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We describe a computational method based on density functional theory in which the total electronic density
is expressed as a sum over “atomic” densities or densities localized at atomic sites. The atomic densities are
determined self-consistently from a variational treatment of the total energy, which includes terms to account
for kinetic energy due to the overlapping densities from separate atomic sites. We call this method self-
consistent atomic deformation. The self-consistent procedure involves formulation and calculation of a poten-
tial for each atomic site, solving a one-electron Schrödinger’s equation for each site and using these self-
consistent potentials and densities to compute total energy and forces. The associated numerical methods
employed are described in detail and illustrated for selected examples.
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I. INTRODUCTION

Following the development of the Thomas-Fermi-Dirac
statistical method, the electronic density, rather than the
wave function, often has been used as the basic variable for
expressing the energy of a collection of atoms. In early ap-
plications of this density functional approach, the total den-
sity was simply assumed to be the sum of the densities of the
separate atoms. This approach, discussed in chapter 1 of
Born and Huang,1 provided a qualitative description of
atomic forces which guided the development of empirical
models. A major advance was provided by Gordon and Kim2

�GK� who obtained quantitative results for closed-shell sys-
tems by carefully evaluating “electron-gas” expressions us-
ing free-atom densities.

A few years before the GK work Hohenberg and Kohn3

proved that the ground-state energy of a system of electrons
was uniquely expressed as a functional of the density regard-
less of the external potential. This remarkable result added
credibility to the density functional approach, although it evi-
dently was not a motivating factor for the GK work. Soon
after the Hohenberg-Kohn theorem was published Kohn and
Sham4 �KS� presented a variational method for applying the
density functional approach to compute total energy from the
Hohenberg-Kohn formalism. In this method the density of an
N electron system is given by the sum of the squares of the N
lowest-energy self-consistent solutions of an effective one-
electron Schrödinger’s equation whose potential is defined,
variationally, to minimize the total energy. Ten years after the
KS work and three years after that of GK, Janak et al.5

computed total energies for nine elements with cubic struc-
tures, obtaining impressive results for cohesive energies, lat-
tice constants, and bulk moduli. Several earlier total-energy

calculations6–10 achieved similar success on a smaller scale.
The many calculations of total energy which followed this
early work established the highly successful field known to-
day as density functional theory �DFT�.

In this paper, we describe a method for applying DFT,
called self-consistent atomic deformation �SCAD�, in which
the electron density n is expressed as a sum over atomiclike
densities ni. Like the KS method, SCAD uses an assumed
expression for total energy U as a functional of n, and n is
determined from a variational treatment of U�n�. Both meth-
ods use the same approximate functional for exchange and
correlation energy. Like the GK method, U�n� includes a
contribution to the kinetic energy from overlapping densities
�Tk�. SCAD requires that U be a minimum for small varia-
tions of each ni. This provides an atomiclike Schrödinger
equation to be solved for each atomic site with potentials that
include contributions from the kinetic-energy overlap terms.
Analogous to KS, the potentials are determined variationally
from U.11 The kinetic-energy overlap contributions to the
potentials serve to localize the site densities with the size,
shape, and total charge of each ni determined by SCAD. The
variational freedom in SCAD is contained in the one-
electron atomiclike solutions of the Schrödinger equations
for each atomic site. If Tk=T0, the kinetic energy of nonin-
teracting electrons, the expression for U becomes that of the
KS formulation of DFT, for which adequate variational free-
dom comes from one-electron states that extend over the
entire system, forming a band structure for crystals. Unlike
the KS method, the SCAD method does not produce a band
structure for crystals. However, if Tk is the “divine”
functional,12 i.e., T0 for the KS method, or an unknown exact
explicit functional of n, then both the KS and SCAD meth-
ods would give the same results for U and n. Thus, the
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SCAD method could be helpful in testing approximations to
the divine functional. The SCAD method may be considered
to have some aspects of the KS method and orbital-free DFT
methods.

The SCAD method can be viewed also as an extension of
the GK model which allows complete relaxation of the
atomic densities. This approach is taken also in the work of
Cortona,13,14 but with applications limited to densities ex-
pressed as overlapping spherical atoms. Other self-consistent
atomic models can be found in the works of Muhlhausen and
Gordon,15 LaSar,16 Bukowinski and co-workers,17 and
Edwardson.18 Francisco et al.19 included self-consistency in
an atomic model that orthogonalizes the orbitals of an atom
with those of its neighbors to obtain spherical densities and
pair potentials following the GK method. The direct energy
minimization technique of Lacks and Gordon,20 which ac-
counts for nonspherical ions by incorporating spherical
bonding charges between spherical ions, has been quite suc-
cessful in treating various oxides.

Our SCAD method evolved from an effort to extend the
potential induced breathing model21 to handle nonspherical
ions, a feature known to be essential for treating oxide
ferroelectrics.22 Ivanov and Maksimov23 developed a closely
related approach to deal with nonspherical ions, including
those in oxide ferroelectrics. We were motivated substan-
tially by Edwardson’s work together with a general effort to
develop first-principles methods for ferroelectric materials.24

We have previously given brief discussions of the SCAD
model,11,25–28 which includes some applications of SCAD for
spherically symmetric ions �SSCAD�. A detailed description
of the SSCAD method is given by Stokes et al.,28 for which
computer code is available. It has been applied in a cluster
expansion technique to compute the MgO-CaO phase
diagram.29

Our first application of SCAD for nonspherical atoms was
to compute Born effective charges Z�, the quantities that give
the change in polarization produced by structural distortions,
for ferroelectric oxides and alkaline-earth oxides.30 The large
values of Z� for Ti, Nb, and certain oxygen ions in BaTiO3
and KNbO3 were shown to result primarily from large mo-
ments induced on the oxygen ions—a qualitative picture
which agrees with subsequent calculations31 using “maxi-
mally localized Wannier functions”32 for associating portions
of a KS derived charge density with particular atoms. Rea-
sonable results for polarization and related properties have
been obtained for a variety of compounds using the SCAD
method.33–37

It has been argued38 that the calculation of polarization
using overlapping atomiclike densities, or Clausius-
Mossotti-type models, is fundamentally flawed. However,
the argument is based on a false assumption about the way
polarization is computed in such models.39 Specifically, the
change in polarization that accompanies a structural distor-
tion in a Clausius-Mossotti-type model is well defined pro-
vided the monopole charges are constant—that is, charge
does not move from site to site, as expected for an insulator.
Here we demonstrate how this picture follows from the
SCAD formulation of DFT.

Previously proposed GK-type models rely on assumptions
not related to approximations inherent in DFT to obtain site

decomposed charge densities. The assumptions are then jus-
tified �or not� depending on the comparison of results with
experiment. Unfortunately, it is not always clear if discrep-
ancies result from the assumptions of the model or approxi-
mations inherent in the formulation of DFT. Prior to 2003
our applications of SCAD assumed that the radial compo-
nents of basis functions used to treat free atoms were also
adequate for treating overlapping atoms, and angular varia-
tions were limited to l�4 in the spherical harmonics. Our
first attempt to extend SCAD to larger l values was an appli-
cation to the water molecule.40 This provided a good, al-
though limited, test—because SCAD treats the water mol-
ecule as an O−− ion in the presence of two protons. Thus,
there is no overlap contribution to the kinetic energy, and
SCAD becomes equivalent to the KS method. Recently,
SCAD has been applied to AlF3,41 a compound that has a
structural transition that provides a stringent test for DFT
methods in general. These and additional results of SCAD
calculations for AlF3 are discussed below.

In this paper, we first give the formal description of the
SCAD model. This is followed by details for calculating
SCAD potentials, charge densities, total energies, and forces.
Some of the details are expressed in Appendixes A–E. Then,
the results are discussed for simple systems which illustrate
how the kinetic-energy overlap potential prevents charge
from flowing to neighboring sites. The section on charge
densities includes a method for systematically improving the
basis functions used to solve the Schrödinger equations to
obtain results that depend only on the approximations used to
formulate total energy. Next, we present results for AlF3
which illustrate convergence issues, followed by a section
with results for SiC and both make comparisons with KS and
experimental results. Finally, we conclude with a discussion
of some general features of the SCAD model which we have
observed from applications on a variety of materials.

II. SCAD MODEL

Following Kohn and Sham4 we write the total energy U as
a functional of the electronic density n,

U�n�r�� = T�n�r�� + Ues�n�r�� + Uxc�n�r�� , �1�

where T is the kinetic energy of noninteracting electrons at
density n, Ues is the electrostatic energy, and Uxc is the ex-
change and correlation energy. We write the total density as a
sum of atomiclike densities

n�r� = �
i

ni�r − Ri� �2�

centered at Ri, the location of nuclear charge Zi. Each
atomiclike density is expressed as a spherical harmonic ex-
pansion about an origin at its nucleus,

ni�r� = �
l,m

nl,m
�i� �r�Yl,m�r̂� . �3�

The ground state of the system will then be the set of ni �or,
alternatively, the nl,m

�i� , which minimizes Eq. �1��, subject to
the condition that the total number of electrons in the system
is fixed.
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To this point we have not made any approximation since
the form of the charge density imposes no constraints. In
other words, assuming we know the functionals in Eq. �1�,
the formulation for density is sufficiently general to deter-
mine the absolute minimum of U. Of course, we do not know
T or Uxc exactly. In the SCAD method, the kinetic energy is
approximated by

T�n�r�� = �
i

T0�ni�r�� + Tk�n�r�� − �
i

Tk�ni�r�� , �4�

where T0�ni�r�� is the kinetic energy of noninteracting elec-
trons of density ni in a potential vi, centered at Ri, and Tk is
a functional to account for the noninteracting kinetic energy
due to the overlapping of electronic densities from neighbor-
ing sites. If Tk is the exact kinetic energy for a noninteracting
electron gas �Tk=T0�, then the first and third terms of Eq. �4�
cancel. We assume the density associated with the ith site is
given by ni=����,i

� ��,i, where ��,i are solutions of a one-
electron Schrödinger’s equation with potential vi. This pro-
vides a one to one correspondence between ni and vi. The
necessary condition for U to be a minimum with respect to
small variations of ni leads to the following expression for vi
�Ref. 11�:

vi�r� = ves�n�r�� + vxc�n�r�� + vk�n�r�� − vk�ni�r�� , �5�

where ves is the electrostatic potential due to the atomic nu-
clei and electron density, vk is the functional derivative of Tk,
and vxc is the functional derivative of Uxc with respect to
density. To compute ni from vi, we first express vi in terms of
spherical harmonics,

vi�r� = �
l,m

vl,m
�i� �r�Yl,m�r̂� , �6�

and then solve the ith Schrödinger’s equation. The details
involved in these two steps are described in Secs. III A–
III B.

The self-consistent solution for vi �and hence, ni and n�,
obtained by occupying the lowest one-electron energy levels
for the entire system, allowing for charge transfer when in-
dicated, minimizes the total energy in accord with Janak’s
theorem.42 Of course, one is free to move charge from one
atom to another in order to test the behavior of the energy as
a function of charge transfer and demonstrate the satisfaction
of Janak’s theorem. See, for example, the results obtained
using the SSCAD model,28,30 SCAD results for the H2O
molecule,40 and, in Sec VIA, SCAD results for crystalline
SiC as a function of lattice parameter and charge transfer.

In principle, one could have a complete set of basis func-
tions centered at site i with no basis functions, or less than
complete sets of basis functions, centered on the other sites.
Then the KS solution would result by formally putting all
electrons on the ith site. Tk would not contribute because the
rest of the sites would, formally, have only nuclear charge. In
this case the outcome of SCAD would depend on the choice
of assigning all charge to one atomic site. On the other hand,
the question of uniqueness has not been a practical problem
for SCAD in treating insulating systems with varying de-
grees of ionic bonding character, such as AlF3 and SiC, dis-
cussed in detail below. For these types of systems, SCAD

determines the ions to have fully ionic �integer� monopole
charges and accounts for bonding charge, normally associ-
ated with covalency, by distorting the negative-ion charge
density. The uniqueness issue is further discussed in Sec IV
using the example of a helium atom pair.

In this work we focus primarily on details of the SCAD
method that are independent of the particular form of Tk and
use the local Thomas-Fermi form for the overlap contribu-
tion to the noninteracting kinetic energy,

Tk = TTF = A� n5/3�r�dr , �7�

where

A =
�4/335/3

10
. �8�

�Hartree atomic units are used throughout this paper.� We
have also derived potentials for generalized nonlocal func-
tionals. For completeness and possible future use in the
SCAD method, these results are included in Appendix A.

In its present form SCAD provides useful accuracy for
many systems of interest and it is generally more efficient
than KS calculations, particularly for large systems. The
computational labor of SCAD increases approximately as
O�N� and the method is easily parallelized by assigning each
processor computations for some fraction of N, the number
of atoms in the system. Strictly speaking, our use of the
Ewald method to include long-range interactions �Appendix
C� takes O�N2� time, but this is not a significant factor for N
less than a few hundred.

