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Damped diocotron quasi-modes of non-neutral plasmas and inviscid fluids

Ross L. Spencer® and S. Neil Rasband
Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602

(Received 18 June 1996; accepted 30 September) 1996

Computations of damped diocotron oscillatidggeasi-modesare described for non-neutral plasmas

and inviscid fluids. The numerical method implements a suggestion made by Briggs, Daugherty, and
Levy some 25 years agdPhys. Fluids13, 421 (1970] to push the branch line that forms the
continuum into the complew-plane by solving the mode equation in the compigXane. For the
special case of power-law density profiles the calculation finds the same quasi-mode frequencies
found recently by CorngoldPhys. Plasmag, 620 (1995]. It is found that the feature of the
continuum eigenfunctions which indicates the presence of a nearby quasi-mode is continuity of the
derivative of the regular part of the eigenfunctions near the singularity. The evolution of Rayleigh
modes, found in density profiles with steps, is also studied as the density steps are smoothed.
© 1997 American Institute of Physids§1070-664X97)00801-X

I. INTRODUCTION enough that there is no apparent remnant of the density steps,
there are three different fates for the quasi-modes. They can
The existence of a continuous spectrum and the possibikither become highly damped and join the deformed branch
ity of damped oscillations for magnetized electron columndine; they can become very weakly damped with resonant
was discussed in an early paper by Briggs, Daugherty, anghdii in a neighborhood of the center of the plasma if the
Levy,! which was based on even earlier work by C#se. density there is nearly constant; or two of them can both
These oscillations are connected to the continuous spectruapproach a common quasi-mode. In Sec. VIII we conclude
and their damping is called “spatial Landau damping” in the paper.
Briggset al. More recently these OSfﬁiIIations have been stud-
ied experimentally by Pillai and Goulénd analytically(for
the case of power-law equilibrium density profileby Il. MODE EQUATION
Corngold? (Corngold refers to these damped oscillations as  Consider an infinitely long column of non-neutral
“quasi-modes,” a terminology that will be followed in this plasma. The plasma is assumed to be so highly magnetized
paper) The continuation problem in the complex plane by a strong magnetic field in thedirection that the Larmor
solved analytically by Corngold for power-law profiles can radius is effectively zero, making it possible to model it as a
be solved numerically by implementing the suggestion ofcharged fluid moving at thE x B drift velocity. Under these
Briggs et al. to solve the radial mode equation along a con-conditions the diocotron mode equation in cylindrical coor-
tour in the complex -plane ¢ is radius in cylindrical coor-  dinates ¢,6) for perturbations proportional tg(Mm?~ Y s
dinate$. Solving the mode equation along this complex ) ,
r-contour moves the branch lifgvhich corresponds to the E ir d_‘/’_ m_2¢_ Mo m—¢> 0, 1)

continuum when the contour is reainto the complex rdr dr r €0B r(w—mawg(r))
w-plane, making it possible to “uncover” the damped quasi-\yhere ¢ is the perturbed electrostatic potentia;is the
modes discussed by Briggs al. charge of the particles that make up the plasmgajs the

The diocotron mode equation and its general propertiege mitivity of free spaceB is the uniform axial magnetic
are discussed in Sec._ll, the n_umerlcal method is d_escrlbed fleld strengthiw, is the ExB drift rotation frequency in the
Sec. Il a_lnd comparisons with Corngold’s anqutlc reSUIt_SequiIibrium radial electric field wy(r)=—E,y/rB; and
are described in Sec. IV. In Sec. V the behavior of quasiyy vy is the radial derivative of the equilibrium density. The
mode frequencies as density profiles are changed from stefg yrhed potential must be regular at the origin and vanish
like to very broad is described. The behavior of the quasizir=r . the location of the conducting cylinder which sur-
mode is tracked from its weakly damped beginnings whergq ,nds the plasma. Note that E@) is also the mode equa-
the analysis of Brigget al. applies all the way to the para- o, for inviscid fluid motion, as pointed out by Briggs al.

bolic quasi-mode of Corngold. In Sec. VI we explore the jance 4l of the results discussed here also apply to inviscid
connection between quasi-mode frequencies and continuuRy,igs.

