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Bilayer sliding mechanism for the zinc-blende to rocksalt transition in SiC
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We have theoretically investigated the mechanism of the pressure-induced reconstructive zinc-blende to
rocksalt phase transition in SiC. We obtained 925 possible transition patliivagsusing a group-theoretical
analysis method. This extensive survey of possible TPs is a significant feature which distinguishes this study
from previous studies. Of these 925 TPs, we identified eight which have the lowest enthalpy barriers, based on
first-principles electronic structure calculations. These eight TPs share a common underlying mechanism:
bilayer sliding of(111) planes such that local bonding evolves from tetrahedral to octahedral without breaking
any bonds. This mechanism may be applicable to other related transitions involving similar bonding changes.
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I. INTRODUCTION deformed into another. It is well known that diffusionless

Silicon carbide(SiC) is of practical interest because of its Phase transitions, including reconstructive ones, with atomic
use in novel electronic devices, abrasives, and refractories. ﬂlsplacements anbd shear fcgn r?ften be Ilggacrlbed by looking
exhibits a wide band gap, a high breakdown field, low ther-'0f @ common subgroup of both structures.

mal expansion, oxidation resistance, excellent thermal shock, '€ ZB 10 RS transition in SIiC has been widely studied.
resistance, and high thermal conductivity. In addition, it pos-The first suggested transition path was b%ﬁgd on a common
bgroup with space group symmetRBm.>* Catti used

sesses favorable mechanical properties such as low densi . X .
high strength, high hardness, and high wear resistanc .CAO-DFT methods to further investigate this TP and pro-

Changes in its structure, such as changes during a phaggsed an orthorhombic mechanism with a common subgroup

2 A . symmetry of Pmn2 (Refs. 7,16 or more correctl
transition, can significantly alter these properties. X—ray—IrBT/1 o 17—¥9He found thagt this TP wgs favored over the myore
diffraction and shock experiments at high pres§trendi- '

i i ition f the zinc-blend&B) to th ksalt simple TP ofR3m. In another study of the transition mecha-
cate a transition from the zinc- e_n(ﬂ ) to e rocksall  pigm, using sphere packing methods and no energy consid-
(RS structure above 100 GPa in SiC. The coordination NUMgrations, Sowa also obtained thémme subgroup

