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Equilibrium properties of short field-reversed configurations
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Some features of short field-reversed configuration (FRC) equilibria relevant to transport and
stability are studied numerically and analytically. It is shown that magnetic field curvature
effects significantly increase the FRC magnetization for plasma elongations e<4.

. INTRODUCTION

A field-reversed configuration (FRC) is an elongated
compact toroid without a toroidal field.' These plasmas are
formed in prolate theta pinches with a reversed bias field. In
most experiments, FRC’s have aspect ratios € (the ratio of
the separatrix length to the diameter) sufficiently large so
that magnetic field curvature is negligible over the central
portion of the separatrix. For such cases, assuming no plas-
ma pressure outside the separatrix and an infinitely long flux
conserver of uniform radius, an axial equilibrium constraint
(first derived by Barnes) is obtained":
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where S = p/p,, is the plasma pressure normalized to the
maximum pressure at the field null and where x, = r, /7, is
the ratio of midplane separatrix radius to coil radius. The
average beta condition of Eq. (1) is a stringent constraint on
the FRC radial pressure profile. It has been found to be con-
sistent with the available experimental data,” and has often
been used in equilibrium and transport studies. Various cor-
rections to Eq. (1) have been derived to account for finite
particle orbits,® plasma pressure on open field lines,* end
mirrors,*® and toroidal field.*

Magnetic field curvature may significantly modify Eq.
(1) if FRC equilibria are produced with sufficiently small
values of €. Such small values of € could result from separa-
trix length shrinkage,® which occurs whenever energy losses
exceed poloidal flux loss. Such short equilibria are currently
being studied experimentally. In the VLX device’ FRC con-
finement in a coil of aspect ratio (ratio of uniform coil region
to coil diameter) variable in the range 14 is being investigat-
ed, and in the FRX-C device® short FRC equilibria with € in
the range 3—4 have been recently obtained with a coil aspect
ratio of 2.6. Even shorter FRC equilibria may be obtained in
a modified version of this device® with a coil aspect ratio of
about 2.

Il. EQUILIBRIUM COMPUTATIONS

In this paper, we compute the effect of field curvature on
FRC equilibria. Short equilibria were obtained. in straight
cylinder geometry (no end mirrors) by using the same code
as in previous work.* In each of the cases discussed in this
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paper, the equilibrium length was adjusted by changing the
total toroidal current; B (the pressure at the separatrix nor-
malized to the pressure at the field null) and x, were held
fixed by adjusting the pressure profile, p(¢). For each equi-
librium, the integral given in Eq. (1) was computed and the
ratio (8 )/(1 — } x?) was obtained. These ratios are shown
as functions of € in Fig. 1 for various values of x, and 8,. The
open circles correspond to x;, = 0.4 and B, = 0.6 and the
solid circles correspond to x;, = 0.6 and B, = 0.3. Also

shown with a triangle in Fig. 1 is the analytical spherical
Hill’s vortex equilibrium (8, = 0) which is a solution in a
uniform flux conserver'® in the limit of x, — 0. For this case,
onehas (8 ) = } at € = 1. Theequilibria represented in Fig.
1 by open circles do not appear to map towards the Hill’s
vortex value, presumably because of the finite values of x,
and f3,. Fixing 3, and reducing € produced rather odd-look-
ing equilibria with a lot of magnetofluid outside the separa-
trix. To see what happens when this fluid is removed, two
additional equilibria (open circles with a bar) were comput-
ed with x;, = 0.4 and B, = 0.1. These equilibria have lower
values of (8) than those with x, = 0.4 and B, = 0.6 and
better extrapolate toward the Hill’s vortex value. The results
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FIG. 1. Computed values of (8 ) relative to elongated values as functions of
€. The open circles are for x, = 0.4and 8, = 0.6, the open circles with a bar
are for x; = 0.4 and B, = 0.1, and the solid circles are for x, = 0.6 and
B, = 0.3. The triangle s for the Hill’s vortex case with x, = 8, = 0, and the
solid line is the analytical expression of Eq. (3) with x, = 0.5. For each
case, the value (8),, the average of beta over the separatrix volume, nor-
malized to 1 — kx?, is shown with a cross.
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in Fig. 1 show that curvature effects are negligible for €>4
but rapidly become significant as € approaches unity. Com-
parison between the various cases suggests that curvature
effects are somewhat reduced by larger values of x, and ;.

