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The effect of externally applied oscillating electric fields on the /=1
and /=2 diocotron modes in non-neutral plasmas

Ross L. Spencer

Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602

(Received 1 December 1989; accepted 19 June 1990)

A high-frequency oscillating electric field can change the properties of diocotron modes in
non-neutral plasmas. The effect depends crucially on the azimuthal mode number, m, of the
applied field. For m = 0, + 1 there is no effect, and for applied standing waves there is also no
effect. But if the applied field has the form of a traveling wave with |m|>2, the frequency of
stable diocotron modes can be modified and for |m|>3, the I = 2 instability of hollow density
profiles can be stabilized. The analytic results are verified with a nonlinear fluid simulation of

an infinitely long non-neutral plasma.

. INTRODUCTION

One of the more interesting ideas encountered in the
study of mechanics is that high-frequency oscillating forces
can drastically change the behavior of physical systems. The
most famous example of such an effect is the dynamically
stabilized pendulum, in which the normally unstable up-
ward equilibrium position of a rigid pendulum can be made
stable if the point of support is vibrated vertically with suffi-
cient amplitude and frequency.' Because of its potential for
stabilization, this effect has also been extensively studied in
plasmas and fluids.>”” Of special interest are the experimen-
tal fluid Rayleigh-Taylor instability paper of Wolf® and the
review paper of Berge.® It would appear, however, that this
idea has never been investigated for the non-neutral plasmas
that have become so interesting through the work of Malm-
berg and his co-workers.'? In this paper the effect of high-
frequency electrostatic fields on the /=1 and / = 2 dioco-
tron modes''™!? of non-neutral plasmas will be studied.

It will be supposed that the geometry consists of an infi-
nitely long cylinder of radius g, to which an electrostatic
potential of the ¢ = goexpli(m8 — Q¢)] is applied. This
cylinder contains a non-neutral plasma immersed in a strong
uniform magnetic field directed along the axis of the cylin-
der. The modification of the dynamic properties of a non-
neutral plasma produced by such a potential is the subject of

_ this paper.

In Sec. II the fluid model used to discuss this situation is
described and the result of applying the separation of time
scales theory described by Landau and Lifshitz' to this plas-
ma is discussed. It is shown that the traveling-wave form for
the potential, given above, is crucial; standing-wave forms
give no effect to lowest order. It is also shown that for m = 0
and for m = + 1, there is no effect on the dynamics. How-
ever, for |m|>2, the applied field can substantially shift the
frequency of stable diocotron modes and for {m|>3 it can
stabilize the /=2 instability that plagues hollow density
profiles. In Sec. II1 a nonlinear fluid simulation is discussed
that was used to test the analytic theory of Sec. I1. The simu-
lation and the analytic theory are found to be in reasonable
agreement. In Sec. IV we conclude the paper and in the Ap-
pendix we demonstrate that the dynamic effects discussed in
this paper are mainly produced by a ponderomotive drift of
the particles that make up the plasma.
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Il. SEPARATION OF TIME SCALES

It will be assumed that the magnetic field confining the
non-neutral plasma is so strong that inertial effects are unim-
portant. This requires that the applied frequency and the
natural mode frequencies be much smaller than the cyclo-
tron frequency. It will also be assumed that everything is
uniform along the length of the cylinder so that we only have
to study the dynamics in a cross-sectional plane. Under these
conditions, the plasma dynamics are governed only by the
equations of electrostatics and the E X B drift:

V¢ = — (g/€)n, n
=(- V¢Xi)/B, (2)

and
%’;— + vVn =0, (3)

where ¢ is the electrostatic potential,' n is the number den-
sity, g is the charge on each particle in the fluid, v is the fluid
velocity, B is the magnitude of the confining magnetic field,
and % is a unit vector pointing along the long axis of the
cylinder. The boundary conditions on the electrostatic po-
tential are to be applied at the radius of the conducting cylin-
der, r = a. The continuity equation, Eq. (3), has the simple
form given here because the fluid velocity given in Eq. (2) is
incompressible (Vev = 0).

These equations are analyzed by making a separation of
time scales. It is assumed that n and ¢ are made up of two
different components. One is the “slow” component with a
frequency on the order of the equilibrium rotation frequency
@, ~ve/r. The other is a “fast” component with a frequency
on the order of the frequency of the applied potential, > w,.
Hence we write

n=N+‘V (4)
and

¢=F+f+f, ()
where N and F are the “slow” components and where v, f,
and f, are the “fast components”. For convenience, the
“fast> component of the potential has been further split into
two parts, one due to the “fast” component of the density
and one due to the applied field:
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Vif= — (¢/&)v, (6)
with f=0atr=a, and
Vi, =0, )]

with f, = &, exp [i(mf — Q)] atr=a.

