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If Coulomb’s law were not inverse square: The charge distribution inside

a solid conducting sphere
Ross L. Spencer

Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602
(Received 21 March 1988; accepted for publication 6 December 1988)

The distribution of charge between concentric conducting shells has been at the heart of the most
sensitive tests of the exponent in Coulomb’s law since the days of Henry Cavendish. But it appears
that no one has ever answered the question of how an excess of charge would distribute itself
throughout the interior of a solid conductor if Coulomb’s law were other than inverse square.

Spherically symmetric solutions to this problem have been found under the assumption that the
potential of a point charge varies either as e ~*" /r or as 1/7"

1. INTRODUCTION

During the course of his research on electricity, Benja-
min Franklin wrote from Philadelphia to his friend, Joseph
Priestley, the English scientist, telling him of the results of
some experiments on the electrifying of conductors. In
these experiments Franklin had discovered that the charge
always resided on the outer surface of the conductor.
Priestley repeated these experiments, and reasoning by
analogy with Newton’s theory of gravitation, concluded
that this experimental result implied that electrical attrac-
tion and repulsion also obeyed the inverse-square law. In
Priestley’s own words:

May we not infer from this experiment that the attrac-
tion of electricity is subject to the same laws with that of
gravitation and is therefore according to the squares of
the distances; since it is easily demonstrated that were
the earth in the form of a shell a body on the inside of it
would not be attracted to one side of it more than an-
other.'

Priestley’s observation was first made into a quantitative
experiment by Henry Cavendish who studied the electrifi-
cation of concentric spherical shells.” His work was im-
proved upon by James Clerk Maxwell,* by Samuel Plimp-
ton and Willard Lawson,* and most recently by Edwin
Williams, James Faller, and Henry Hill,> who established
that Coulomb’s law holds to about one part in 10'. (These
experiments and many others are discussed in the excellent
review article of Goldhaber and Nieto.® See also Fulcher’
for a recent downward revision of the possible deviation
from Coulomb’s law allowed by the experiment described
in Ref. 5.)

All of these researchers based their experiments on the
mathematical analysis of nested conducting shells under
the assumption that the electrostatic force law was other
than inverse square. This is, however, not the only geome-
try of interest. In all elementary textbooks on electromag-
netism, for instance, Gauss’ law is employed to show that
any excess charge on a solid conductor resides on its sur-
face. But the question of how an excess of charge distrib-
utes itself in a solid conductor in the event that the electro-
static force law is other than inverse square is rarely
discussed. (It is interesting to note that Fulcher’s analysis’
of the four concentric conductors of the Williams, Faller,
and Hill experiment is a step in the direction of a solid
conductor.) A prominent exception is the paper by Shaw®
in which the question of unique solutions to the problem of
the solid conductor is discussed. The computation of
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spherically symmetric solutions, whose unavailability
Shaw laments, is the subject of this paper.

Consider a solid conducting sphere made up of a fixed
positive background, having density g , and a continuous
negative fluid. The electrostatic interaction between the
charges is assumed to be mediated by a potential law that
varies either as e ~ *" /r (Yukawa potential ) or as 1/7" (in-
verse-power-law potential). The quantity r is the distance
from a point charge and n, the exponent, is a real number
rather than an integer. The quantity & is proportional to the
mass of the photon. Coulomb’s law corresponds either to
n=1 or to k=0. Imagine that an excess of charge is
placed on the sphere. The negative fluid will be set in mo-
tion, seeking to find a distribution of charge that produces
zero electric field throughout the interior of the fluid. (At
the outer surface of the sphere it is assumed that micro-
scopic forces act to keep excess negative fluid from leaving
the sphere.®~'?) In the case of Coulomb’s law the end result
of this process is that all of the excess charge is concentrat-
ed at the outer surface of the sphere. However, if the elec-
trostatic force law is different from Coulomb’s law, the ex-
cess charge is distributed in a rather more complicated
way. (Note: In general, it is necessary to distinguish
between the cases of positive and negative excess charge. In
our world, however, where excess charge amounts are
nearly vanishing fractions of the total charge available, the
distinction between the two cases is usually uninteresting.
Hence, in this paper only the simpler case of negative ex-
cess charge will be discussed in detail.)

