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Heat transport in silicon from first-principles calculations
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Using harmonic and anharmonic force constants extracted from density functional calculations within a
supercell, we have developed a relatively simple but general method to compute thermodynamic and thermal
properties of any crystal. First, from the harmonic, cubic, and quartic force constants, we construct a force field
for molecular dynamics. It is exact in the limit of small atomic displacements and thus does not suffer from
inaccuracies inherent in semiempirical potentials such as Stillinger-Weber’s. By using the Green-Kubo formula
and molecular dynamics simulations, we extract the bulk thermal conductivity. This method is accurate at high
temperatures where three-phonon processes need to be included to higher orders, but may suffer from size scaling
issues. Next, we use perturbation theory (Fermi golden rule) to extract the phonon lifetimes and compute the
thermal conductivity κ from the relaxation-time approximation. This method is valid at most temperatures, but
will overestimate κ at very high temperatures, where higher-order processes neglected in our calculations also
contribute. As a test, these methods are applied to bulk crystalline silicon, and the results are compared and
differences are discussed in more detail. The presented methodology paves the way for a systematic approach
to model heat transport in solids using multiscale modeling, in which the relaxation time due to anharmonic
three-phonon processes is calculated quantitatively, in addition to the usual harmonic properties such as phonon
frequencies and group velocities. It also allows the construction of an accurate bulk interatomic potentials
database.
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I. INTRODUCTION

Classical molecular dynamics (MD) simulations use either
semiempirical potentials such as Stillinger-Weber (SW),1

Abell-Tersoff-Brenner,2 or other type of force fields where
the potential energy is an analytical function of the atomic
positions, or first-principles potentials calculated typically
using density functional methods based on either the Born-
Oppenheimer3 or the Car-Parrinello4 dynamics. The former
are fast to compute but suffer from inaccuracies, while the
latter are accurate but time consuming to compute. Due to
recent interest in thermal transport in semiconductor materials
having good thermoelectric properties and in the topic of
microelectronics thermal management in general, there have
been many calculations of the lattice thermal conductivity
of materials using the Green-Kubo (GK) formula.5,6 This
formula relates the thermal conductivity, through the use of
the fluctuation-dissipation theorem, to the time integral of the
heat-current autocorrelation function. The latter is calculated
from an MD simulation, and the ensemble average is usually
replaced by a time average. Semiempirical potentials such as
SW are usually used to perform the MD simulation for a system
such as Si. As the thermal conductivity of a perfect crystal is
mainly due to anharmonic three-phonon processes, directly
related to the third derivatives of the potential energy with
respect to atomic displacements, and the latter is generally
not fitted or considered in the design of the semiempirical
potentials, there is really no good reason to expect an accurate
value for the thermal conductivity calculated from a GK-MD
simulation. In the case of Si, when using the SW potential,
however, for some reason,7 relatively good agreement is found

between the experiment and the simulation results, even for
a relatively small supercell.8–11 The latter fact is also cause
for concern because, as we will show in the following,
a small supercell limits the number of long-wavelength
phonons that carry a large portion of the heat in a material.
The lucky agreement can be attributed to a cancellation
due to two different effects, which will be discussed in
Sec. III B. Sellan et al.11 have presented a discussion on
convergence issues, mostly with respect to nonequilibrium
MD simulations, and we will also discuss the scaling issue
with respect to GK-MD and lattice dynamics (LD) in this
paper.

More accurate calculations of the thermal conductivity,
based on the full solution of the Boltzmann transport equation,
have shown that the thermal conductivity of Si using the SW
potential is about four times larger than the experiment, while
using the Tersoff or environment-dependent interaction poten-
tials (EIDPs) produces results that are about twice as large as
the experimental values.12 In a similar work, using the EDIP,
Pascual-Gutierrez et al.13 also found thermal conductivity of
bulk Si from MD in good agreement with experiments. In
a subsequent work,14 the same group computed the thermal
conductivity using the lattice dynamics (LD) theory based
on the same EDIP, similar to the work of Broido et al.12

They obtained good agreement with experiments, whereas
Broido et al. did not. The reason for this discrepancy, as
they also mention in their paper, is unclear. Opinions on the
accuracy of semiempirical potentials seem to differ, as there
have been other reports15 where SW is found to overestimate
the thermal conductivity by 70%. As we will show in this paper,
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some of these potentials might not be completely reliable
for the calculation of the thermal transport properties for
the simple reason that they were not fitted or constructed
to have the correct third derivatives, which are responsible
for the thermal resistivity of a material. In fact, even their
harmonic-force constants produce phonon dispersions and
elastic constants which differ from experiments by 10% up
to 40%. Furthermore, such potentials exist and have been
thoroughly tested for only a very small number of pure
crystalline solids.

In a tour de force calculation work, Broido et al. later used
the density functional perturbation theory (DFPT) formalism
in order to calculate the phonon-scattering rates from first-
principles DFT calculations, and were able to successfully
reproduce the thermal conductivity of bulk Si and Ge.16 Their
approach, which was very accurate, included the calculation
of all the cubic force constants up to seventh nearest neighbor,
and the complete iterative solution of the Boltzmann transport
equation.

We recently developed a methodology to extract second,
third, and fourth derivatives of the potential energy from
first-principles calculations,17 and showed that the phonon-
dispersion relation in Si can be well reproduced. In this paper,
we pursue this work further and use these derivatives to
construct a force field in order to explore the results from
MD simulations and perturbation calculations to calculate
the thermal conductivity of bulk Si. We should mention that
our approach, even though very similar in essence to that
of Broido et al., is simpler in the sense that it limits the
range of the force constants (FCs) to a few neighbors (5 for
harmonic and 1 for cubic in the present case study of Si,
in contrast to more than 20 for harmonic and 7 for cubic
in the work of Broido et al.).16 For the sake of physical
correctness, however, we enforce the translational, rotational,
and Huang invariances18 on the extracted force constants. So
the latter are not exactly equal to the ones obtained from
DFPT or any finite difference calculation of the forces, but
make the calculation load much lighter than if one had to
include so many neighbors. On the other hand, a DFPT
calculation, if restricted to few neighbors, should enforce
all these invariances. Usually only the translational ones,
also known as the acoustic sum rule (ASR), are enforced
in some of the standard DFT codes such as QUANTUM

ESPRESSO.19

In what follows, we briefly review the methodology to
extract force constants from first-principles density func-
tional theory calculations (FP-DFT). The formalism for
the molecular dynamics and Green-Kubo calculations of κ

are explained in Sec. III. This will be followed by the
lattice-dynamics approach detailed in Sec. IV. Results for
Si will be shown and discussed in Sec. V, followed by
conclusions.

