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Electric field lines near an oddly shaped conductor in a uniform electric field

Ross L. Spencer

Department of Physics, Brigham Young University, Provo, Utah 84602

(Received 18 June 1987; accepted for publication 18 September 1987)

Physics textbooks almost always contain at least one picture of an oddly shaped conductor,
usually in the section discussing Gauss’ law and the charged conductor. It is, however, rare to see
a representation of the field lines in the neighborhood of such a conductor. This article discusses
the problem of an arbitrarily shaped uncharged conductor imbedded in an otherwise uniform
electric field. The method of successive overrelaxation is used to compute the electrostatic
potential from which the electric field lines are computed by numerical integration.

One of the intriguing topics in the study of electrostatics
is the property that any excess charge on a conductor re-
sides on its surface. In most textbooks where this property
is discussed a picture of an oddly shaped conductor ap-
pears. Less common is a representation of the field lines in
the neighborhood of such an object. The reason for this
omission is quite simple: Electric fields are difficult to com-
pute in the presence of asymmetric equipotential surfaces.
A nice aid to the developing intuition of physics students
would be a few accurately drawn field lines in the presence
of such a conductor. If possible, the lines should illustrate
the property that the density of lines is proportional to the
magnitude of the electric field. (Note that this is not easy to
achieve; in a fully asymmetric geometry, there may not be
any suitable set of field lines that could be represented on
the flat page. Furthermore, if the equipotential surfaces are
not infinitely long and uniform in at least one of the three
Cartesian dimensions, then the density of lines on a flat
surface is not the same as the density of lines in three-di-
mensional space.) This article describes a method of com-
puting such a set of field lines for oddly shaped conductors.

As an illustration of the method, the case of an un-
charged conductor in an otherwise uniform electric field is
discussed. To make sure that a set of field lines lying in a
plane exists, the intersection of the surface of the conductor
with the xy plane is assumed to be given by the function

X
Fig. 1. The intersection with the xy plane of the oddly shaped conductor.
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r=g(8), (N

where 7 = (x* 4+ »*)'/? and where tan @ = y/x. Figure 1
shows the intersection with the xy plane of the oddly
shaped conductor used in these calculations. It was ob-
tained by drawing the shape freehand on a sheet of graph
paper, choosing an interior point as the origin of plane po-
lar coordinates, dividing the angular interval [0,27] into
32 subintervals, and measuring the radius to the surface at
the edge of each subinterval. Lagrange three-point interpo-
lation' was then used to obtain g(8) at arbitrary angles 6.
The conductor surface is assumed to extend symmetrically
above and below the xp plane so that a field line started in
the xy plane remains in this plane. At each value of z above
and below the xy plane, the shape at z = O is replicated and
reduced, becoming ever smaller in size until it finally
shrinks to zero at z = + z,. This sounds complicated, but
its mathematical realization is quite simple:
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By adjusting the value of z,, various shapes may be studied.
In this article, two cases will be discussed. (1) The “spheri-
cal” case denotes the use of a value of z_ that is equal to the
average radius of the conductor surface in the xy plane.
Figure 2 illustrates the appearance of the surface of the
conductor for this case. (2) The “cylindrical” case denotes
the use of a value of z, that is very much larger than the
average radius of the conductor surface. This means that
near the xy plane the electrostatic potential ¢ is uniform in
z, so the problem is only two dimensional in this case.
With the conductor thus specified, the electrostatic
problem may be stated: Find the electrostatic potential cor-
responding to a uniform electric field, E = EX, for points

e

%
BRI

g3
3G
o,

R
X

QRRGRXRA

X0,

e
555

e
///;ll/o’o 0 '.'O'ow« Q000 OO
e

AN

Fig. 2. A three-dimensional view in the spherical case of the oddly shaped
conductor.
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far from the conductor and having constant value ¢, on the
surface of the conductor. Furthermore, adjust the value of
. so that the conductor has no net charge. The problem 1s
solved by using the method of successive overrelaxation®*
on a rectangular three-dimensional grid, in the spherical
case, or on a two-dimensional grid, in the cylindrical case.
The computing region is bounded by the six planes
X= +x,,y= +y,,andz= + z,, and the grid spacings
in each direction are Ax, Ay, and Az. To solve the problem,
boundary conditions must be specified on the bounding
plane surfaces and on the conductor. If x,, y,, and z, were
taken to be much larger than the dimensions of the conduc-
tor, it would be sufficient to let the potential on the outer
surface be given by ¢ = — Ex. This would be very ineffi-
cient, however, since only a few of the grid points would be
in the neighborhood of the conductor where the solution is
interesting. It is better to take for the potential on the outer
boundary

of the conductor, and these formulas are simply the solu-
tions to the electrostatic problem at hand for the case where
the conductor shape in the xy plane is a circle of radius a.
Using this form for the boundary conditions allows x,, y,,
and z, to be only a few times larger than the conductor
radius @ without losing accuracy. Specifying the potential
on the conductor is more difficult because it does not fit the
rectangular coordinate systern. Fortunately, computets
are now large enough and fast enough to make it possible to
simply approximate the conductor shape by a sequence of
steps without losing too much accuracy. Hence, if a grid
point is inside the conductor surface, it is assigned the po-
tential value ¢,_. This leads to some roughness near the sur-
face of the conductor but, by choosing a fine enough grid,
this roughness is not noticeable. (In practice, this rough-
ness means that fleld lines near the conducting surface may
be in error by the distance between grid points. )

With the boundary conditions specified, the potentials at
all other grid points must now be determined. This is ac-
complished by means of the successive overrelaxation algo-
rithm. The first step is to compute for all grid points not on
the outer boundary or inside the conductor the following