In the case of the Yukawa potential, the equilibrium
charge distributions are similar to those for Coulomb’s law,
with the exception that a constant charge density fills the
region interior to the edge charge distributions. This con-
stant inner charge density is proportional to (ka)? AQ,
where a is the radius of the sphere and AQ is the total excess
charge. The inner charge density is, therefore, proportional
to the square of the mass of the photon. This case is
discussed in detail in Sec. II. In the case of the inverse-
power law, the situation is much more complicated, and
only the relatively simple case of excess negative charge
with n>1 will be fully discussed. In this case, the equi-
librium charge density is singular, having the form
— )" =372 As in the Yukawa case, there is
excess charge distributed throughout the interior of the
sphere; in this case, the inner charge density is proportional
to (n — 1)AQ. This calculation is the subject of Sec. II1I.
The other inverse-power-law cases will be qualitatively dis-
cussed in Sec. IV, and the article concludes with a sum-
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mary in Sec. V. The special inverse-power-law case n = 2 is
discussed in Appendix A and equilibria containing regions
from which all free charge is removed are discussed in Ap-
pendix B.

II. THE YUKAWA POTENTIAL

Suppose that the potential of a point charge g is given by
the formula

@(r) = ge~*/4me,r, ()

where k is related to the mass of the photon m , by
k = m,c/#iand where SI-appearing units have been chosen
to make the formulas look more familiar. The potential ¢,
at a distance r from the center of an infinitely thin shell of
radius # and charge g can be obtained from Eq. (1) by
integrating over the shell:

&, () = (q/8meskrr ) (e ¥Ir—rl _e—klr+rly, (2)

If the distribution of charge within a sphere of radius a is
described by a spherically symmetric charge density p(r),
then the potential at any radius 7 can be obtained by inte-
grating over concentric shells of charge. It is convenient to
define the new variable f () = ro(#) and to extend r from
the interval 0<7<a to the interval — a<r<a by taking the
odd extension of f (»). With these changes, the potential at
any radius r due to the charge density p(r) = f (r)/r, can
be written

1
2e,kr

#(r) = f e KIr=rf(rydr. (3)
If we now require that p(r) be in electrostatic equilibrium,
then the potential must be constant wherever there is mo-
vable negative fluid.

It is possible to make a wide variety of equilibria, even in
the case of Coulomb’s law, by allowing regions from which
all negative fluid has been removed, for then the potential
need not be constant everywhere but only in the regions
containing negative fluid. This is only of mathematical in-
terest in our world, however, since completely removing all
of the electrons from any significant region would produce
enormous electric fields. In addition, such equilibria are
almost always unstable; they are briefly discussed in Ap-
pendix B. Here, we shall assume that the potential is uni-
form throughout the sphere. The equation determining the
function f (#) that produces such a potential is obtained by
taking ¢, to be constant in Eq. (3):

i
f e KIr=rIf (P ydr = 2€d0kr. 4
-

This equation is a Fredholm integral equation of the first
kind,"? and its kernel, e~ *!"~ "I, is the so-called Lalesco
kernel." Differentiating Eq. (4) twice with respect to »
gives rise to a delta function that effects a partial solution;
the solution is completed by judicious guesswork. In any
case it is easy to verify that Eq. (4) is solved by

p(r) = f(r)/r=k?p+ [(ka + 1)/alexd, 8(r — a),
(5)

i.e., the density consists of a constant distribution through-
out the sphere and a thin shell concentrated at its outer
surface. (Note: If the excess charge is positive, then the
infinitely thin outer layer is replaced by a thin, but finite,
outer positive region. As the ratio of the excess positive
charge to the total positive charge in the sphere approaches
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zero, the difference between the cases of positive and nega-
tive excess charge vanishes.)