These forms for n and ¢ are now substituted into Egs. (2)
and (3). By grouping “fast” and “slow” terms together, and
by neglecting the high-frequency parts of products of “fast”
terms, we get two separate equations (see Ref. 1). It is
further assumed that f<f,, a condition that can be shown to
be equivalent to @, < 2. With these assumptions, a very sim-
ple approximate equation for v is obtained,

v=[(iVf,XZ)/BQ]-VN. (8)
Since £, is simply the solution of Eq. (7), we have

[ (r,0) = dog(r)exp [i(mb — Q1) ], 9
where

g(r) = (/a)™,
so that the “fast” density is given by

v __;;)1( g (‘9?1;’ g(,-)_a_) exp [i(m0 — Q1)].
(1)

This form for v and Eq. (6) can now be used to check the
assumption that f<f,. A simple calculation shows that
f~awy/Qf., so the expansion is consistent to lowest order in
Wy /L.

We now substitute this form for v into the continuity
equation and time average the resulting equation over the
“fast” time scale to obtain a modified “slow” equation,

N VszVN <VszvV> 0,
at B B

where { ) denotes the time average.

Equations (9) and (11) are now used to perform the
time average, giving the following modified continuity equa-
tion:

(10)

(12)

N VFXi
2 XEYN 4 h, -—=o, 13
ot B + A (1) (13)
where
B, (r) = m|m|(|m| — 1)(¢3/BQa*) (r/a)*I™ =2

(14)

This is a new equation governing the low-frequency behavior
of the plasma in the presence of the high-frequency applied
fields. It is, of course, only approximate since all terms of
order w,/£) have been neglected. It is possible to extend this
calculation to higher order, but this, unfortunately, leads to
spatial coupling between the “fast” and “slow” problems.
The two can no longer be solved separately and simple re-
sults are difficult to obtain. Since the simulation shows that
this lowest-order calculation provides a reasonable guide to
the physics, we shall be content with it.

A. Stable modes

One of the most interesting properties of non-neutral
plasmas is that if the plasma is not centered in the conduct-
ing cylinder, then it precesses about the cylinder axis. When
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the shift is small, this motion may be described by linear
theory and is called the / = 1 diocotron mode. Stable modes
with other values of / also exist in these plasmas. It is natural
to ask how the high-frequency fields affect these modes. To
study the behavior of linear waves in the system described by
Eq. (13), we now assume that N and F are given by

N=N,(r) + N, (rexp [i(l10 — wt)]
and
F=F,(r) + F, (r)exp [i({6 — wt)], (16)

where N, (r) and F, (r) are the azimuthally symmetric equi-
librium density and potential profiles. It is, of course, as-
sumed that w €. In this equilibrium state the fluid rotates
as a result of the E X B drift at the radius-dependent frequen-
cy oy

(15)

1 JdF,
@0 (r) =g~

(17)

Note that this is a positive frequency, indicating rotation in
the + 0 direction, for negative charges and that it is a nega-
tive frequency for positive charges. Substituting these forms
into Eq. (13) and linearizing gives the mode equation for
this system:

14 oF 2
[@ — lwy (r) — Ih, ()](——; a—r]——r;Fl)
I
- Z"f}; F, =0. (18)
0

Except for the presence of the term containing 4,,,, this is

simply the standard diocotron mode equation.'? As noted

by one of the referees, this form suggests that the new term
represents an additional drift velocity of the plasma. This is,
in fact, correct, as the calculation of the ponderomotive drift
velocity in the Appendix demonstrates. Note, however, that
in the case of strong magnetization discussed here, this drift
is not given by the usual ponderomotive force crossed into
the magnetic field, but must instead be calculated using the
drift approximation.