II. EXTRACTION OF FORCE CONSTANTS FROM
FP-DFT CALCULATIONS

We construct the potential energy V for the MD sim-
ulation as a Taylor expansion up to the fourth order in

the atomic displacement ui of atom i about its equilibrium
position,

V = V0 +
∑

i

�iui + 1

2!

∑
ij

�ij uiuj

+ 1

3!
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ijk

�ijk uiujuk + 1

4!

∑
ijkl

χijkl uiujukul (1)
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2
miv

2
i

)
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The last equation defines the on-site energy ei . If the
displacements ui are around the equilibrium position, and
this is usually the case, then �i = 0. The coefficients �,�,
and χ in the expansion are called the harmonic, cubic,
and quartic force constants, respectively, and satisfy cer-
tain symmetry constraints. Namely, they must be invariant
under the interchange of the indices, uniform translations,
and rotations of the atoms, in addition to under symmetry
operations of the crystal. The details of the needed constraints
and how they are imposed can be found in our previous
work.17

To get these numbers, we consider one or several supercells
in which atoms are in their equilibrium position. One, two, or
three neighboring atoms are moved simultaneously by a small
amount, typically about 0.01 Å along the Cartesian directions.
Consideration of crystal symmetry usually reduces the needed
displacements. For instance, in a cubic-based crystal such
as silicon, where the two atoms in the primitive cell are
equivalent, one only needs to move one Si atom along the
x direction. This is sufficient to extract all harmonic force
constants if the supercell size is large enough. The latter size
is chosen depending on the available computational power
and the considered range of force constants. To get three-
and four-body interaction terms, one needs to move two and
three atoms at a time and record the forces on all atoms in
the supercell. It is advantageous to record forces for atomic
displacements in two opposite directions, as there would be
cancellation of the cubic contributions and this would make
the calculation of the harmonic FCs much more accurate
(up to order u2). Thus one would obtain a large set of
force-displacement relations computed from a FP-DFT code.
Together with the invariance constraints, an overcomplete
linear set of equations on all the force constants will be formed.
A singular-value decomposition algorithm is then used to solve
this linear overcomplete set. We find that usually the violation
of the invariance relations is of the order of 10−6 times the
FC itself. This, however, requires a very accurate evaluation
of the forces, meaning that they should have converged with
respect to the cutoff energy and number of k-points to within
at least four significant figures, if not more. Our experience on
graphene20 and silicon (present work and Ref. 17) has shown
that the harmonic force constants are usually reproduced
quite accurately. Higher-order FCs have less accuracy, as
their contribution shows up in the second, third, or fourth
significant figures of the forces. The main approximation is
in cutting off the range of the interactions, which will lead to
inaccuracies in some of the Gruneisen parameters, as we will
shortly see.
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III. MOLECULAR DYNAMICS AND THE GREEN-KUBO
FORMALISM

Typically a supercell is constructed with periodic boundary
conditions, and an MD simulation is performed over long
enough time steps in order to reach thermal equilibrium,
followed by a long (N,V,E) simulation in order to collect data
on J for later statistical processing, i.e, time and ensemble
averaging of its autocorrelation.

Based on the potential displayed in Eq. (2), one can extract
the expression for the force required in the MD simulations,

Fi = −
∑

j

uj

(
�ij + 1

2!

∑
k

�ijk uk + 1

3!

∑
kl

χijkl ukul

)
.

The heat current is defined in the discrete (atomic) case of a
lattice, where there is no convection, as

J α =
∑

i
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where vi is the velocity of particle i, and ei , as defined in
Eq. (2), is the local energy of atom i. Using our expansion,
it can be expressed as a function of the force constants as
follows (as we expand around the equilibrium position, we
assume �i = 0):
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This definition leads to the following form of the local heat
current:

J α
i = 1

2

∑
j

(
Rα

i − Rα
j

)[
vj · ui

(
�ij + 2

3

∑
k

�ijk uk

+ 1

4

∑
kl

χijkl ukul

)]
. (5)

Finally, the thermal conductivity tensor is given by the well-
known Green-Kubo relation,5,6

καβ = 1

V kBT 2

∫ ∞

0
〈J α(0)J β(t)〉dt, (6)

where α,β = x,y,z, and 〈A〉 denotes the equilibrium average
of the observable A, which in the classical case can be replaced
by its time average provided the time is long enough to satisfy
ergodicity. The ensemble averaging is necessary as long as
different runs starting with different initial conditions lead to
different integrated autocorrelation functions. The true current
autocorrelations decay quite fast. In a single MD run, however,
this decay is not observed. Instead, one observes a decay in
the amplitude followed by random oscillations about zero. As
finite systems are usually not ergodic, an ensemble average
over the random initial conditions is also needed to correctly
simulate the equilibrium average required in the Green-Kubo
formula. In this case, the ensemble-averaged autocorrelation

function will decay smoothly to zero with time. One will
then see that the decay is indeed relatively short because the
long-time tails get canceled after ensemble averaging. The
advantage of the ensemble averaging, in addition of course
to the usual time averaging, is that one samples the phase
space more randomly and generates uncorrelated sets of pairs,
J α(0)J β(t), for a given time difference t . In this case, the
mean has the convergence properties of Gaussian-distributed
variables, and the error decays to zero as the inverse square
root of the number of initial conditions.