It is also possible to obtain this result by solving the
Proca equation, the differential equation for the Yukawa
potential that corresponds to Poisson’s equation for the
Coulomb potential. The Proca equation is

Vi — k= —p/€&

for the electrostatic units being used here. If spherical sym-
metry is assumed, then inside the sphere we have ¢(r) = 4,
while outside we have ¢(r) = @pe~ */r. The Proca equa-
tion may now be solved for p to obtain Eq. (5). As pointed
out by Shaw,® the existence of a differential relation
between ¢ and the charge density is a powerful aid. Here, it
means that the solution given in Eq. (5) is unique.
Integrating Eq. (5) over the unit sphere shows that the
inner potential ¢, and the excess charge AQ are related by

o =3 AQ /47me,(k*a* + 3ka + 3)a. (6)

It is now convenient to define Q. /AQ, the fraction of the
excess charge that resides in the interior of the sphere, i.e.,
the portion of the excess charge that is represented by the
first term on the right-hand side of Eq. (5). Computing the
contribution of this term to the excess charge yields

Q./AQ = k?a*/(k?a® + 3ka + 3). (7

At large values of k, most of the charge is inside, but as
Coulomb’s law is approached by letting k approach zero,
the excess charge rapidly becomes concentrated at the out-
er edge of the sphere. The small amount of excess charge in
the interior produces an inner density whose magnitude is
approximately given by

pinner zAQk2/477'a (8)

Note that this quadratic dependence of the interior charge
on the photon mass is the same dependence that occurs for
two concentric shells,” and is the same dependence re-
quired by the theorem of Goldhaber and Nieto,® namely,
that the photon mass effects are of order m),. Hence, solid
spheres do not offer any obvious improvement in the meth-
od of determining the photon mass in Gauss’ law experi-
ments.

I11. INVERSE-POWER LAW: NEGATIVE EXCESS
CHARGE WITH n>1

With two possible signs of excess charge and two sepa-
rate classes of powers, n> 1 and » < |, there are actually
four separate cases to consider for the inverse-power-law
potential. Of the four, only the case with negative excess
charge and n > 1 is simple enough to present here. The oth-
er cases have been solved, however, by the method de-
scribed in Ref. 15, and will be discussed qualitatively in Sec.
1v.

Suppose that the potential of a point charge g is given by
an inverse-power law of the form

&(r) = q/4meyr”, (9

where Dis a constant. (Note that although the formula has
the usual SI appearance, €, has unusual units.) By integrat-
ing Eq. (9) over a shell it can be shown that the potential
., at a distance 7 from an infinitely thin shell of radius »
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and charge g, is given by
[q/8mey(2 — n)rr']
X [(r+ rl)2—n _ |r_ r'|2_"], n?éz’
(g/16meprrYIn[(r +7)/(r—r)1% n=2.
(10)
If the charge distribution is described by a spherically sym-
metric charge density p(r), contained within a sphere of
radius a, then the potential at radius r is obtained by inte-
grating Eq. (10) against the density p(r). Asin Sec. I, it is
convenient here to define the variable f () = 7p(r) and to
extend the integration region to negative values by using
the odd extension of f (7). The resulting equation for the
potential is

o, (r) =

¢(r) -1 K(r,r)f(rdr, (11)
¥ J_a
where
o _ [(1726(n = 2D)]|r = r P77, n#2,
K(r,r)'“{(1/460)1n[1/(r_r,)]2’ Y

Suppose, now, that the excess negative charge is distrib-
uted throughout the interior of a conducting sphere of radi-
us @, as in Sec. II. In this case the equilibrium requirement
is that the potential throughout the sphere be constant, and
it takes the form

1 J“
2¢,(n —2) J-a

where ¢, is the value of the constant potential, and where
0<r<a. [Note that except for differences in notation, this
equation is Shaw’s Eq. (20).* Note also that the special
case n = 2 will be discussed briefly in Appendix A, but will
otherwise be ignored. ] ‘