There are a few simple consequences of Egs. (14) and
(18). (i) Applied fields with m =0 or m = + 1 have no
effect on diocotron modes, since in these cases 4,, = 0. It is
no surprise that m = 0 gives no effect since such an applied
potential would produce no applied electric field. Butitis a
little surprising that m = + 1 has no effect. If we interpret
this effect as due to a ponderomotive drift, however, it be-
comes clear: for m = + 1 the applied electric field is simply
a uniform rotating transverse field, and uniform electric
fields do not produce ponderomotive effects. As we shall see
later, a fluid simulation confirms this result. (ii) Since the
term in Eq. (18) containing 4,,, is linear in F, and since #,, is
odd in m, an applied standing wave has no effect, to the order
of approximation taken here. This is, of course, because a
standing wave is a linear mixture of positive and negative
values of m. This result is also discussed in the Appendix and
has been confirmed by the fluid simulation. (iii) For
m= +2, h, does not vary with radius. Hence, applied
traveling waves with m = + 2 simply shift the frequency of
the diocotron modes. An applied field with m = + 2 will
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increase the mode frequency, w, while an applied field with
m = — 2 will decrease the mode frequency (for a negatively
charged plasma). The opposite is true for a positively
charged plasma, and the general result is easy to remember:
if the applied wave field travels in the direction of the plasma
rotation, the mode frequency is increased, while if it travels
opposite to the direction of plasma rotation, the mode fre-
quency is decreased. It is important to note that this effect
may be made large without producing large density pertur-
bations because v~ ¢, /Q while 4,, ~$3 /. Hence, we may
choose values of ¢, and () that give a small perturbed den-
sity, then increase both ¢, and () by some factor until /,,, has
the desired size. Of course, practical considerations limit the
effectiveness of this procedure since it is difficult to achieve
both high frequencies and high voltages. Note that for prop-
erly chosen m and for large enough applied fields and fre-
quencies, this analysis predicts that it should be possible to
make w = 0, i.e., to make a slightly off-axis non-neutral plas-
ma sit at the same off-axis position without precessing. This
behavior has, in fact, been observed with the simulation.

If |m|>3, then Eq. (18) cannot be solved analytically. It
is, however, a simple matter to solve this equation numeri-
cally and to use the standard shooting method to obtain » for
arbitrary m. This was done for a few different density pro-
files, and it was discovered that for given values of ¢, and (2,
|m| =3 gives a slightly larger mode frequency shift than
does |m| = 2, but for |m| >4 the function A, (r) is so highly
localized near the outer cylinder that the frequency shift de-
creases with increasing m.

B. The /=2 instability

If the non-neutral plasma density profile is sufficiently
hollow, it exhibits an / = 2 instability that destroys the hol-
low profile, causing it to evolve to a new equilibrium with a
stable profile. Figure 1 displays a fit to an experimentally
determined hollow density profile measured at the Universi-
ty of California at San Diego; this profile is known to be
unstable to the / = 2 mode." In their experiment the con-
ducting cylinder radius was a = 3.8 cm and the axial mag-
netic field had the value B = 375 G. The experimentally ob-
served unstable / = 2 mode had a real frequency of 212 kHz
and a growth rate of 5.9 10* sec ~'. When the shooting
code is applied to this profile, it finds an unstable mode with
a real frequency of 202 kHz and a growth rate of
3.6 10* sec —!. As discussed in Sec. II A, m = 2 external
fields applied to such a plasma will just shift the real part of
its frequency and have no other effect. However, if an exter-
nal field with m = — 3 is applied with sufficient amplitude,
the shooting code predicts that this unstable mode can be
stabilized. (Note that the negative value of 7 means that the
applied field pattern rotates opposite to the plasma rota-
tion. ) For these experimental conditions an applied frequen-
cy of Q = 107 sec ~ ' and an applied voltage of ¢, = 30 Vis
predicted to give marginal stability with a real frequency of
183 kHz. For reference, this applied potential at the wall is
about 2.6 times greater than the plasma potential and the
applied frequency is about 7.5 times greater than the real
part of the / = 2 mode frequency. (Note that if the applied
field has m = + 3, then the growth rate is predicted to in-
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FIG. 1. A fit to an experimentally measured hollow density profile** is dis-
played as a function of position x across a diameter of the conducting cylin-
der.

crease.) This prediction of stabilization assumes, of course,
that no other modes are destabilized by the applied fields and
that nonlinear effects do not cause problems. The simulation
discussed in the following section indicates that stabilization
without such serious side effects can be achieved.

lil. FLUID SIMULATION

A fluid simulation was written to test these ideas by
numerically solving Egs. (1)-(3). The simulation is based
on a Cartesian grid with an inscribed circle representing the
cylinder to which the potentials are applied, as shown in Fig.
2. This seems to be awkward, at first glance, because the
boundary does not fit the grid, but this scheme is actually an
excellent choice. The fluid is expected to have its largest den-
sity near the center of the cylinder and its smallest density
near the outer cylinder. A cylindrical coordinate system
would do a better job of representing the fields in the low
density region at the expense of having a singularity (» = 0)

X

FIG. 2. The computational grid used in the simulation is shown. The exter-
nal field is produced by specifying the electrostatic potential on the circle.
The fluid motion is governed by the E X B drift on the Cartesian grid points
within the circle.
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right in the middle of the fluid. The Cartesian grid avoids the
singularity at the expense of making small errors in the low-
density region. Even these errors were minimized by using a
first-order accurate representation of V> for grid points
whose five-point star reaches across the circle. And since the
fluid stays away from the edge of the cylinder, the continuity
equation can be solved using the usual finite-difference tech-
niques for a Cartesian grid. The solution methods for Eqs.
(1) and (3) will now be discussed separately in more detail.