eigenfunctions. _It is found that fqr weak damping the real ¢ e equilibrium density drops to zero rapidly in radius,
part of the quasi-mode frequency is close to the frequency Qbaying a sufficiently large vacuum region outside of the
the continuum eigenfunction whose regular part near the Sirblasma, or if the density has discontinuous steps, therf1Eg.
gularity has a continuous first derivative. In Sec. VII the i have solutions corresponding to undamped modes. The
behavior of quasi-modes in density profiles with multiple oq¢ of the fluid dynamics described by this equation, how-
steps is studied. We find that as such profiles are smoothed,e is associated with the continuum, singular modes with
frequencies that resonate with the equilibrium rotation:
dElectronic mail: spencer@xray.byu.edu w=mMmawg(r) for values ofr wheren((r)+0.
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As pointed out by Briggset al, if a step-like density small subintervals. The resulting differential equation is
profile having an undamped normal mode of frequeacis  solved in two different ways. The first is to make finite-
smoothed so that there is a small amounhpfat the radius  difference approximations to the derivatives that appear in
where w=mwy(r), then there are two ways to describe thethe transformed mode equation. The second is to exgand
new dynamics. Either we can say that the mode has mergéd terms of cubic splines and to use a Galerkin approxima-
with the continuum and has lost its identity, or we can saytion to the differential equation. These two different ways of
that it has been “pushed through” the continuum into thecalculating have provided a check on the numerical results
lower half of the complexw-plane, becoming a damped presented here. In either case a homogeneous system of
quasi-mode[Note that havings move down into the lower equations is obtained which is solved by matrix shooting.
half-plane is opposite to the figures in Briggsal. The rea-  This simply means that the numerical approximation to the
son is that their perturbations are proportional to &)( mode equation at one of the grid pointssiis removed and
instead of to exp{iwt), the convention in this papérThis  replaced by the equatiogp=1; then the resulting inhomoge-
second description is similar to what happens in the case afeous system is solved. The mode frequesadyg then varied
Landau damping, and indeed this effect for diocotron modesintil the equation that was removed from the system is sat-
is often referred to as “spatial Landau damping.” As in Lan- isfied. If h(s), the imaginary part of (s), is large enough
dau’s calculation, special care must be taken to analyticallgnd properly shaped, this algorithm finds quasi-modes.
continue the solutions into the lower hadfplane. The analytic continuations of some density profiles, es-

Briggset al. show how this continuation may be effected pecially those with sharp gradients, often have places in the
in their Figs. 6 and 9, where the intervaliralong which the  complexr -plane where they become large or change rapidly,
mode equation is to be solved is deformed into the complexnaking it difficult to compute efficiently. In such cases it is
plane. The remainder of this paper is a description of whasometimes helpful to shape thecontour so that it only has
happens when this picture is taken seriously. a large imaginary part near the radius where the quasi-mode
is located. Practical experience has shown that the following
form for h(s) is usually sufficiently flexible to find quasi-
modes:

The quasi-mode may be “uncovered,” as described by (o502
Briggset al, by deforming into the complex plane the inter- ~ N(S)=4hos(1—s)e o (4)
val along which Eq(1) is solved. The idea is to make the whereh, is a parameter that determines the height of the
analytically-continued functiomwq(r) describe a curve in  r-contour. The parametess andw make a Gaussian multi-
the complexw-plane that dips sufficiently far into the lower plier that can be used to makés) nearly real except near
half-w-plane. Sincemwq(r) gives all the values ol at  r(s;), making it possible to avoid troublesome places in the
which the mode equation is singular, this deformation pushegomplexr -plane.
the branch line down into the lower halfplane, leaving the
guasi-mode exposed above it. With the branch line out of the

way it is then possible to calculate the quasi-mode fre-
IV. COMPARISON WITH ANALYTIC CALCULATIONS

