
constraint on^r 2& must be maintained. Because the rad
density profile is proportional to exp@Dr22h(r)# and bothD
andh(r) are very large forlD0'zp!r p @see Eqs.~29! and
~31!#, to maintain^r 2& we must haveh(r)'Dr2.

To find the surface charge density that could give rise
such a potential, we need only refer to the cold spher
solution in Eqs.~44! and~45!. These equations show that th
charge density that would make a quadratic potential acro
disk is

s~r !}A12
r 2

r p
2. ~46!

In fact, the constraint onN, which implies the same tota
charge for both thermal and cold spheroids, is all tha
needed to see that the charge density for a thermal pla
with lD0'zp must be about the same as that for a c
spheroid, i.e.

s~r!warm's~r!cold. ~47!

Such a condition may seem to be obvious, since
limit relies onlD0 being very small, i.e., the spheroid bein
fairly cold, but it is, in fact, an interesting result. Ifh(r)

FIG. 3. A series of radial density profiles is shown for the following para
eters: a 43 000 electron plasma is confined in an ideal trap withvz53.867
3108 s21. In this series, the root-mean-square~rms! plasma radius is varied
from 1.6 to 40 mm. The outer profile~a! corresponds to a rms plasma radiu
of 1.6 mm withb050.777 at a temperature ofT54 K. At this small radius,
the profile is approaching a uniform density step. The next profile~b! is for
a rms plasma radius of 2.4 mm withb050.473 also atT54 K. The third
profile ~c! is for a rms plasma radius of 10 mm and has a low density:b0

50.0364, withT54 K. The fourth profile (d) is a special case to demon
strate the Gaussian limit. The rms plasma radius is 40 mm, the temper
is 40 K, andb050.001 04.
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'Dr2, then the charge density is nearly that of the co
spheroid. But in the low-temperature limit bothh andD are
very large, so even thoughDr2'h(r), this does not imply
that b~r! is flat or even nearly flat, since the difference b
tween these two is the argument of an exponential. T
means that even thoughs may stay approximately the sam
as it is for a cold spheroid, the density profile can chan
quite drastically. In fact, as the axial density profile is alter
with an increase in temperature, the change in the ra
density profile is the means by whichs is able to remain the
same.

This condition thats(r)warm5s(r)cold requires that the
potentialfp(r ) also be the same as in the case of the c
spheroid, giving

h~r!52
p

8

r pzp

lD0
2 r2. ~48!

Finally, becauseh(r)'Dr2, we have

D'2
p

8

r pzp

lD0
2 , ~49!

valid whenuD u is large.
This approximation forD will be accurate as long as th

surface charge density is close to that of the cold spher
We have already assumed thatr pzp /lD0

2 @1, so thatD must
be very large. The question is now this: how large mustD be
for this approximation~i.e., the equality of the surface charg
densities! to remain valid?

One way to test the useful range of this approximation
to calculateb~r! by iteration usings~r! as in Eq.~45!. Here
b0 is first found by iteration usings05s(0) @see Eqs.~25!–
~26!#,

b0,n115
2zp

lD0S~b0,n!
. ~50!

This is then used to obtainb~r!,

bn11~r!5
b0S~b0!

S@bn~r!#
A12r2. ~51!

Numerical comparisons between density profiles cal
lated in this way and density profiles from the calculati
described in Sec. II show that this approximation is good
within a few percent ifD<240. This is when thes~r! pro-
files are very close to the cold spheroids~r! profiles. Figure
4 shows a comparison between surface charge densities
cold spheroid and a thermal spheroid withD5258.1.

The approach to this limit can be seen in Fig. 3. F
instance, for case~b! in this figure we haver p5A2.5̂ r 2&
50.003 79 m, ncold'n054.7331013 m23, zp51.51
31025 m, and lD052.0131025 m. Hence, for this case
r pzp /lD0

2 5142. The approximateD from Eq.~49! is 255.6,
about 4% below its true value, and the value ofb0 obtained
from the iteration indicated in Eq.~50! is 0.468, about 1%
below the actual value of 0.473. This same limit is discus
for nonquadrupole confining fields in Appendices A and

Some final comments on the approach toT50 are in
order here. As the temperature drops toward zero,b0 ap-
proaches 1 andS(b0) becomes logarithmically singular@see