In a numerical simulation, the GK formula should be
replaced by

καβ = 1

Vcell kBT 2

1

Nens

Nens∑
i=1


t

T

⎡
⎣ T∑

t=0

T −t+1∑
p=1

J α
i (p)J β

i (p + t)

⎤
⎦ ,

(7)

where T is the total simulation time of each run, 
t is the time
difference between two successive data points, t and p are in-
tegers labeling time, and Nens is the number of generated initial
conditions, each labeled by i. One important comment is in
order here, and that is the use of 1/T in the denominator instead
of the more intuitive 1/(T − t + 1), which is the actual number
of terms in the last sum. One can show that the choice in Eq. (7)
provides an unbiased estimator of the autocorrelation.21 Some
previous works in the GK method, such as Ref. 9, have used
the “biased” formula, which would be fine as long as the total
simulation time is much larger than the largest time t used
for the integration. One simple way to become convinced that
Eq. (7) is the correct way is to consider large times t near
the maximum simulation time T . As J (p) and J (p + t) are
both fluctuating random numbers, and there are not enough
terms in the sum to make the average go to zero, the time
average will become large again and tend to σJ = 〈J (0)J (0)〉
instead of decaying to zero as t approaches T . A division by
the small number T − t would not solve the problem, whereas
the division by T would make this very small, as it should.

Because the simulation time T is usually quite long, the
statistical error in the time averaging is usually small, and we
estimate the error bars in our data from the ensemble averaging:
If C̄(t) is the ensemble-averaged autocorrelation function,
its error bar 
C is evaluated as 
C(t) = {∑Nens

i=1 [Ci(t) −
C̄(t)]2}1/2/Nens.

The magnitude of this error bar and the required accuracy
in the results determine how many ensembles are needed for a
proper estimation of thermal conductivity.

A. Number of necessary MD steps

For a given supercell size, there is a discrete number of
phonon modes which can propagate and get scattered in the
system. The largest wavelength consistent with the periodic
boundary conditions would be the supercell length. To this, one
can correspond a smallest phonon wave number or frequency
allowed in the simulation: ωcut = 2πc/L. The total simulation
time should be large enough so that all phonon modes can get
scattered a few times within the simulation period. The largest
relaxation times belong to acoustic modes and usually decay
as the inverse square of the phonon frequency. By knowing
the smallest allowed frequency ωcut due to the finite size of the
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system, one can estimate the corresponding phonon lifetime
[using Klemens’ formula displayed in Eq. (8), for instance].
The total MD simulation time should, therefore, be a few
times larger than the largest phonon lifetime so that scattering
events of long-wavelength phonon modes can properly be
sampled during the MD run. As an example, we can consider
a Si system in a cubic 10 × 10 × 10 supercell of 8000 atoms.
In this case, L = 10 × 5.4 Å = 5.4 nm, corresponding to
kc = 2π/10a, which is a fifth of the � → X line. The lowest
frequency mode is therefore about ωcut = 1 THz. As can
be seen in Fig. 5, the normal and umklapp lifetimes at this
frequency are 3000 and 10 000 ps, respectively, leading to
a total lifetime of 2300 ps. So in order to sample such rare
events, one needs to calculate the autocorrelation over at least
20 ns, which means the MD simulation should be run for at
least the same amount of time, if not longer. This could be
computationally prohibitive. If the runs are made with fewer
MD steps, long-wavelength phonons will not be relaxed and
the autocorrelation will not tend to zero. Another consequence
of this case is that for large supercells, as relaxation times
scale as 1/ω2

cut ∝ L2, longer simulation times proportional to
the square of the the supercell size will be required.

B. Size scaling

As mentioned, the choice of a finite supercell comes
with the cost of discretizing the phonon modes and suppressing
the phonons of wavelengths longer than the supercell length.
The neglected contribution may be estimated as follows: the
anharmonic lifetime of acoustic modes may be approximated
by the Klemens’ formula22

1

τKlemens
kλ

= γ 2
kλ

2kBT

M v2
kλ

ω2
kλ

ωmax
λ

, (8)

where ωmax
λ is the largest frequency of the branch λ, γkλ is

the mode Gruneisen parameter, ωkλ is the frequency, and vkλ

is the group velocity associated with the mode kλ. Therefore,
long-wavelength phonons will have a large relaxation time
and can considerably contribute to the thermal conductivity.
By assuming this form in the relaxation-time approximation
to the thermal conductivity and using Eq. (16), we can write
the thermal conductivity as a sum over the contributions of
phonons of different frequencies as

κ =
∫ ∞

0

1

3
τ (ω)v2(ω)Cv(ω)DOS(ω) dω.

In three dimensions (3D), since the density of states (DOS)
is quadratic in frequency, the contribution of long-wavelength
acoustic phonons would be linear in the cutoff frequency
ωcut = 2πc/L,

κ(L) = κ(∞) −
∫ ωcut

0

1

3
τ (ω)v2(ω)Cv(ω)DOS(ω) dω.

For low frequencies, Cv(ω) = kB[βh̄ω/2sinh(βh̄ω/2)]2 � kB

and v(ω) � c, so that

κ(L) = κ(∞) − A

∫ ωcut

0

1

ω2
DOS(ω) dω = κ(∞) − Dωcut

= κ(∞) − E
1

L
= κ(∞) − F/

√
�c, (9)

where A,D,E, and F are constants that do not depend on
the size, and �c is the mean-free path (MFP) associated with
the cutoff frequency ωcut = 2πc/L. This gives us a way to
deduce how the thermal conductivity of a finite-size sample
scales with the supercell length L or the cutoff frequency ωcut

or the MFP �c. We should note that a different scaling law
[1/κ(L) = 1/κ(∞) + C/L] was proposed and used by Sellan
et al.11 and also Turney et al.23 to extrapolate their thermal
conductivity data to infinite size. The argument they used to
deduce it, however, was based on Matthiesen’s rule, stating
that the bulk resistivity is obtained by adding the finite-size
resistivity to the one obtained from L/v taken as the relaxation
time.