ber o'flnearest neighbqrs qhanges from four to six.during thi$hechanisi® and more recently proposed an additional
transmon..The transition is reversible and the Z_'nc'ble”d%echanism WitP3, symmetry?! Catti* and Sowa’2! have
structure is recovered below 35 GPa. Theoretical studiegoted that in thémm2 andP52 TPs no silicon-carbon bonds
based onab initio pseudopotential calculatioh® yield a  are broken. However, no further study is reported on the
transition pressure of 60 GPa and recent calculations usingomparison of the two TPs. THenm2 TP is also contained
linear combination of atomic orbitald CAO) density func-  in the unified path description of SiC polytypes transitions to
tional theory(DFT) yield a value of 92 GPA. rocksalt by Miao and Lambrecht.The transition was also
Increasing interest is being given to understanding thestudied using conventional molecular dynami¢sD)
mechanism of a transitiott? i.e., the changes which take simulation?® Making no assumptions about the atomistic
place at the atomic level. Understanding the transitiormechanism, the SiC molecular dynamics cell evolved from
mechanism may lead to new experiments and measuremersbic through a monoclinic cell at the equilibrium pressure.
and possibly the control of transition properties. We take thérhe monoclinic structure discovered in the MD simulation is
mechanism for a phase transition to be the description of theimilar to the RS structure in terms of local bonding. Pre-
displacements of all atoms along a transition p@hR). We  sumably, the monoclinic structure is a metastable structure
assume periodicity is retained along the TP, the atomslue to the fast-quenching artifact of MD simulations. No
throughout the crystal are displaced coherefidgfects are analysis of transition pathway was provided in the MD study.
neglected, and the crystal, as it moves from the initial to the ~ We have developed a systematic procedure for obtaining
final structure, defines a space group symmetry. Obtainingossible microscopic mechanisms for reconstructive phase
the transition mechanism is a challenging problem. Experitransitions and have applied it to the zinc-blende to rocksalt
mentally, Knudson and Gupgtaeported a method where in- transitions in SiC. Some details of the algorithm are de-
formation from real-time picosecond time-resolved elec-scribed by Stokes and Hat?° and has been used in our
tronic spectroscopy coupled witlab initio calculations studies of the B1-to-B2 transition in sodium chloride and
allowed the proposal of a TP in the wurtzite to rocksalt tran-lead sulfide*~26The procedure lets the user control the out-
sition of CdS. Wickhamet all® showed that nanocrystal put by restricting allowed strain tolerance, nearest-neighbor
shape changes, as a function of pressure, determined lofjstances, and unit-cell size change, and has been imple-
x-ray diffraction gave them details about the TP in the wurtz-mented in the computer progragdomsuss?® Using some-
ite to rocksalt transition in CdSe. On the theoretical sidewhat liberal input constraints, we obtained 925 possible ato-
there are an infinite number of ways that one structure can bmistic TPs for this transition in SiC. This extensive survey of
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possible TPs is a significant feature which distinguishes ouobtaineda=4.46 A andB=170 GPa. The experimentally ob-
current study from previous studies. tained value¥ area=4.31 A andB=224 GPa. We next cal-
Calculation of enthalpy barriers for each of the 925 pos-culated the phase transition pressByeat temperaturd =0.
sible TPs imposes a challenge for conventional first-This is simply the pressure at which the enthalpy
principles electronic structure calculations with plane waveH=E+PV of the two phases are equal. We obtained
basis. In this study, we adopted an efficient tight-bindingP,=87 GPa with a=4.05A in the ZB structure and
based first-principles method calletReBALL.2” The FIRE-  a=3.84 A in the RS structure. The experimentally obtained
BALL results were verified with our plane wave calculationsvalueg are a=3.974 A anda=3.684 A in the ZB and RS
using thevasp method®2°for some selected TPs. TIRE-  structures, respectively. Note that the transition displays a
BALL andVASP calculations are in close agreement, indicat-large amount of hysteresi$®;=100 GPa for ZB-~RS and
ing that the general results presented in this paper are nét=35 GPa for RS-ZB). Our calculated value is consistent
sensitive to the first-principles computational methodswith the range resulting from the hysteresis. The transition
adopted. In this paper, we discuss in detail our calculation opressure predicted by owrnsp calculation isP,=64 GPa,
enthalpy along the TPs. An analysis of the enthalpy barriersvhich is consistent with previous plane-wave resits
for the TPs leads us to proposebdayer sliding model to We usedcomsuBs(Refs. 24,25to find possible TPs from
explain the mechanism of the ZB-to-RS transition. Such ghe ZB to the RS structure in SiCAs the notes in Ref. 26
model may be applicable to other related phase transitionsdicate, the algorithm described in Ref. 24 has undergone
involving similar tetrahedral-to-octahedral bonding changessome major revisionsWe used relatively liberal constraints
in the search(1) We considered common subgroups with up
to eight atoms per unit celifour Si and four Q. (2) We
allowed principal values of the strain tensor to be between
First-principles calculations of the total energy in SiC 0.6 and 1.6(3) We allowed atoms to approach each other as
were performed USing:IREBALL.27 This code is a density close as 1.5 A along straight-line TPs from the ZB to the RS
functional theory (DFT) [local density approximation Structure.(4) We allowed atomic displacements as large as
(LDA), generalized gradient approximation, and spin polar2.0 A
ization] approach to the electronic structure based on With these constraints, we obtained 925 possible TPs for
pseudopotentials and local orbitals; further details of the¢he transition. For each of these TPs, we UBEWBALL to
method can be found in Ref. 27. One of the important feaestimate the enthalpy barrier by calculating the enthalpy
tures ofFIREBALL is the flexibility of constructing real-space along a linear TP. We varied each structural paramaer
localized basis functions to take advantage of fundamentdice parameters and atomic positipr&cording to
chemistry in atomic bonding. This allows a substantial im-
provement in computational efficiency without suffering the X = (1= €)X + EX (1)
loss of accuracy. Here we use the local density approxima- " i STme
tion (LDA) limit of DFT, the Harris function&® with a mini- o ]
mal nonorthogonal local-orbital basis of slightly excited or- Wherexy; andxy are the initial and final values of theth
bitals. structural parametex,,, and ¢ is the “transition parameter”
The electronic eigenstates are expanded as a linear cothich varies from 0 to 1 as the transition takes place from
bination of pseudoatomic orbitals within a localizggf basis ~ the ZB to the RS structures. This obviously overestimates the
for both carbon and silicon. These localized pseudoatomiéue barrier height but provides an efficient way to determine
orbitals, which we refer to as “fireballs,” are slightly excited
due to the boundary condition that they vanish at some ra- 100
dius re(frepain)lr=r,=0) instead of the atomic boundary
condition that they vanish at infinity. The cutof#.5 and 5.4
A for C and Si, respective)yare chosen in a way that pre-
serves the relative ionization energies and relative atomic

Il. ENERGETICALLY FAVORED PATHWAYS

sizes for each species. The level of theory used is shown to N
be an accurate level of approximation for Si-C random
alloys3? 50f

We also performed some calculations usingr, a first-
principles DFT method, which is implemented with plane-
wave basis set® ultrasoft pseudopotentia8,and LDA to
the exchange-correlation interaction. The cutoff energy of
the plane-wave bases is 287 eV. The integrations over the