-
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Eq. ~27!#. The presence of this singularity makes the iterat
scheme indicated in Eqs.~50! and ~51! not converge. How-
ever, if these two equations are solved by a more powe
algorithm, such as Newton’s method, it is found that bothb0

and b~r! approach unity, except right at the edge whe
A12r250. The correct limit is 1/F2(a)'11pa/2, so once
again using the thin approximation gives an answer cor
to order a. This scheme is important computationally b
cause the more complex algorithm described in Secs.
and II C converges very poorly forb0.0.8. Therefore, the
only way to explore the approach to cold equilibrium is
use the approximate equations of this section.

V. CONCLUSIONS

When a cloud of charge in a Penning trap expands r
ally due to transport, it becomes thin axially. An importa
transition occurs when the plasma thickness approaches
lengthlD05AkT/mvz

2. When this thickness is reached, r
dial expansion cannot further reduce the thickness and t
mal effects begin to dominate the equilibrium properties
the plasma. This can be an important effect, even in cr
genic systems. In the limit that the plasma thickness is m
smaller than the plasma radius, an approximate theory
gives the equilibrium density as the product of an axial p
file and a radial profile gives good results, both for ideal a
nonideal electrostatic confining fields~see the Appendices!.
In this thin limit numerical calculations are required, but th
are much faster than full two-dimensional calculations. In
limit that the Debye length is sufficiently small (lD0

!Ar pzp), it is found that even though the plasma dens
profile is quite different from the zero-temperature step-l
profile, the line density profile*n dz is nearly the same as a
zero temperature. In this case a simple nonlinear algeb
equation@see Eqs.~50!–~51!# may be solved to find densit
profiles, both for ideal and nonideal confining fields.

FIG. 4. A comparison between surface charge densities of a cold spher
plasma and a thermal plasma withD5258.1, corresponding to the radia
density profileb~r! labeled~b! in Fig. 3, is shown. The colds~r! corre-
sponding to this case cuts off sharply atr51.
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APPENDIX A: NONIDEAL CONFINING FIELDS

A more general approach to this calculation is to co
sider a thermal plasma in a nonideal~nonquadrupole! con-
fining field. To do so requires a knowledge of the extern
field in the midplane of the plasma. This fieldfe may be
expressed using Legendre Polynomials:

fe~R,Q!5 (
n51

`

C2nR2nP2n~cosQ!, ~A1!

where (R,Q) are the radius and polar angle in spherical c
ordinates.

For a thin plasma, high-order axial terms such
z4,z6,..., may beneglected. Newton’s Second Law for
charged particle of massm and chargeq then implies that in
this field,

C25
m

2q
vz

2~0!, ~A2!

so the external potential may be expressed as

fe5
m

2q
vz

2~r !z22
m

4q
vz

2~0!r 2@11e~r !#, ~A3!

wherevz(r ) is no longer a constant, but a function ofr in
the midplane of the plasma, ande(r ) is a dimensionless
parameter describing the higher-order corrections to
quadrupole field. For an ideal quadrupole,vz(r )5vz(0) and
e(r )50. For the nonideal field,vz(r ) and e(r ) are calcu-
lated from the trap parameters:

vz
2~r !5vz

2~0! S 12 (
n52

`

2n2
C2n

C2
P2n~0!r 2n22D

[vz
2~0!V~r !, ~A4!

e~r !5 (
n52

`
22C2n

C2
P2n~0!r 2n22, ~A5!

where

P2n~0!5
~21!n~2n!!

@n! #24n . ~A6!

Note thatV(r ) in Eq. ~A4! is a dimensionless radial profil
defined in order to simplify the notation in the equations th
follow

V~r !512 (
n52

`

2n2
C2n

C2
P2n~0!r 2n22. ~A7!

Oncevz(r ) and e(r ) are obtained from theCn coeffi-
cients, the calculation proceeds analogously to the per
quadrupole calculation.

dal
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1. Modified equations

Because there is no longer a cold spheroid to comp
with, the plasma is specified by the quantitiesN, ^r 2&, and
T. The main changes in the equations arise from the fact
vz andlD0 are no longer constants, but functions of radi
vz(r ) andlD0(r ). For convenience, the scale densityn0 is
given by

n05
vz

2~0!e0m

q2 , ~A8!

and the Debye lengthlD0(r ) is given by

lD0~r !5A kT

mvz
2~r !