Equation (1) is solved by a hybrid method: (1) The
Alternating-Direction-Implicit'® algorithm (ADI) is used
for all interior grid points (points whose five-point star is
entirely contained within the circle) and (2) Gauss-Seidel'®
is used on points whose five-point star reaches across the

]

circle. Gauss-Seidel was used instead of successive overre-
laxation (SOR) because numerical experiments showed
that it was best. The two methods were combined by per-
forming ADI in the usual way, but with the horizontal and
vertical ADI passes followed by two Gauss—Seidel passes on
the boundary points. Care was taken to make sure that the
code for both of these numerical methods vectorized on the
Convex C-210, and extensive tests against known electro-
static fields were performed.

The density was advanced in time by finite differencing
the continuity equation in flux-conservative form using the
staggered-leapfrog method.!” As usual, a little numerical
viscosity was added to avoid the mesh drift instability. The
resulting equation for the time-advanced density is

ng = —an T (@) (i T Gy Al y) — (A28 [ — (BT — B )

+n 1,j(¢;"~ L+ 1

In this equation, m denotes the time level, i and j denote
horizontal and vertical positions, respectively, on the grid of
Fig. 2, At is the time step, Ax is the grid spacing, and « is the
numerical viscosity coefficient. Since this method requires
two previous time levels, the code is started by using a simple
first-order accurate method to make an initial step backward
in time. Because of initial noise, it was found helpful to have
a ~0.1 for about the first 50 time steps to smooth things out.
After this early period, @ was reduced to about 10~ *. This
method is explicit, and so has a Courant condition,

EAt/BAx < 1. (20)

In practice it is found that for fine grids (say 33 X 33 or finer)
the limit drops from 1 down to about 0.2. A typical large run
on a 127X 127 grid requires several hours of CPU time on
the Convex C-210 and uses about 4000 time steps. The total
integrated density in these runs is conserved to better than
1%, in spite of the appearance of negative values of the den-
sity near the outer edge of the plasma. These negative densi-
ties are typically only a few percent of the maximum density
and do not appear to affect the ability of the code to represent
the plasma.

A. The /=1 mode

To test the ideas of Sec. 11, a series of computer runs was
made. First, the unmodified / = 1 diocotron mode was simu-
lated. Figure 3 shows contours of the initial density, and it
can be seen that the initial condition consists of a cylindrical-
ly symmetric density distribution shifted to the right. The
peak density was n, = 10'*> m ~?, the radius was @ = 5 cm,
and the magnetic field was B = 1 kG. The simulation was
run both with a 33X 33 grid and with a 65X 65 grid. No
appreciable difference was observed between the two cases
either in this run or in other similar test runs with applied
fields. Hence, in the interest of economy, the runs described
in Sec. ITI A all used a 3333 grid. A three-dimensional
view of the initial density is shown in Fig. 4. (Note: the con-
tour and three-dimensional plots are based on quadratic in-
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- ¢ j—-1)+ R4 (o7 Li+1 = o7 e1) — nl_ 4 (97, Lji—1

=7 )] (19)

terpolations to a finer grid.) The simulation was allowed to
run for 40 usec (about 1.2 diocotron mode periods) and the
density at each of the positions marked in Fig. 3 was moni-
tored as a function of time. The density at each of the marked
points is plotted in Fig. 5 while the final density distribution
is shown in Fig. 6. Only about one period of the diocotron
mode has been followed, and it is not possible to determine
its frequency simply from Fig. 5. However, there is an excel-
lent diagnostic that does determine its frequency very accu-
rately. This quantity is the angular position of the center of
mass of the density distribution 8, . This quantity is plotted
for this run in Fig. 7. There is no difficulty in determining
that the / = 1 diocotron frequency for this simulation is 29.0
kHz. This compares quite favorably with the linear theory,
which predicts a mode frequency of 28.5 kHz. Even this
discrepancy can be accounted for by noting that for this run

X

FIG. 3. Contours of constant density are shown at the beginning of the
baseline run in which the /= 1 diocotron mode is followed without any
high-frequency applied electric field. The peak value of the density is
10"m ~ *. The X ’s denote grid points for which the density is monitored as a
function of time.