Brillouin zone were carried out by summirgpoints over |-|
Monkhorst-Pack grids. Careful tests have been done to en- 00 ! s 5 .
sure the numerical convergences for thpoint samplings AH (eV)
and plane-wave cutoffs.
Using FIREBALL we calculated the lattice parameteand FIG. 1. Histogram of the enthalpy barrier heigiisl; (per pair

the bulk modulusB for the SiC ZB structure aP=0, and  of atoms for linear TPs between the ZB and RS structures.
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TABLE |. Some possible TPs for the phase transition from the zincbl€fBgto the rocksal{RS) structure in SiC. Each TP is defined
by a common subgrou@’ of both ZB and RS. At each end of the transition, we give the lattice vectd®s of terms of the lattice vectors
of G and we give the atomic positions in the settingG¥f Note that for greater clarity we have changed many of the settings from those

given in the output otomsuBs

TP G’ G Lattice Si C
1 44 Imm2 ZB (0,-1/2,-1/2,(0,-1/2,1/2,(1,0,0 (0,00 (b)0,1/2,1/4
RS (0,-1,0,(1/2,0,-1/2,(1/2,0,1/2 (0,00 (b)0,1/2,1/2
2 9Cc ZB (-1/2,-1/2,3,(1/2,-1/2,0,(1/2,1/2,2 (@) 0,1/4,0 (@) -1/8,1/4,3/8
RS (1/2,1/12,-3,(-1/2,1/2,0,(1,1,0 (@ 0,1/2,0 (@ 0,0,1/4
3 145P3, ZB (0,1/2,-1/2,(-1/2,0,1/2, (1,1, 1 (a)1/3,0,0 (@) 1/3,0, 3/4
RS (0,-1/2,1/2,(1/2,0,-1/2, (1,1, (@) 0,-1/3,0 (@) 2/3,0,5/6
4 1P1 ZB (1/2,-1/2,0,(1/2,0,-1/2, (1,1, (8 0,0,0 (0,0, 1/4
(a) 2/3,2/3,1/3 (@) 2/3,2/3,7/12
(a) 1/3,1/3, 2/3 (@) 1/3,1/3,11/12
RS (1/2,0,-1/2,(0,1/2,-1/2,(1,1/2,3/2 (a)0,0,0 (@) 2/3, -1/6,1/6
(a)4/3,2/3,1/3 (@ 1,1/2,1/2
(@) 2/3,1/3,2/3 (@) 1/3,1/6,5/6
5 9Cc ZB (1/2,-1,1/2, (1/2,0,-1/2, (3/2,1,3/2 (@ 0,1/4,0 (@) -1/16, 1/4, 3/16
(a) 3/4,3/4,1/4 (a) 11/16, 3/4,7/16
RS (-1/2,1,-1/2, (-1/2,0,1/2, (1, 2, ) (@ 0,1/2,0 (@) 1/4,1/2,1/8
(@1,1,1/4 (a) 3/4,1/2,3/8
6 9Cc ZB (1/2,1/2,-3,(-1/2,1/2,0, (1,1, 2 (@ 0,0,0 (@) 5/8,1/2, 3/16
(@) 0,1/2,1/4 (@) 1/8,1/2,7/16
RS (-1/2,-1/2,2, (1/2,-1/2,0, (2, 2,0 (@ 0,1/2,0 (@) 1/2,1/2,1/8
(@ 0,1/2,1/4 (@ 0,0, 3/8
7 1P1 ZB (-1/2,1/2,0, (-1/2,0,1/2, (3/2,1,3/2 (@ 0,00 (a) 1/8, 15/16, 3/16
(@) 1/2,1/4,1/4 (a) 5/8,3/16,7/16
(@) 0,1/2,1/2 (@) 1/8,7/16, 11/16
(@) 1/2, 3/4,3/4 (a) 5/8, 11/16, 15/16
RS (a/2,-1/2,9,(1/2,0,-1/2,(1,5/2,1/2 (@ 0,0,0 (a) -3/8,9/8,1/8
(@) 1/4,1/4,1/4 (@) -1/8, 3/8, 3/8
(a)-1/2,1/2,1/2 (a) -7/8,5/8,5/8
(a) -1/4,3/4,3/4 (a) 3/8,7/8,7/8
8 1P1 ZB (-1/2,1/2,0,(-1/2,0,1/2, (3/2,1,3/2 (8 0,0,0 (a) 1/8, 15/16, 3/16
(a)1/2,1/4,1/4 (a) 5/8, 3/16, 7/16
(a)0,1/2,1/2 (a) 1/8,7/16, 11/16
(a)1/2,3/4,3/4 (a) 5/8, 11/16, 15/16
RS (1/2,-1/2,0,(1/2,0,-1/2,(1, 2, ) (a0,0,0 (a) -1/2,5/4,1/8
(a)0,1/2,1/4 (@) -1/2, 3/4, 3/8
(@ -1,1,1/2 (@) -1/2,5/4,5/8
(@ 0,3/2,3/4 (@) 1/2,3/4,7/8
9 160R3m ZB (-1/2,0,-1/2,(0,1/2,1/2, (1,1,-) (@0,0,0 (@ 0,0, 3/4
RS (-1/2,1/2,0,(1/2,0,-1/2, (-1,-1,-) (@ 0,0,1/8 (@) 0,0,5/8
10 198P2;3 ZB (0,0,-2, (0,-1,0, (-1,0,0 (a) 3/4,3/4,3/4 (@) 1/2,1/2,1/2
RS (-1,0,0,(0,0,0,(0,1,0 @1,1,1 (@ 1/2,1/2,1/2