. ~A9!

Defining the dimensionless coordinates,z andr,

z5
z

lD0~0!
and r5

r

r rms
, ~A10!

wherer rms is the root-mean-square~rms! radial extent of the
plasma, the rest of the calculation is relatively straightf
ward.

With the new external field, the axial equation@see Eq.
~14!# becomes

d2g

dz2 5V~r !2b~r !e2g. ~A11!

The surface charge densitys(r ) can then be written as

s~r !5qn0lD0~r !b~r !S@b~r !/V~r !#. ~A12!

For the radial equation@see Eq.~30!#, we obtain

b~r !5b0 expS Cr21
r 2

4lD0
2 ~0!

@11e~r !#2h~r ! D ,

~A13!

where e(r ) is calculated from theCn coefficients as indi-
cated in Eq.~A5!. DefiningD @see Eq.~31!# as

D5Cr rms
2 1

r rms
2

4lD0
2 ~0!

, ~A14!

ande(r ) as

e~r !5
r 2

4lD0
2 ~0!

e~r !, ~A15!

we have@see Eq.~32!#

b~r!5b0 exp@Dr22h~r!1e~r!#. ~A16!

The electrostatic equation@see Eq.~29!# then becomes

h~r!5
r rms

lD0
2 ~0!

E
0

`

b~r8!S@b~r8!/V~r8!#

3lD0~r8!H~r,r8!r8 dr8, ~A17!

and can be solved as before.
The new constraint equations@see Eqs.~35! and ~36!#

are
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N52pn0r rms
2 E

0

`

lD0~r!b~r!S@b~r!/V~r!#r dr

~A18!

and

*0
` lD0~r!b~r!S@b~r!/V~r!#r3 dr

*0
` lD0~r!b~r!S@b~r!/V#r dr

51. ~A19!

2. Low-density limit for nonideal confining fields

As before, we consider the special limit of low centr
density. Once again, we see that the dimensionless pla
potentialh(r) is small, and we can approximateb~r! as

b~r!5b0 exp@Dr21e~r!#. ~A20!

Using this form forb~r! in the constraint equation for th
number of particles yields

b05
N

~2p!3/2n0r rms
2 *0

` lD0~r!exp@Dr21e~r!#r dr
.

~A21!

Unfortunately, this equation is more complicated than
analog in the ideal quadrupole field. It is, however, possi
to solve it numerically after using the angular momentu
constraint and a nonlinear zero finder to solve forD. Al-
ready, however, one important feature of nonuniform ext
nal fields can be seen in Eq.~A20!. If the nonideal terms in
e~r! are positive, then at large radius they will overcome t
Dr2 term, giving a global thermal equilibrium state that
unconfined. This is discussed further in Sec. 4 of this app
dix.

3. Low-temperature limit for nonideal confining fields

The same argument made in Sec. IV holds for the c
of the nonideal confining field, so that once again we find

s~r!warm's~r!cold, ~A22!

for sufficiently smalllD0(r). As before, the limit of low
temperature implies that the argument of the exponent in
~A16! is approximately zero,

Dr22h~r!1e~r!'0, ~A23!

or

h~r!'Dr21e~r!. ~A24!

This means that the plasma potential is no longer prop
tional tor2, but has contributions from all even powers ofr.
The charge densitys(r)cold that would produce such a po
tential is calculated in Appendix B.

By combining Eq.~A22! with the constraints onN and
^r 2&, it is possible to determineD numerically and to per-
form the following iteration in analogy with Eq.~51! to de-
termineb~r!:

bn11~r!5
s~r!cold

qn0lD0~r!S@bn~r!/V~r!#
, ~A25!
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valid for low temperatures (b0>0.5). Using this iteration a
different values ofr, it is possible to obtain theb~r! profile
in this limit without performing the difficult electrostatic in
tegration in Eq.~A17!.

Figure 5 shows a comparison between the radial den
profiles calculated using Eq.~A25! and the full electrostatic
calculation. The case shown is for a temperature ofT
51 K, with 31 592 electrons in a nonideal confining fiel
The radiusr rms was 1.931023 m, andb0 was 0.637. The
coefficients of the external field as determined by analyz
the vacuum field from the code of Ref. 5 were

C2 ,C4 ,•••524.12203105, 28.66413107,

6.556531013, 23.256731017,

23.768631022, 5.406931027... . ~A26!