There is an additional problem with finite-size MD sim-
ulations. Even though momentum is still conserved in a
three-phonon process, because the modes are discrete in a finite
supercell, energy conservation will not always be possible,
unless the energy difference ω − ω1 − ω2 � �, where � is on
the order of the sum of inverse lifetimes of the three considered
phonons. If this relation is not satisfied, the considered three-
phonon scattering will not take place in a finite supercell,
and this will lead to an overestimation of the lifetime of the
phonons and, thus, of the thermal conductivity.

These competing effects, namely, an overestimation of κ

due to limited phase space for energy conservation and an
underestimation due to the cutoff of low-frequency acoustic
modes, may lead to a magical cancellation, resulting in thermal
conductivities in good agreement with experiments even for
moderate supercell size. This error cancellation will likely
affect the temperature dependence of κ: at higher temperatures,
the discreteness error is reduced as � increases linearly with
T . The frequency cutoff error, however, will not be affected
by high temperatures. Consequently, as T is increased, the
thermal conductivity of a finite sample will decrease faster
than 1/T with temperature. This has been observed in the
work of Volz and Chen.8 It can also be verified by introducing
other scattering events, such as isotope or defect scattering,
leading to larger � values. In such cases, the discreteness of
modes will have little effect, and the simulated κ will be less
than the exact one due to the effect of the cutoff of long MFP
phonons. As a result, in a system where scattering rates are
high due to disorder or high temperatures, GK-MD simulations
will typically require larger supercells to converge.

The correct way of estimating κ(T ) is to do a proper size
scaling at each temperature by plotting κ(T ,L) versus 1/L,
and linearly extrapolating to 1/L → 0.

IV. THE LATTICE DYNAMICS APPROACH

Using the extracted force constants, one can form the
dynamical matrix of the crystal using its primitive cell data,

D
αβ

ττ ′(k) =
∑
R

1√
MτMτ ′

�
αβ

0τ,Rτ ′ e
ik·R, (10)

where R is a translation vector of the crystal, τ refers to an
atom in the primitive cell, and α,β are Cartesian components
x,y,z. Such sums of the force constants over the translation
vectors of the primitive lattice are usually short ranged and fast
to compute, except when Coulomb interactions are involved,
in which case the sum is evaluated using the Ewald method.
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By diagonalizing this matrix, one can find the phonon
spectrum and the normal modes as its eigenvectors,∑

τ ′β

D
αβ

ττ ′(k) e
τ ′β
λ (k) = ω2

kλ eτα
λ (k), (11)

where λ labels a phonon band (or branch), and k refers to a
point in the first Brillouin zone (FBZ). Using these eigenvec-
tors and eigenvalues, and from perturbation theory, one can
calculate the phonon line shifts and lifetimes as the real and
imaginary parts of the three-phonon self-energy defined as24–27

�(qλ,ω) = − 1

2h̄2Nk

∑
1,2,ε=±1

|V (qλ,1,2)|2

×
[

(1 + n1 + n2)

ω1 + ω2 + εωc

+ (n2 − n1)

ω1 − ω2 + εωc

]
, (12)

where ωc = ω − iη, (η � 0+) is a small infinitesimal number,
which in practice is taken to be finite for a given k-point mesh
size, n is the equilibrium Bose-Einstein distribution function,
and 1 and 2 refer to modes (q1λ1) and (q2λ2), respectively.
The three-phonon matrix element V , expressed as a function
of the cubic force constants �, is given by

V (qλ,1,2) =
(

h̄

2

)3/2 ∑
Riτiαi

�
αβγ

0τ,R1τ1,R2τ2

× ei(q1·R1+q2·R2)eτα
λ (q)eτ1α1

λ1
(q1)eτ2α2

λ2
(q2)[

MτMτ1Mτ2ωqλω1ω2
]1/2 . (13)

The calculation of the self-energy would require a double sum
over the q-points (labeled above by 1 and 2) in the FBZ. Due
to the conservation of momentum, however, only terms with
q + q1 + q2 = G, with G being a reciprocal lattice vector,
should be included in the above sum. In practice, therefore,
this involves only a single summation. To get the phonon
dispersion and lifetimes due to three-phonon scattering terms,
one needs to solve E = ωkλ + �′(kλ,E), where �′ is the real
part of the self-energy (� = �′ + i�′′). This equation needs
to be solved iteratively. Since the shift is usually small, to
leading order, one can use E = ωkλ + �′(kλ,ωkλ), i.e., one
uses the on-shell frequency as the second argument of the
self-energy. The same approximation will be used for the
imaginary part giving the inverse lifetimes. The corresponding
phonon lifetime will be given by τkλ = 1/2�′′(kλ,ωkλ). In the
evaluation of the imaginary part �′′, one encounters Dirac
δ functions reflecting the conservation of energy in the three-
phonon process, ωkλ = ω1 ± ω2. In effect, from Eq. (12), it can
be noticed that the δ function is substituted by a Lorentzian
function of width η. The latter depends on the choice of the
k-point mesh in the FBZ. A small value for η can be used for
a fine mesh, while a coarse mesh requires larger values of η.
Typically, η is chosen to be of the order of energy spacing in
the joint density of states (JDOS) so that the latter is a smooth
function of the frequency and does not display any oscillations
with sharp peaks, which would appear if the width is too small,

JDOS(ω)= 1

Nk

∑
1,2

δ(ω − ω1 − ω2)+δ(ω − ω1 + ω2). (14)

The anharmonicity can be characterized by the Gruneisen
parameters (GP). The force constant GP is defined as

γφ = −d ln φ/2 d ln V , where V is the volume. The mode
GP is defined as γkλ = −d ln ωkλ/ d ln V , where ωkλ is the
phonon frequency evaluated at the point 
k and band index λ.
It gives the relative decrease in the phonon frequency as the
volume is increased by 1%. From the Taylor expansion of the
harmonic force constants in terms of the volume or the lattice
parameter, one can calculate such change:

γkλ = − 1

6ω2
kλ

∑
1,2

�
αα1α2
0τ,R1τ1,R2τ2

eik·(R2−R1)[
Mτ1Mτ2

]1/2

×Xα
0τ e

τ1α1
λ (−k) e

τ2α2
λ (k), (15)

where XRτ is the equilibrium atomic position of atom type τ

in the primitive cell labeled by the translation vector R.
Finally, the thermal conductivity is calculated within the

relaxation-time approximation (RTA), which leads to the
following well-known expression for the thermal conductivity
of an isotropic system:

κ = 1

3�Nk

∑
kλ

v2
kλτkλ h̄ωkλ ∂nkλ/∂T , (16)

where � is the volume of the unit cell. The relaxation time τkλ

in this expression represents the time after which a phonon in
mode kλ reaches equilibrium on the average, and depends on
the scattering processes involved. In a pure bulk sample, the
only source of phonon scattering is anharmonicity dominated
usually by three-phonon processes. Using perturbation theory
or the well-known Fermi golden rule (FGR), one can derive
the expression of the relaxation time as a function of the
cubic force constants.24–27 It can be shown that to a good
approximation, it is given by

τqλ ≈ 1

2�[�(qλ,ωqλ)]
. (17)

In what follows, we have disregarded the boundary scattering
term, which is responsible for the low-temperature behavior
of κ . In such case, κ is expected to saturate to a finite value at
low enough temperatures. The reason for this saturation can
be understood if one assumes the low-frequency limit of the
DOS and the relaxation times similar to Eq. (9). Considering
that in ω → 0 limit, we have DOSλ(ω) → ω2/2π2c3

λ and
Cv(ω) = kB(x/shx)2 (with x = βh̄ω/2), and since normal
processes dominate at low temperatures, the relaxation time
can be written as τ (ω) → h̄ω2

o/ω
2kBT , the integral defining

the thermal conductivity can be transformed in the low-
temperature limit to

κ(T ) =
∑

λ=acoustic

kBω2
o

3π2cλ

∫ ∞

0

(
x

shx

)2

dx =
∑

λ=acoustic

kBω2
o

18cλ

.

The constant ωo that appears in the low-energy limit of the
relaxation time as well as the speeds of sound cλ determine
the saturated value of the thermal conductivity. So when only
three-phonon scattering processes are included, the thermal
conductivity would tend to

∑
λ=acoustic kBω2

o/18cλ as T goes
to 0.

Finally, in our numerical calculations where the integral in
the FBZ has been approximated by a sum over a discrete set
of k-points, the low-frequency region is not properly sampled
and we observe a decrease at low T , and therefore have not
reported the unreliable low-temperature data in this work.
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V. RESULTS AND DISCUSSIONS

A. Validation of force constants

First-principles calculations were done using the PWSCF

code of the QUANTUM ESPRESSO package.19 A set of force-
displacement data was calculated using a 2 × 2 × 2 supercell
of 64 Si atoms. The set of force-displacement data, along with
the symmetry constraints, form an overcomplete linear set of
equations needed to determine the potential derivatives. We
use the local density approximation (LDA) of Perdew and
Zunger28 with a cutoff energy of 40 Ryd and 10 k-points in the
irreducible Brillouin zone of the cubic supercell. The range of
different ranks of force constants can be chosen by the user.
We have set the range of harmonic force constants (FCs) to
5 nearest neighbor shells, and that of the cubic and quartic
force constants to the first neighbor shell only. This results
in 17, 5, and 14 independent harmonic, cubic, and quartic
FCs, respectively. The corresponding number of terms in the
Taylor expansion of the potential energy are, however, equal
to 1500, 1146, and 7980, respectively. This is why the ranges
were restricted to 5, 1, and 1 nearest-neighbor shells in order to
limit the computational time to a reasonable amount. Note that
despite the large number of terms to be computed, arithmetic
operations are only limited to additions and multiplications.

In Fig. 1, we show the change in the total energy as an
atom in the supercell is moved along the [100], [110], and
[111] directions, respectively. Results from DFT calculations
are compared against our developed force field including the
harmonic, harmonic + cubic, and harmonic + cubic + quartic
terms of the Taylor expansion. For the sake of comparison, we
have also plotted the same energy change obtained from the
Stillinger-Weber (SW) potential,1 which is widely used in MD
simulations of Si systems.

To further assess the accuracy of the force field, we have
also moved all the atoms in the supercell in different random
directions by a small amount of magnitudes 0.1 and 0.2 Å,
respectively, and compared the average force of our model
and the SW potential to the FP-DFT one. The deviation is
characterized by

σ (model) =
∑

iα

(
F model

iα − F DFT
iα

)2

∑
iα F DFT

iα

2 . (18)

The results for the parameter σ are summarized in Table I.
We note that this type of error estimate would also include

contributions from many-body forces, and is a more stringent
test on the force field. The errors from the present model
are consistently about four to five times smaller that the SW
potential.

TABLE I. Typical deviations in the SW and Taylor expansion
(present model) force fields compared to true FP-DFT forces. They
are obtained by moving all 64 atoms in the supercell in a random
direction by 0.1 and 0.2 Å, respectively.

Amplitude (Å) σ (SW) σ (Present)

0.1 0.35 0.05
0.2 0.28 0.08
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FIG. 1. (Color online) Total energy as an atom is moved in the
(a) [100], (b) [110], and (c) [111] directions. DFT results are
compared with the force field and the Stillinger-Weber potential.
MD234 refers to the force field in which all harmonic, cubic, and
quartic terms are included, while MD2 refers only to the harmonic
force field, etc.

In the following, we follow two paths to compute the
thermal conductivity. The first is to use the Green-Kubo
formula by using the results from an MD simulation.

B. Thermal conductivity from GK-MD

As previously mentioned, there will be large fluctuations
in the current autocorrelation function versus time from one
run to the next, and therefore an averaging over several initial
conditions is necessary to produce a reliable plot. In Fig. 2,
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FIG. 2. (Color online) Plot of the ensemble-averaged (over 27
initial conditions) heat-current autocorrelation as a function of time,
and its integral for the 10 × 10 × 10 supercell. Vertical units for the
integrated autocorrelation are in W/mK, and the autocorrelation (blue
dots) has been multiplied by a constant to be on scale.

we have plotted such an ensemble average for a 10 × 10 × 10
supercell containing 8000 atoms. The error bars are mainly
due to the ensemble averaging, and those related to the time
averaging are small, as the number of MD time steps are quite
large.