which of the 925 TPs should be further considered as likelyThe details about these eight TPs are given in TalflePk 1

mechanisms for the phase transition.

through 8. The height of the enthalpy barrier along the lin-

In Fig. 1, we show a histogram of the enthalpy barrierear TP is given in Table I[AH; column and the barrier
heights obtained. The bar between 0.9 and 1.0 eV contairgrofiles are plotted in Fig. 2(For completeness, two more
eight TPs. These TPs clearly stand alone as being most efiPs, 9 and 10, are added to the list in Table I. As noted

ergetically favorable among the 925 TPs founddomMsuss
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TABLE II. Enthalpy barrier heightseV per pair of atomsfor 0.3
the TPs described in TableAH; is the barrier height for the linear
TP. AH, is the barrier height for the TP using bow functions, but
constrained by the symmetry of the common subgr@Upisted in
Table |. AH,yasp are these same barrier heights calculated using
VASP. AHj is the barrier height for TP using additional bow func-
tions, constrained by the symmetry of the common subgi@up
listed in Table IV.N; is the number of atoms per unit cell used for
the calculation oAH; andAH,. N3 is the number of atoms per unit
cell used for the calculation a§Hj. N,, is the number of structural
parametergand the number of new function weighissed for the
calculation ofAH, for TPs 4, 7, 8 and\H; for the other TPs.

Amm/zmi

TP AH;  AH;  AHoyasp AHz Ny N3 N,

1 097 062 0.61 052 2 8 18 ~03} |

2 091 0.65 0.69 0.52 4 8 27 £

3 097 0.69 0.57 0.54 6 6 21 ) . . )

4 0.92 051 6 21 FIG. 3. Fractional ghange in moqqcllnlc lattice parameters

(xn=a,b,c,B) as a function of the transition parametealong TP

S 0.94 0.67 0.53 8 8 27 2. Dashed lines show the linear TPs, and solid lines show the TPs

6 09 057 054 8 8 27  with the bow-function correctionéut still maintaining the symme-

7 0.96 0.54 8 27 try of G’'=Co).

8 0.98 0.51 8 27

9 199 168 1.86 1.39 2 8 27 tion to the TP by locating the point which occurs at the
10 378 3.01 1.99 8 8 27 highest value along the true TP. This point is a saddle point

with respect to the structural parameters. We assume that the
] ] linear TP in Eq.1) is already a reasonable initial estimation
erature, but are not energetically favorable according to ougf the true TP. We also assume that the peak on the linear TP
calculations. _ ~is not too far distant from the saddle point on the true TP.

We now consider in more detail TPs 1 through 8. Previousrhe problem at hand is how to get from the peak in the linear
theoretical studies of structural phase transitions have primarp to the saddle point in the true TP. If we simply minimize
rily considered only high-symmetry TPs with a small numberthe enthalpy with respect to the structural parameters, we
of structural pal’ameters. In Contrast, our current Study |nwi|| “fall off” the saddle point_ We solve this prob|em by

cludes low-symmetry TPs with a large number of structuraladding a quadratic terrftalled a bow functionto the linear
parameters and therefore imposes computational challengge:

for finding how the structural parameters vary along the true
TP.
0.3

We have developed an efficient numerical algorithm
(called the bow-function methodor finding an approxima-
1.0
Az,
AHl (eV)
0.5}
—03g 1
£
0
0 £ 1 FIG. 4. Change in dimensionless atomic positions

(Xm=VYsi:Xc,Yc,Zc) as a function of the transition parameteslong
FIG. 2. Enthalpy barriera\H; as a function of the transition TP 2. Dashed lines show the linear TPs, and solid lines show the
parametert along each of the first eight TPs described in Table I. TPs with the bow-function correctiondut still maintaining the
The TPs are linear with no bow-function corrections. symmetry of G’ =Cc).