III. CALCULATION OF SCAD QUANTITIES

The procedure for obtaining a self-consistent solution for
the total energy is easily stated. �1� Atomiclike densities are
used to compute potentials at each site using Eq. �5�. �2�
New densities are obtained from the solutions of the corre-
sponding one-electron Schrödinger’s equations. Steps 1 and
2 are repeated, mixing new and old densities in each cycle,
until convergence is achieved. In the final step, �3� the total
energy and forces are determined from the converged poten-
tials and densities. In practice, there are many details to be
considered in each step. These are presented and discussed
below in Secs. III A–III D �one each for energy and forces�.

There are, of course, certain numerical techniques that are
common to all three steps. For example, we represent both
charge densities and potentials as sums over radial functions
times spherical harmonics, a functional form that results
naturally from the method we choose for solving the one-
electron Schrödinger’s equations. Presentation of details
common to more than one section is done sequentially with
appropriate references to the other sections and Appendixes
A–E. Work to create computer code for the SCAD method
began over ten years ago with separate codes developed in-
dependently at BYU and NRL. This parallel development
strategy proved to be very useful for identifying the best
algorithms and correcting errors. In Secs. III A–III D and the
Appendixes A–E, SCAD is formulated in detail. For conve-
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nience, we identify here a few symbols that are important for
understanding the presentation of results in the remaining
sections.

The set of basis functions at each atomic site are specified
primarily by two symbols: �1� rc, the radius of the maximum
value of r2�rle−�r2

�2 for the smallest � in the set of basis
functions of the form rle−�r2

Yl,m�r̂�, and �2� L, the maximum
value of l in the set of spherical harmonic functions Yl,m�r̂�.
Another quantity t specifies the amount of overlap between
adjacent radial functions. Acceptable values for t lie in the
range of �0.9� t� �0.8. Values for L, rc, and t, along with
the atomic number, completely determine basis functions.
Results are seen to converge abruptly with increasing rc,
showing localization of the SCAD atoms.

Another symbol Rc, not to be confused with rc, is a cutoff
radius beyond which interactions are included as point poles.
In other words, the charge density of atoms or ions beyond
Rc from atomic site i does not appreciably overlap with the
ith atom. The value of Rc needs to be about two times the
value of rc for the largest atom or ion in the system.

A. Potential

In this section we address the following problem: Given
the charge densities on each site i, expressed as in Eq. �3�,
determine similarly expressed potentials �Eq. �6��. The radial
dependencies of nl,m

�i� �r� and vl,m
�i� �r� and similar functions are

kept on a mesh that starts at r=0 and has separations be-
tween points that increase logarithmically. A detailed discus-
sion of the mesh and related integration, interpolation, etc., is
offered in Appendix B.

First of all, we add and subtract the term vxc�ni�r�� to the
potential in Eq. �5�,

vi�r� = ves�n�r�� + vxc�ni�r�� + vov�n�r�� − vov�ni�r�� , �9�

where vov=vk+vxc.
The electrostatic potential includes contributions from the

nuclear charge as well as the electronic density and, unless
the net moments of charge for l�2 happen to be zero, it is
long ranged in nature; that is to say that contributions from
all atoms in the system must be included. The electrostatic
potential can be expressed as a linear superposition of the
corresponding potentials of each “atom” or in any other way
we want to partition the charge density. On the other hand,
the overlap potential vov is a nonlinear function of the den-
sity and therefore cannot be so decomposed. Fortunately, it is
short ranged and can be decomposed into a part that is
smooth �compared to the behavior of the density in the vi-
cinity of an atomic nucleus� and a part which, by design, is
additive. The smooth part, along with other smooth parts,
discussed below, and collectively called vs, is computed on a
three-dimensional grid with a relatively coarse radial mesh
and a directional grid �over solid angle �� chosen for effi-
cient integration �Appendix B�.

Let Rc be a cutoff radius within which the densities of
atom pairs have appreciable overlap. The potential due to
atoms farther than Rc from the ith site are included using
expressions for point poles. Contributions from monopoles,
dipoles, and quadrupoles are computed using the Ewald

method while contributions from l�2 poles are included in a
similar manner with direct-space sums only �Appendix C�.
To account for the electrostatic potential due to near neigh-
bors with separations �Ri−R j��Rc, one could “simply”
transform the Yl,m expansions of ves

�j� to similar expansions
about an origin at the ith site. The method for changing the
origin of a spherical harmonic expansion �Löwdin transfor-
mation� is discussed in Appendix D. In fact, we include only
the l=0 portion of the jth electrostatic potential using the
Löwdin technique and include the l�0 contributions, which
are relatively smooth near the atomic nuclei, in vs.

A smooth part of the overlap potential is created by add-
ing and subtracting the term � j�vov�n0

�j��r��, where n0 denotes
the l=0 portion of the density and the prime on the summa-
tion indicates the j= i term and terms with �Ri−R j��Rc are
omitted. The subtracted term combines with the last two
terms of Eq. �9� to give the smooth overlap contribution
included in vs. The added term is included, along with the
l=0 part of the electrostatic potential from near neighbors,
using the Löwdin transformation.

The nonspherical part of the on-site exchange-correlation
potential, defined by vxc�ni�r��−vxc�n0

�i��, is also smoothly
varying, owing to the fact that the density becomes spherical
near the nucleus. Therefore, it is conveniently included in vs
as well. The canceling term, vxc�n0

�i��, is included as an on-
site contribution. To summarize, the potential for the ith
atom is decomposed, for computational purposes, as follows:

vi�r� = von
�i��r� + vs

�i��r� + vL
�i��r� + vp

�i��r� + vn
�i��r� , �10�

with subscripts denoting on-site, smooth, Löwdin, poles
�outside Rc�, and nuclear parts. The on-site nuclear part is
included in von while nuclear contributions from far neigh-
bors �outside Rc� are included in the monopole part of vp.
Thus, vn

�i� includes contributions from all nuclei contained in
Rc except the one at site i.

The on-site term is the sum of the radial exchange-
correlation term �introduced above to create a contribution to
the smooth term� and the electrostatic potential due to the
on-site electrons and the nuclear charge with atomic number
Zi.

von
�i��r� = vxc�n0

�i��r�� +� ni�r��
�r − r��

dr� −
Zi

r
, �11�

where the second term is the Hartree potential vH�r�. Substi-
tuting the expanded forms of ni �Eq. �3�� and �r−r��−1 �addi-
tion theorem�, the angular integrations are trivially per-
formed to give

von
�i;l,m��r� = 	l0	vxc�n0

�i��r�� −

4�Zi

r
� + vH

�i;l,m��r� . �12�

where

vH
�i;l,m��r� = r−�l+1�Gl,m

�i� �r� + rlHl,m
�i� �r� , �13�

Gl,m
�i� �r� =

4�

�2l + 1��0

r

x�l+2�nl,m
�i� �x�dx , �14�

and
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Hl,m
�i� �r� =

4�

�2l + 1��r




x�1−l�nl,m
�i� �x�dx . �15�

The radial integrations are carried out as described in Appen-
dix B. The values of Gl,m

�i� �
� give the multipole moments
that enter vp

�i� �see Appendix C�.
The smooth potential

vs
�i��r� = vxc�ni�r�� − vxc�n0

�i��r�� + vov�n�r�� − vov�ni�r��

− � j
� vov�n0

�j���r − R j��� + � j
� �vH�nj�r − R j��

− vH�n0
�j���r − R j���� �16�

is computed by accumulating values for the required densi-
ties and vH on the coarse mesh centered at site i. This is the
most time consuming part of the calculation. For every
neighbor j the values of each radial function of the spherical
harmonic expansions must be determined by interpolation

and the corresponding values of Yl,m�r−R j
̂� computed as

well. Once values of vs
�i��r� are determined on the coarse

radial mesh, the coefficients of the spherical harmonic ex-
pansion are determined by numerical integration over solid
angle � �Appendix B�,

vs
�i;l,m��r� =� vs

�i��r�Yl,m
� �r̂�d� . �17�

The resultant functions of r are then interpolated from the
coarse to the dense radial mesh.

The spherical harmonic expansion of the Löwdin poten-
tial

vL
�i��r� = �

j

��vov�n0
�j���r − R j��� + vH�n0

�j���r − R j���� �18�

is computed as described in Appendix D. Since it can have
sharp features near the neighbors at R j, additional values are
determined in these regions in order to accurately carry out
integrations for contributions to the Hamiltonian matrix ele-
ments and total-energy. �See Appendix B�.

Evaluation of the point-pole part of the potential �vp� re-
quires the multipole moments, i.e., the values of Gl,m

�i� �
�,
combined with, for monopole terms, the nuclear charges �Zi�.
Details of this part of the calculation are discussed in Appen-
dix C.

Finally, we include the potential due to neighboring nu-
clei,

vn
�i��r� = �

j

� −Zj

�r−R j�
, �19�

where the sum over j excludes the j= i term and terms with
�Ri−R j��Rc. As already mentioned, contributions from nu-
clei outside the cutoff sphere are included in the monopole
term of vp

�i� and the i= j term is included in the on-site po-
tential von. Spherical harmonic expansions about the ith site
are given by the addition theorem. Another way to include vn
is to make it part of the Löwdin potential �Eq. �18��. This
was done to test the code. The amount of computations can
be greatly reduced in many cases by making use of symme-
try. Symmetry related details are discussed in Appendix E.

B. Charge density

To begin a SCAD calculation we need starting charge
densities �ni�, to generate the first potentials �vi� and a set of
basis functions for each site for solving the Schrödinger’s
equations for each vi. Convenient sources for both are the
published tables of Clementi and Roetti43 and McLean and
McLean.44 These tables contain Slater-type radial functions
that can be used to construct sets of basis functions. While
this approach gives reasonably good results for various
compounds,33–37 it, nevertheless, has limited variational free-
dom. Here we employ a procedure for constructing basis
functions that removes this limitation. Details of how the
bases are constructed are presented below. For now, we drop
the site index and assume basis functions of the form

�i�r� = �i�r�Ylimi
�r̂� �20�

are given.
Schrödinger’s equation for a given atomic site is solved

by expressing the wave function as a linear combination of
the basis functions, ��r�=� jcj� j�r�, with expansion coeffi-
cients �cj� given by eigenvectors of

�H − �S�c = 0, �21�

where

Hij =� �i
��r��−

1

2
�2 + v�r�� j�r�d3r �22�

and

Sij =� �i
��r�� j�r�d3r �23�

are the elements of the Hamiltonian and overlap matrices.
Evaluation of the matrix elements Hij and Sij is straight-

forward. The kinetic-energy operator in spherical coordinates
separates into the familiar radial and angular-momentum op-
erators. Integrations for fixed radius are expressed in terms of
the well-known 3j coefficients.45 Radial integrations are car-
ried out as discussed in Appendix B.

Given a set of nonorthogonal basis functions �i�r�, the
eigenvalue equation

Sv = v �24�

may be solved to find the eigenvectors,

v�r� = �
i

ai�i�r� , �25�

normalized so that

�
i

ai
�ai = 1. �26�

Since S is a Hermitian matrix, the eigenvectors are orthogo-
nal,

� vi
��r�v j�r�d3r = i	ij . �27�

The eigenvalues i indicate how “independent” the basis
functions are. An eigenvector with a very small eigenvalue is
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a combination of basis functions that nearly add up to zero.
This would not be a good combination to use as a basis
function. Using it could produce noise in the calculated en-
ergy. In general, we discard any eigenvector with an eigen-
value less than a specified basis optimization parameter of
�10−5. However, if we choose the original set of basis func-
tions carefully, this situation does not arise. A general
method for selecting basis functions that avoids this problem
is described below.

The Hamiltonian matrix for each nonequivalent atom in
the unit cell is computed and diagonalized. Then the lowest-
energy levels �eigenvalues, �� for the entire system are occu-
pied by the available electrons. For some systems this may
lead to charge transfer among the atoms to avoid having
unoccupied �or partially occupied� levels with lower energy
than occupied levels. Such transfers are needed to achieve
minimum total energy. If a minimum is achieved for
fractional-charge transfer, then the two levels involved in the
transfer become degenerate at the minimum, in accord with
Janak’s theorem.42 This situation rarely occurs for real insu-
lators with ionic bonding, i.e., those systems for which
SCAD is expected to be most reliable, so we have not yet
adopted an automated method to treat charge transfer. How-
ever, in Sec VIA, we do find fractional-charge transfer in SiC
but for an unphysically large lattice constant. Once the occu-
pation numbers for the energy levels of each atom are deter-
mined, the wave functions are squared, weighted by the oc-
cupation numbers and summed to get the total density for
each atom. The squared wave functions contain products of
two Ylm’s, which are readily converted into a linear combi-
nation of single Ylm’s using appropriate 3j coefficients. We
note that the maximum l in the charge-density expansion is
two times the maximum l in the wave function.