We can also see in this figure the cumulative integral of
the ensemble-averaged autocorrelation function. The same
calculation was performed in a 7 × 7 × 7 supercell of 2744
atoms, where the averaging was over 99 runs with different
initial conditions. Due to its larger size, there are smaller
fluctuations in the average current per atom in the 10 × 10 ×
10 supercell, and we only used 27 initial conditions for this
supercell. Since from each MD run one can really extract three
autocorrelation functions, κxx , κyy , and κzz, which are equal by
cubic symmetry, we also averaged over the three directions. In
this sense, the above-mentioned numbers should be multiplied
by three.

The error bars are determined by the large fluctuations in
the integrated autocorrelations divided by the square root of
the number of ensembles. The error bar due to the time average
is usually much smaller if MD simulations are run for a long
enough time.

The results for two different supercell sizes are summarized
in Table II compared with the experimental data of Slack
et al.29 One can notice an underestimation of the experimental
data, which is reduced as the supercell size is increased. To
get the correct value in the thermodynamic limit, one needs to
extrapolate these results to infinite size.

There are a few competing effects which can explain this
discrepancy: the most important one is size effect, which as was
just explained, underestimates κ . Similarly, the larger value
of the Gruneisen parameter for the acoustic modes in our
model will produce a smaller relaxation time [see the Klemens
formula in Eq. (8)].

TABLE II. Thermal conductivity at T = 600 K from GK-MD
compared to lattice dynamics in the classical limit [n(ω) → kBT /h̄ω]
with an equivalent number of k-point mesh, and experiment for two
different supercell sizes.

Supercell size MD-GK LD Experiment

7 × 7 × 7 37 ± 10 32.67 64 ± 3
10 × 10 × 10 43 ± 12 47.2 64 ± 3

The following effects will, however, lead to an overes-
timation of the thermal conductivity: in the classical MD
simulations, the number of modes is the high-temperature limit
of the Bose-Einstein distribution, kBT /h̄ωkλ, which is larger
than the quantum distribution. This leads to a heat capacity
per mode of kB and, therefore, an overestimate of the true heat
capacity [see also Fig. (8)]. In a finite-size cell, the allowed
frequencies are quantized and energy conservation after a
three-phonon process can never be exactly satisfied; this will
lead to an effectively longer lifetime for phonons, and thus also
overestimate κ . It is not easy to quantify these errors, except
for those due to the phonon occupation numbers. It is therefore
possible that there is a cancellation. In our case, since only two
supercell sizes were considered, we cannot do a systematic
size scaling study, but overall, due to these cancellations, the
GK-MD results seem to be weakly dependent on size, which is
in agreement with previous MD simulations (see, for example,
Table I in Ref. 11).

Here, we must point out some discrepancies between
published results on Si using the SW potential. Using the
GK-MD method, Philpot et al. and Volz et al.8,9 find a thermal
conductivity in reasonable agreement (to within 30%) with
experiments. Broido et al.,12 on the other hand, have shown
by solving the Boltzmann equation beyond the RTA that
κSW � ≈ 4κexperiment. Recently, Sellan et al.11 investigated size
effects in GK-MD simulations using the direct method, and
also used lattice dynamics to compute the thermal conductivity
of Si from the SW potential. They found that κLD(T =
500 K) = 132/W/mK, which is only 70% larger than the
experimental value of 80 W/mK, in contrast to the Broido
et al.12 prediction. Their direct method, followed by scaling,
predicts 93 ± 18 W/mK, and their unscaled GK value for an
8 × 8 × 8 supercell is 231 ± 57 W/mK.

All these results point to the subtleties involved in extracting
a reliable value for the thermal conductivity of bulk materials,
no matter what method is used.

To investigate this discrepancy, we used our approach to
extract harmonic and cubic force constants from the SW
potential and used LD theory to compute the corresponding
thermal conductivity. Using the same k-point mesh in order
to avoid systematic errors, in comparison to FP-derived force
constants, we found that at 150 K, the thermal conductivity
derived from SW is 80% larger than the one derived from
FP-DFT calculations.

C. Phonons, DOS, and Gruneisen parameters

In extracting the force constants, we have limited the range
of the harmonic FCs to five neighbor shells, and that of the
cubic and quartic terms to one neighbor shell, so that MD

085204-7



KEIVAN ESFARJANI, GANG CHEN, AND HAROLD T. STOKES PHYSICAL REVIEW B 84, 085204 (2011)

-600

-400

-200

 0

 200

 400

 600

 800

G K X G L X W L

10
0 

(G
ru

ne
is

en
-3

) 
   

F
re

qu
en

cy
 (

1/
cm

)

DOS                                   Kpoints

Band Structure and DOS for Si

Experiments
Integrated DOS

Total DOS

FIG. 3. (Color online) Phonon band structure of Si using force
constants up to the fifth neighbor shell. Plus signs represent
experimental data of Nelin and Nilsson.30 Left portion of figure shows
the DOS, and right portion of figure shows the rescaled Gruneisen
parameters [100 × (γ − 3)].

simulations can be done within a reasonable time. Using the
harmonic FCs, we can obtain the phonon spectrum. As can be
seen in Fig. 3, the speeds of sound and most of the features
are reproduced with very good accuracy. It is well known that
in order to reproduce the flat feature in the transverse acoustic
(TA) modes near the X point, one must go well beyond the
fifth neighbor. For the band structure and the density of states
(DOS), the overall agreement is good, except for the Gruneisen
parameters of the TA branch, where our calculations, which
only include cubic force constants up to the first neighbor shell,
overestimate γ (X,TA). Based on Klemens’ formula [Eq. (8)],
one might anticipate that our model will slightly underestimate
the lifetime of TA modes and thus their contribution in the
thermal conductivity.