184109-4



BILAYER SLIDING MECHANISM FOR THE ZINC-... PHYSICAL REVIEW B 71, 184109(2005

1.0

B
- C
b
AH; (eV) A A
, 7B RS
oslh ‘jl FIG. 7. (111) planes of atoms in the ZB and RS structures. The

open circles represent Si atoms, and the filled circles represent C
atoms. In the transition from ZB to RS, the top two planes slide
with respect to the bottom plane.

change in any weight lowers the height of the peak. This
final point at the top of the peak is the saddle point. The
0 enthalpy increases with respect to changes in all of the vari-
0 ¢ 1 ables(the weight$ except ondthe transition parametej).
Even though the TP we obtain is approximate it passes
FIG. 5. Enthalpy barriers\H, as a function of the transition through the saddle point on the true TP, and we thus obtain
parametert along each of the first eight TPs described in Table I.the barrier height of the true TP. Our TP matches the true TP
The TPs include bow-function corrections that maintain the sym-at three points: the end points and the saddle point at the top

metry given in Table I. of the barrier and is a smooth quadratic curve which passes
through those three points.
%= (1 = X + X+ Winé(1 = &), ) The success of the bow-function method depends on an

enthalpy landscape which is smooth and simple. It would fail
. ) ) to find the true saddle point if, for example, the true TP
wherew, is the “weight” of the bow function for thenth  followed twisting “canyons” so that the saddle point at the
structural parametety. (Similar bow functions were used in top of the barrier is enclosed by higher peaks and inacces-
Ref. 26) We find the saddle point on the true TP by mini- siple to the bow functions. Even if the true saddle point is
mizing the height of the peak on the TP with respect to theound, a complex enthalpy landscape could cause the true TP

weightswWy,. - . _ to have important features which would be missed by our
The minimization algorithm is straightforward. We begin gpproximate TP.

with the linear TP where all of the weightg;, are zero. We These are concerns in our present work because our final
locate the enthalpy peak, which is usually n¢a#0.5. We  Tps, as will be seen, do not exhibit a simple single peak. It
then change one of the weights in either a positive or negagppears that the landscape could be quite complex, and our
tive direction. This may move the position of the peak, So wepow-function method may not have found the true saddle
locate the peak agairfAs will be seen, some of our TPs points. In that case, our enthalpy barrier heights would be an
exhibit two peaks, so we always search for the highest peakyerestimation of the true barrier heights. Furthermore, our
across the entire TP, not jUSt in the V|C|n|ty of the location Ofapproximate TPs m|ght even miss features of the true TPs
the peak before we changed the weigfihen we check if \hich are important for the understanding of the transition
the height of the peak is lower than before we changed thghechanism. Because of the large number of dimensions in
weight. If so, we keep the change. If not, we undo thethe configuration spacéone dimension for each structural
change. We repeat this for each of the weights until we fiparametey; it is not even possible, with current computer
nally arrive at the situation where no positive or negativetechnology, to investigate the enthalpy landscape in sufficient
detail to determine how good our approximate TPs are.
This being said, we nevertheless have confidence that in

our present work, the bow-function method produces TPs
~2 _ 3~ which have all of the essential features of the true TPs. As
will be seen, the TPs we obtained have helped us discover a
bil lidi hani to all eight TPs with th
@‘% ;'© 11 @ ilayer sliding mechanism common to all eig S wi e

B
@1 @y 10
© @
® | ®
® @

FIG. 6. Projection of an fcc lattice onto the culfitll) plane.
Arrows show sliding directions which chang® planes intoB FIG. 8. A sequence of bilayer slidings that takes the ZB struc-
planes,B planes intoC planes, andC planes intoA planes. ture in (a) to the RS structure iid).
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TABLE lIl. For each TP, the sequence of slidings of adjacenthigher transition barriers, which makes them less favorable.
bilayers is given. The numbers in the sequences refer to directions
indicated in Fig. 7. Also, the shear stradris given for each TP.
I1l. TRANSITION MECHANISM

™ Sequence € An analysis of the eight most favored TPs shows that they
1 1 0.71 share one common feature, i.e., they correspond to the eight
2 12 0.35 possible ways that atomic bilayers(itil1) cubic planes slide
3 123 00 relative to one another with no broken bonds, if we allow

' repeat units up to four bilayers. Our bilayer sliding model is
4 112 0.41 best illustrated by projecting the face-centered culfic)
S 1213 0.18 lattice onto the(111) plane (see Fig. 6. The positions
6 1122 0.35 markedA, B, C lie in different (111) planes. These planes
7 1112 0.47 are stacked with the repeating seque#dCABC.. (or,
8 1123 0.18 equivalently, ACBACB..). If we place the silicon atoms at

the lattice points, then the carbon atoms lie in planes between
the silicon planes. We denote the silicon positions with
lowest barriers. Furthermore, it is only with the help of theseA, B, C and the carbon positions with, b, c. [The A anda

TPs that we could have discovered how the barrier height iplanes project onto identical points on tfEL1) plane. We
lowered by allowing different bilayers to slide at different just use upper and lower case letters to distinguish between
rates. When a large number of structural parameters ar®i and C plane$.Using this notation, the repeat unit of
present, the bow-function method is a powerful tool for in-stacking in ZB is AaBbCc (or AaCcBh and in RS is
vestigating TPs in reconstructive phase transitions. AcBaChb(or AbCaBg.