A fraction of the new charge density is mixed with the
old, new potentials are generated, etc., until convergence is
achieved. We find a mixing fraction of 0.4 works well in
most cases. The degree of convergence can be determined by
comparing occupied eigenvalues with those of the previous
cycle. If we define convergence error as the sum of the mag-
nitude of the difference between the new and old occupied
eigenvalues, Ce=���n−�o�, then we find the associated nu-
merical error in total energy is typically �0.001Ce. Conver-
gence to �0.000 001 hartree in the total energy is achieved,
typically, in about 15–20 iterations.

During the iteration cycles the radial functions in the
charge-density expression only need to be determined on the
logarithmic mesh. However, extra points are needed in the
final iteration to obtain accurate contributions to the energy
due to integration over sharp features in vL�r� and vn�r�. Of
course, the radial integrations involving the basis functions
must be carried out accurately over the structure in vL and vn
in each iteration. The sharp features in vL are determined at
the extra points by interpolation from values for the integrals
�given in Appendix D� on the logarithmic mesh.

There are several issues to consider in selecting basis
functions. Slater-type functions are desirable to obtain the
correct analytic behavior of the wave functions near the
nucleus. Gaussian-type functions offer greater control for
systematically extending coverage away from the nucleus
since they fall to zero more rapidly at large r than do Slater

functions. Moreover, we find that Gaussian-type functions
tend to give a lower total energy compared to a similar set of
Slater-type functions, provided atomic orbitals are included
in the basis to get the correct behavior at the nucleus. The
problem with including atomic orbitals in the basis is that
they may be approximated well by a linear combination of
the other basis functions, leading to a nearly singular overlap
matrix.

Barnes46 examined an approach for selecting Slater-type
functions in the spherical SCAD approximation that can be
systematically expanded to achieve increasingly higher lev-
els of convergence. Here we adopt a similar approach using
both Slater- and Gaussian-type functions. Let la be the larg-
est value of l for occupied atomic levels, e.g., la=1 for oxy-
gen. We let L be the maximum l used in the bases, while
L�X� denotes the maximum l used in the basis for element X.
Sets of Slater-type functions �rle−�irYlm� or Gaussian-type
functions �rle−�ir

2
Ylm� are chosen to be “even tempered.”

That is, �i+1 /�i �or �i+1 /�i� are constant, which follows from
requiring a constant overlap, or temperament, t, between ad-
jacent functions in a normalized set,

t = 4��
0




r2�i�r��i+1�r�d3r . �28�

For l� la we select a Slater-type function with �1=Z / �l
+1�, which is suggested by the analytic form of hydrogenlike
wave functions. Optimized Slater-type bases for atoms gen-
erally include somewhat larger values for � as well; thus we
also include the i=0 function ��0��1� in our basis. Succes-
sively smaller values of � may be included until convergence
is achieved. It is convenient to relate the values of � to the
region of space where they contribute most. For Slater func-
tions this corresponds to the peak of r2l+2e−2�r, which occurs
at r= �l+1� /�. Thus, the smallest value of � in a set belong-
ing to l is given by a maximum radius, which we call the
orbital cutoff radius, rc. Analogous sets of Gaussian-type or-
bitals are defined by requiring the i=1 functions to have their
peaks at the same radii as the i=1 Slater-type functions ��1
=�1

2 /2�l+1�� as well as the same values of t and rc for both
types. For l� la we choose two Slater-type functions �i
=0,1� and Gaussian-type functions for i�2. For l� la, we
use only Gaussian-type functions, with minimum peak radius
corresponding to that of the Slater-type function with �=�1
and l= la. We find that adequate values for t lie in the range
of 0.8� t�0.9 for l� la and 0.7� t�0.8 for l� la.

The total number of basis functions can be decreased
without significant loss in accuracy by increasing the mini-
mum peak radius for functions with l� la to a value near the
radius of the peak in the wave function for the highest-
energy occupied levels. However, to simplify the presenta-
tion in this paper, we keep the extra basis functions in the
core region and, unless otherwise stated, we use t=0.9 for
l� la and t=0.8 for l� la.

Another related parameter to consider is the maximum l
allowed in the potential Lv. The SCAD code is currently
limited to Lv�12. If Lv=0 then we force the ions to be
spherical and SCAD becomes the spherical SCAD model.28

In principle, Lv can be twice L, for example, due to the
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contributions to the electrostatic potential from on-site elec-
trons since maximum l in the charge-density expansion is 2L.
On the other hand, allowing Lv to become large without con-
straint can lead to poor convergence with increasing L. We
believe this is due to dissatisfaction of Schrödinger’s equa-
tion,

H��r� = −
1

2
�2��r� + v�r���r� = E��r� , �29�

for the higher l values. The maximum l in the �2� term is L
and the maximum l in the E� term is L, while the maximum
l in the v� term is 3L. Clearly, any terms in v� with l�L
contribute to a dissatisfaction of the Schrödinger equation.
One can remove this source of error by setting to zero those
3j coefficients that contribute to terms with l�L in the
spherical harmonic expansion of v�. However, this means
that L must be quite large to allow significantly large values
of Lv. �For example, if L=10 the maximum l contribution
from the potential is Lv=6.� The greater amount of time
needed to diagonalize the larger Hamiltonian matrices re-
quired using this approach tends to spoil the overall effi-
ciency of the SCAD method. On the other hand, if contribu-
tions from the potential are not limited, obtaining
convergence with respect to the increasing L can be difficult.

A more practical approach can be found which incorpo-
rates the full potential at a faster pace with increasing L and
still limits errors from the dissatisfaction of Schrödinger’s
equation. The maximum l values for spherical harmonic ex-
pansions of the terms in ���r��H−E���r� are 2L for the
���2� term, 4L for the ��v� term, and 2L for the −��E�
term. In this approach we limit contributions to matrix ele-
ments involving the potential that give terms in ��v� with
l�2L.

The product of three Yl,m’s may be written as a sum of
single Yl,m’s with real �4j� coefficients, and the coefficient of
the Y0,0 term gives the integral of that product over all solid
angle, which is, of course, the 3j coefficient. Only a few
percent of Yl,m triplets have nonzero 3j coefficients and thus
contribute to H. This number can be further reduced by set-
ting to zero those with lv�L, or still further reduced, by
requiring li+ lj + lv�2L. The latter condition also implies lv
�L. It also demands that the Yl,m expansion of a Yl,m triplet
has no terms with l�2L, which must be the case for precise
satisfaction of ���r��H−E���r�=0. We find only small dif-
ferences between results obtained using the lv�L and li+ lj
+ lv�2L constraints. Neither constraint is as strict as the one
based on �H−E���r�=0, but they offer a faster convergence
with increasing L due to the greater allowed values of Lv.
Convergence can be made smoother by scaling the potential
for lv near Lv; for example, by analogy with the practice of
using a Fermi function to incorporate states near the Fermi
level in a KS calculation. Unless otherwise stated, results
reported here use the least restrictive lv�L=Lv constraint
with a scale factor of 0.5 for lv=Lv.

C. Total energy

The total energy as expressed in Eq. �1� is deceptively
simple looking. While the actual calculation of U is straight-

forward, it is conceptually more difficult because it must be
expressed in terms of the self-consistent charge densities ni
and the potentials vi as they are formulated in Sec IIIA.
Having the total charge density decomposed into contribu-
tions from each atomic site allows the same decomposition
of the total energy: U=�iUi, where the sum is over all atoms
in the system. This decomposition is obvious for the electro-
static contributions but, perhaps, less obvious for the kinetic
and exchange-correlation energies. To illustrate this point,
consider the only the kinetic-energy contribution from the
second term in Eq. �4�. The first and third terms are already
site decomposed. Let ek be the energy density functional cor-
responding to Tk. �If Tk is the Thomas-Fermi function then
ek=An2/3.�

Tk�n�r�� =� n�r�ek�n�r��d3r , �30�

where the integration is over all space. After substituting Eq.
�2� and interchanging the sum and integration, we have

Tk�n�r�� = �
i
� ni�r − Ri�ek�n�r��d3r . �31�

In the final iteration of SCAD ek�n�r�� is computed sepa-
rately for each atomic site in terms of r−Ri. In other words,
ek�r−Ri� is an accurate representation of ek�n�r�� in the re-
gion �r−Ri��Rc. Making this substitution yields the desired
form,

Tk�n�r�� = �
i
� ni�r − Ri�ek�r − Ri�d3r . �32�

An analogous expression is obtained for Uxc�n�r��. If our
system is a crystal, then the sum over i can be limited to one
structural unit, or unit cell, containing N atoms, and

U = �
i

N

Ui �33�

is the energy per unit cell. Of course, the values for Ui do not
depend on the infinitely many choices for lattice vectors and
basis vectors available to uniquely define a crystal structure.
Likewise, the values of the Ui do not depend on any particu-
lar region of space that could be selected to represent the unit
cell. This is because integrations required to compute Ui are
carried out over all space and not over some selected finite
region of space. We emphasize this point, hopefully, to
clarify confusion about the capability of models such as
SCAD to give well defined results for polarization and re-
lated properties.39

We calculate the energy associated with each site by
evaluating the expression
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Ui = −
1

2�
�

o�,i� ��,i
� �r��2��,i�r�d3r +� ni�r�e1

�i��r�d3r

+� ni�r�e2
�i��r�d3r +

1

2
Zi�vp

�i��0� − vn
�i��0�

− �
j

�vH
�j��− R j�� , �34�

where o�,i is the number of electrons in the �th state of the
ith atom. All functions of r, as well as the neighboring posi-
tions R j, are expressed with respect to an origin at Ri. The
energy density in the second line is separated into two terms,
e1

�i� and e2
�i�, to emphasize the two types of quadrature that are

needed for contributions that are smooth at neighboring sites
and contributions which have discontinuous derivatives at
neighboring sites. The sum of contributions designated on
site, smooth, and poles give e1, while the sum of Löwdin and
nuclear contributions give e2. Specifically,

e1
�i��r� =

1

2
� ni�r��

�r − r��
d3r� −

Zi

r
+ exc�ni�r�� + eov�n�r��

− eov�ni�r�� − �
j

��eov�n0
�j���r − Rj��� +

1

2
vH�nj�r

− R j�� −
1

2
vH�n0

�j���r − Rj���� +
1

2
vp

�i��r� �35�

and

e2
�i��r� = �

j

��eov�n0
�j���r − Rj��� +

1

2
vH�n0

�j���r − R j����
+

1

2
vn�r� , �36�

where, as in Sec. III B, � j� implies the j= i term and terms
with �Ri−R j��Rc are omitted. The factor 1

2 multiplies con-
tributions from vH and vp to avoid double counting the
electron-electron energy. Note that vp also contains contribu-
tions from the nuclei, originating from the monopoles. Thus,
the contribution from the ith electrons interacting with nuclei
outside Rc is only half included through the vp term. The
other half is included by the vp term in Eq. �34�.

D. Forces

The above expressions for total energy illustrate details
involved in the way we actually compute the energy. Now
we write the total energy in a form more convenient for
discussing forces. The energy for the entire collection of at-
oms is written as

U�n�r�� = −
1

2�
�,i
� ��,i

� �r��2��,i�r�d3r

+
1

2�
i,i�
� ni�r�ni��r��

�r − r��
d3rd3r� + �

i
� �ek�n�r��

+ exc�n�r�� − ek�ni�r���ni�r�d3r

− �
i,i�
� Zi�ni�r�

�r − Ri��
d3r +

1

2�
i,i�

ZiZi�

�Ri − Ri��
, �37�

where �� includes only occupied levels and, for simplicity,
we assume each level is occupied by one electron. Applying
the definition of force on the jth atom,

F j � −
�U�n�r��

�R j
, �38�

to the energy expression in Eq. �37�, we find

F j =
1

2�
�,i
� 	 ���,i

�

�R j
�2��,i +

���,i

�R j
�2��,i

� �d3r

+ �
i
� �− ves�n� − vk�n� − vxc�n� + vk�ni��

�ni

�R j
d3r

+ Zj�
i
	−� �r − R j�ni

�r − R j�3
d3r +

ZiR j

�Ri − R j�3
� , �39�

where the Green’s theorem has been applied to the second
term involving �2, the Hartree and external potentials are
combined in ves�n�, expressions for functional derivatives
�v�n�=e��n�n+e�n�� are employed, and, for simplicity, the
dependence of n and ni and � on r is not shown. The last
term is recognized as the Zj times E j, the electric field at Rj,
and the sum of potentials in the second line is simply vi.
Thus, substituting ni=����,i

� ��,i we have

F j =
1

2�
�,i
� 	 ���,i

�

�R j
�2��,i +

���,i

�R j
�2��,i

� �d3r

− �
�,i
� vi�r�	 ���,i

�

�R j
��,i + ��,i

� ���,i

�R j
�d3r + ZjE j .