For highly elongated FRC’s, it is normally assumed that
(B ), the midplane-averaged beta, is the same as (8 },, the
volume-averaged beta. Because {8 ) is easily determined ex-
perimentally, it is often used, for the case of highly elongated
FRC’s, as a substitute for the more physical quantity (8 ),.
However, as € approaches 1, the values of (8 ), can diverge
significantly from the values of {8 ). Thisis illustrated in Fig.
1 where the values of (8),, normalized to 1 —} xZ, are
shown with crosses for each computed case. Note that both
{B) and (B ), decrease with decreasing €. However, the ra-
tio {8 ),/ (B ) decreases from0.95t00.69 as e decreases from
6 to 1. Hence, there is no obvious relation between (£ ) and
{B ), ; furthermore, because of possible wide variations in the
axial distribution of flux surfaces with variations in p(¢),* a
simple relation between (8 ) and (£ ), may be quite difficult
to find.

lil. ANALYTIC MODEL

In order to gain more insight, an attempt was made to fit
a simple analytical model for curvature effects. The numeri-
cal equilibria revealed midplane radial profiles of total pres-
sure (p + B?/2u,) with adrop largely localized in the vicini-
ty of the separatrix. Three examples are given in Fig. 2 for
various values of € and for x; = 0.4. These examples suggest
an approximate model with uniform regions of total pressure
inside and outside the separatrix. An example for curve (¢)
is sketched with a dotted line on Fig. 2. We assume p + B 2/
24 = Py, inside the separatrix and p + B%/2uq = pa (1 — 8)
outside the separatrix. Note that the discontinuity in total
pressure in this model implies that B-VB is proportional to a
delta function at the separatrix, i.e., implies that this quanti-
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FIG. 2. Computed radial pressure profiles relative to the maximum pres-
sure p,, for x, =0.4 and (a) € =3.9, (b) €=2.7, and (¢) € = 1.4. The
dotted line is an approximate sharp-boundary model for curve (c).
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ty is quite large and localized near the separatrix. This is a
rather drastic approximation, but since the quantity of inter-
est, {8 ), is an integrated quantity, it is not as bad as might be
expected. Note that as € becomes large, this model is trivially
exact with § = 0. With this model the integral for (8 ) in Eq.
(1) can be evaluated, following the derivation outlined in
previous work.'

We start with Eq. (A7) of Ref. 1. When normalized to
mrp,y, this equation becomes

B)= 2mrdr

1 J’w BZ
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The first integral on the right-hand side of Eq. (2) can be
evaluated using B%/2uqpy = 1 — p/py for r<r, and B%/
Lo par = 1 — 8(p = 0) for r> r,. In the second integral we
use flux conservation, B |,,, = B,, (1 — x?), and our modi-
fied radial pressure balance, B2 /2u,p, =1 — 8. With
these substitutions, and some rearrangement, Eq. (2) can be
written

B)=1—x2/2—(6/2)(1 —x?). 3)
We now make an estimate of the quantity 8. With field-line
curvature included, radial pressure balance, in the midplane,
becomes

2 2
p+ B _(2 dr,
240 KHop

where p is the radius of curvature of the magnetic field lines.
To a good approximation, FRC separatrices 7, (z) have been
shown experimentally>* to be elliptical in shape, so that at
r=r; andz = O one obtains p = — r,€”. Assuming that the
integrated curvature factor § is proportional to e ~2, we write
8 = a/€. The coefficient @ can now be estimated by com-
puting it for the simplest finite-length FRC equilibrium, the
Hill’s vortex. We do so by requiring Eq. (3) to hold for this
equilibrium. With (8) = 2/3, x, €1, and € = 1, we obtain
8 = a = 2/3. We therefore assume 6 = 2/3€ and rewrite

Eq. (3) as
BY=1—-x%/2— (1 —x*)/3é. (4)

The solid line on Fig. 1 corresponds to Eq. (4) withx, = 0.5.
This curve fits well the numerical data over the entire range
of €. Equation (4) provides a simple approximation to (3 )
for arbitrary aspect ratio € that can easily be evaluated ex-
perimentally. The factor 1 — x? that appears in Eq. (4) im-
plies decreased curvature effects with larger values of x, in
qualitative agreement with the numerical data of Fig. 1. This
can probably be attributed to the effect of the flux conserving
wall; at large x,, the plasma is pushed against the straight
wall, and tends to become flat. The numerical data of Fig. 1
also suggest that curvature effects are lessened with increas-
ing B, ; this effect is not included in Eq. (4).

The FRC total temperature T is commonly inferred
from radial pressure balance once By, at radius r = r, and
Ny, at radius 7 = r, /2'/2 are determined from excluded flux
measurements and from side-on interferometry. Therefore,
the expressions p,, = 1, T = B2 /2uy(1 — &) and § =2/

27rdr (2)

z»0
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3€? provide a temperature estimate for cases with low values
of e.