(3)

6= — E,x{1 —&/[(x* +y* + 2)*"]}, (3)
in the spherical case, and
= —Box[1-a/(*+57)], ‘ () weighted average:
in the cylindrical case. The variable a is the average radius & ge:
—J
5"+ = (/A (P + 7, ) + (V/AA(B_ +8,. )+ (1/AZ) (7 + o7, )
2(1/Ax% + 1/Ay* + 1/AZ%)
!
where ¢ _ =¢"(x — Ax, »,2), ¢5, =¢"(x + Ax, y,2),

and, similarly; for y and z. The superscript on ¢ denotes the
iteration level. Repeatedly computing this quantity for
nonboundary points and replacing the value of ¢ at these
points by the average above gives the relaxation algorithm.
Convergence may be accelerated, however, by overrelaxing
as follows:

g"l=al(s"t) + (1 —a)g", (6)

where a is a number between 1 and 2. By properly choosing
a, the convergence may be substantially accelerated over
simple relaxation (a = 1). For oddly shaped regions like
this one, there is no theory to help in determining the opti-
mum value of @. In practice, a value around 1.5 seems to
work pretty well. Convergence was also accelerated by us-
ing updated values on the right-hand side of Eq. (5) when
they were available. This is easily implemented by simply
having a single array of values of ¢. This procedure is re-
peated until successive iterates of ¢ do not change by very
much. Care must be taken in choosing a stopping point or
the solution may be inaccurate.* In the computations per-
formed here, iteration continued until the rate of conver-
gence was no longer greater than zero, i.e., until roundoff
prevented further refinement of the solution. To help as-
sure the physical significance of the solutions, the case of a
circular cylindrical conductor was computed using this
method and compared with the analytic result. The field
lines in the two cases agreed to within the distance between
grid points near the conductor and agreed more nearly
away from the conductor. Tests were also made to deter-
mine the smallest possible values of x,, y,, and z, so that
high resolution in the neighborhood of the conductor could
be obtained. It was found that for the conductor used here,
having an average radius in the xy plane of 0.64, x, =,
=z, = 2.0 was adequate.
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Once the potential has been computed, the electric field
must be computed so that the electric field line equations
can be integrated. These equations are

dx _E dy_E,

) , 7)
ds E ds E ¢

where s is arclength along the line and where E = (£2

+ E2)'2. The electric field was obtained by taking the
gradient of the six-poirit bivariate interpolation formula for
the potential.' This allows the electric field to be computed
at arbitrary values of x and y. The field line equations were
then mtegrated using the second-order Runge-Kutta algo-
rithm.' It was desired to produce a picture corresponding
to the case of an uncharged conductor. Because of the
somewhat spherical shape of the conductor and its location
near the center of coordinates, it is approximately correct
to assign the conductor a potential of zero. However, when
the field lines were integrated with ¢, = 0, it was clear that
field lines were originating on the conductor, indicating
that it was positively charged. To eliminate this problem,
Gauss’ law was used in the xy plane to compute the total
charge, and a new conductor potential was chosen to re-
duce the charge. This was done successively until the
charge was sufficiently small that it had no noticeable effect
on the field line pictures.

The results of these calculations in the spherical and cy-
lindrical cases are shown in Figs. 3 and 4. In both figures,
there are 100 grid points in each direction. Note that for the
spherical case this required applying the successive overre-
laxation algorithm to a 100X 100X 100 array. The compu-
tation in this case took 4 h of CPU time on a VAX 8600.
The field lines were started at the left edge of the frame, and
care was taken to make sure that the spaces between neigh-
boring lines at the left edge contained equal amounts of
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Fig. 3. The field lines in the xp plane in the neighborhood of the conductor
shown in Fig. 2 (spherical-case).

electric flux, ensuring that the field line density is propor-
tional to the electric field. The lines that terminate on the
conductor must somehow be continued outward from the
conductor to the right edge. This was accomplished by in-
tegrating backwards from the right edge, making sure that
the electric flux at the starting point on the right edge was
the same as that of the corresponding line at the left edge.
After the lines were computed, they were drawn with an
Imagen laser printer.

Figures 3 and 4 illustrate common features of electro-
static fields. The field lines are spaced relatively far apart at
the top and at the bottom of the conductor. This is the case
because the left and right sides of the conductor have oppo-
site signs, so the surface charge density and the surface
electric field must vanish along a line on the conductor
surface separating the left and right sides. This line evident-
ly passes near the center of the top and near the center of
the bottom. The field lines are also relatively closely spaced
on the bumps near the top on both the left and right sides.
This behavior is commonly explained by saying that the
curvature is large in these locations, so the surface field
must also be large. Care must be taken in using this simple
explanation, however, because it is generally untrue.’ In
comparing the spherical and cylindrical cases, it is clear
that in the spherical case the field becomes uniform more
rapidly with increasing distance from the conductor than
in the cylindrical case. This is simply because the spherical
multipole potentials fall off more rapidly with distance
from the source than do cylindrical multipole potentials.
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Fig. 4. The field lines in the xy plane in the neighborhood of the conductor
in the cylindrical case, i.e., in the case that the conductor is highly elongat-
ed in the z direction.

It is thus not too difficult to solve complex electrostatic
problems and, from the solution, to construct correctly
drawn field lines by using standard numerical techniques
on modern computers. Some textbooks contain poorly
drawn figures illustrating electric field lines® and many
textbooks probably contain old figures that were drawn
before accurate calculations coupled with high-quality
graphics were possible. This is perhaps a good time for
writers of textbooks to reconsider their figures and to pro-
duce for the next generation of students accurately drawn
illustrations of electric field lines.
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