�40�

If we add

0 = �
�,i

�

�R j
� ��,i

� ��,id
3r �41�

and set − 1
2�2+vi=Hi, then we have

F j = R�− 2�
�,i
� ���,i

�

�R j
�Hi − ��,i���,id

3r� + ZjE j . �42�

If Schrödinger’s equations are satisfied everywhere, then F j
is just the Hellman-Feynman47,48 force, ZjE j. The first term is
analogous to the Pulay49,50 correction of the KS formulation
and may be further developed by substituting the expanded
form of the wave function, ��,i=�kc�,k

�i� �k
�i�. We find

F j = − 2R��
�,i,k

�c�,k
�i��

�R j
�Hi − ��,iSi�c�

�i� +� c�,k
�i����k

�i��

�R j

��Hi − ��,i���,id
3r� + ZjE j . �43�

The first term is zero from Eq. �21� and the second term is
zero unless i= j. Thus, we have
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F j = − 2R�� ��,j
� �Hj − ��,j���,jd

3r� + ZjE j , �44�

where

��,j = �
k

c�,k
�j� ��k

�j�

�R j
. �45�

Having eliminated the i� j terms, we find it more convenient
to work with Eq. �42�. The terms involving ��,i turn out to be
zero, and those involving Hi are real, so we have, finally,

F j = − 2�
�
� ���,j

�

�R j
Hj��,jd

3r + ZjE j . �46�

IV. SOME SIMPLE MOLECULES

The purpose of this section is to demonstrate two impor-
tant features of SCAD using results for some simple mol-
ecules. �1� For a few nontrivial systems the SCAD and KS
methods are equivalent because of zero overlap charge den-
sity. For these systems SCAD succeeds by putting the charge
of one atom at the nucleus of another. �2� For other �most�
systems the repulsive potential derived from the overlap ki-
netic energy prevents SCAD from putting the charge density
associated with one atom near the nucleus of another.

Obviously, SCAD can be applied to molecules as well as
solids. For molecules such as HF, CH4, and H2O, the SCAD
and KS methods become equivalent. For these systems the
lowest-energy eigenvalue at the H site is higher than the
highest occupied level of the F, C, or O sites. Thus, SCAD
insists on treating these molecules as F−1, C−4, and O−2 ions
in the presence of one, four, and two proton potentials, re-
spectively. Since the protons have no electrons, the Tk over-
lap term does not contribute to the energy and the SCAD and
KS methods become equivalent. If the protons are moved far
enough away from their equilibrium positions near the nega-
tive ions, at some point, it becomes energetically favorable
for charge to flow back to the proton to form the hydrogen
atom. This charge-flow effect and the convergence of SCAD-
derived properties to the results obtained from the KS
method are demonstrated in the work of Ossowski et al.40 for
the H2O molecule.

In general, SCAD calculations do involve Tk. Thus, unless
Tk is the divine functional, a SCAD calculation does not
converge to the KS result. While the basis functions on a
given site may be sufficiently general to move charge to a
neighboring site, this is prevented by the Tk contribution to
the overlap potential. To illustrate this, consider a pair of He
atoms, say, He1 and He2. For the sake of discussion, suppose
that we can put a complete set of basis functions centered on
either He1 or He2 or both. Then, in principle, we could use
the complete basis on either He1 or He2 and achieve the KS
result by treating the He pair as a He−2 ion �say, He1� in the
presence of a He+2 potential �He2�. The lowest energy-
eigenvalues would be nearly fourfold degenerate, corre-
sponding to the two doubly degenerate 1s levels of He. Two
of the wave functions would be centered on the He1 and two
would be centered around He2, even though, formally, all

four would be associated with He1. There would be no Tk
contribution simply because we chose to associate all the
charge with He1.

Next, we attempt to illustrate these points with specific
results for the helium atom pair. In Fig. 1 the KS results for
energy versus atom separation are compared with SCAD re-
sults for L=2 and L=8. The KS calculations were carried out
using the code NRLMOL.51–57 Both methods used the Perdew
and Wang58 local-density approximation �LDA� for exchange
and correlation. The NRLMOL He basis is constructed from
local s-, p-, and d-type Gaussian-based orbitals. The decay
parameters are optimized as discussed by Porezag and
Pederson59 with the smallest value of 0.183 /bohr2. For com-
parison the smallest SCAD decay parameter is 0.014 /bohr2.

The outer most peak for the SCAD bases is at rc=6 to
ensure sufficient overlap of basis functions with the neigh-
boring atom. SCAD results for L=6 are indistinguishable
from those for L=8 on the scale in Fig. 1. We note that the
L=2 and L=8 results merge together at large separation, as
expected, when the atoms become nearly isolated from each
other. For large separation the SCAD values are a little lower
in energy than the KS values, which implies that, for isolated
atoms, the SCAD basis is slightly superior to that selected
for the KS calculation. In general, the KS results are more
accurate than SCAD. Thus, the lower energy SCAD values at
small separation are due to the Tk approximation. Actually,
neither method is very accurate for the helium pair because
they both neglect the van der Waals interaction.

We may transfer charge from one atom to another by sim-
ply changing the eigenvalue occupation numbers from that
of the ground state. Of course, if charge is moved to a higher
energy level, the total energy will increase. For this illustra-
tion the interatomic separation is fixed at 4 bohr. With two
electrons on each atom, the two lowest SCAD eigenvalues
are −0.569 73 and 0.007 78 for L=2 and −0.569 89 and
0.007 21 for L=8. For comparison, the three lowest KS val-
ues are −0.586 04, −0.554 62, and 0.199 54. Clearly, U will
increase as electronic charge is taken from the �−0.57 en-
ergy state to the �0.01 energy state because, to achieve
minimum U, one must occupy the lowest-energy states of the
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FIG. 1. Total energy U as a function of interatomic separation
for a helium atom pair, obtained using the KS code NRLMOL and
the SCAD method with L=2 and L=8.
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system. On the other hand, if both electrons are transferred,
the Tk term becomes zero, and, in principle, SCAD should
give the KS result. In practice, the bases we use are not
general enough for this to happen accurately, but we can
illustrate the trend.

In Fig. 2 U is shown as a function of charge transfer from
one helium to the other. For small charge transfer there is
little change in U with increasing L and SCAD rapidly con-
verges to a result for U and charge density that is uniquely
governed by Tk. If Tk were the divine functional, then the
SCAD value for U and the total charge density would equal
the KS result, even though the occupied eigenvalues for
SCAD and KS would differ. For our example, the two occu-
pied KS eigenvalues differ by 0.031 hartree, while the two
occupied SCAD eigenvalues �one for each site� are necessar-
ily equal by symmetry. At the other extreme, when all charge
is transferred to one atom, U is lowered with increasing L as
the charge assigned to one atom is placed at the other atom
owing to increasing flexibility in the basis gained by increas-
ing L. The second lowest occupied energy level, which had
the value �0.07 for zero charge transfer, becomes �−0.20
for L=2 and �−0.36 for L=8, presumably headed for the KS
value of �−0.55 as L→
 and radial part of the basis func-
tions become complete. Somewhere between zero �q=0� and
complete �q=2� charge transfer, the converged SCAD U�q�
has a maximum at the crossing of the lowest eigenvalue of
He+q and the second-lowest eigenvalue of He−q, in accord
with Janak’s theorem.

The charge-transfer effect is further illustrated in Fig. 3
where the electron density is plotted as a function of position
along the line passing through the two nuclei. With no charge
transfer any changes in the densities with increasing L are
not distinguishable on the scale in Fig. 3. Clearly, it is the
potential due to Tk that keeps the ith charge on the ith atomic
site because the basis is flexible enough to move charge to
the neighboring site if that is required to lower the energy.
This is apparent, from the fact that when we artificially as-
sign all charge to one nucleus, charge moves back to the bare
nucleus, increasingly, as L increases.

In summary, the SCAD method formally becomes the KS
method when Tk=0, as one would expect, and in practice,
they give the same answer as the set of basis functions be-
comes complete. However, for Tk�0, SCAD results do not
necessarily approach KS results as the bases become com-
plete. The SCAD basis functions may be general enough to
move charge to neighboring sites, but the potential due to Tk
can prevent that from happening, no matter how complete
the basis. SCAD converges to a unique result determined by
Tk. If Tk is divine, the U and the total charge density agree
with a KS calculation, by definition. If Tk is less than divine,
SCAD results differ from KS results, and the discrepancies
are a measure of the error resulting from the approximation
for Tk.

V. ALUMINUM FLUORIDE

In this section we analyze results of SCAD applied to
AlF3. Fluorides are ideal compounds on which to test SCAD
because they have the least amount of covalent-type bonding
in a KS calculation. Moreover, AlF3 provides an interesting
test for DFT methods in general, owing to the presence of a
structural transition that is quite sensitive to volume. This
was emphasized in a recent paper,41 which included SCAD
calculations based on the strictest Schrödinger equation con-
straint discussed in Sec. III B. As expected, the lowest en-
ergy electronic configuration for AlF3 occurs when three
electrons transfer from aluminum to the three fluorine atoms
to form Al+3 and F−1 ions.

A. Convergence

The cubic phase of AlF3 has the ReO3 or D09 structure. It
has a simple-cubic lattice with aluminum ions at the cube
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FIG. 2. SCAD values for U as a function of charge transfer from
one atom to the other in a helium atom pair with interatomic sepa-
ration of 4 bohr.
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FIG. 3. Electron density for a pair of helium atoms as a function
of position along the bond direction, r. Nuclei are at r�2. The solid
lines give the two SCAD atom densities with zero charge transfer
using L=6. The dotted lines denote results when two electrons are
transferred from the atom at r=2 to the one at r=−2 with L=2, 4, 6,
and 8 showing increasing amount of charge moved back the r=2
nucleus.
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center and fluorine ions on the cube faces—like the perov-
skite structure but without cube-corner ions. Obviously, we
would like to choose rc as small as possible without signifi-
cantly affecting the results. The total energy U is found to
converge abruptly with increasing cutoff radius rc. This is
illustrated in Fig. 4. Clearly, the aluminum basis is converged
for rc�1.3 and the fluorine basis is converged for rc�3.4.
Curves for aluminum bases are identical on this scale for all
L�1. The small value of rc for converged aluminum bases
results from the fact that the highest occupied level is the
Al�2p� state, which is more than 2 hartree lower than the
highest occupied level of the system, a fluorine 2p level. As
a result, the Al+3 ion is small and spherical in shape. The
relatively small variations in U beyond the converged values
for rc result from small differences in the bases. As rc in-
creases, the number of radial functions must increase by one
at some point to maintain �approximately� the designated
value of t. Small variations in U resulting from such changes
in the basis are negligible when considering energy differ-
ences due to structural variations.

Another convergence issue to consider is the cutoff radius
Rc, beyond which the potential can be treated as point mul-
tipoles. Generally speaking, we find Rc must be about two
times the minimum acceptable value of rc for the largest ion,
F−1 in our case. This is illustrated in Fig. 5, where U is
plotted as a function of Rc. In this figure L refers to the bases
for fluorine. Both curves employ �L=2 and rc=2� for alumi-
num and rc=4 for fluorine. Change in these parameters
within the tolerances shown in Fig. 4 does not produce any
significant change in the results shown in Fig. 5. Clearly, at
least 24 neighbors must be contained within Rc to obtain
acceptable results. The transition to 40, 52, 62, 78, and 86
neighbors results in changes of approximately 11, 7, 5, 5, and
2 �hartree, respectively. The SCAD program can apply
structural distortions keeping a fixed neighbor list or allow it
to change with the distortion. Subsequent results for AlF3 use
Rc sufficient to contain 40 �36� neighbors for fluorine �alu-
minum� ions, although larger values were applied to test key
results.

Next we consider convergence of U as regards numerical
integrations over solid angles �see Appendix B�. To illustrate
this type of convergence we focus on the U as a function of
volume, or equation of state, for a selected value of L. The
equation of state for L=6 is plotted in Fig. 6 using several
different values of N� to demonstrate convergence with in-
creasingly accurate � quadrature. We find that N�=146 is
adequate for most purposes. Subsequent results for AlF3
were obtained using N�=194.

The final convergence issue relates to how SCAD results
depend on increasing values for L. This is examined below
with the main focus on structural distortions associated with
the phase transition in AlF3. Fortunately, we find that reason-
ably accurate results are achieved for L values of about 4 or
5, for which the Hamiltonian matrices have a rank just 200
or 300. Thus one could begin to address more complicated
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issues, such as surface effects related to catalysis, with rela-
tive ease. We believe that using much greater L values would
be unlikely to give more accurate results unless higher order
corrections to the Thomas-Fermi functional were also in-
cluded.