As in Sec. II, this equation is a Fredholm integral equa-
tion of the first kind. The kernel of this integral equation,
|r — #'|* =", is the so-called Carleman kernel."* This equa-
tion is solved by noting that it is a special case of a general
identity given by Auer and Gardner.'® The identity is

|r—r’|2”ff(r,')dr'=¢0r, (12)

1
f (1 =PIy — x|~ '~ dy
-1

=0, A,N, P, (x),
where — 1<v<0 and where P}, (x) is a Gegenbauer poly-
nomial normalized so that P, (1) = 1. For example,
Pi(x)=1 and P7(x)=x. Hence, if we choose

Il=m=1,x=r/a,y="+/a,f(r) =x(1-x>", and
v=(n-—3)/2, (14)

then Eqgs. (12) and (13) are identical for properly chosen
&,- The coefficients 4, and N}, are given by

A =—nTT _
T2 gin v
><< F'm+2v+1) )2(2m+2v+1) (15)
F'(v+DHIm+1) Fr2v+1)
and
N = 2P P[C(v+ DIPT(m + 1) (16)

C@m+2v+ DD(m+2v+ 1)
The coefficient N, is the normalization factor for these
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Fig. 1. The magnitude of the charge density, normalized to p_, is dis-
played versus radius for negative excess charge and for n = 1.1, 1.5, 2.0,
2.5, and 2.9. The charge density functions have been normalized so that
the total charge is the same for each (AQ/Q, =0.1). Note that the
sphere has unit radius. ‘

polynomials:

1
f (1 —=x)"P}(x)P},(x)dx=8,, N}, (17)
-1
Equations (13)—(17) are now combined to solve Eq. (12)
for £ (r), which then gives the equilibrium charge density
in the form

pr)y=f(r)y/r

= {e,dosin[ (3 — n)7/2]/m}(a* — r?) "=V
(18)

This result is also given as an exercise in Ref. 14. Figure 1
displays p(r) for various values of the exponent in the
range | < n <3 witha = 1. Note that the density is actually
negative, since we are considering negative excess charge,
but that the magnitude is plotted in Fig. 1. Strictly speak-
ing, these results need not apply to the case n = 2, since the
kernel is then logarithmic. This case is discussed in Appen-
dix A, however, where it is shown that Eq. (18) also holds
forn=2.

Exponents n > 3 are not considered because Eq. (12) is
not integrable for such exponents. (See also Ref. 8.) The
physical origin of this difficulty is that for n> 3 the self-
energy of repulsion of any continuous distribution of
charge is infinite. Note that as n— 3 from below, the excess
electric charge density approaches a constant. This is simi-
lar to the Yukawa case when & becomes large. In the
Yukawa case the constancy of the density is a result of the
highly localized form of the potential at large k, and a simi-
lar localization occurs here as # approaches 3. In this limit
the potential becomes localized because the strong singu-
larity at each charge completely dominates over the behav-
ior of the potential elsewhere.

It is now convenient to choose a new normalization for
the density corresponding to a fixed amount of excess
charge. This new normalization makes it easier to compare
density functions for differing exponents, and is used in
Fig. 1. If AQ is the magnitude of the excess charge, then

AQ« 27rf (@ — r2)(n=372p2 gy

This is seen to be an instance of the normalization integral,
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Eq. (17) (with /= m = 1), so the density function is now
given by

p(r) = (AQ/27Na")(a* — r?)" =972, (19)

Note that if # < 1, then the singularity is no longer integra-
ble, and this solution is invalid. This case will be discussed
in Sec. IV.

Consider now what happens as n approaches 1 (Cou-
lomb’s law) from above. In this limit v= (n —3)/
2 — 1, so we have, from Egs. (16) and (19),

p(r) = (AQ/4ma)[(n—1)/(a® —r?)' ~ "= D7), (20)

which is a representation of (@ — r) as n— 1. (Actually, it
is a one-sided delta function.) Thus Eq. (19) describes the
approach to the familiar Coulomb result that all of the ex-
cess charge resides on the surface of the sphere. Equation
(20) also shows that the inner density is of order

pinnerEAQ(n_ 1)/477-(13, (21)

for r not near a.