Ross L. Spencer 2309



0::5“\‘\\\
;;”II",O:H“\ \\ !
il ,u i
‘/////,, M‘hg‘\\\\“

I ,/ 'l,u
i //’
lll/f ' Wo‘

Al

FIG. 4. A three-dimensional
representation of the initial

’.’u‘ .

l 0 density of Fig. 3 is displayed.
\ \\

i

the center of the plasma was shifted 15% of the way from the
center to the wall. For the density profile used here, the for-
mulas of Ref. 18 predict an upward shift of the frequency by
about 0.5 kHz. To make sure this was not fortuitous, a
smaller displacement was used, and it gave a frequency clos-
er to 28.5 kHz by the expected amount. Smaller displace-
ments were not used as a matter of course because the center
of mass diagnostic does not work well when the center of
mass is less than 2Ax from the center of the cylinder.

The next run in the series was a test to see if an applied
m = + 1 traveling wave has an effect on the diocotron
mode. The applied potential at the wall was ¢, = 100 V and
the applied frequency was ) = 7.54 X 10° rad/sec. This ap-
plied potential is about twice the plasma potential and the
applied frequency is about 40 times bigger than the dioco-
tron mode frequency, and about eight times bigger than the
maximum value of @,. The initial density was the same as
that for the previous run, displayed in Fig. 3. Figure 8 shows
the time variation of the density at the positions shown in
Fig. 3, and it is clear that fairly large modulations are taking
place. It is also clear that it would be difficult to find the
diocotron mode frequency from such a plot. Fortunately,
however, the angular position of the center of mass behaves
very regularly, as shown in Fig. 9. The diocotron mode fre-
quency given by this figure is 28.5 kHz, hardly changed at all
from the 29.0kHz of Fig. 7. Another run withm = — 1 gave

10.0

n (x10'2 m~3)

FIG. 5. The density at each of the X s in Fig. 3 is displayed as a function of
time. The oscillation is the / = 1 diocotron mode without oscillating exter-
nal fields.
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FIG. 6. The density is displayed after the fluid has been allowed to evolve for
40 usec (about 1.2 periods of the / = 1 diocotron mode). The simulation
used 800 time steps to reach this time. Note that there are a few ripples
outside the main body of the density distribution where the density has be-
come slightly negative, but that on the whole the simulation is remarkably
smooth.

a simulation mode frequency of 29.4 kHz, also hardly
changed from the 29.0 kHz of Fig. 7. Hence the simulation
indicates that applied traveling-waves fields do indeed have
little effect for m = 4 1, as predicted by the theory of Sec.
IL

The cases of m = 4 2 were tried next. The applied po-
tential and frequency were the same as in the m = + 1 run
and the initial density was again the same as in Fig. 3. Figure
10 shows the density at each point in Fig. 2 for m = + 2.
The oscillations appear even more irregular than the case
where m = 4 1, and the final density becomes quite distort-
ed, as shown in Fig. 11. However, 0., still behaves quite
nicely, as shown in Fig. 12, and can be used to determine the
modified /=1 diocotron mode frequency. Linear theory
predicts that the new mode frequency should be 42.0 kHz.
The upper trace of Fig. 12 gives a mode frequency of 43.6
kHz, close to the prediction of linear mode theory and repre-
senting an increase of nearly 50% above the diocotron mode
frequency without applied fields. The lower trace is the re-

18.01 -

0.0 ] ] i
0 10 20 30 40

t (p sec)

FIG. 7. The angular position of the center of mass of the density distribution
is displayed as a function of time during the period when the fluid evolves
from Fig. 4 to Fig. 6. This is the quantity which best determines the frequen-
cy of the / = 1 diocotron mode. The mode frequency obtained from this plot
is 29.0 kHz while the predicted mode frequency from linear theory (the
equilibrium EXB drift frequency at the wall) is 28.5 kHz.
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FIG. 8. The density at the X’s in Fig. 3 as a function of time is displayed for
the case where there is an applied external field with wall potential ¢, = 100
V, applied frequency 1 = 7.54 X 10° rad/sec, and mode number m = + 1.
The applied potential is about twice the plasma potential and the applied
frequency is about 40 times as large as the / = 1 diocotron mode frequency.

sult of a similar run with m = — 2, with a simulation fre-
quency of 16.5 kHz (nearly a 50% decrease in frequency),
which is to be compared with the linear mode theory predic-
tion of 15.0 kHz. Hence the same applied potential and fre-
quency that had hardly any effect for m = + 1 had a very
large and predictable effect for m = + 2. It should also be
noted that the discrepancies between the simulation and the
theory are of about the expected size. For these runs the
maximum value of w,/{) was 0.12, and all terms of this order
were neglected in the calculations of Sec. II.