As an example, consider TP 2 listed in Table I. For the In Fig. 7, we show how thél1]) planes slide to change a
linear TP, the barrier height is 0.91 eV per pair of atomsZB structure into a RS structure without breaking any bonds.
(AH; in Table Il). The symmetry of the crystal along this In ZB, the carbon atoms of one plane sit directly above the
linear TP is monoclinic, space group No.CZ. Both the Si  silicon atoms in the plane belofthe a and A planes shown
and C atoms are at the Wyckadff) positionx, y, z. There in the figurg. There is one bond between each carbon atom
are eight structural parameters: the monoclinic lattice paramand the silicon atom in the plane below. The carbon atoms
etersa, b, ¢, B and the atomic positionys;, Xc, Ye. Zc also sit directly below a “pocket” of silicon atoms in the
(Since thex andz components of the origin ofc are arbi- plane abovethe a and B planes of the figune Each carbon
trary, we holdxg; and zg; fixed) When we minimize the atom is bonded to three silicon atoms in that plane. This is a
barrier height with respect to the eight weights, we obtain  total of four bonds per carbon atom in ZB. To change from
0.65 eV per pair of atom&H, in Table 1), a considerable ZB to RS, theaB bilayer slides so that the C atom now sits
improvement over the linear TP. In Fig. 3, we show the frac-in a pocket of silicon atoms of the plane below. This sliding
tional change in the lattice parametersb, c, 8 as a func- causes thaB bilayer to become &C bilayer. Each carbon
tion of the transition parameter The dashed lines show the atom is now bonded to three silicon atoms in the plane below
changes for the linear TP given by Ed). The solid lines as well as in the plane above, a total of six bonds. The four
show the changes which include the bow functions, as in Ecgilicon atoms to which each carbon atom is bonded in ZB
(2). In Fig. 4, we show the changes in the atomic positionsremain bonded to that carbon atom in RS. The sliding causes

In Fig. 5, we plot the enthalpy barriekH, for TPs 1  two more silicon atoms to be bonded to each carbon atom,
through 8. Each barrier height has been minimized usingaising the number of bonds from four to six. This is what we
bow functions. The values fakH, are given in Table Il. For mean by “no broken bonds.”

TPs 1,2,3,9, we obtained similar results usiagp, as can be As shown in Fig. 8, the first-step sliding between the
seen in the table. The plane-wawesP method is much more and aB layers changes the stacking sequence from
computationally demanding than the local basiseBALL ~ AaBbCcAaBbC¢Fig. 8a)] to AbCcAaBbCcA4Fig. 8b)].
method. Our motivation for adopting a local basis methodNote that every layer above tl&B bilayer is shifted along
here is because of its efficiency. By sacrificing a minor re-with the aB bilayer, leading to a relabeling of every subse-
duction in the accuracy, we can achieve a significant im-quent layer. Next, we slide th&A bilayer with respect to the
provement on computational efficiency with our optimized C layer below it, and we obtaiAbCaBbCcAaBIhFig. 8(c)].
basis sets. It was not deemed practical to calculate any of thénd finally, we slide thebC bilayer with respect to th®
other barrier heights usingasp. As shown in Table I, re- layer, and we obtaibCaBcAaBbCd¢Fig. 8d)]. We now
sults from the two computational methods are in good agreelave one repeat unit of the RS structudCaBc We repeat
ment for the selected TPs and both methods provided a cothis procedure to change each repeat unit of ZB into a repeat
sistent picture of which TPs have low barriers, relative to theunit of RS. Of course, in an actual phase transition, all of
others, and thus which are the favored pathways. these slidings take place simultaneously.

It is worth noting that the two previously suggested low- The eight favorable TPs differ in the combination of the
barrierlmm2 andP52 TPs are included in our eight favorable sliding directions in the bilayer sliding sequence. As can be
TPs found in this study. Our study also agrees with the preseen, we require slidings that changénto B layers,B into
vious study that botiR3m and P2,;3 TPs have noticeably C layers, andC into A layers. From Fig. 6, we see that for
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TABLE IV. TPs from Table | with the symmetry lowered so that the motion of each c(it) plane
within the unit cell is independent along the TP.