Note that the inner charge is proportional to n — 1, the
same dependence that occurs for two concentric conduct-
ing spheres,” so, as in the Yukawa case, solid spheres do not
offer any obvious improvement in the method of testing
how closely Coulomb’s law is obeyed.

IV. INVERSE-POWER LAW: THE OTHER CASES

The inverse-power-law cases, other than negative excess
charge with n>1, are too complicated to discuss in detail
here. They are, however, quite interesting and will be qual-
itatively discussed with the aid of Fig. 2. The densities rep-
resented in this figure are the results of equilibrium calcula-
tions using the method of Auer and Gardner." Six frames
are shown, each corresponding to either positive or nega-
tive excess charge and to one of three choices for the expo-
nent n:n> 1, n =1 (Coulomb’s law), and n < 1. Note that
the sphere has unit radius.

Frames (b) and (e) show the usual Coulomb’s law re-
sult. If the excess charge is negative, all of it resides at the
surface [see frame (e) . If positive, it resides in a thin layer
at the outer edge from which all free negative charge has
been removed [see frame (b) ]. Note that in al! of the posi-

Positive Excess Charge Negative Excess Charge

0.8 0.8 1.0

1[ (a) n>1 11 (d) n>1
0 I 0 j
1] (b) n=1 1[ (e) n=1
E . (b) n '_1 %o e)n
U
177 () n<t 1 (1) nct
) 77 : _J
10

r

Fig. 2. Charge density distributions for a sphere of unit radius are dis-
played for three exponents, # =1.1, n=1.0 (Coulomb’s law), and
n = 0.9, and for two excess chargeratios, AQ /@, = + 0.1[(a), (b),and
(¢))and AQ/Q, = —0.1[(d), (e),and (f)]. The vertical lines in (e)
and (f) represent the negative delta-function shells at » = 1; the delta
function in (f) is stronger than that in (e) by the factor 1.34.

388 Am. J. Phys., Vol. 58, No. 4, April 1990

tive-excess-charge cases the width of this outer region has
been chosen to be much larger than is reasonable for clarity
of presentation.

The case discussed in Sec. III, negative excess charge
with # > 1, is shown in frame (d). The corresponding case,
positive excess charge with n > 1, is shown in frame (a).
The charge density cannot be singular here because it can-
not exceed the density of the fixed positive background.
Instead, the density rises sharply (it has a singular deriva-
tive) and then remains constant out to the edge of the
sphere. As the excess charge becomes a very small fraction
of the total positive background charge, the density ap-
proaches the singular shape of frame (d), as might be ex-
pected.

When 7 < 1, the solutions become much more compli-
cated. The reason is that when # < 1, a shell of charge repels
other like charges that are outside the shell, but attracts like
charges within it. Hence, an equilibrium with charge all of
one sign is impossible (see Ref. 8). The equilibria now are
as shown in frames (c¢) and (f). If the excess charge is
positive, a positive outer shell forms containing more posi-
tive charge than the amount of the excess, and within this
outer shell a singular distribution of negative charge forms
[see frame (c)]. If the excess charge is negative, then all of
the excess negative charge and some of the free negative
charge move to the outer edge of the sphere, leaving behind
a positive shell and a sharply rising positive distribution
with a singular derivative [see frame (f)]. This case is the
strangest of them all, as discussed in Appendix B.

In spite of the complicated details, however, there is one
common feature shared by all of the cases with n1: The
inner charge density is approximately given by Eq. (21) as
n—1.

Finally, it must be pointed out that there is an important
difference between the inverse-square-law potential and
the Yukawa potential, namely, that there is no differential
equation corresponding to Proca’s equation. As Shaw
points out, this means that there is no uniqueness theorem
to assure us that these equilibria are the only possible ones.®
In particular, there may be others that are nonspherically
symmetric. Furthermore, when the stability of these equili-
bria are considered, there are no differential equations to
linearize in the usual way. This makes a whole set of inter-
esting questions abut equilibrium and stability, especially
for the peculiar case n < 1, very difficult to approach.