IIl. NUMERICAL METHOD

quency.
_As an example, consider the family of power-law pro-  comgold studied the power-law profiles given in Eq.
files discussed by Corngoft: (2), showing that the mode equation could be put in the form

of the hypergeometric differential equation. This makes it
; relatively easy to effect the required analytic continuation of
@) ¢(r) into the complex -plane. An exact calculation like this
r\2p _ Ngo is precisely what is needed to verify that the numerical
_) } 00~ 2€,B’ method described above is working, but Corngold does not
give exact results; he emphasizes the qualitative behavior of
the quasi-mode frequencies as functions of mode number
m and density profile parameter Moreover, there are two
misprints in his paper that must be corrected in order to see
that the numerical method described here agrees with his
analytic treatment. Hence, it is necessary to briefly review
his calculation.
The exact dispersion relation for the quasi-mode fre-
quencies in Corngold’s calculation is

r\2e
no(r):noo[l_(r—)

1

wo(r):wog[l_ m

r.W
wherep takes on integer values 1,2,3 . ,r,, is the radius of
the conducting cylinder that surrounds the plasma,ragds
the central density. Substitution of complex valuesr bf,,
into the expression fowy(r) shows that to make(r) dip
into the lower half of thew-plane ther-contour must be
pushed up into the upper half of the compleplane.

This deformation may be made numerically by changing
the independent variable fromto s according to

r=ry[s+ih(s)], F(a—JrEL 1)

T@r(b)
wherer,, is the radius of the conducting cylinder that sur- +1:2:1-2)=0, ®)
rounds the plasma.

The numerical procedure consists of rewriting Ef).in ~ whereF is the hypergeometric function. The quasi-mode fre-
terms ofs instead ofr, subdividing thes-interval[0, 1] into  quencyw is related to the solutiom of this equation by

h(0)=0; h(1)=0; h(s)=0; O<s<1, ®  F(abia+b+12)-27i (1-2)F(a+1b
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FIG. .1' A contour in the_ complgx-plar_}e Wh'Ch uncovers the dampe_d .FIG. 2. A contour in the complex»-plane which uncovers the damped
quasi-mode for a parabolic density profile is shown. The arrowheads indi-

cate the direction of increasing contour parametewith the arrowheads quasi-mode for a parabolic density profile is shown. This contour is the
equally spaced is. This contour hasi,=0.5, s,=0.5, andw— 10 [mean- deformed position of the branch linewy(r) corresponding to the

) o ) 0 ) r-contour shown in Fig. 1. The arrowheads indicate the direction of increas-
ing that the Gaussian in(t) is essentially unity The star shows the place . . -

. . L ing contour parametes, with the arrowheads equally spacedsirThe star

in the complex -plane where the quasi-mode lies, i.e., the complex value of

h - Lo th lex f t th -mod shows the place in the complex-plane where the quasi-mode lies. The
r wheremaw(r) is equal to the complex frequency of the quasi-mode. dashed line shows the position of the branch ljpentinuun) before the

r-contour was deformed.

(1+p)z—1 V. TRANSITION FROM STEP TO PARABOLIC
0= m‘UOOW ' (6) ) . . . .
Briggs et al. discuss the case of a density profile which
I _ is a sharp step with constant density, for r<r, and zero
and the paramete andb are given by density forr ,<r=<r,,. In this case there is no continuum and
a single undamped mode with frequency,

_m m\® p+1 2
azﬁ_,/ o +T’ w=wod M—1+(r,/r,)2m]. ®

@) They then show that as the sharp edge of this density profile
b m m 2+ p+1 is smoothed, putting a small amount of density at the radius
-~ 2p 2p p - where the frequency of E@8) is the same amwy(r), the