TP G G Lattice Si C
1 8Cm zB (1,-1/2,-1/2,(0,-1/2,1/2,(2, 1,1 (@ 0,0,0 (@) 5/8,0, 1/16
(@) 1/2,0, 1/4 (@) 1/8,0,5/16
(@ 0,0, 1/2 (a) 5/8,0,9/16
(@) 1/2, 0, 3/4 (a) 1/8, 0, 13/16
RS (1/2,-1,1/2, (1/2,0,-1/2,(1, 2, ) (0,00 (a) 3/4,0,1/8
(@) 1/2,0, 1/4 (@) 1/4, 0, 3/8
(@ 0,0,1/2 (a) 3/4,0,5/8
(@) 1/2,0,3/4 (@) 1/4,0,7/8
2 1P1 zB (0,-1/2,1/2,(1/2,0,-1/2,(1,1, 2 (0,00 (@) 7/8,1/8, 3/16
(@) 1/2,1/2,1/4 (a) 3/8,5/8,7/16
(@ 0,0, 1/2 (@) 7/8,1/8,11/16
(@) 1/2,1/2,3/4 (a) 3/8,5/8,15/16
RS (0,1/2,-1/2, (-1/2,0,1/2, (2, 2,0 (@ 0,0,0 (@) -1/2,1/2,1/8
(@) 0,0,1/4 (@) 1/2,1/2,3/8
(@) 0,0,1/2 (@) -1/2,1/2,5/8
(@) 0,0, 3/4 (@) 1/2,1/2,7/8
3 1P1 ZB (0,1/2,-1/3,(-1/2,0,1/3,(1,1,D (@ 0,0,0 (@) 1/3,2/3,1/12
(@) 1/3,2/3,1/3 (a) 2/3,1/3,5/12
(@) 2/3,1/3,2/3 (a)0,0,3/4
RS (0,-1/2,1/2,(1/2,0,-1/2,(1, 1, ) (@ 0,0,0 (@) 1/38,2/3,1/6
(@) 2/3,4/3,1/3 (@ 1,1,1/2
(@) 4/3,2/3,2/3 (a)2/3,1/3,5/6
5 1P1 ZB (1/2,-1/2,0,(0,1/2,-1/2,(3/2,1,3/2 (@) 0,0, 0 (a) -1/16, 1/16, 3/16
(@) 1/4,3/4,1/4 (a) 3/16, 13/16, 7/16
(@ 1/2,1/2,1/2 (a)7/16,9/16, 11/16
(@) 3/4,1/4,3/4 (a) 11/16,5/16, 15/16
RS (-1/2,1/2,0,(0,-1/2,1/2,(1,2,) (2 0,0,0 (@) 1/4, -1/4,1/8
(@ 1/2,1/2,1/4 (a)-1/4,1/4,3/8
(@ 0,0,1/2 (@) 1/4, -1/4,5/8
(@) 1/2, -1/2,3/4 (a) 3/4,1/4,7/8
6 1P1 ZzB (0,1/2,-1/2,(-1/2,0,1/2,(1, 1,2 (@ 0,0,0 (@) 1/8,718, 3/16
(@) 1/2,1/2,1/4 (a)5/8,3/8,7/16
(@ 0,0,1/2 (@) 1/8, 718, 11/16
(@) 1/2,1/2,3/4 (a)5/8, 3/8, 15/16
RS (0,-1/2,1/2,(1/2,0,-1/2,(2,2,0 (@ 0,0,0 (@ -1/2,1/2,1/8
(@) 0,0,1/4 (@) -1/2, -1/2, 3/8
(@ -1, -1,1/2 (@) -1/2,1/2,5/8
(@) 0,0, 3/4 (@ 1/2,1/2,7/8

each case, the slide can take place in three different direquence in Fig. 8 actually depicts TP 3 where the three slid-
tions which we label 1,2,3. The intermediate structures alongngs shown are in directions 1,2,3, respectively.

the TPs from ZB to RS are distinguished by the relative In Table Ill, we show the repeat unit of the sequence of
directions of the slidings. For example, we obtain TP 1 whersliding directions for TPs 1 through 8. This table gives every
we slide every bilayer in the same direction. Every bilayer isunique way in which this sliding can take place for repeat
equivalent along this TP, leading to a structure with the samenits up to four bilayers. Based on this analysis, we can draw
size of primitive unit cell as in ZB and RS. We obtain TP 2 an important conclusion thatomsusshas found every pos-
when we slide alternate bilayers along directions 1 and 2sible way this can be donfer the sequences of sliding di-
respectively. This leads to a structure with a primitive unitrection which have repeating units of up to four. Additional
cell twice as large as that in ZB and RS. The sliding se-TPs can be found if longer repeating units are allowed. How-
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Lo nearly the same for every TP. In Table Il, we give the nu-
merical valuesAH; for these barrier heights. Note that the
lower symmetry in TP 6 had very little effect on the barrier
AH; (eV) height and shape.