V. CONCLUSION

If the electrostatic force law were not inverse square,
then the excess charge on a conducting sphere would not all
reside on its surface. For the cases of the Yukawa potential

$(r)<ge "/,
and the inverse-power-law potential,

¢(r) =<q/7",
the equilibrium charge distributions are somewhat similar,
in that for parameter choices near Coulomb’s law, i.e., for n
near 1 or for k near 0, most of the excess charge AQ is
concentrated near the outer edge of the sphere, but the
interior of the sphere is also filled with excess charge. In the
Yukawa case this density is constant and is given by

pinner = AQ k 2/477'0'
In the case of the inverse-power-law the inner density is not
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constant, but its magnitude is approximately given by
pinner :AQ(” —1 )/477'(13.

The manner in which the charge is concentrated near the
outer edge is even quite similar for the Yukawa case and for
the inverse-power law with # > 1. In the inverse-power-law
case with 7 < 1, however, the excess charge distribution
near the outer edge is more complicated, and the equilibri-
um problem need not even have a unique solution (see Ap-
pendix B).

The appearance of all of this diversity as the electrostatic
force law is varied slightly from the inverse-square law is
quite striking. Of course, experiments show that any possi-
ble deviation is extremely small, but even small deviations
introduce oddities into electrostatic theory. The inverse-
square law is very special indeed.
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APPENDIX A: NEGATIVE EXCESS CHARGE
WITH n=2

For the special case where #» = 2 and where the excess
charge is negative, it is possible to give an elementary proof
that the equilibrium density is of the form

p(r) =A/Ja = r?, (A1)

with 4 a constant. Substitution into the equilibrium equa-
tion for this case, Eq. (12), with the power-law kernel re-
placed by the logarithmic kernel from Eq. (11) gives the
proposed identity

f” In [(r+ r')z] rdr — B
o r—r) ) j@@ =77 ’
with B another constant, namely, B = 2¢€,4,/4. We set
¥ = asin @ to obtain

/2 . 2
f In [(imﬂ)]smede=gi.
0

r/a —sin @ a

(A2)

which, because of the special form of the integrand, can be
written as

2 . 2
1r =f In [(w) ] sin@do—=4B "
) 0

¥/a —sin O a
(A3)

The integral can now be evaluated as a contour integral by
setting z = ¢? and by integrating about the unit circle in
the complex z plane. We have

n=-L¢m [(2’:(’/"”2—2_])2] (1—i)dz.
2 2i(r/a) —z+z! z?
(A4)

The only pole within the unit circle is at z = 0; expanding in
small z and using the residue theorem yields

I(r) = 8ur/a; (A5)
choosing B = 27 then makes Eq. (A3) hold, and-the den-
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sity can be written

p(r) = €obo/mat —r?,

in agreement with Eq. (18) for n = 2.

APPENDIX B: NONUNIQUENESS OF THE
EQUILIBRIUM PROBLEM

Itis interesting to note that even in the case of Coulomb’s
law, the spherical equilibrium problem has no unique solu-
tion. The reason is that equilibrium does not require that
the electric field vanish throughout the conductor, but only
that the electric field vanish in regions where there is free
charge. In particular, for a given amount of excess charge it
is possible to make a whole family of equilibria by varying
the width of a positive charge region at the outer edge of the
sphere.

To see how this comes about, consider the case of posi-
tive excess charge. The excess charge resides in a thin layer
at the outer edge of the sphere from which all negative
charge has been removed. Now imagine that some more of
the free negative charge in the interior is collected and
formed into a zero-thickness shell. This, of course, in-
creases the width of the outer positive region. Now we must
ask if there is an equilibrium position for the new negative
shell. It is easy to see that there is such a position within the
outer positive region, for the shell tends to expand under its
own electric repulsion, but the positive electric field in the
outer region tends to pull it back. Somewhere in the outer
positive region, these forces balance. It is easy to compute
this equilibrium position by using Gauss’ law to find the
positive electric field and by computing the effective elec-
tric field of self-repulsion from the relations

dWU_ _384
ar ar 2C°

where C is the capacitance of a sphere, C = 477€,7, and r is
the radius of the sphere. Hence,