The final runs in the /= 1 series used m = + 3. The
applied potential and frequency were unchanged from pre-
viously described runs. The time variation 8, form = + 3
is shown in Fig. 13. This figure is considerably less regular in

18.0— -

I
0 10 20 30 40

t (u sec)

FIG. 9. The angular position of the center of mass of the density distribution
for the run of Fig. 8 is displayed. The high-frequency oscillations are the
fluid response to the applied fields, while the steady increase in 6, is the
! =1 diocotron mode. The diocotron mode frequency obtained from this
plot is 28.5 kHz, essentially unchanged from the 29.0 kHz of Fig. 7, in agree-
ment with the time scale separation theory.
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FIG. 10. The density at the X ’sin Fig. 3 as a function of time is displayed for
the case where there is an applied external field with wall potential,
&, =100 V, applied frequency Q = 7.54 X 10° rad/sec, and mode number
m= +2.

its fine features than Fig. 12, but there is still a clear / = 1
mode frequency. To find the prediction of the approximate
linear theory the shooting method must be used on Eq. (18);
it gives for m = + 3 a diocotron mode frequency of 43.6
kHz, to be compared with the simulation mode frequency of
48.9 kHz (a 70% frequency increase) obtained from the
upper trace of Fig. 13. For the case of m = — 3 shooting
predicts of 12.4 kHz while the lower trace of Fig. 13 gives
11.8 kHz (a frequency decrease of 60%). It is clear that in
this case the simulation does not agree so well with the analy-
sis of Sec. II. The large discrepancy seems to be caused by the
neglect of terms of order /€ in Sec. I, many of which are
actually of order meay/S2, or 0.36 for this case. To test this
conjecture other runs were made with the magnitude of
h,,, (r) held fixed while Q! was increased. It was observed that
the mode frequency shift was converging toward a value
about 10% higher than the frequency shift predicted by the
shooting code. Further runs revealed that this additional
shift was caused by the fairly large plasma displacement used
to model the / = 1 diocotron mode. Instead of the 0.5 kHz
increase in frequency caused by the finite displacement with-
out applied fields, an increase of 1.5 kHz is caused by the
finite displacement in the m = 3 case discussed here. Even
though the agreement is poorer, however, the trend is in the
right direction and suggests that the time scale separation
theory of Sec. Il is a useful guide for deciding what happens
when high-frequency potentials are applied to such plasmas.

FIG. 11. A three-dimension-
al view of the final density for
the case of Fig. 10 is dis-
played.
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FIG. 12. The upper trace shows the angular position of the center of mass of
the density distribution as a function of time for the case of Fig, 10. The
{ = 1 diocotron frequency obtained from this figure is 43.6 kHz, an increase
in the mode frequency of nearly 50%, and close to the 42.0 kHz predicted by
the time scale separation theory. The lower trace shows 6, for an applied
field with m = — 2 and all other parameters as given in the caption for Fig.
10. The time scale separation theory predicts an / = 1 mode frequency of
15.0 kHz while the frequency obtained from the lower trace is 16.5 kHz, a
frequency reduction of about 50%.

B. The /=2 instability

The simulation was also used to test the prediction of the
shooting code that the /= 2 instability for hollow profiles
could be stabilized. For these runs the wall radius was
a = 3.8 cm, the magnetic field was B=3375 G, and a
127 127 grid was used. A finer grid was necessary in these
runs because the / =2 mode has a much sharper spatial
structure than the / = 1 mode. Figure 1 shows the initial
density as a function of x through the center of the plasma in

1071
7 |
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=
_2 =
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M _
> ]
L - 4
s
\C_U/ - B
E b :
10-3 i | )
0 50 100 150

t (usec)

FIG. 14. The ! =2 Fourier component of the density, averaged over the
fluid, is shown as a function of time for the hollow profile of Fig. 1. The
initial perturbation was the eigenfunction from the shooting code. The wall
radius was @ = 3.8 cm, the magnetic field was B = 375 G, and a 127X 127
grid was used.

the simulation. This density profile is a fit to an experimen-
tally obtained profile that is known to be unstable.’* The
simulation was run for 150 usec (about five instability
growth times) using 5000 time steps and an initial perturba-
tion obtained by having the shooting code compute the un-
stable density eigenfunction. Figure 14 shows the amplitude
of the / = 2 Fourier component of the density as a function of
time for the case of no applied fields. The nearly exponential
growth of this component is within a few percent of the lin-
ear growth rate of 3.6 X 10* sec ~ !, predicted by the shooting
code. The real part of the frequency obtained from the simu-
lation also agrees with the shooting code. Figure 15 shows
the same Fourier component for a run with everything the
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FIG. 13. These two traces show the result of applying fields with m = + 3
to the system discussed here. The applied potential and applied frequency
are as given in the caption for Fig. 8. The upper trace corresponds to
m = + 3. The shooting method applied to Eq. (18) predicts an/= 1 mode
frequency of 43.6 kHz while the upper trace from the simulation gives a
frequency of 48.9 kHz, a frequency increase of nearly 70%. The lower trace
corresponds to m = — 3. The shooting method predicts 12.4 kHz while the
lower trace from the simulation gives 11.8 kHz, a frequency reduction of
about 60%.