undamped mode becomes a damped quasi-mode. Their ap-

In Corngold’s paper the factors in Eq. (5) is given with a proximate procedure is not powerful enough, however, to
positive sign, but-2i as given above is correft. investigate what happens to the quasi-mode when the density
As a first check the numerical procedure was applied tcprofile _is smoothed enough that the density at the resonant
the m=2 mode of the parabolic density profile used by radius is no longer small. . _
Corngold (=1) with contour parametershy=0.5, To study this problem a form for the density profile must
so=0.5,w=10F (effectively setting the Gaussian t9, nd be chosen. A simple choice would be the power-la_lw'p.rofile
with 5000 subintervals. This contour is shown in Fig. 1,Studied by CorngoldEq. (2)], for asp approaches infinity
while Fig. 2 shows the corresponding contour in the compleshese profiles approach a sharp step. However, if the density
w-plane of the functiomwy(r), the deformed branch-line 90€S to zero at the wall, as it does in the profile given in Eq.
contour. Using the numerical procedure of Sec. Ill, a quasifz)v then we are restricted to cases where there is no vacuum
mode was found atw/wg=1.06249648 i0.04260298 region outside the plasma. And if we modify these profiles so
while the corresponding solution of Eq5) is /g, that there is a vacuum regidi€orngold’s “gap” profile$)
—1.0624964710.04260304. This quasi-mode is also indi- then the density profile is not analytic across the entire radius
cated by the stars in Figs. 1 and(th Sec. Il of Corngold’s and we would have to modify our numerical method. It could
paper the frequency of this mode is given asbe done, but it is awkward, so we consider instead the fol-
w=0.94+i0.046, but this is also a misprint. The approxi- I0Wing analytic form for the equilibrium density,(r):
mate procedure outlined in Sec. Il of Corngold’s paper actu-

ally gives w=1.06-i0.04% Other comparisons of Eq5) [tanhk(r,—C) —tanhk(r?~C)]

. . . No(r)=n , 9
with matrix shooting along a complex-contour for other o(1) = oo [tanhk(r&v—C)thanhkC] ©
choices ofm andp give similar accuracy, indicating that the
numerical method works quite well. or (equivalently
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Single—Step Density Profiles Step Profile to Parabola
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FIG. 3. Three density profiles that interpolate between a sharp step and @G. 4. (a) The path of them=2 quasi-mode frequency is shown as the
parabola are shown. The valueskof, used in Eq(11) to give these profiles density profile is changed from a sharp stée star atw/we,=1.25) to a
are indicated just above each profile. parabola(the asterisk aw=1.06-10.043). The three symbols along the
curve correspond to the three density profiles shown in Fig. 3. The numeri-
cal values (2,5,10 associated with the symbols correspond to the
krfv—values indicated in Fig. 3b) The approximate path of the=2 quasi-
[1—exp — 2k(r3\,— r2))][1+exp —2kC)] mode frequency is shown for the same profile variation as in ctave
r)=nNgg > > , Along this curvew, was obtained from thé, =b_ condition on the con-
[1+exp2k(re—=C))][1—exp(—2kry)] tinuum eigenfunction ands; was obtained from the approximate Briggs
(10 formula[their Eq.(50)].

No(

where

mine w with r, fixed atr,/r,,= 1/y2 and for values of
kr2, ranging from 20(sharp step down to 0.03(nearly a
parabolic density profile The solid curve gives the variation
of the quasi-mode frequency as it changes from the sharp-
e=2e 2k} edge value(the star on the right end of the cujv® the
parabolic valugthe * on the left endl Note that many dif-
1—2 exp(—2k(r5,—r5)) +exp( — 2krg) ferent density profiles were used to make this curve in Fig. 4,

X . ; . R
1—exp(—2kr§)—exp(—2krfv)+exp(—2k(rfv+rg)) not just the three profiles shown in Fig. 3.

11
. . . - . VI. ESTIMATING THE QUASI-MODE FREQUENCY
The form of the density function given in E(Q) is chosen to FROM THE CONTINUUM