D. Phonon lifetimes and mean-free paths

To get an idea of the relative contributions of the matrix
elements representing the strength of the three-phonon inter-
actions versus the phase space available for these transitions
characterized by the two-phonon DOS, we show in Fig. 4 the
plots of these quantities. We define the contribution of the
matrix elements as

F (ω) =
∑
kλ

δ(ω − ωkλ)
∑
1,2

|V (kλ,1,2)|2. (19)

From Fig. 4, we can note that optical phonons have a much
larger weight coming from the matrix element |V (kλ,1,2)|2.
This explains why they have such a larger relaxation rate
compared to acoustic modes for which the contribution of
matrix elements is very small. The two-phonon DOS is
representative of the phase space available for the transitions,
and is defined as

DOS±
2 (ω) =

∑
1,2

δ(ω − ω1 ± ω2). (20)

From Fig. 4, it can be inferred that one-phonon absorption
or emission (DOS+

2 ) dominates for low-frequency phonons
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FIG. 4. (Color online) Top line in blue is the DOS associated
with two-phonon creation or annihilation (DOS−

2 ), and bottom line in
green is the DOS associated with one-phonon emission or absorption
(DOS+

2 ). The red line is the contribution of the matrix elements
defined in Eq. (19). The peak at 500 cm−1 is the main reason for
smaller lifetimes of optical modes.

(acoustic), while two-phonon absorption or emission (DOS−
2 )

dominates at high frequencies (LA and optical).
Next, we show in Fig. 5 the calculated lifetimes of the three

acoustic and optical modes versus frequency for a regular
mesh of k-points in the first Brillouin zone, at T = 70 and
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FIG. 5. (Color online) Lifetimes of the six branches in Si at 277 K
vs. frequency on a logarithmic scale. Top plot is for umklapp and
bottom plot is for normal processes. The quadratic dependence of the
acoustic modes can be noticed for normal processes, while umklapp
processes seems to scale as 1/ω3.
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277 K. The results depend slightly on the number of k-point
mesh used for the integration within the FBZ. Here, we are
showing results obtained with 18 × 18 × 18 mesh, which is
close to convergence. The normal and umklapp components
of the lifetimes are separated as 1/τ = 1/τU + 1/τN . We note
that although the lifetimes associated with normal processes
are in 1/ω2, those of umklapp processes seem to scale at
low frequencies like 1/ω3, so that the former dominates at
low frequencies. This is in contrast to the first-principles
results provided by Ward and Broido,31 who report that the
umklapp rate is in ω4. Although not explicitly mentioned in
their paper,32 fits to their data with ω3 were almost as good as
the fit with ω4. In the Appendix, we provide a proof of why,
in the case of Si, the umklapp rate would behave as ω3.

From Fig. 5, we can notice that at low frequencies (typically
below 3 THz or 100 cm−1 where dispersions are linear), normal
rates dominate, while at higher frequencies and typically for
optical modes, umklapp processes dominate transport.

E. Thermal conductivity from lattice dynamics

To see the contribution of each MFP to the total thermal
conductivity, following the approach of Dames and Chen,33

we have decomposed the thermal conductivity based on each
mode and sorted each component according to their mean-free
paths. One can then define a differential thermal conductivity
and the accumulated one, which is its integral:

dκ(�kλ) = 1

3
vkλ �kλ Cvkλ,

(21)

κ(�) = 1

Nk

�kλ<�∑
kλ

dκ(�kλ).

The above can be plotted versus the MFP, �, which can be
considered as an independent variable. Figure 6 shows such
contribution at 277 K. By considering the extrapolated value to
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FIG. 6. (Color online) Cumulative contributions of phonons to
the thermal conductivity at 277 K from the 18 × 18 × 18 k-point
mesh data. Left plot is according to the wavelengths, and right
plot is according to the MFPs. Both differential and cumulative
thermal conductivities are shown in blue and red, respectively.
For comparison, the extrapolated (to infinite k-point mesh) and
experimental κ are also shown with horizontal lines at 166 and
174 W/mK, respectively.

be 166 W/mK, one can notice that MFPs extend well beyond
10 microns, even at room temperature. Surprisingly, MFPs
longer than 1 micron contribute to almost half of the total
thermal conductivity. One should also note that the range of
MFPs, in Si at least, span over five orders of magnitude from
a nanometer to 100 microns at room temperature. This would
be larger as we go to lower temperatures.

To get an accurate estimate of the thermal conductivity,
one needs to extrapolate the data obtained from a finite
number of k-point mesh, according to Eq. (9). The extrapolated
thermal conductivity versus temperature is plotted in Fig. 7
and compared to the experimental results of Glassbrenner and
Slack29 and Inyushkin et al.34 We can notice that at low tem-
peratures, boundary scattering limits the experimental thermal
conductivity. The agreement is very good in the temperature
range of 100 to 500 K, after which experimental results
decay faster due to higher-order phonon scatterings, which
are 1/T 2 or higher. Our results are within the relaxation-time
approximation, but one could also go beyond and iteratively
solve the Boltzmann equation, as Broido et al. have done.16

They have shown that for Si and Ge, there would be about a
further 10% increase in κ .

To assess the effect of the classical approximation, which is
made in classical MD simulations, we have also compared in
Fig. 8, for a given k-point density, the classical and the quantum
thermal conductivities within the RTA. They are displayed with
symbols on the lines. The quantum one is given by Eq. (16),
and the classical one uses the same expression in which the
Bose-Einstein distribution is substituted by kBT /h̄ω, both in
the heat capacity and in the relaxation time. We can notice
that the difference is small above the Debye temperature, as
expected, but the classical value overestimates the quantum
one by 10% to 20% as the temperature is lowered further.
This is a combination of the larger heat capacity and a
smaller lifetime in the classical case. We have also plotted
the contribution of each mode to the thermal conductivity. We
can note that at low temperatures mainly, the two TA modes
equally contribute to κ , whereas at temperatures above 200 K,
LA and TA modes equally contribute about almost 1/3 of the
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thermal conductivity, while the longitudinal optic contribution
is about 5%.

The computation of the thermal conductivity using the RTA
is to some extent more straightforward than the use of GK-MD.
The former involves a double summation in the FBZ and has
very little systematic error in it, whereas the MD simulations
require an ensemble-averaging process with a relatively large
error bar, not to mention the much longer CPU time needed to
run the MD simulations.