E=q/ 877601*2. (B2)

Note that this situation is only of mathematical impor-
tance; the removal of just one electron per atom at the outer
surface of a conductor would produce an electric field in
excess of 10'' V/m. Furthermore, it is easy to see that these
additional equilibria are unstable. Imagine that just one
electron is displaced inward from the extra negative shell.
It no longer feels the influence of the negative shell, since it
is within it, and immediately is pulled inward by the posi-
tive electric field of the outer positive region. Of course, if
one electron can do this, all of them eventually will and the
usual equilibrium situation will quickly be established.

The case of negative excess charge is even simpler. The
excess charge resides in a thin layer at the outer edge of the
sphere. To make a new equilibrium with the same total
excess charge, we move some of the interior free negative
charge to the outside, opening up a positive region contain-
ing no free charge just inside the outer negative shell. The
outer layer is kept from being pulled inward by its self-
repulsion as long as the extra charge transferred to the out-
side does not exceed the amount of the excess charge. [ This
may easily by shown by using Eq. (B2).] Once again a
whole range of equilibria is possible, and once again the
new equilibria are all unstable. Individual electrons will be
pulled inward from the outer shell and the positive region
will be neutralized.

Because of the instability, this entire discussion is of no

(A6)
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importance whatever for the case of Coulomb’s law. Insta-
bility also occurs in nearly all of the non-Coulomb’s law
cases discussed in this article. There is, however, a single
exception: negative excess charge with n < 1. In this case,
the outer negative charge attracts any electrons that are
displaced inward, pulling them back into the shell in oppo-
sition to the inward pull of the positive region. If too much
interior charge is transferred to the outer edge, instability
once again occurs, but there is a small range of stable equili-
briaif n < 1. This behavior has been verified with computer
simulations in which many negative shells were allowed to
move in response to each other and in response to a fixed
positive background. A range of possible equilibria was ob-
served, with the amount of extra charge that can be trans-
ferred to the outside before instability once again occurs
being roughly proportional to 1 — n. (Note that it is still
necessary to have some force that keeps the outer negative
shell from leaving the sphere.)

Hence, for negative excess charge and # < 1, the ideal-
ized equilibrium model discussed in this article admits a
continuum of stable charge distributions for a given excess
charge. Hence, there is no unique stable solution to the
problem of how excess negative charge is distributed with-
in a solid conducting sphere if n < 1.
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The longitudinal classical and relativistic Doppler effects for sound are derived through use of
space-time diagrams. Diagrams appropriate to Galilean and Lorentz transformations are
reviewed in order to stress their simplicity and instructional value. The relativistic limiting case in

which the signal is light is also considered.

I. SPACE-TIME DIAGRAMS

Diagrams of a two-dimensional x-# subspace of space-
time have long been used to help develop intuitions appro-
priate to physics in Minkowski space.' The corresponding
classical diagrams are particularly well suited to develop-
ment of the Doppler formulas for sound. Further, experi-
ence with application of a space-time diagram in a classical
context may usefully serve as an early introduction to the
space-time perspective for a student.

This article will compare classical and relativistic space-
time diagrams, emphasizing interpretations of relevant in-
tervals in each, and then develop the appropriate Doppler
formulas for sound (the relativistic acoustic Doppler effect
has been treated recently by several authors>® ). Since the
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Minkowski diagram is likely to be more familiar, it is con-
sidered first.

I1. SPECIAL RELATIVITY DIAGRAMS

The standard simplest diagram is concerned with space-
time coordinates of events for two inertial observers con-
nected by the Lorentz transformation for which two
frames, S with event coordinates (x,2) and S’ with event
coordinates (x',t'), haveorigins coincidentats =0 =¢".§'
moves in the 4 x direction with speed v. The transforma-
tion from (x,t) to (x',t') is

x' = y(x —t), (1a)
t' =yt — (v/cH)x]. (1b)
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