Agreement is good to better than 1% for most of the profi
Beyond the radius of the equivalent cold plasma, howe
the approximate iteration of course fails to give the corr
nonzero value forb in the thermal tail of the density distri
bution.

4. Possible effects of nonideal fields on radial
confinement

It is interesting to note that Weimeret al.discovered that
a largeuC4u actually seemed to slow the radial expansion
the plasmas, making it possible to measure the mode
quencies for a longer time.1 Equations~1!, ~A3!, and ~A5!
indicate thatC4 can significantly affect the radial densit
profile. For instance, ifC4 andC2 are of the same sign, th
non-ideal part of the external field can help drive the den
toward zero at large radius. ForC4 andC2 of opposite sign,
however, this same non-ideal part of the field tends to m
the density profile become infinite at large radius.

FIG. 5. A comparison between the radial density profileb~r! from the
low-temperature limit iteration@Eq. ~A25!# and b~r! from the full electro-
static calculation is shown. The iterated profile cuts off at ar of approxi-
mately 1.40, while the profile from the full calculation cuts off at ar of 1.44.
The profile corresponds to a plasma with 31 592 electrons held atT51 K
having ar rms of 1.931023 m. See Fig. 6 in Appendix B for a comparison o
s(r)warm to s(r)cold for this case.
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This effect is most easily seen in the low-density lim
@see Eq.~A20!#. At radii for which the nonideal correction
in the functione~r! are not small, it will dominate the behav
ior of b~r!. @Note: strictly speaking,e~r! always dominates a
large radius, but real systems are of finite size, so only r
less than the system radius should be considered.! If e~r! is
negative then it will cause the density profile to cut o
sharply, making the global thermal equilibrium state towa
which transport is driving the system better confined radia
When this effect is important, the termDr2 in Eq. ~A20!
must tend to become positive to keep the particle count c
stant. This effect can give rise to hollow density profiles,
discussed in Appendix B and in Mason2 et al.

This occurs typically whenC4 has the same sign asC2

@see Eq.~A5!#, although the higher-order terms often matt
too. If, however,e~r! is positive~C4 andC2 of opposite sign,
typically!, the density profile will tend to blow up at larg
radius, possibly giving an unconfined global thermal equil
rium state if this effect is important at the radius of the co
fining conductors. In practice, this would probably mean t
evolution toward global thermal equilibrium would tend
make the plasma concentrated near the outer ring of the
in this case.

This influence of the external field has been seen in
merical grid experiments we have performed in which a r
Penning trap geometry was used to solve for the vacu
~external! field for various trap tunings~different guard ring
voltages; see Weimer1 et al.!. By solving for the potential
and subtracting away the ideal components of the field,
found the higher-order contributions to the field. Then,
plotting exp@2qf̄e/kT#, wheref̄e represents only the higher
order contributions, it is easily determined whether the t
will provide radial confinement or radial deconfinement f
the plasma in global thermal equilibrium. Using the sam
geometry as in the experiment by Weimeret al., we found
that with the guard ring voltage at 0.0 V, the higher-ord
terms in the external potential were such as to cause de
finement, but by raising the voltage on the ring, makingC4

larger and of the same sign asC2 , radial confinement was
enhanced. This effect was clear in the numerical exp
ments, but it was not possible to duplicate the numeri
values ofC4 given in Weimeret al. This may be due to a
difference between the experimental apparatus and the
merical version of it used in the grid calculation, or perha
due to different ways of calculatingC4 . It would be nice to
perform another experiment to test these ideas.