For a mesh of k-points equal to the number of primitive cells
included in the MD supercell, we have obtained agreement
between MD results and the classical version of Eq. (16), as
also shown in Table II.

VI. CONCLUSIONS

Using first-principles calculations, we developed a classical
force field, which was used both in a molecular dynamics
simulation and in the calculation of anharmonic phonon
lifetimes. Both methods provided an estimate for the thermal
conductivity of pure crystalline silicon. The results of these two
methods agreed for the same system size in the case where κLD

was evaluated in the classical limit. GK-MD is, however, much
more time consuming and includes large statistical errors.
Furthermore, it does not provide much information besides the
way the integrated autocorrelation converges with simulation
time. Size effects were discussed and arguments were provided
as to why equilibrium MD simulations converged relatively
fast with respect to the supercell size. Lattice dynamics, on
the other hand, proved to be faster, more accurate, and contain
more useful information. The use of a linear extrapolation
versus the inverse of the size led to a surprisingly good
agreement with experiments. Such extrapolation is justified
for relaxation rates that are quadratic in frequency at low
frequencies. The decomposition of κ into the contribution of
different mean-free paths showed that, in Si, MFPs span over
five orders of magnitude from 1 nm to 100 microns at room
temperature, where about half of the thermal conductivity
comes from MFPs larger than 1 micron.

The developed potential has the advantage of being
amenable to systematic improvement by including more neigh-
bor shells at the cost of heavier calculations. The approach of
using the FGR for the estimation of relaxation rates and the
RTA, or an improved approximation to κ by solving the lin-
earized Boltzmann equation, allows one to obtain a relatively
accurate estimate of the thermal conductivity of an arbitrary
bulk crystalline structure from a few force-displacement
relations obtained using first-principles calculations, without
any fitting parameters. This method paves the way for an
accurate prediction of thermal properties of nanostructured
or composite materials in a multiscale approach, which takes
as input the relaxation times due to anharmonicity and defect
scatterings.

ACKNOWLEDGMENTS

The authors wish to acknowledge useful discussions with
Junichiro Shiomi, Joseph Feldman, Peter Young, and Asegun
Henry. We thank Nuo Yang for providing the SW force-
displacement data used in Fig. 1.

This work was supported as part of the Solid-State Solar-
Thermal Energy Conversion Center (S3TEC), an Energy
Frontier Research Center funded by the US Department of
Energy, Office of Science, Office of Basic Energy Sciences
(Grant No. DE-SC0001299).

APPENDIX

In this Appendix, we show the frequency dependence of
the umklapp rates. According to Eq. (12), the relaxation rate is
a product of the three-phonon matrix element |V (qλ,1,2)|2, a
combination of occupation factors, and δ functions reflecting
the constraints of energy conservation. We will separately
discuss the frequency dependence of the matrix element and
the phase space term.

First, the sum over the second momentum 2 is canceled
by the constraint of momentum conservation, so that the
relaxation rate is just the 3D integral over q1 in the FBZ.
One of the dimensions can be integrated over by using the
identity∫

d3q1 δ
(
ω + ωq1λ1 − ωq2λ2

)
f (q1λ1)

=
∫

d3q1 δ(q1 − qo)/
∣∣vq1λ1 − vq+q1λ2

∣∣f (q1λ1)

=
∫

d2Sqo
1/

∣∣vqoλ1 − vq+qoλ2

∣∣f (qoλ1), (A1)

where qo is the solution of ωqλ + ωqoλ1 − ω−q−qoλ2 = 0. Note
that the denominator containing the group velocities is not
small, as long as λ1 and λ2 refer to 2 different branches;
but in the case λ1 = λ2, the denominator becomes linear
in q.

Second, for umklapp processes, in the small ω limit, we
must have both q1 and q2 = −q − q1 near the Brillouin zone
boundary, such that q1 is inside the zone and q2 is outside,
so that the corresponding frequencies are not infinitesimally
small, but their difference would be. In general, this forces the
q1 surface integral to be limited to a pocket of dimensions q

located at the FBZ boundary, so that the surface integral is of
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the order of q2. But in the case where there is a degenerate
band at the zone boundary, the surface would be of the order
of q instead. Different cases based on the symmetry of the
crystal and the type of degeneracy have been discussed in
detail by Herring.35 In our case of interest, namely Si, it is
possible to have a three-phonon process involving a small-
momentum q acoustic mode connecting the LA branch to the
LO one, with which it is degenerate, near the Brillouin zone
boundary all along X → W , with a surface area Sqo

, of the
order of q.

Third, among the two types of terms, i.e., phonon ω

decaying to ω1 + ω2 and one phonon absorption ω + ω1 = ω2,
the former cannot contribute because ω � 0 and ω1 and ω2

are finite. Therefore, only the terms (n2 − n1) × [δ(ω1 − ω2 +
ω) − δ(ω1 − ω2 − ω)] contribute to the umklapp lifetimes at
small frequencies. In the latter, one can substitute n1 − n2

by ±ω ∂n/∂ω1 � O(q). We must remember to substitute
the argument ω in the relaxation rate by its on-shell value
ωq = v × q → 0, so that in the limit of low frequencies, the

inverse lifetime can be written as∫
d2S(qo)

1∣∣vqoλ1 − vq+qoλ2

∣∣ ωqλ

∂n

∂ωo

|V (q,qo, − q − qo)|2.

(A2)

Finally, due to the odd parity of the cubic force constants,
one can show that for small q, we have |V (q,qo,−q−qo)| ∝
sin qR/

√
ωq ∝ √

q.
Putting everything together, we find that the umklapp rates

at low frequencies are, to leading order, of the form

1

τU (ω)
∝ q3 ∝ ω3. (A3)

This is in agreement with our numerical findings.
For normal processes, there is no restriction for modes 1

and 2 to be near the BZ boundary. For instance, in the (LA
→ LA + TA) process, the term (1 + n1 + n2) contributes and
will not be linear in q. In such cases, the rate would be in q2

and would dominate umklapp terms with higher powers of q.
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