B. Cubic structure results

The equilibrium lattice parameters a0 and bulk modulus B

B � V
d2U

dV2 �47�

for the cubic structure are shown in Fig. 7 as a function of L.
The small differences compared with those previously
published41 result from the different Lv constraints em-
ployed, as discussed in Sec IIIB.

Next we consider polarization induced by an electric field
and by the displacement of ions. It is a simple matter to
compute the polarization, or, strictly speaking, the change in
polarization, when the total charge density is expressed as a
sum over contributions from ions with fixed monopoles.39

This is the case for the SCAD description of the charge den-
sity in AlF3. The Born effective charge matrix is defined by

Z��
� �k� � V

�P�

�u��k�
, �48�

where P� is the �th component of the polarization and u��k�
is the �th component of the displacement of the kth atom.

The high-frequency dielectric constant �
 is calculated
following the method used in the previous SCAD
calculations.34,35 Specifically, we compute the polarization
�P� induced when a constant electric field �E� term is added
to the potential of each atom in the unit cell. This simple
“one-cell” approach was found to give reasonably good val-
ues for �
 with susceptibility given simply by P=�E, where
E is the external, or applied, constant field. In reality, of
course, E needs to be the total macroscopic electric field. In

the one-cell approach, one can argue that any contributions
to the total electric field arising from induced polarization are
effectively removed by periodic boundary conditions. Any
complications arising from the constant field are nullified by
having a basis with limited radius. A more rigorous approach
would be to apply an electric field to a finite sized crystal or
apply an electric-field wave. In either case the total macro-
scopic field would then include contributions from the in-
duced polarization.

Results for Z� and �
 are shown in Fig. 8. The two non-
zero elements of Z� for the fluorine ion are denoted by Z��FI�
and Z��FII� where I �II� indicates motion perpendicular �par-
allel� to nearest aluminum neighbor direction. We find results
for Z��Al� �not shown� obey the sum rule Z��Al�=−2Z��FI�
−Z��FII� to within about �0.003. These quantities are
needed to calculate optic mode frequencies in the long-
wavelength limit.

C. Phonons in cubic AlF3

In this section we report results obtained using the SCAD
program and the frozen-mode package FROZSL �Ref. 60� to
compute phonon frequencies. The FROZSL code uses the da-
tabase of Stokes and Hatch61 to determine the simplest struc-
tural distortions required to compute energy differences
needed to calculate phonon frequencies for any selected irre-
ducible representation. Here we limit ourselves to modes
with wave vectors q at the �, X, M, and R points in the
Brillouin zone. The nonregular part of the dynamical
matrix1,62,63 is automatically included in the � phonon mode
calculation if the Z� and �
 matrices and the wave vector
direction are provided as input to FROZSL. The nonregular
contribution splits the threefold degenerate �4

− mode into a
twofold-degenerate transverse optic �TO� mode and a singly
degenerate longitudinal-optic �LO� mode. Daniel et al.64 em-
ployed a rigid-ion �RI� model, with parameters chosen to fit
Raman frequencies in the low-temperature phase, to calcu-
late phonon-dispersion curves for AlF3 in the cubic phase.
Zinenko and Zamkova65 reported dispersion curves based on
the parameter-free extended Gordon-Kim model of Ivanov
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and Maksimov,23 which has polarizable ions and potential
induced breathing �PPIB�. They found �
=1.86 and fluorine
Z� values of −0.66 and −1.76, which are close to our values
�Fig. 8�. Our results for phonon frequencies at symmetry
points in the Brillouin zone are compared with those of the
RI and PPIB models in Table I. The SCAD results are the
average of L=4 5, 6, and 7 values, obtained using the equi-
librium lattice parameters �Fig. 7� and the � uncertainties
give the maximum difference found among the four averaged
values. Other numerical uncertainties within SCAD are ex-
pected to be less than that produced by the variation in L.

The comparison of frequencies among the models is rea-
sonably good except for the fact that the RI and PPIB models
have soft, but stable, M2

+ and R5
− modes, while SCAD pro-

duces unstable values for these modes. The frequency of
these soft and/or unstable modes depends strongly on vol-
ume. Thus, the error in the frequency of these modes may be
attributed to a corresponding error in the equilibrium
volume.41

D. Low symmetry structure of AlF3

The unstable R5
− mode may “freeze” into lower symmetry

structures with space groups R3̄c �167�, I4 /mcm �140�, or

Imma �74� and the M2
+ mode may freeze into Im3̄ �204�,

I4mmm �139�, or P4 /mbm �127�.61 Im3̄ and I4mmm have 4
f.u./unit cell while the rest have 2 f.u./unit cell. Using SCAD
with L=4 we relaxed AlF3 in all six of these structures and
find the energy is lowered from the cubic structure by 63, 18,
38, 44, 35, and 18 meV/f.u. for space-group numbers 167,

140, 74, 204, 139, and 127, respectively. Since the energy is

lowered substantially more for R3̄c than the rest, and it is
known to be the low-temperature structure, the other struc-
tures are not considered further.

The SCAD energy changes for L=2 to L=10 are plotted

as a function of distortion to the R3̄c structure in Fig. 9.
Lattice vectors are fixed by the cubic lattice with a=a0.
Similar curves for L=11 and L=12 lie between the L=9 and
L=10 curves, very close to the L=7 curve. The energy is
symmetric about the Wyckoff value 0.5 �0.75�, which gives

TABLE I. Frequencies �in cm−1� for AlF3 in the cubic structure at the �, R, M, and X points of the
Brillouin zone: from the SCAD, RI �Ref. 64�, and PPIB �Ref. 65� models. Irreducible representation labels
are those of Miller and Love �Ref. 66� �ML� with degeneracies in parentheses.

� R

ML SCAD RI PPIB ML SCAD RI PPIB

4−�2� 275�14 375 222 5+�3� 516�12 445 485

LO�1� 510�4 475 307 2−�1� 718�6 670 645

4−�2� 586�17 650 521 3−�2� 396�24 475 372

LO�1� 690�17 770 651 4−�3� 332�4 380 246

5−�3� 200�4 225 194 5−�3� 56i�13i 50 58

M X

ML SCAD RI PPIB ML SCAD RI PPIB

1+�1� 336�4 400 250 1+�1� 255�4 275 225

2+�1� 54i�14i 50 65 1+�1� 578�10 660 525

3+�1� 396�24 480 370 2+�1� 208�5 225 205

4+�1� 671�9 625 520 5+�2� 107�5 110 115

5+�2� 228�4 250 205 5+�2� 254�11 330 225

2−�1� 190�10 220 185 5+�2� 577�18 640 520

2−�1� 574�20 645 585 3−�1� 609�12 570 475

5−�2� 232�6 255 210 5−�2� 229�8 250 200

5−�2� 536�11 540 455
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FIG. 9. SCAD results for energy change of 2 f.u. of AlF3 from

the cubic a=a0 structure to the R3̄c structure as a function of Wy-
ckoff parameter.
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the cubic structure in the hexagonal �rhombohedral� setting.
The corresponding energy changes are about four times
larger when the lattice is allowed to relax along with the
Wyckoff parameter. These changes are shown in Table II.

Our results are in reasonably good agreement with the
experimental room-temperature structure. The DFT results of
Chen et al.67 show a substantially larger lattice distortion,
which lowers the energy by 6.5 times the cubic lattice result.
This may be due to the fact the experiments were carried out
at room temperature. Other KSLDA results41 obtained using
the LAPW method give a0=6.75 bohr, somewhat higher
than the value of Chen et al.67

We also calculated the phonon frequencies at � for the

relaxed R3̄c structure for comparison with available experi-
mental values and KS results �Table III�. The SCAD results
are reported, as in Table I, as the average of L=4 5, 6, and 7
values. However, the contribution to the �− mode frequen-
cies from the nonregular part of the dynamical matrix is not
included. We note that the SCAD result for the highest-
frequency Raman-active mode is substantially �20%� too
low.

VI. SILICON CARBIDE

The SCAD method is expected to work best for highly
ionic compounds, such as fluorides, and we have seen that it

does rather well for AlF3. On the other hand, silicon carbide
has both elements in the same row of the periodic table,
raising the question: Which way would the charge like to
flow �if at all� to form an ionic bond?

First, we examine the energy as a function of charge
transfer for various lattice parameters a in the B3 �sphalerite�
structure in a range larger than the equilibrium value a0.
These results illustrate Janak’s theorem and show the SCAD
monopole charges for a�a0 are Si+4 and C−4. Next, we com-
pare the electronic structure, a0 and the bulk modulus B with
results obtained from a KS band-structure calculation using
the LAPW method. We then make similar comparisons for
phonon frequencies, including the LO-TO splitting. Finally,
we compare U for the B3 structure with that of the B1 and
wurtzite structures.

In several places in this section SCAD results are com-
pared with KS results. Unless otherwise stated, the KS re-
sults were derived using the full potential linearized aug-
mented plane-wave �LAPW� method68–70 with an RKmax

value71 of 8.5 and muffin-tin radii of 1.4 bohr for each atom;
which produces �225 plane waves per atom at the equilib-
rium volume. Both SCAD and LAPW calculations use the
LDA of Hedin and Lundqvist72 for exchange and correlation
energies.

TABLE II. Energy change ��U� and volume change ��V� of 2 f.u. of AlF3 upon relaxing from the cubic

structure �a0� to R3̄c, the e site Wyckoff parameter x, and both hexagonal �a and c� and rhombohedral �ar and
�r� lattice parameters.

Method
a0

�bohr�
�U

�meV�
�V

�bohr3� x
a

�bohr�
c

�bohr�
�r

�bohr�
�r

�deg�

L=4 6.762 126 45.6 0.412 9.214 23.372 9.434 58.47

L=5 6.775 34 28.3 0.433 9.351 23.518 9.518 58.84

L=6 6.767 70 40.8 0.417 9.254 23.419 9.460 58.57

L=7 6.758 71 34.7 0.424 9.268 23.493 9.485 58.50

KSLDAa 6.708 93 118.7 0.402 8.653 22.440 8.995 57.5

Expt.b 0.428 9.317 23.520 9.508 58.68

aFrom Ref. 67.
bFrom room-temperature x-ray data of Daniel et al. �Ref. 64�.

TABLE III. Frequencies �in cm−1� for AlF3 in the R3̄c structure at the � point of the Brillouin zone: from
the SCAD and KSLDA �Ref. 67� calculations and room-temperature Raman �Ref. 64� measurements. Irre-
ducible representation labels are those of ML �Ref. 66� with degeneracies in parentheses.

�+ �−

ML SCAD KSLDA Expt. ML SCAD

1+�1� 180�14 205 158 1−�1� 246�9

2+�1� 340�8 361 1−�1� 516�11

2+�1� 688�8 691 2−�1� 283�8

3+�2� 109�9 182 98 2−�1� 560�14

3+�2� 358�8 350 383 3−�2� 209�8

3+�2� 384�21 487 481 3−�2� 296�12

3−�2� 511�12

3−�2� 573�15
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A. Charge transfer

Consider a silicon atom and a carbon atom isolated from
each other. Each have two valence electrons, which we oc-
cupy equally among the Si�3p� and C�2p� states, respec-
tively. The Si�3p� level is slightly higher in energy than the
C�2p� level. We know from Janak’s theorem42 that U will be
lowered by transferring some amount of electrons from the
Si�3p� states to the C�2p� states. We find the minimum en-
ergy occurs when �0.07 electrons are transferred, and, of
course, the Si�3p� and C�2p� eigenvalues become equal at
that value of charge transfer.

Results in Fig. 10 show that increasingly more charge
must be transferred from silicon to carbon in the B3 structure
as a is reduced in order to achieve the minimum U. For these
calculations we use L=6 and rc=5 to generate both silicon
and carbon basis functions. The top panel �a=16� shows that
the minimum energy is produced by a charge transfer of
�0.5 at the first point where the Si�3p� and C�2p� levels
cross or become degenerate. The second crossing �degen-
eracy� corresponds to a maximum in U near �1.9. The sharp
increase in U for transfers �2 results from the fact that the
Si�3p� electrons have all been transferred and additional
transfer must come from the deeper Si�3s� levels. The
middle panel �a=12� shows the minimum U with two elec-
trons transferred is nearly the same as that with four elec-
trons transferred. At the minimum for two electrons trans-

ferred U has a discontinuous slope, which, again, results
from the fact that all of the Si�3p� electrons have been trans-
ferred and further transfer must come from the deeper Si�3s�
levels. The maximum at �3.2 corresponds to the crossing
�degeneracy� of the Si�3s� and C�2p� levels. A further de-
crease in lattice parameter to a=10 moves this maximum
along with the level crossing almost all the way to the two-
electron-transferred value. For a�10 the energy decreases
monotonically with charge transfer from zero to four elec-
trons. For a�12, SCAD finds the lowest U results from
complete charge transfer, producing Si+4 and C−4 ions.