2312 Phys. Fluids B, Vol. 2, No. 10, October 1990

same as in the run for Fig. 14, except thatanm = — 3 travel-
-1C T ]
1077 ¢ z
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FIG. 15. The ! = 2 Fourier component of the density, averaged over the
fluid, is shown as a function of time for the hollow profile of Fig. 1, but with
applied fields. The applied field had m= —3, Q=107ec™ ', and
#o = 40 V. This applied frequency is 7.5 times greater than the real part of
the / = 2 mode frequency and this applied potential is 3.5 times larger than
the plasma potential. Note that compared to Fig. 14, there is very little
growth of the / = 2 mode.
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FIG. 16. The density contours at the end of the run without applied fields
(Fig. 14) are displayed.

ing wave was applied at the wall. The frequency of the ap-
plied potential was €2 = 10’ sec~' and the amplitude was
¢; =40 V, parameters that the shooting code predicted
would give stability. For reference, this applied frequency is
7.5 times greater than the real part of the /=2 mode fre-
quency and this applied potential is 3.5 times larger than the
plasma potential. The simulation was run for 150 usec again,
but because of the large applied electric fields, 50 000 time
steps were required. Note that the instability has been almost
completely suppressed. In addition, the plasma density,
though somewhat triangular, is very smooth in spite of the
applied fields. Figure 16 shows a contour plot of the density
after 150 usec without applied fields while Fig. 17 shows the
density at the same time with applied fields. The contrast
between these two figures shows that this is apparently a
very effective method of stabilization.

IV. CONCLUSION

In the same way that a high-frequency force applied to a
pendulum changes its dynamic properties, high-frequency
potentials applied to a long non-neutral plasma can change
the properties of its normal modes. In particular, traveling-
wave patterns with m>|2| shift the diocotron mode frequen-
cies, and applied fields with m = — 3 stabilize the / = 2 in-
stability that destroys some hollow profile plasmas. The
amount of the shift and the stabilization thresholds can be
computed by the same time scale separation theory used for
the analysis of the dynamic pendulum. These modifications
are mainly the result of a ponderomotive drift that modifies
the rotation profile of the plasma. Both the predicted fre-
quency shifts and the stabilization of the / = 2 mode have
been approximately verified by a two-dimensional fluid sim-
ulation. The simulation indicates that in spite of the fairly
large applied fields, the plasma should remain fairly smooth
and hollow. Whether or not this benign behavior would be
observed in a real physical system, where transport effects
outside the scope of this calculation would play a role, can
only be decided by experimentation. It should be noted that
this technique would be particularly simple to implement in
abeam system where the motion of the plasma could provide
the required time dependence if the m = — 3 potential were
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FIG. 17. The density contours at the end of the run with applied fields (Fig.
15) are displayed. Note that although distorted somewhat, this hollow plas-
ma seems to be stable to all modes.

applied on a stationary set of helical electrodes at the outer
edge.

ACKNOWLEDGMENTS

The author thanks Grant Hart, Dennis Hewett, Neil
Rasband, and Bob Webster for helpful discussions and good
advice.

APPENDIX: THE PONDEROMOTIVE DRIFT

Here it will be shown that the term 4,, in Eq. (18) can
be interpreted as the Doppler shift caused by a ponderomo-
tive drift, just as the term o in the same equation represents
the Doppler shift due to the equilibrium EXB drift. The
calculation given here differs from the usual derivation of the
ponderomotive force'® in that it is assumed that the magnet-
icfield is so strong that the inertial response of the particles is
suppressed. Instead, the particle dynamics is governed by
drift motion. Consider a particle in a strong axial magnetic
field Bz moving under the combined influence of the mag-
netic field, an oscillating electrostatic field, and a radial elec-
trostatic field produced by a symmetric non-neutral plasma.
Assume that the equilibrium drift frequency w,(r), the oscil-
lating electric field frequency (), and the cyclotron frequency
o, satisfy