On the basis of Fig. 9, we conclude that all eight TPs are
equally energetically favorable, to within the accuracy of
FIREBALL. However, the strain accompanying a transition
0.5 1 must also be considered. We assume in our calculations that
the entire crystal transforms coherently. In reality, phase tran-
sitions generally result in a number of domains with different
orientations. A large anisotropic strain can hinder a phase
transition as different domains try to strain the crystal in
different directions. In the present case, the sliding of the
cubic(111) planes causes a shear strain. Using the sequences
in Table Ill and the directions in Fig. 6, the shear strain for
each TP can be easily calculated. We give the results in Table
) . iy Il
FIG. 9. Enthalpy barrierdH; as a function of the transition For example, in TP 1, evergL11) bilayer slides a distance

parametert along each of the first eight TPs described in Table I. _, = = . . . .
The TPs include bow-function corrections that maintain the sym-a/\‘6 (ais the lattice parameter of the cubic unit geélative

metry given in Table | for TPs 4,7,8 and the symmetry given into the adjacent bilayer. Thell]) bilayers are a distance

0
0 ¢ 1

Table IV for TPs 1.2.3.5.6. a/\3 apart. This results in a shear strain(ef \6)/(a/+3)
S =1/\2.

ever, those TPs are expected to have similar barrier heights In TP 2, alternating111) bilayers are displaced in direc-

as the eight TPs listed here. tions 1 and 2, respectively. If we add these two directions, we

Now we return to the barriers shown in Fig. 5. We noteobtain a net displacement of the same ama@un6 but in a
that four of the TP94,6,7,8 have barrier heights that are direction opposite to direction 3. This displacement occurs
substantially lower than the others and appear to be a supepver two bilayers, so the shear strain (is/ \V6)/(2a/\/3)
position of two or more peaks. Three of theffiPs 4,7,8 =1/2\2.
have the triclinic symmetry, space group No.Hl. Each In TP 3, the sum of displacements in directions 1,2,3 is
atom in the unit cell belongs to a differe(it1l) layer. This  zero, resulting in zero shear strain. In fact, this is the only TP
allows the(111) bilayers in the unit cell to movindependent among the eight that has zero shear strain. This favors TP 3
of each other. We see in Fig. 2 that the peak of the barrieover the others.
occurs when adjacent bilayers have slid about half Wy
~0.5). If some adjacent bilayers could slide ahead of others,
then the peak in the barrier for different adjacent bilayers IV. CONCLUSION
would be crossed at different values fThis could lead to
an overall lower barrier with a shape that would appear to b‘fra

a superposition of two or more peakve note that TP 6 sition in SiC with the cell sizes of intermediate structures up

als? sgov(\;s this f(taat”ure,tﬁven tthougr; tTlef spacle—groutp Ey'pd eight atoms. Our first-principles calculations have identi-
.ms ry 3 o;as an ahovzh € Irnot;]qn ora tohur pianes to et.‘ied eight favorable TPs among the 925 possible candidates
independent of each other. In this case, the symmetry stifl . | by acomsuBssanalysis. Common features in the eight

allows E{htethpeta][(s tol be crods;?d at d|ffe[ent ]:/ta;]lueéir):)Th_lrsP favorable TPs leads us to the discovery of the bilayer sliding
suggests that It we fowered the symmetry of the other 1S Sfhechanism for the structural transformation of this type. Ac-

the}t there are three or more i”‘?q““’"’."eml) bilayers in the cording to this model, all the related TRsven when longer
unit cell, we can Io_wer the barrier helghts of the o'ther TPsa epeating sequences are considgae equally favorable in
well, '([\Iote that this does not. agree .W'th the conjecture tha erms of enthalpy barrier heights. The only thing we can
transitions will follow paths with maximal subgroup symme- really conclude is that the transition takes place by some

try.) . -
. . . sequence of11]) bilayer slidings. In a real sample, the se-
In Table IV we give the new settings required for TPs guence of sliding directions may even be random without a

1,2,3,5,6. In these new settings, the number of structural padggfinite period. However, we would expect all three direc-

e s o ot oo e S e 30n 1 b preset i appoxmatly eael amourts o tht
pie, g €9 ' minimal amount of shear strain would occur.

there are 27 structural parameters. Minimizing the enthalpy
barrier with respect to 27 weights would be possible only for
a highly efficient computational method suchraSEBALL. ACKNOWLEDGMENTS

In Fig. 9, we plot the enthalpy barrietsH; we obtain
using the increased number of bow functions allowed by the We acknowledge financial support from the U.S. Depart-
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In summary, we have systematically studied the possible
nsformation pathways for the zinc-blende to rocksalt tran-
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