represent either sharp steps or broad transitions, depending
on the value chosen fdt. The equivalent form in Eg10) One of the mysteries of the damped quasi-mode is what
and the formula fofe in Eq. (11) are built to avoid the nu- determines its frequencyy, . In an earlier study of these
merical overflow problems that arise when using thequasi-modes deGrassie and Malmberg used a numerical
tanh-function directly. The density at the plasma radiyss  technique to ignore the resonance in En.” and got good
alwaysngy/2 and the parametde governs the sharpness of quantitative agreement with experimentally observed quasi-
the density step. The density is constrained to be zero ahode frequencies, but it seems qualitatively that this fre-
r=r, . Whenk is large the step is sharp andlags reduced quency should somehow be connected to the continuum
the step becomes broadened. The only choice,dhat al-  modes. But of all the frequencies in the continuum, what is
lows k to become arbitrarily small is, /r,= 1/y2; all other  special about the frequency of the quasi-mode? To see the
choices forr, have a minimum value ok below which  connection of the quasi-mode frequency with the continuum
kC becomes imaginary and the functional form no longerwe must first recall what the continuum eigenmodes look
works. like. They are singular solutions of E€l) with w belonging
Figure 3 shows what these density profiles look like forto the range of real frequencies that make the resonant de-
three different values d{rfv, all withry/r,,= 1/2. For this  nominator in the equation vanish. At the singular radiys
special choice of ,, ask—0 the density profile becomes the perturbed potential has a finite value, but its derivatives
parabolic. Because tarhis analytic, except at isolated are singular. Near the singular point the leading terms in the
points along the imaginary axis, the density function of Eg.expansion of¢ obtained from the usual Frobenius analysis
(9) can be continued into the complex plane to search for thare
guasi-mode associated with the undamped mode that is )
f i ano(rs)
ound when the step is infinitely sharp. bp~d(rd| 1- —————
Figure 4 shows the result of matrix shooting to deter- €oBrswo(rs)

kC—ll 2 1
=z -

and

X In|x| | +b.X, (12
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wherex=r —r. The coefficienb.. of the regular part of the Smoothing and Removing The Inner Step
solution actually represents two coefficienits, for the so- 1.0p
lution whenx is positive andb_ when x is negative. In

general these two coefficients are not equal, but they might 0.8
be. And, in fact, the continuum frequency at which they are
equal gives a good estimate of the quasi-mode frequency.

To see why, consider the limit in whialy,(rs) becomes

vanishingly small. In this limit the logarithmic singularity in N
Eq. (120 becomes quite insignificant, so the continuum ° oa4f
eigenfunctions are mostly characterized by the mismatch be- [
tweenb, andb_. Since the damped quasi-mode is very

00

(PER A . 02| .
close to a real undamped mode in this limit, and since the A
real mode has continuous derivatives, the only continuum [ \
H i i 0.0 PRSI S S N TP SN S N | I
e|genmode wh|_ch can begome the real eigenmode of the %% o2 oa o8 o8 o
point spectrum is the special one with =b_ . o/t

These coefficients are found by numerically computing
the continuum eigenfunctions and comparing the solution§!G. 5. A sequence of density profiles is shown which modifies a double-
near the singular point with the approximation in EDZ) to step profile &) into a single-step profiled). Both steps of the profile are
d ineb hi . . hni has b made by using the hyperbolic tangent form of a smooth step discussed in

etermm_ - . This approximation technique has e(.:"n COM-gec. v. The transition froma) to (c) is made by reducingg for the inner
pared with exact results from Corngold’s calculafidor step while keeping the size of the step constant. The final transition from
many combinations om and P, and it is found that the (c) to (e) is made by keeping the inn&rconstant while reducing the size
relative error in the determination of, is of orderw;/w,.  ©f the step to zero.
When w; is large, however, this continuum approximation
becomes increasingly poor, then fails altogether. The reasqn,

's that modes with large imaginary part may not be resonanéensity profile will be addressed. First to be discussed is the

in the plasma at all, as pointed out by Corngbld. i . . .
It is also possible to estimate the damping rate by Com_case of a double-step profile in which the outer step is kept

- X X . : sharp while the inner one is first smoothed, then reduced in
bining the estimate o, given above with the approximate size to approach a single-step profile. Discussed in the sec-
formula for w; given by Briggset al. [their Eq.(50)]: PP 9 bp '

ond part of this section is the case in which a double-step
wi  mpNg(rs) (rp)zm‘3 rs)zmr profile is smoothed so that the end result is a parabolic pro-
woo  2MNg | T ’

ppens to these quasi-modes as changes are made to the

(13 file. In both cases the double-step profile is made by com-
) o ) bining two of the hyperbolic-tangent profiles discussed in
wherer is the resonant radius, i.enwo(rs) =w,. Indoing  sec. V. Finally, the problem of power-law profiles with
this calculation the resonant radius was taken to be the resgzcuum gaps discussed by Corndokdll be discussed and it
nant radius of the continuum eigenfunction approximation tqui|| pe shown that for most gap widths there is an additional

the quasi-modéthe one for whichb, =b_). Oncers was  ngamped mode present in addition to the damped quasi-
determined in this way the actual value wf(r) for the  gde discussed in Ref. 4.