When no charge is transferred from the atoms �left side of
Fig. 10�, U changes very little for a�10. This indicates the
value of rc used in the calculation was sufficiently large for
convergence. Otherwise, if large r basis functions were
needed, then there would be more substantial atomic overlap,
causing a greater change in energy in the range 10�a�16.
On the other hand, there is a large change in energy in this
range for the fully ionic configuration �right side of Fig. 10�,
owing a large change in the Madelung energy.

B. Electronic Structure

We have applied the KS-LAPW method to calculate the
density of states �DOS� for comparison with the eigenvalues
determined by SCAD, both determined for the B3 structure.
Approximate equilibrium lattice parameters were used for
both calculations, a=8.2 for KS and a=8.0 for SCAD. For
this comparison we use the same SCAD basis employed to
study charge transfer, namely, L=6 and rc=5 for both silicon
and carbon. The KS-derived DOS and the SCAD eigenval-
ues are plotted in Fig. 11. The DOS has been shifted so that
the SCAD carbon 2s level is centered, approximately, in the
corresponding band. The next higher C�2p� level also lies
approximately in the center of the Cp band. The next lowest
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band occurs at −3.54 hartree, which compares with the
Si�2p� SCAD derived value of −3.35 hartree. The Cs- and
Cp-decomposed DOSs are based on muffin-tin radii of 1.65
bohr for both silicon and carbon and represent the largest
contributions to the total DOS in those regions. The second
largest contribution �not shown� in the Cs �Cp� region is
seven �six� times smaller and has Sis �Sip� character. The
character of the conduction band has silicon s, p, and d and
carbon s, p, and d in relative amounts of 0.23, 0.44, and 0.20
and 0.30, 1.08, and 0.10, respectively. The LAPW band gap
is 1.43 eV while the difference between highest occupied and
lowest unoccupied SCAD levels is 6.3 eV. Of course, SCAD
does not have bands, and hence, no well defined band gap.
Nevertheless, we note that the SCAD Cs and Cp levels fall
near the center of the corresponding LAPW bands, and
higher SCAD levels fall in the LAPW conduction band. The
SCAD levels in the conduction-band region can depend on
the particular basis selected, even among bases that are well
converged with respect to U. For example, we note that U
converges for values of rc for silicon that are quite small,
�1 bohr. However, using rc=1 for silicon removes most of
the silicon levels from the conduction region. Since they are
not occupied, it does not effect the value of U.

A convergence analysis for rc similar to that shown in
Sec. V A for AlF3 was performed. Results show convergence
for rc�1.2 bohr for the silicon basis, and about rc
�3.4 bohr for the carbon basis. We increased these values
by 0.8 to generate the results reported here. Changes pro-
duced by increasing L�2 for silicon are very insignificant,
owing to its tightly bound spherically shaped charge density.
The cutoff radius �Rc� beyond which electrostatic contribu-
tions are included as point poles is selected to include 46
neighbors.

C. Cubic-structure results

The equation of state for the cubic �B3� structure of SiC
computed using SCAD with increasing values of L for the
carbon basis is compared with the KS result derived by the
LAPW method in Fig. 12. The SCAD energy minimum con-
verges to about 0.4 hartree above the KS value and a few
percent smaller equilibrium volumes. Results for the equilib-
rium lattice parameter a0 show a small peak in a0 vs L at
L=6 with only small �less than 1%� changes for L�4. Thus,
for the remainder of this section we limit ourselves to results
obtained using L=5, 6, and 7.

Values for a0, bulk modulus B, Born effective charge Z�,
and high-frequency dielectric constant �
 are listed in Table
IV. The major errors in the SCAD results are in the values
for a0, which are too small, and in the values for �
, which
are too large. Phonon frequencies in B3 SiC were obtained
from SCAD energy differences using the FROZSL �Ref. 60�
method described above for AlF3. They are listed in Table V
along with results from KS calculations and experiment. The
splitting of the LO from the TO mode at � comes from the
nonregular part of the dynamical matrix. In this case, the
splitting is given by

�LO
2 − �TO

2 =
4�Z�2e2

V��


, �49�

where V is the volume per unit cell, � is the reduced mass,
and e the electronic charge. We can test this result by com-

puting phonon frequencies for wave vectors near but not ex-
actly at q=0. For this test L=6 energies for structural distor-
tions provided by FROZSL with q in the �1,1,1� direction are
employed. This choice of wave vector direction provides fur-
ther comparison with experimental results.

SCAD frequencies for wave vector q in the �111� ��
direction are compared with available experimental results in
Fig. 13. The agreement is generally quite good. The LO fre-
quency at q=0 was computed using calculated values for Z�

and �
. Notice that this value connects smoothly to the rest
of the LO branch, which, does not explicitly depend on Z�

and �
.

D. Energy of other structures

In addition to the zinc-blende structure we have computed
the energy of SiC in the wurtzite and rocksalt structures for

TABLE IV. Equilibrium lattice constant a0, bulk modulus B,
Born effective charge Z�, and high-frequency dielectric constant �


for SiC in the B3 structure.

Method
a0

�bohr�
B

�Mbar� Z� �


L=5 7.950 2.60 2.87 8.02

L=6 7.989 2.30 2.72 8.01

L=7 7.948 2.32 2.83 7.94

KS-LDAa 8.195 2.26

KS-LDAb 8.239 2.10 2.72 6.97

Expt.c 8.239 2.24 2.70 6.52

aLAPW with Hedin-Lundqvist �Ref. 72� LDA.
bLAPW results of Wang et al. �Ref. 74� with Wigner �Ref. 75�
LDA.
cFrom Wang et al. �Ref. 74� and references therein.
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comparison with KS derived energy differences for these
structures. For both SCAD and KS there is only a small
energy difference between that of the zinc-blende and wurtz-
ite structures. However, SCAD favors the wurtzite structure
by 15, 30, and 13 meV/f.u., respectively, for L=5, 6, and 7,
while the LAPW-KS calculations of Bernstein et al.78 favors
the zinc-blende structure by �5 meV. The energy of the
rocksalt structure is much higher than the B3 or wurtzite
values for both SCAD and KS. However, the values obtained
differ significantly, �2.6 eV for SCAD, and �1.3 eV for
KS.

VII. DISCUSSION

In this section we discuss the SCAD method, in general.
Our remarks are based on the contents of this paper and on
earlier published and unpublished results as well. SCAD is a
density functional method that does not depend on any as-
sumptions beyond the form of exchange, correlation, and
kinetic-energy approximations employed. Results obtained
so far make use of the Thomas-Fermi approximation to ac-
count for kinetic energy of overlapping densities, which is
expected to be the greatest source of error.

There are two fundamental convergence parameters gov-
erning the angular and radial variation of charge densities at
each site, L and rc. They are the maximum value of l used in
the spherical harmonic part of basis functions at each site and
rc gives the radial extent of the bases. For any given L value,
SCAD converges quickly with increasing rc. In principle,
converged values of rc could depend on L or vice versa, but
we have not observed this to be the case. Convergence with
respect to L can be difficult if Lv, the maximum l in the
potential, is not constrained by satisfaction of the
Schrödinger equation. A satisfactory method to accomplish
this, discussed in detail in Sec IIIB, limits the value of Lv to
that of L. With this method, we believe acceptable conver-
gence for most systems can be achieved for L in the range of
4–6. We have not observed significant benefits from using
much higher L values, except for special cases, such as the
water molecule, that have no overlap kinetic energy. This
suggests that higher-order expansions for kinetic-energy
functionals will be needed to achieve significant improve-
ment in accuracy by using much higher L values.

While SCAD is most reliable for ionically bonded sys-
tems it does rather well for many systems, which are usually
considered to have large amounts of covalent bonding. This
is true for SiC, for which results are presented in detail
above. Bonding charge between ions in SiC is usually con-
sidered to be a covalent effect, resulting from a linear com-
bination of orbitals on neighboring sites. In the SCAD
method the monopole charges are found to be Si+4 and C−4

with bonding charge resulting from nonspherical distortions
of the C−4 ions. Because the monopole charges are well de-
fined and fixed by the SCAD method, a straightforward cal-
culation of polarization and related quantities is permitted.39

We find that SCAD errors, or, by implication, errors due
to the use of the Thomas-Fermi approximation, are signifi-
cantly greater when charge-density overlap involves d-level
valence electrons. For example, when d electrons are not
present as valence states, as is the case for alkali halides,
lattice parameters are predicted fairly accurately, typically a
few percent too small.35 On the other hand, the lattice param-
eter for AgCl is too large by about 15%. It is a general trend
that equilibrium volumes are predicted substantially too large
when d electrons occupy valence states.

Another trend in SCAD errors can be seen by comparing
the relative energies of a compound in various crystal struc-

TABLE V. Phonon frequencies �in cm−1� for SiC in the B3 structure at �, X, and L points of the Brillouin zone: SCAD results for selected
values of L for comparison with KS and experimental results.

�TO �LO XTA XLA XTO XLO LTA LLA LTO LLO

L=5 825 1001 397 668 785 851 291 625 777 876

L=6 775 941 381 624 740 778 281 601 730 859

L=7 802 980 392 631 749 840 274 598 750 868

KSa 774 945 361 622 741 807 257 601 747 817

KSb 783 956 366 629 755 829 261 610 766 838

Expt.c 796 972 373 640 761 829 266 610 766 838

aLAPW results of Wang et al. �Ref. 74�.
bPlane-wave pseudopotential method �Ref. 76�.
cBased on Raman data of polytypes �Ref. 77�.
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FIG. 13. Comparison of SCAD results for phonon frequencies
with experimental values for wave vector q along the �111�
direction.
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tures with KS results. Specifically, distortions to lower sym-
metry structures tend to have energies too low compared to
the higher symmetry structures. For example, we have seen
that the SiC wurtzite structure is overstabilized compared to
the zinc-blende structure and both are overstabilized com-
pared to that of the rocksalt structure. Another example is
MgO, where SCAD produces rock salt and zinc-blende en-
ergies that are nearly degenerate, whereas the KS result has
rock salt energy lower by about 0.1 eV/atom.

Other examples showing this trend �too low energy for
lower symmetry structures� are compounds that have dis-
torted perovskite structures—SCAD tends to overestimate
the size of instabilities involved in such distortions. In par-
ticular, results for SrTiO3 show a highly unstable ferroelec-
tric mode. In reality, the ferroelectric mode should be soft,
but stable, while an unstable zone-boundary mode produces
the observed transition to a distorted perovskite at low tem-
perature. In this case, the unstable ferroelectric mode can be
stabilized with good overall agreement with experiment by
simply scaling the Thomas-Fermi energy by a factor of
�1.04, enough to achieve the correct equilibrium volume.27

Results for BaTiO3 show a similar problem. Specifically,
SCAD predicts a ferroelectric instability in BaTiO3 that is
too large, unless the Thomas-Fermi energy is scaled similarly
to the calculations for SrTiO3. Ironically, the SCAD model,
which has fully ionic monopole charges, tends to exaggerate
ferroelectric instabilities, while the KS model suggests a co-
valent bonding picture is required to produce ferroelectric
instability.79 This apparent contradiction stems from the fact
that two different methods �SCAD and KS� are used to rep-
resent the total charge density. Predicting the correct size of
the ferroelectric instability is a challenging problem for the
KS model80,81 as well as SCAD. As mentioned, some im-
provement in SCAD results simply from scaling the Thomas-
Fermi form to achieve the correct equilibrium volume. Of
course, a more satisfactory solution would be to use a better
kinetic-energy functional at the outset. This is perhaps the
most important task for future development of the SCAD
method.

Some important systems are even more problematic for
SCAD in its present form. Silicon is a good example. If we
force the two silicon atoms �diamond structure� to be equiva-
lent by symmetry constraints and occupy the three degener-
ate p levels equally, then we obtain a reasonable value for
cohesive energy, �5.5 eV /atom �experimental value of
�4.6�. However, other properties, such as phonon frequen-
cies are seriously wrong. Moreover, if the atoms are not con-
strained to be equivalent by symmetry, then the cohesive
energy is approximately doubled, either by allowing four
electrons to transfer from one atom to another, creating Si+4

and Si−4, or by allowing the neutral atoms to distort to a
symmetry lower than that of diamond. In either case, the
results obtained for phonon frequencies have large errors.
Surprisingly, the Si+4Si−4 ionic picture does not produce
large errors for the splitting of the longitudinal and trans-
verse optical mode frequencies, which, of course, is zero for
silicon. As long as L is sufficiently large when the ion sub-
lattices are displaced, the negative ions deform with large
enough dipole moments to approximately cancel the contri-
bution from displaced monopoles, causing a nearly zero

value for Z�. We suspect that silicon puts a greater demand
on the approximation for overlap kinetic energy than ionic
systems and speculate that, given a more accurate kinetic-
energy functional, these different pictures for silicon would
produce essentially the same results for total charge density
and energy.