0, <N <L, (A1)

and that the electrostatic potential of the oscillating field has
the form

& = dog(ryexpi(ml — Q). (A2)

For consistency with Sec. II, effects of order w,/Q will be
ignored and the particle dynamics will be assumed to be de-
scribed by the E X B drift:

v=(EXZ%)/B. (A3)

Because o, <} the particle will only move a small distance
during one period of the applied wave, so we may decompose

the position vector of each particle into two parts:
r=r,+ 96, (A4)

where |8 | €|r,|. The symbol r, denotes the position of the
guiding center as it moves under the influence of the low-
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frequency drifts, while 8 is the relative position vector of the
particle, measured from r,, as it moves due to the high-fre-
quency applied electric field. Because 8 is relatively small we
may write

8= [E(r,,t) X2]/B, (A5)
where E is the high-frequency electric field,
E~exp [i(m6 — Qt)]. Hence, the high-frequency displace-
ment vector is approximately given by

8= (i/Q){[E(r,,t)X2])/B}. (A6)
If we now take Eq. (AS5) to one more order in §, a term
appears which is a product of rapidly varying quantities and

might, therefore, have a nonzero time average correspond-
ing to a low-frequency ponderomotive drift:

8= [E(ry,t) X%]/B + [8VE(ro,t) X2]/B.  (AT)

In this approximate equation, 8 on the right-hand side is

to be taken from Eq.(A6). Taking the time average of the
second term yields this drift velocity:

Vpona =3Re{[8*VE(r,,1) X2]/B }. (A8)
By writing E in the form
E=E(r,8)e ™ (A9)

and by rearranging the vector products in Eq. (A8) we ob-
tain, finally,

Voona = (1/20B%) Im[E*(r,0)-VE(r,0)].  (Al0)

It is now easy to see that standing waves should have no
effect, to this order of approximation. Suppose that the ap-
plied field had the form of a standing wave; E would then be
real and the ponderomotive drift velocity in Eq. (A10)
would be zero.

But if E is a traveling wave, E is complex and a nonzero
drift velocity results. The drift velocity can be computed by
using Eq. (A2) to obtain E,

E= — ¢, (g% + (img/r)ble™, (A11)
and then by substituting Eq. (A11) into Eq. (A10) to obtain
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(A12)

vpond

mdg (g'z L gg’)*
= & Lk 288 ),
20B°\ r r r

Since we are ignoring effects of order wy/f}, g is simply given
by the formula for a vacuum electrostatic field,

g(r) = (r/a)'™,
and we obtain for the ponderomotive drift frequency

vpond ¢(2) (r)z‘""[_z’
= —1 —_—
r mim|(lm| )ana‘* a ’

(A13)

@

pond =
(Al4)

in agreement with Eq. (14) of Sec. II.

Hence, to lowest order in @,/ the frequency shift and
stabilization produced by high-frequency applied electric
fields are the result of a ponderomotive modification of the
particle drift frequency.

'L.D. Landau and E.M. Lifshitz, Meckanics (Pergamon, London, 1960),
p. 80.

2J. Berkowitz, H. Grad, and H. Rubin, in Proceedings of the 2nd Interna-
tional Conference on the Peaceful Uses of Atomic Energy (United Nations,
Geneva, 1958), Vol. 31, P. 187.

*B. A. Trubnikov, Fiz. Plazmy 4, 309 (1958).

E. S. Weibel, Phys. Fluids 3, 946 (1960).

SF. Troyon, Phys. Fluids 10, 2660 (1967).

SF. A. Haas and J. A. Wesson, Phys. Rev. Lett. 19, 833 (1967).

’F. L. Ribe and W. B. Reisenfield, Phys. Fluids 11, 2035 (1968).

*G. H. Wolf, Z. Phys. 227, 291 (1969).

°G. Berge, Nucl. Fusion 12, 99 (1972).

19, H. Malmberg and J. S. DeGrassie, Phys. Rev. Lett. 35, 577 (1975).

''R. H. Levy, Phys. Fluids 8, 1288 (1965).

2R. J. Briggs, J. D. Daugherty, and R. H. Levy, Phys. Fluids 13, 421
(1970).

3R. H. Levy, Phys. Fluids 11, 920 (1968).

€. F. Driscoll (private communication).

'>W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Nu-
merical Recipes (Cambridge U. P., Cambridge, 1986), p. 660.

‘See Ref. 15.

'"See Ref. 15.

'8K. S. Fine, C. F. Driscoll, and J. H. Malmberg, Phys. Rev. Lett. 63, 2232
(1989).

E. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Ple-
num, New York, 1984), Vol. 1, p. 305.

Ross L. Spencer 2314