diffuse density profile was used. The dashed curve in Fig. 4
shows the result of this approximate calculation on the sam@- Double-step to single-step
equilibrium sequence used for the solid curve. Note that for  Consider the sequence of density profiles shown in Fig.
small w; the approximate calculation works very well. But 5. The sequenca—c involves smoothing the inner step by
for very broad profiles this is a rather crude estimate sincgeducing itsk-value while increasing the radius at which the
Eq.(13) is based on a step-like density profile. Indeed, as cagtep occurs. Figure 6 shows what happens to the frequency
be seen from Fig. 4, it only predicts; within about a factor  of the quasi-mode associated with the inner step as this trans-
of 2 for such profiles. formation is made. As expected from the analysis of Briggs
More elaborate approximation methods based on thet al, it acquires a negative imaginary pafthe quasi-mode
continuum eigenfunctions have also been tried, but thesgssociated with the outer step remains resonant and essen-
have always turned out to be quite poor and even more diftially undamped in the space between the plasma and the
ficult to carry out than the correct numerical calculationwall during all of these changes. This rather uninteresting

Mw

along the complex-contour. behavior is not showin.
The second sequence-—e is made by keeping the
VII. DENSITY PROFILES WITH MULTIPLE STEPS k-value of the inner step constant while reducing its size.

This sequence is interesting because the final prifileve
Briggs, Daugherty, and Levyalso discuss the problem e in Fig. 5) is a single step, which is expected to have only a
of multiple steps in the density profile. In the case of severakingle quasi-mode, resonant between the plasma and the
sharp steps, Raylei§tshowed that there is a discrete modewall; so what is to become of the inner quasi-mode?
associated with each step. Briggsal. showed that as each The answer for this case is shown by the dashed path in
step is smoothed slightly each of these modes becomesHg. 6. Its damping rate goes to zero and its real frequency
damped quasi-mode. In this section the question of whahpproachesnwqg, indicating at first glance that this mode
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Smoothing and Removing the Inner Step Smoothing Both Steps To A Parabola
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FIG. 6. The behavior of thm=2 quasi-mode frequency associated with the FIG. 7. A sequence of density profiles is shown which rpodifies a double-
inner step of the double-step profila)(in Fig. 5 is shown. A the damp-  Step profile @) into a parabola ). Both steps of the profile are made by
ing rate is nearly 0 whilew,~mwg,. Even thoughe, is small (about using the hyperbolic tangent form of a smooth step discussed in Sec. V.

3X10°% and w,~Mmwy, however, the resonant radius in the complex Profilesc andd, though very nearly the same, have quite different quasi-
r-plane isr/r,,=0.62+10.023 mode frequencies for the quasi-mode associated with the innefsstef-ig.
w=0. .023.
8).

should be resonant at=0. This is not the case, however.

The numerical calculation gives a resonant radius for th@rofile a to the single one of profilé. The answer is shown
entire sequence from to e that varies between 0.66 and in Fig. 8. The dashed curve shows what happens to the quasi-

0.62,,, while the imaginary part of the complex resonantmode Which_ is resonant in the space between the plasma and
r is nearly constant at;=0.023,,. This apparent discrep- the conducting wall. As the profile chaqges from a double-
ancy between the sizes af andr; is resolved by noticing SteP t0 @ parabola, it simply makes its way toward the

that for smallr; they are related by qui':\%iér;é)_d_eo OfArfezguency of a parabolic profile/wg
=1. i0.0426.