With caution, SCAD can be applied to metals. For
CaV4O9, the highest occupied level of the system is the low-
est 3d level of V and it is occupied by a single electron.82

Having the Fermi energy at a half occupied level suggests
metallic-like conductivity. A more troublesome example is
sodium. We find SCAD yields the transfer of an electron to
produce Na+1 and Na−1 ions. This was noted using an earlier
version of the SCAD approach.26 While this picture could
well change with the use of more accurate kinetic-energy
functionals, nevertheless, we obtain reasonably accurate re-
sults for lattice parameter, bulk modulus, and cohesive en-
ergy with the ionic picture. Assuming the bcc �CsCl� struc-
ture and using L=4, we find 7.97�8.09� bohr, 0.076�0.064�
Mbar, and 1.18�0.93� eV/atom, where experimental quanti-
ties are shown in parentheses. The highest occupied level �3s
of Na−1� is about 1 eV lower than the lowest unoccupied
level �3s of Na+1�, and the energy barrier for transfer of
charge between the two sublattices is 0.5 eV. Phonon fre-
quencies are about the right magnitude for most zone-
boundary modes, but the mode at � �H in the Brillouin zone
of the bcc lattice� shows a small instability, lowering the
energy from that of the undistorted structure by �1 meV.

If we compute the dielectric susceptibility for this ionic
sodium model, we find something unusual. For all insulating
systems we have tried thus far, including the SCAD Si+4 and
Si−4 ionic pictures of silicon, we were able to compute a
value for dielectric susceptibility by numerically evaluating
�P /�E because P is found to be a linear function of E for
small E. On the other hand, a different behavior is seen for
Na+1Na−1. Specifically, we find P�E�, where 0���1. This
produces a divergent value for �P /�E in the limit of small
E, consistent with that expected for a conductor.

Notwithstanding the problematic examples cited above,
we note that SCAD can be expected to give reasonably ac-
curate results many insulating systems with varying degrees
of ionic bonding character. For such systems SCAD may be
able to handle complex systems with defects and surfaces
that would be difficult to treat with KS DFT methods.
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APPENDIX A: KINETIC ENERGY FUNCTIONALS

Lacks and Gordon83 proposed nonlocal corrections to the
Thomas-Fermi84,85 kinetic-energy functional that have the
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form of generalized exchange-correlation functionals for the
exchange-correlation energy. Thus in their approximation,
the kinetic energy of an electron gas with density n�r� is
given by

T�n�r�� = Ak� drn�r�5/3F�s�r�� , �A1�

where for an unpolarized electron gas

Ak = �4/335/3/10 �A2�

if the energy is in hartrees, and s�r� is a measure of the local
nonuniformity of the electron gas,

s�r� =
��n�r��

2n�r�kf�r�
. �A3�

In the case of the uniform electron gas, s�r�=0 every-
where, and Eq. �A1� reduces to the Thomas-Fermi kinetic
energy if F�0�=1. We have also examined nonlocal function-
als of the form of a scaled Thomas-Fermi kinetic energy plus
a scaled Weizsäcker86 kinetic energy,

Tk = kTTF + �� d3r
��n�r��2

n�r�
, �A4�

where TTF is the Thomas-Fermi kinetic energy. This can be
shown to reduce to the form Eq. �A1� if we set

F�s�r�� = k +
40

3
�s�r�2 �A5�

Lacks and Gordon20 considered only those functions F�s�
which are even in s, so we define a new quantity,

��r� = s�r�2 =
��n�r��2

4n�r�2kf�r�2 . �A6�

Since kf �n1/3 we can take

��r� = �n�r�−8/3��n�r��2, �A7�

where

� = �24�2�−2/3. �A8�

Then, writing F��� in place of F�s�, we have

T�n�r�� = Ak� d3rn�r�5/3F���r�� . �A9�

Our task is to determine the Kohn-Sham “potential” arising
from Eq. �A9�.

We wish to study the change T�n�→T�n�+	T�n� as we
make the change n→n+	n. Keeping only the terms linear in
	n, we have

	T�n�r�� = Ak� d3rn�r�2/3�5

3
F���r��	n�r�

+ n�r�F����r��	��r�� + O��	n�2� , �A10�

where 	� is the change in � as n→n+	n,

	��r� = −
8

3

��r�
n�r�

	n�r� + 2�n�r�−8/3 � n�r� · �	n�r�

+ O��	n�2� . �A11�

Substituting Eq. �A11� into Eq. �A10� and separating the
integrals containing 	n and �	n, we find

	T�n�r�� =
1

3
Ak� d3rn�r�2/3�5F���r��

− 8��r�F����r���	n�r�

+ 2�Ak� d3r
F����r�� � n�r�

n�r�
· �	n�r� .

�A12�

Applying the divergence theorem to the third line of Eq.
�A12� and noting that integrals over the boundary of a peri-
odically repeated unit cell vanish, we find

	T�n�r�� =
1

3
Ak� d3rn�r�2/3�5F���r��

− 8��r�F����r���	n�r�

+ Ak� d3r2�
��n�r��2

n�r�2 F����r��	n�r�

− 2�Ak� d3r�F����r��
�2n�r�

n�r�

+ F����r��
�n�r� · ���r�

n�r� �	n�r� . �A13�

Using Eq. �A7� on the third line of Eq. �A13�, we obtain the
final expression as

	T�n�r�� = Ak� d3r	n�r�	1

3
n�r�2/3�5F���r��

− 2��r�F�����r���� − 2�F����r��
�2n�r�

n�r�

− 2�F����r��
�n�r� · ���r�

n�r�
� . �A14�

The Kohn-Sham potential is related to its functional by
the functional derivative,

vT�r� =
	T�n�r��

	n�r�
, �A15�

so from Eq. �A14� we find

vT�r� = �Akn�r�2/3�5F���r�� − 2��r�F�����r����/3

− 2��F����r���2n�r�

+ F����r�� � n�r� · ���r��/n�r�� . �A16�

APPENDIX B: INTEGRATION AND INTERPOLATION

Radial functions are stored on a logarithmic mesh chosen
so that the interval between points increases exponentially.
Specifically, the nth interval is given by
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rn+1 − rn = r1�1 + g�n, �B1�

where the value of r1 is selected to be the first nonzero mesh
point �r0=0� and g is a selected growth factor. Clearly,
smaller atoms can have a larger value for r1 than larger ones,
and this, in turn, is related to the maximum value of � in the
tabulated43,44 Slater functions, which is approximately the
atomic number. We find that g�1 /50 with r1=g / �2�max�
gives a few hundred dense radial mesh points with r�50
while g�1 /6 with r1�1 /20 gives a few tens of course ra-
dial mesh points with r�50, which, together, permit numeri-
cal accuracy in total energy to �0.000 001 hartree. Precision
in the calculation of forces can be improved by starting r1
closer to the nucleus, say, r1=g / �2SF�max�, where SF�10.

Equation �B1� implies

rn = ��1 + g�n − 1�
r1

g
. �B2�

The derivative of r with respect to n,

rn� = ln�1 + g��1 + g�nr1

g
, �B3�

is used to facilitate radial integrations. The usual quadrature
weights �assuming r is just a constant times n� are simply
multiplied by rn�. For improved accuracy in the l=0 part of
the Hartree potential the SCAD program can include a se-
lected number Ncp of Gaussian points between the radial
mesh points.

The integration of a smooth function of r times one with
a discontinuity in its radial derivative must be treated care-
fully. In the SCAD method, discontinuities appear in the ra-
dial derivatives of the potential at values of r corresponding
to the positions of neighboring atoms. This results from the
lower limit of the Löwdin integrals in Eq. �D9� and from the
r�

l /r�
l+1 factor in the addition theorem which is used to incor-

porate the potential from neighboring nuclei. These sharp
features in the potential can produce noise in the total energy
as a function of structural distortions if integrations are car-
ried out by straightforward quadrature on a fixed radial
mesh. We handle this problem by a procedure which retains
points on a fixed radial mesh and includes extra points that
vary with structural distortions. As the total potential for a
given atom is accumulated on the fixed mesh, we omit con-
tributions from Löwdin and neighboring nuclei for a selected
number of points Nnp on either side of the corresponding
neighbor distances. Then, for each neighbor j, the Löwdin
plus neighboring nuclei potential is evaluated at radii given
by Ngp Gaussian quadrature points from the beginning of the
omitted region to Rj and from Rj to the end of the omitted
region. Only a few Gaussian points are needed for accurate
integration on either side of Rj. Typically, 30–50 neighbors
are needed for convergence, so a total of about two hundred
extra points are needed to handle the integrations over the
sharp features in the potential. This is a small part of the
overall calculation.

Numerical integrations over solid angles �� quadrature�
use directions and weights generated similarly to those of
Gaussian quadrature, except that the generating functions
are, in this case, spherical harmonics.51 We find that about

N�=150 quadrature directions are needed to produce satis-
factory accuracy in the SCAD method. As mentioned in Sec.
III A the most computationally intensive part of the calcula-
tion is in determining the smooth part of the potential, vs.
This requires evaluation of the densities and nonspherical
parts of electrostatic potentials due to neighbors at each point
on the course mesh. Typically, an atom may overlap with
about 40 neighbors and the course mesh may have �30 ra-
dial points for �150 directions. Assuming radial functions
are required up to l=4, this gives a total of over 2�106 �2
�15�40�30�150� interpolations per atom. We use a cu-
bic spline interpolation with our indices taken to be the in-
dependent variable. This minimizes the number of operations
in each interpolation without any loss of accuracy.

APPENDIX C: DISTANT POLE POTENTIAL

The potential vp, due to atoms outside the cutoff radius
Rc, is given by the electrostatic potentials of point poles cen-
tered at the atomic sites and is separated into long- and short-
ranged parts,

vp = vlr + vsr. �C1�

The long-ranged part, vlr, comes from l�2 poles and is ob-
tained with the help of Ewald’s method. The short-ranged
contribution, vsr results from l�3 and is determined by
straightforward real-space summations. First, consider the
long-ranged contribution.

Ewald’s method provides a rapidly convergent formula
for the potential of a lattice of point charges in a uniform
compensating background. A good discussion of the method
is given by Slater.87 The method employs linear superposi-
tion of two oppositely charged, but otherwise identical,
Gaussian densities centered at the sites of the point charges.
The negative Gaussian densities combine with the positive
point charges to give a rapidly convergent real-space sum for
their contribution to the potential and the positive Gaussian
densities combine with the negative background to give a
rapidly convergent Fourier series expansion for their contri-
bution. The potential at r due to unit point charges at x�l�
+r�, where x�l� are lattice vectors, in a uniform background
is given by

vm�r,r�� =
4�

V
�
Q

�e−�Q2/4��

Q2 eiQ·�r−r��

+ �
l

erfc��x�l� + r − r����
�x�l� + r − r��

−
�

V�2 , �C2�

where Q are reciprocal-lattice vectors, the prime on the sum-
mation over Q indicates the Q=0 term is omitted, and erfc,
the complimentary error function, is given by

erfc�x� =
2


�
�

x




e−y2
dy , �C3�

and the last term is a constant of integration needed to make
the result independent of the Gaussian parameter �. The
value of � can be adjusted to give rapid convergence for both
real and reciprocal space sums.
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We put the point charges a displacement r� from the lat-
tice vectors for convenience in deriving expressions for the
potential due to point dipoles and quadrupoles. For example,
we can place point charges of �q at r�= � x̂d /2. The result-
ant potential at r is given by vm�r , x̂d /2�−vm�r ,−x̂d /2�. For
small d the lowest-order �linear� term in an expansion of the
above expression about r�=0 is the potential due to a lattice
of point dipoles. In particular, we find the potential due to a
lattice of point dipoles in the � direction is given by

vd�
�r� =

4�

V
�
Q

�e−�Q2/4��

Q2 sin�Q · r�Q�

+ �
l
	 4�


�r2
e−r2�2

+
erfc�r��

r3 �r�. �C4�

Similarly, the potential due to point quadrupoles is given by
the second-order term in the expansion of vm about r�=0. We
obtain

vq��
�r� = −

2�

V
�
Q

�e−�Q2/4��

Q2 cos�Q · r�Q�Q�

+
r�r�

2 �
l
� 2�


�
	2�2

r2 +
3

r4�e−r2�2
+

3erfc��r�
r3 �

−
	��

2 �
l
� 2�


�r2
e−r2�2

+
erfc��r�

r3 � . �C5�

Calculations using these expressions for vd and vq have been
tested against Eq. �C2� by modeling collections of point
charges that approximate point dipoles and quadrupoles.