APPENDIX B: COLD EQUILIBRIA IN NONIDEAL
FIELDS

To fully explore the problem of what thin therma
plasma equilibria look like when the confining field is n
ideal, it is necessary to solve the equilibrium problem in su
fields at zero temperature. AsT approaches zero, Eq.~1!
requires that

fp~r ,0!52fe~r ,0!1
CkT

q
r 2, ~B1!
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

17 Mar 2014 23:15:07



th
-

qu
is

d

ld
i

n

in
d
-
t
u

m
n

ai

is

th

b-
-

.,

m

0

to

no-

ial
hat

g
tial
ily

354 Phys. Plasmas, Vol. 5, No. 2, February 1998 D. L. Paulson and R. L. Spencer

 This a
which means that the form of the potential produced by
plasma is known.~The constantC must be determined self
consistently by the radial size of the plasma, but ther de-
pendence of the term in which it appears is known.! Because
the plasma equilibria are assumed to be thin, the cold e
librium problem can be stated this way: given a known d
tribution of potentialfp(r ) across a disk of radiusa, what
surface charge density distributions(r ) produces it? This
problem can be approached by assuming that the desirefp

is represented by a power series inr 2 and by finding the
correspondings for each power. Hence, the problem of co
thin plasma in global thermal equilibrium can be solved
the following electrostatic problem can be solved: given
charged disk of radiusa, what surface charge distributio
s(r ) will produce a potentialf(r )5V0(r /a)2n on the sur-
face of the disk? The solution of this problem is the ma
subject of this Appendix, but physical consequences are
cussed at the end of the Appendix.@Remember that through
out the paper it is assumed thatf(0)50, which means tha
the constant potential at the center of the disk is always s
tracted away.#

1. Surface charge distributions for cold equilibria

To solve for the surface charge distribution, the axisy
metric Green’s function used in Sec. II B is inconvenie
because it involves an elliptic integral. It is easier to obt
an analytic connection betweens(r ) andf(r ) by perform-
ing a two-dimensional integral over the surface of the d
using a cylindrical coordinate system~r,u! whose origin is at
x5r . Using this coordinate system, the distancer 8 from the
center of the disk is given by

r 85Ar 212rr cosu1r2 ~B2!

and the equation of the edge of the disk is

r~u!52r cosu1Aa22r 2 sin2 u. ~B3!

The potential at a distancer from the center of the disk is
then given by

f~r !5
1

4pe0
E

0

2pE
0

r~u!

s~r 8!dr. ~B4!

We already know the answer in the case off(r )}r 2

from Eqs.~44!–~45! in Sec. IV:

s~r !5s0A12r 2/a2⇒f~r !52
ps0a

16e0
S r

aD 2

. ~B5!

In the process of obtaining this result from Eq.~B4! an inte-
gral of a special type is encountered, which leads to
solution of the desired problem for all powers ofr 2. This
integral is

E Xn11/2 dr5
~2n12!!

@~n11!! #2~4k!n11S k~2Cr1B!AX

C

3(
r 50

n
r ! ~r 11!!

~2r 12!!
~4kX!r1E dr

AX
D , ~B6!

where
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X~r!5A1Br1Cr2; k5
4C

4AC2B2 . ~B7!

It will be shown that this integral can be applied to the pro
lem given by Eq.~B4! by choosing surface charge distribu
tions proportional to (a22r 2)n11/2 ~note that other choices
may be possible!, and choosing

X5a22r 825a22r 222rr cosu2r2. ~B8!

This means thatX vanishes on the edge of the disk, i.e
X@r(u)#50 @see Eq.~B3!#, and thatk51/(a22r 2 sin2 u).
The integral in Eq.~B6! can now be used to perform ther
integration in Eq.~B4!. In this integral the following simpli-
fications occur:~1! the complicated term containing the su
on r vanishes at the upper limit becauseX vanishes there,
and ~2! the lower limit gives a function that integrates to
when theu integral in Eq.~B4! is performed. The remaining
term can be integrated:

E
0

r~u! dr

AX
52sin21S 22r22r cosu

A4~a22r 2 sin2 u!
D U

0

r~u!

. ~B9!

The upper limit is simplyp/2 while the lower limit gives a
function ofu that is annihilated by theu integral in Eq.~B4!.
Hence, the following useful integration formula related
Eq. ~B4! is obtained:

E
0

2p

duE
0

r~u!

Xn11/2 dr5
~2n12!!

@~n11!! #2~4!n11

p

2

3E
0

2p

~a22r 2 sin2 u!n11 du.

~B10!

The remaining integral can be performed by using the bi
mial expansion:

E
0

2p

~a22r 2 sin2 u!n11 du

52pa2~n11! (
m50

~n11!