The solid curve shows what happens to the inner quasi-
mode. As expected, it becomes more damped as the profile is
smoothed, but in the neighborhood of profiteandd in Fig.

wiwmri%wo(r). (19

Hence, if thewq-profile is nearly constant, as it is inside the
plasma for profilee in Fig. 5, the damping rate can be very
small even though; is finite. (The eigenfunction along the
real+ axis for this quasi-mode would have a rather large 0.05
discontinuity because of the logarithmic branch cut extend-
ing down to the real axis from/r,,=0.62+i0.023, as illus-
trated in Fig. 8 of Brigget al)! 000k Lo e ]
So density profiles that look very much like a single-step 4 /d ° 1
might actually have several quasi-modes: the usual one reso- < [
nant outside the the plasma, as discussed by Brajgd, :10.05' f //e
and one or more quasi-modes resonant inside the plasma -
corresponding to small wrinkles in the density profile. Cal-
culations of this kind have also been done for triple-step
profiles where it is found that there can be two interior quasi-
modes as a single-step profile is approached, provided that [ de ]
the triple-step profile structure is still present, albeit with otsl e
vanishingly small size. These quasi-modes are the remnants 0.8 1.0 1.2 1.4 1.6 1.8 2.0
of Rayleigh’s discrete modes, but because they all have very We/ Woo
small damping rates and frequencies very maaiy(0), it is
not clear that they have any dynamical importance.

Smoothing Both Steps To A Parabola

-0.10f 4

FIG. 8. The behavior of both of the=2 quasi-mode frequencies associ-
ated with the two steps of the double-step profég in Fig. 7 is shown. The
solid curve shows the behavior of the quasi-mode associated with the inner
step. Notice that the slight profile change betweeand d (see Fig. ¥
corresponds to a large changedn for this mode. Indeed, the quasi-mode

Consider now the sequence of density profiles shown i§annot be tracked further because it has rushed downward to join the

. . ! . s . .deformed branch line. The dashed curve shows the behavior of the
Fig. 7. In this case the final parabO“C proflle is one for WhIChquasi-mode associated with the outer step. Its frequency varies smoothly

we know there iS. _0n|¥ one quasi-mode, raising the questioBetween the double-step valua)(and the parabolic valuef] where
of how the transition is made from the two quasi-modes 0fw/wy=1.0625-10.0426.

B. Double-step to parabola
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7 the imaginary part rapidly becomes larger in magnitude. It

Complex Frequency vs Gap, Quadratic Profile, m=2

becomes so large, in fact, that it is not possible to move the 0.2 '
deformed branch line contour ahead of it without encounter- 8 0.1F () L9 1p/1, =097
ing wild places in the complex»-plane, and it joins the 3o0F I AARARAR
branch line. This is the reason that no points beydnare :8';: IRTTEEER R
indicated on its path. So in this case one of the quasi-modes _; 5 " : :
is eliminated by having it join thédeformed branch line. 0.4 0.6 wr/wog-B 1.0
C. Parabola with a gap to a single-step 0.1 Complex F.requency b :“_2' rp/rw—0.7I07
The reviewer of this paper asked a question and made an g %F ® ¢ e o _— :

interesting observation, both of which will be addressed <-0-1} P,
here. The question does not involve density profiles with S-02f )
multiple steps, but it is related to the question of what hap-  -0.3 . . :

. T 0.6 0.8 1.0 1.2
pens to two quasi-modes when the profile is changed to one W,/ W0

that has only one, so it seems best to discuss it here. The

question is whether it is not also possible to approach &!G. 9. (8 Shown here is the behavior of the quasi-mode and mode fre-

single-step by increasing in Corngold’s profiles[see Eq. quencies of a parabolic density profile as the vacuum gap is increased. Fifty
. . . . . different equally spaced gaps ranging from,/r,,=0.99 down to

(2)] It is, of course, pOSSIble to do it this way, but if the r,/ry,=0.01 were used. The solid circles show the 50 damped quasi-mode

density vanishes at the conducting wall then the single-stefequencies corresponding to the analytically continued sheet of Corngold.

just fills the entire region, which is not very interesting. And The open circles show the undamped mode frequencies that correspond to

if the density goes to zero at a radius less thanthen there ~ he original sheet. There are no such modes unilr,,<0.97. (b) The

. . . behavior of the quasi-mode and undamped mode fdr,,=0.707 asp is

is a vacuum gayas discussed by Corngojdut the density increased is shown. As the density profile approaches a single-step profile

profile is non-analytic which is awkward to study using the (p— «) both converge to the undamped mode frequency of a the single step

numerical methods discussed here. But thinking about apet w/wq,=1.25(indicated by the symbok).

proaching a single-step in this way leads to the interesting

observation made by the reviewer.