For the SCAD calculation we require spherical harmonic
expansions of the potentials due to point poles that lie out-
side the cutoff radius Rc. Thus we must remove, from vm, vd,
and vq, the contributions from nearby poles with x�l��Rc.
Specifically, these contributions are 1 /s for monopoles, s� /s3

for dipoles, and �3s�s�−	��s2� /2s5 for quadrupoles, where s
denotes the separation vector from x�l� to r. Values for vm,
vd, and vq, with contributions from nearby poles removed,
are determined on an angular grid for some selected value of
r=rs. The coefficients of the spherical harmonic expansion
are then determined by numerical integration over the sur-
face of the sphere with radius rs �Appendix B, � quadrature�.
The radial dependence of vd and vq are solutions of
Laplace’s equation, in our case the rl solutions. The radial
dependence of the monopole potential vm contains, addition-
ally, a spherically symmetric term �r2 that originates from
the constant charge background. We remove this contribution
before determining the spherical harmonic expansion of vm.
Of course, it necessarily sums to zero when the contributions
from all the atoms in the crystal are included. In any case, the
coefficients of the various spherical harmonic expansions of
point-pole potentials need only be determined for one value
of rs. We find no significant variation in U over a wide range
of values less that �Rc /2, and a good choice is rs�1 or 2.

In each iteration the point-pole spherical harmonic expan-
sion coefficients are multiplied by the corresponding com-
puted moments and summed over all atoms in the unit cell to
give vlr

�i�. Specifically,

vlr
�i;l,m��r� = r�l��

j,k
c�j,k�vpp

�l,m��j,i,k� , �C6�

where the j index designates vpp=vm, vd1
, vd2

, vd3
, vq11

, vq21
,

vq22
, vq31

, vq32
, and vq33

for j=1, . . . ,10 respectively, the k
index sums over all the atoms in the unit cell and the c�j ,k�
are given by the multipole moments of each atom k and
constants which transform between the Cartesian and spheri-
cal harmonic description,

c�1,k� =
G0,0

�k� �
�

2
�
− Zk, �C7�

c�2,k� = − R�G1,1
�k� �
��
8�/3, �C8�

c�3,k� = I�G1,1
�k� �
��
8�/3, �C9�

c�4,k� = G1,0
�k� �
�
4�/3, �C10�

c�5,k� = R�G2,2
�k� �
��
8�/15 − G2,0

�k� �
�
4�/45, �C11�

c�6,k� = − I�G2,2
�k� �
��
32�/15, �C12�

c�7,k� = − R�G2,2
�k� �
��
8�/15 − G2,0

�k� �
�
4�/45,

�C13�

c�8,k� = − R�G2,1
�k� �
��
32�/15, �C14�

c�9,k� = I�G2,1
�k� �
��
32�/15, �C15�

c�10,k� = G2,0
�k� �
�
16�/5, �C16�

where Glm is given in Eq. �14� and r�l�=rl for r�Rc. As r
increases beyond Rc the radial dependence of the potential
due to individual poles changes from rl to 1 /rl+1. We do not
include this detail in the SCAD code because it does not
affect results as long as Rc is sufficiently larger than the
orbital cutoff radius rc, a condition for convergence. Instead,
we approximate this change in radial dependence by writing
r�l�=Rc

2l+1 /rl+1 for r�Rc, which maintains continuity at Rc
and gives a better representation of the radial dependence of
the potential beyond Rc.

The potential due to l�3 poles takes the same form as
Eq. �C6�,

vsr
�i;l,m��r� = r�l��

j,k
c�j,k�vpp

�l,m��j,i,k� , �C17�

except the coefficients vpp are determined with real-space
sums over poles at sites beyond Rc. Here the j index denotes
the type of pole and whether it is purely real �odd j� or
imaginary �even j�. For example, let j denote the real part of
a �lj ,mj� pole. Then vpp

�l,m��j , i ,k� is the spherical harmonic
expansion coefficient due to the kth lattice of �lj ,mj� poles
�with unit real part and zero imaginary part� excluding those
within Rc of the ith site. Its value is obtained, like those for
vlr, by numerical integration over Ylm

� times the potential on
an angular grid for a selected radius rs. Once these coeffi-
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cients are determined they are multiplied by the true values
of the j-type poles of k-type atoms �c�j ,k�=RGlj,mj

�k� �
� for
odd j and c�j ,k�=IGlj,mj

�k� �
� for even j� and summed over all
j and k. The time required to determine values of vpp for vsr
can be substantial because the lattice sums converge rather
slowly for l=3 poles and may require a few thousand terms
to achieve total-energy results to a precision of 0.000 001
Hartree. Nevertheless, it is much more efficient to obtain this
level of numerical accuracy using the point-pole strategy
than could be achieved by simply increasing the value of Rc.

APPENDIX D: LÖWDIN TRANSFORMATION

Given a function expressed as a spherical harmonic ex-
pansion, the method for transforming that function to a
spherical harmonic expansion about a new origin is known
as Löwdin’s � expansion. Following the treatment of
Fletcher,88 we expand a spherically symmetric function,
F�r��= f�r��Y0,0, in terms of spherical harmonics about a new
origin. Here the “prime” is used to denote coordinates with
respect to the “old” origin. The two origins are separated a
distance a along the z axis. In this case, the spherical har-
monic expansion about the new origin can be written as

F�r� = �
l

gl�r�Yl,0�r̂� , �D1�

where

gl�r� = 
2l + 1�
0

�

f�r��Pl�cos ��sin���d� �D2�

and � is the polar angle. Expressing the integration in terms
of the variable r�, where r�2=r2+a2−2ar cos���, gives

gl�r� =

2l + 1

ar
�

�a−r�

a+r

f�r��Pl	 r2 + a2 − r�2

2ar
�r�dr�. �D3�

For l�4 we find

g0�r� = d0�r�I0�r� , �D4�

g1�r� = d1�r��− I1�r� + �r2 + a2�I0�r�� , �D5�

g2�r� = d2�r��3

2
I2�r� − 3�r2 + a2�I1�r�

+
1

2
�3r4 + 2r2a2 + 3a4�I0�r� , �D6�

g3�r� = d3�r��−
5

2
I3�r� +

15

2
�r2 + a2�I2�r� −

1

2
�15r4 + 18r2a2

+ 15a4�I1�r� +
1

2
�5r6 + 3r4a2 + 3r2a4 + 5a6�I0�r� ,

�D7�

g4�r� = d4�r��35

8
I4�r� −

35

2
�r2 + a2�I3�r� +

15

4
�7r4 + 10r2a2

+ 7a4�I2�r� −
5

2
�7r6 + 9r4a2 + 9r2a4 + 7a6�I1�r�

1

8

��35r8 + 20r6a2 + 18r4a4 + 20r2a6 + 35a8�I0�r� ,

�D8�

Il�r� = �
�a−r�

r+a

f�x�x2l+1dx , �D9�

and

dl�r� =

2l + 1

�2ar�l+1 . �D10�

This is an efficient form for gl because the integrals can
be obtained by interpolating from tabulated values of the
integral with limits from zero to the radial mesh values.
However, for small r this expression for gl becomes numeri-
cally unstable, owing to large cancellations that counter the
effect of having rl+1 in the denominator of dl. A way around
this problem is to expand f in a Taylor series about a. The
integrals,

Il�r� = �
a−r

a+r

�
n

f �n�

n!
�x − a�nx2l+1dx , �D11�

where f �n� denotes the nth derivative of f evaluated at a, can
then be performed analytically, the resultant polynomials
substituted into the corresponding expressions for gl and
each term with some power of r in the denominator has an
expression in its numerator that sums identically to zero. We
obtain, after considerable algebra, the following expressions
for gl when f is expanded to fourth order:

g0�r� = f �0� +
r2

3a
f �1� +

r2

6
f �2� +

r4

30a
f �3� +

r4

120
f �4�,

�D12�

g1�r� = 
3�	 r3

15a2 −
r

3
� f �1� −

r3

15a
f �2� + 	 r5

210a2 −
r3

30
� f �3�

−
r5

210a
f �4� , �D13�

g2�r� = 
5�	 r4

35a3 −
r2

15a
� f �1� − 	 r4

35a2 −
r2

15
� f �2�

+ 	 r6

630a3 +
r4

210a
� f �3� − 	 r6

630a2 −
r4

210
� f �4� ,

�D14�
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g3�r� = 
7�	 r5

63a4 −
r3

35a2� f �1� − 	 r5

63a3 −
r3

35a
� f �2�

+ 	 r7

1386a4 +
r5

210a2 −
r3

105
� f �3�

− 	 r7

1386a3 −
r5

1890a
� f �4� , �D15�

g4�r� = 
9�	 r6

99a5 −
r4

63a3� f �1� − 	 r6

99a4 −
r4

63a2� f �2�

+ 	 r8

2574a5 +
5r6

1386a3 −
2r4

315a
� f �3�

− 	 r8

2574a4 +
r6

4158a2 −
r4

945
� f �4� . �D16�

Analogous expressions for 12� l�5 and eight order in the
Taylor expansion �Eq. �D11�� were derived and coded with
the help of the MATHEMATICA software package.89

The small-r expansion is used for r�1.1rl�a� and the
large-r expansion is used for r�1.2rl�a�, where rl�a� is de-
termined from the onset of noise in the large-r values with
decreasing r. We find the onset of noise is quite abrupt, and
for 1.1rl�a��r�1.2rl�a� the values obtained from the two
expansions agree, typically, to about 1 part in 105. In this
range the value of gl is determined by linearly mixing the
small- and large-r expansion values. Values for f �n� are de-
termined from f �n−1� numerically using a five-point interpo-
lation formula.90

Alternatively, one can determine the gl by numerical inte-
gration of Eq. �D2�. With this approach special care must be
exercised when r−a is small, i.e., where the slope of gl is
discontinuous. The difficulty is manifested by the peak in gl
at r=a becoming increasingly sharp with increasing accuracy
of the numerical integration.

Of course, neighboring atoms are generally not oriented
in the z direction. The spherical harmonic expansion in Eq.
�D1� must be appropriately transformed. The transformation
of spherical harmonic expansions due to coordinate system
rotation is discussed in Appendix E.

APPENDIX E: SYMMETRY

If the crystal structure is constrained to a particular space-
group symmetry, then the amount of numerical labor can be
considerably reduced by using the symmetry. Specifically,
the charge density and potential for only one atom, called the
ith atom, in a set of equivalent atoms, need be determined.
The charge densities and potentials for all other atoms in that
set can be determined from results for the ith atom.

Now let us consider the effect of point operations on
atomic functions. Let the function f�r� be expanded in terms
of spherical harmonics about the ith atom,

f�r� = �
lm

f lm�ri�Ylm�r̂i� . �E1�

The rotation of a spherical harmonic is given by

RY lm�r̂i� = �
m�

Ylm��r̂i�Dm�m
�l� �R� , �E2�

where91

Dm�m
�l� �R� = exp�− im���exp�− im���

k

�− 1�k��l + m� ! �l − m� ! �l + m�� ! �l − m��!�1/2

k ! �l + m − k� ! �l − m� − k� ! �k + m� − m�! 	cos
1

2
��2l−2k−m�+m	− sin

1

2
��2k+m�−m

�E3�

and � ,� ,� are the Euler angles associated with the rotation
R. Rotating the function f , we obtain

Rf�r� = �
lm

f lm
R �ri�Ylm�r̂i� , �E4�

where

f lm
R �ri� = �

m�

Dmm�
�l� �R�f lm��ri� . �E5�

We construct a symmetrization operator as

Simm�
�l� =

1

�Pi�
�

j

Dmm�
�l� �Rj� , �E6�

where the sum is over all elements of the point group Pi of
the ith atom, Rj is the point operator part of the jth element

of Pi, and �Pi� is the number of elements in Pi. The function
fS�r� is “symmetrized,” i.e., it has the symmetry of Pi,

fS�r� = �
lm

f lm
S �ri�Ylm�r̂i� , �E7�

where

f lm
R �ri� = �

m�

Dmm�
�l� �R�f lm��ri� . �E8�

This symmetrization operator can be very useful. Suppose,
for example, that there is a set of n equivalent neighbors to
atom i. Let atom j be one of those neighbors in that set. Let
us write that contribution of atom j to the potential energy of
electrons in atom i as
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Vij�r� = �
lm

Vijlm�ri�Ylm�r̂i� . �E9�

The net contribution from every atom in that set is given by

Vi�r� = �
j

Vij�r� = �
lm

Vilm�ri�Ylm�r̂i� , �E10�

where

Vilm�ri� = �
j

Vijlm�ri� . �E11�

This same result can be obtained by

Vilm�ri� = n�
m�

Simm�
�l� Vijlm��ri� . �E12�

Note that Eq. �E11� only requires the potential energy from
one of the neighbors in the set and thus has an advantage
over Eq. �E12�. Computations need only be done for one
atom from each set of equivalent neighbors.
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