BmS n11
m D S r

aD 2m

, ~B11!

where (m
n11) is the binomial coefficient and

Bm5
~21!m~2m!!

~m! !24m 5P2m~0!, ~B12!

andPm(x) is the Legendre polynomial.
Using this result, we may now write down the potent

f(r ) produced by the family of surface charge densities t
are proportional to (a22r 2)n11/2:

s~r !5sn~12r 2/a2!n11/2

⇒f~r !5
p

4

sna

e0
uBn11u (

m50

n11

BmS n11
m D S r

aD 2m

.

~B13!

Now we are quite close to solving the problem of findin
what surface charge distribution makes the poten
Vo(r /a)2n across its surface, because we have found a fam
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of surface charge densities that make potentials that are p
nomials in (r /a)2. Note from Eq.~B13! that any given value
of n produces a polynomialf(r ) whose highest power is
(r /a)2(n11). Hence, to producef(r )5V0(r /a)2n we may
choosesn21 to match it in Eq.~B13!, then find the proper
values ofsm for 0<m,n21 to eliminate the lower power
of (r /a)m in the expression forf(r ) in Eq. ~B13!. This
linear algebra problem may be solved to obtain the follo
ing:

f~r !5V0~r /a!2n is produced bys~r !5
4e0V0

pa
sn~r /a!,

~B14!

where the functionsn(x) is given by

sn~x!5 (
m50

n21
~21!m11

uBnBm11u S n
m11D ~12x2!m11/2. ~B15!

Equations~B14! and ~B15! may now be used to solv
the problem of whats(r ) corresponds to thin global therma
equilibrium asT approaches zero. It will be assumed that t
external confining field is known through the coefficien
C2n in the expansion

fe~R,Q!5 (
n51

`

C2nR2nP2n~cosQ!, ~B16!

where (R,Q) are the radius and polar angle in spherical c
ordinates. It is also assumed that the total number of parti
N in the equilibrium is known, as well as the rms plasm
radiusr rms. As in the ideal case, ther 2 term in fe and the
angular momentum term involvingC in Eq. ~B1! combine
together to give the following form forfp(r ) at z50:

fp~r !5V̄
r 2

a22 (
n52

`

C2na2nP2n~0!S r

aD 2n

~B17!

whereV̄ corresponds to the constantD defined in Sec. II B
and wherea is the as-yet-unknown outer radius of the co
plasma. These two constants are to be determined by
particle number and the rms plasma radius.

To make the connection between (V̄,a) and (N,r rms),
and to finds(r ), we use Eqs.~B14!, ~B15!, and~B17!:

s~r !5
4e0

pa S V̄s1~r /a!2 (
n52

`

C2na2nP2n~0!sn~r /a!D .

~B18!

The particle number andr rms may now be determined b
taking radial moments ofs(r ) as follows:

N5
2p

q E
0

a

s~r !r dr ; P5
2p

q E
0

a

s~r !r 3 dr;

r rms5AP/N. ~B19!

Since Eq.~B18! gives an explicit form fors(r ), these inte-
grals may be performed to obtain the following formulas
N andP:
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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N5
8ae0

q
S 2V̄

1

3B1
2

1 (
n52

`

(
m50

n21

C2na2n
~21!m1nS n

m11D
uBm11u~2m13!

D , ~B20!

P5
16a3e0

q
S 2V̄

1

15B1
2

1 (
n52

`

(
m50

n21

C2na2n
~21!m1nS n

m11D
uBm11u~2m13!~2m15!

D .

~B21!

Unfortunately, this is as far as analysis can take us. Eve
only one nonideal term (C4) is included, a seventh-orde
polynomial equation must be solved to determinea. There-
fore, to determineV̄ anda it is necessary to solve Eqs.~B19!
numerically. Note, however, that ifa is known, then the
equation forP may be ignored andV̄ may easily be obtained
from Eq. ~B20!.

Figure 6 shows how this calculation compares with
plasma equilibrium calculation done with the finite
difference code described in Ref. 5. The calculation was c
ried out in the geometry of Weimer’s experiment,1 as used in
the calculations of Mason2 et al. The voltage on the guard
ring was18.7 V, vz53.813108 s21 and the coefficients of
the external field are as given in Appendix A@see Eq.
~A26!#. The plasma consists of 31 592 electrons at a te
perature of 1 K, withr rms51.931023 m. The calculation
was performed on a grid with 300 radial points and 10
axial points. The two calculations should not agree exac
because of the nonzero temperature in the grid calculat
but they are quite similar.