The observation is that there is a qualitative discrepancy But in addition to the quasi-mode solution of Ed5)
between Corngold’s discussion of the spectrum when a gagiscussed in Ref. 4, there is also an undamped mode for most
is present and the results presented here. In Corngold’'s gajap widths. This mode may be obtained simply by not per-
calculatior there is a single quasimode whose frequencyforming the analytic continuation that gives the extra term
approaches the mode frequency of the single-step &  containing 2ri in Eq. (5), working instead with the original
increased without bound. But in the case of profilen Fig. function (z) =F(a,b;a+b+1;z). When there is no gap no
5 there are two quasi-modes: the first is the one described byiodes are obtained from this sheet fz), as noted by
the curve in Fig. 6 and the second is one that is resonant o@orngold. But as the gap is widened, at abqytr,=0.97 a
in the exponentially small density tail so that it is practically mode appears. This undamped mode is resonant in the
undamped. This second one is the one whose frequency apacuum gap and its variation with gap width is shown by the
proaches the mode frequency of the single-step as the densigpen circles in framéa) of Fig. 9. Similar calcultions with
profile goes through the sequencéo d to e in Fig. 5. But  other values of mode numben and profile parametep
profile ¢ in Fig. 5 does not look much different from a show that asp increases the critical value af,/ry, ap-
power-law profile with a vacuum gap, so why do we find two proaches Ifor m=2 andp=(1,2,3) the critical values are
quasi-modes while Corngold only finds one? ro/ry,=(0.97,0.98,0.99) and asm increases the critical

The answer to this question is that there is a subtle poinjalue decreases, but not by much. For examplepfel. and
in the power-law profile calculation that was missed in Ref.m=8 an undamped mode exists figy/r,,<0.9. Hence, for
4. This point is illustrated by Fig. 9. The solid circles in most power-law profiles with gapg&nd particularly for pro-
frame (a) of Fig. 9 show the variation of quasimode fre- files with gaps as big as the one in Fig.there are both a
quency with gap width using Corngold’s dispersion function,damped quasi-mode and an undamped mode.
but instead of setting it to zero it is required to satisfy the gap  Now we may explore what happens to the quasi-mode
boundary condition, Corngold's E¢23): and the undamped mode asis increased, approaching a

p r\ 2 dy single-step profile. The answer to this question is shown in
lp+a 1—(r—p> e frame (b) of Fig. 9 where, once again, the quasi-mode is
w indicated by solid circles and the undamped mode is indi-
wherey(z) is the function given on the left-hand side of Eq. cated by open circles. Note that both frequencies converge to
(5). The solid circles were obtained by using the secanthe single undamped mode of the single-step prdfileli-
method and a standard hypergeometric function subroutineated by the symbok in the figurg. This is yet another
to solve Eq.(15), and they agree very well with the data scenario for what happens when a profile that has two quasi-
given in Fig. 7 of Ref. 4. Note, however, that our Fig. 9 modes is changed to one that only has one: both may con-
covers a larger range of gaps than does the figure in Corrverge to the same location.
gold’s paperthis data correspond @,/ wgg > 0.8 in Fig. 9. So here are three scenarios for what happens when a

0, (15
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profile that has two quasi-modes is changed into one that hasmuum eigenfunction whose regular part has a continuous
only one: (1) one can disappear by joining the deformedfirst derivative across the singularity. Finally, these compu-
branch line(Figs. 7 and 8 (2) one can disappear by ap- tations have been used to learn what happens to quasi-modes
proachingmwg while being resonant at a finite radidsigs.  as density profiles are changed from one form into another.
5 and 6, or (3) the two can both converge to the one quasi-The ability to compute these quasi-modes and understand
mode of the final profile(Fig. 9b. The numerical experi- their behavior as density profiles are modified should be
ments we have performed indicate that these three possibilrelpful in understanding their significance in the dynamics of
ties are common, but we are now sufficiently humbled by thenon-neutral plasmas and inviscid fluids.

complexity of these problems that we would not be surprised

if something else were also possible. ACKNOWLEDGMENTS
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