The values of (8 ) given by Eq. (4) canbe used to extend
existing one-dimensional transport models, such as the one
of Ref. 3, to the range € ~2—4. In this range, end effects that
reduce’"'? confinement times by a factor €/ (¢* + }) remain
small while the decreased (8 ) (and therefore decreased
pressure gradients) should yield improved cross-field trans-
port.

A parameter of importance for FRC stability is

- J‘ " rdr
5= ,
R TP,

the approximate number'? of ion gyroradii, p,, between the
field null R and the separatrix 7, . A recent kinetic theory'* of
the internal tilt mode suggests sufficiently small growth rates
for present experiments with 5< 1-2 to be stable, but observ-
able instability in future experiments with 5> 3-4. If 5 has
the same significance with regard to stability for these short
equilibria, then such equilibria might represent a simpler
way to study the tilt mode. Their shorter length, however,
could substantially alter the eigenfunction (for instance, by
changing it from an axial displacement to a rigid rotation, or
by changing the important instability from an internal tilt
mode to an external tilt mode, or by changing it into some
combination of all of these) making it difficult to compare
with the physics of long equilibria. For cases with small val-
ues of ¢, the usual one-dimensional estimates'? of § become
inaccurate. Since § is proportional to ¢/r,, where ¢ is the
FRC poloidal flux, and where we have assumed constant ion
temperature, one can readily compute the relative increase
of 5 over its elongated value, for a given value of x,, by
calculating ¢ ratios. The ratios 5/5,,, = ¢/é.,, from the
numerical data of Fig. 1 are shown in Fig. 3. For the cases
with x, = 0.4 we used an equilibrium with € = 6.3 to obtain
&es 1, and for x, = 0.6 we used an equilibrium with € = 4.5.
We observe from Fig. 3 significant relative increases of 5 for
€< 3 that correspond to the enhanced magnetization suggest-
ed in Fig. 1 by lower values of {8 ). The reduction of curva-
ture effects with larger values of x, and B, noted previously
is also apparent in Fig. 3.

For elongated FRC’s, Eq. (1) has been used'® to pro-
vide bounds on the FRC poloidal flux ¢. For short FRC’s,
Eq. (4) can be used in a similar way to obtain

4
2B (1 +-—-‘5——)
4 x2(1=68)

<g<7r’ B

6 1/2 5
w 3/2\ xf(l—&)) . ( )

The bounds for ¢ given in Eq. (5) are higher than those of
elongated FRC’s (corresponding to § = 0). It is often as-
sumed® that the elongated FRC’s of present experiments
have values of ¢ much closer to the upper bound than to the
lower bound. This is still true for the short numerical equili-
bria of this paper. Neglecting variations in B,,, the upper
bound of Eq. (5) implies

6 _  [1+6/x201-8)]"?
bzt [148:/x2(1—6,5,)]"%
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FIG. 3. Computed values of s for short equilibria, normalized to the corre-
sponding values of 5, , for highly elongated equilibria (¢ = 6.3 forx, = 0.4
and € = 4.5 for x, = 0.6) are displayed as functions of ¢. The various cases
are the same as those of Fig. 1. The solid lines correspond to the relation
S~¢~[1+48/x2(1 — 8)]"/? normalized to the same expression evaluated
fore = 6.3 (x; = 0.4, upper curve) andfor € = 4.5 (x, = 0.6, lower curve).

With § = 2/3€2, this relation is shown with solid lines in Fig.
3 for x, = 0.4 and for x, = 0.6. The quantity ., , is a value
of 6 corresponding to € = 6.3 for x, = 0.4 and to € = 4.5 for
x, = 0.6. We observe from Fig. 3 that the numerical values
of normalized 5 values are indeed in good agreement with the
approximate upper-bound scaling. The relation

¢~B,x [1+6/x2(1—-8)]"? (6)

may therefore be a useful way to use simple magnetic mea-
surements in present experiments to estimate the flux con-
finement times of short FRC’s. Similarly, the values of (8 ),

shown in Fig. 1 could perhaps be used to estimate the energy
confinement times of short FRC’s from the relation
E~(B),VB%/(1 — 8),where Eis the plasma energy and ¥
is the separatrix volume.

IV. CONCLUSIONS

In conclusion, some features of short FRC equilibria
have been studied numerically. Specifically, it is shown that
magnetic field curvature significantly increases the FRC
magnetization for elongations e<4. This should improve
FRC transport and might decrease the effectiveness of kinet-
ic stabilization. The transport parameter (8 ) is computed
and a simple analytical approximation for it is derived. The
relative increases of the stability parameter 5 and of the FRC
trapped flux ¢ over one-dimensional estimates are evaluated.
It is found that curvature effects are somewhat reduced by
increased values of x; and ;.
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