FIG. 6. The computed surface charge densities from theT50 calculation of
Appendix B ~b! and from a low-temperature (T51 K) grid calculation~a!
are compared. The case is a plasma consisting of 31 592 electrons
nonideal trap.
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2. Cold plasma shapes in presence of nonzero C4

One interesting application of this result is found in t
calculation of the plasma shape atT50. If the plasma is thin
enough that the nonideal analog of the approximationF(a)
'1 is valid @see Eq.~5!#, then at each radius aT50 plasma
would condense to the cold density,

ncold~r !5
vz

2~r !e0m

q2 , ~B22!

wherevz
2(r ) is given in Eq.~A4!. However, if bothn(r ) and

s(r ) are known, then the axial half-widthzp(r ) is easily
determined to be

zp~r !5
s~r !

2qncold~r !
. ~B23!

This makes it possible to calculate plasma shapes in noni
traps after the plasma has expanded into a pancake shap
the following discussion it is assumed that onlyC4 is impor-
tant to simplify things. In general, the higher-order terms
also important.

For example, in a trap with nonzeroC4 , the plasma
shape atT50 would be given by

zp~r !5
zideal~r !

123C4r 2/C2

S 11

32a5C4e0F2

3
~r /a!22

4

15G
3Nq

D ,

~B24!

wherezideal(r ) is zp(r ) for the ideal quadrupole:

zideal~r !5
3NqA12~r /a!2

8pa2C2e0
. ~B25!

Careful examination of Eq.~B24! provides an interesting
physical picture of what happens to the plasma asC4 is
changed. IfC4 is of the same sign asC2 ~and therefore the
same asq!, then increasing the magnitude ofC4 causes the
center of the plasma (r 50) to cave in. The critical point
wheres(0)50 occurs at

uC4u5
45Nuqu
128e0a5 , ~B26!

or, defining an average axial half-width,

^zp&5
*0

ancold~r !zp~r !r dr

*0
ancoldr dr

, ~B27!

the critical point may be expressed as

C4a2

C2
'

45p

32

^zp&
a

'
45p

32
a. ~B28!

For a2C4 /C2 any larger than this, Eq.~B24! is no longer
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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e

valid, as it implies~at r 50! negative charge density, o
charge of the opposite sign, which would not be confin
axially. This probably means that the plasma would fo
into a ring for C4 beyond this limit. Because the plasma
being considered are thin,a is very small (a!1), and Eq.
~B28! provides a stringent limit onC4 .

The reader may have noticed the possibility of a zero
the denominator forC4r 2/C251/3. This implies a loss of
axial confinement at the outer edge of the profile ifa2C4 /C2

gets as big as 1/3, ora2C45C2/3. However, it is evident
from Eq. ~B28! that the critical point at which the plasma
no longer a disk is reached long before this occurs.

If C4 andC2 have opposite signs, increasinguC4u has a
curious effect. IfuC4u is large enough@of the same order as
in Eq. ~B28!#, then Eq.~B24! implies negative charge den
sity beyond a certain radius. This suggests that as the pla
expands radially and approaches thermal equilibrium in
presence of some nonzeroC4 , it may form into rings around
a central disk, or collect on the walls of the trap, as discus
in Sec. A 4.

Some of these physical effects may be seen in the ra
density profile of a warm (T.0) plasma asC4 ~same sign as
C2! is changed. AsuC4u approaches the critical value in Eq
~B28!, both the warm and cold plasmas exhibit the sa
general behavior: the charge densitys(0) approaches zero
The cold theory predicts that the plasma will maintain u
form density, thereby being forced to cave in nearr 50 until
it eventually becomes a ring in order to satisfy the condit
that s(0)50. The warm plasma, unable to get any thinn
than aboutlD0 , must also satisfy this condition, and it doe
so by dropping the central density until it, too, has formed
ring. For theT.0 case shown in Fig. 5,C4 is at about
one-twentieth of its critical value, suggesting that ifuC4u
were increased by about a factor of 20, the central den
would drop to zero. We have verified this prediction in n
merical experiments.
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