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Allowed mesoscopic point group symmetries in domain average
engineering of perovskite ferroelectric crystals
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Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602

W. Cao”
Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong, China

(Received 30 June 2003; accepted 30 July 2003

In multivariant systems, several energetically degenerate low temperature domain states can be
produced at the structural phase transition. Coexistence of these domain states can produce
mesoscopic structures that possess symmetries distinct from the microscopic single domain crystal
symmetry. Such engineered domain structures in certain ferroelectric materials have been proven to
give superior piezoelectric properties and extremely soft shear moduli. The objective of this article
is to consider the variety of symmetries that can be produced through domain average engineering
in proper ferroelectric systems arising from the culBicn3m symmetry perovskite structure.

© 2003 American Institute of Physic§DOI: 10.1063/1.1611634

I. INTRODUCTION Recently, a method has been reported to fabricate desired
multidomain single crystals, which can greatly enhance the
Many ferroelectric systems belong to the pervovskitepiezoelectric and the electromechanical coupling coefficients
family with the high temperature phase having cuBim3m  in  relaxor-based ferroelectric  single crystals of
symmetry. A ferroelectic phase transition driven by a zonePh(Mg,,5Nb,,5)O; (PMN—PT) and  PiZn,;sNby5) Os
center transverse optical “soft” mode produces a crystalPzN—PT).>~* Both solid solution systems have a perovskite
structure with a dipole in each unit cell, reducing the sym-structure. Poling along one of the pseudocubic axes, for ex-
metry to one of the polar classes: 1, 2, 3, 4r6mm2, 3m,  ample[001], in the rhombohedral phase ferroelectric crystals
4mm, and 6nm As a consequence, there is more than ongcorresponding to 4111] polarization, creates a multido-
low temperature ferroelectric domain state present. A domaimain state containing four of the eight possible low tempera-
refers to a homogeneous crystal region in which all the dityre variants with the local dipoles oriented randomly along
poles are aligned in the same direction. It is a well estabry11) 11117, [111] and[111] directions with respect to the
lished fact that the presence of domains can S“bSta”t'a"kfseudocubic axes. Such a poled multi-domain system has a

enhance the properties of ferroelectric materials. In a Sing'ﬁiezoelectric coefficient over 2000 pC/N and an electrome-
crystal system, two neighboring domains form a twin struc- 13,4

h . il " , h chanical coupling coefficienks;; over 90%;,>" which is a
ture and there is a spatial transition region between themy.o o0 come true for transducer and piezoactuator designers.

which is termed the domain V\.Ia”’ since it usually appears agpq complete set of matrix properties have been determined
a planar structure along particular crystallographic orientaz . w o p7N_PT and PMN—PT multidomain single crystal
tions. Under an applied external field, the size of ferroelectricbased on the pseudotetragonal symmetry, which is substan-

domains can either contract or expand in order to lower th(_f‘ially different from data of the single domain single crystal

total energy of the_ system, causing the domain walls tOand ceramic samplé¢ The method used in enhancing the
move. These domain wall movements and the resulting do-

. . ; o .“material properties in this case is to manipulate the domain
main configurations produce the so-called “extrinsic contri-

. ) . o ._structures instead of the domain wall mobility. Therefore, the
butions” to the effective material properties in many ceramic

. o o configuration and size of the domains will determine the ef-
ferroelectrics. These extrinsic contributions have been ex:

perimentally verified to amount to 60% of the total piezo- fectll\t/ewsyrr;mer:;ytﬁn? t:e a\f/(i;]agehmarter:aldplrioiaetr:]lesr.n i
electric and dielectric effects in F&r,Ti)Oz (PZT) ceramics . as ?u . a ? € OI Ie s eha} h odu h teth uit-
at room temperature. For this reason, researchers have sp ain systems 1s extremely low, which means that the me-

extensive effort to find better chemical additives that canSOSCOpiC structures can also greatly influence the elastic

enhance the mobility of domain walls. For example, a fewpropertie§. These resglts demonstrated that the _doma}in—
percent of La or Nb dopants can produce more than 500§"9inN€ering concept might help us to produce materials with

improvement in piezoelectric and dielectric properties in theSUPErior properties. In order to take full advantage of this
so called soft PZT ceramics. process, one must gain a better understanding of the kinds of

effective symmetry that can be produced in each given crys-
tal system. Obviously, the mesoscopic symmetry or symme-
dAuthor to whom correspondence should be addressed; electronic mai{:[.y of domain patterns is intrinsically linked to the underly-
hatchd@byu.edu

Ypresent address: Department of Mathematics, The Pennsylvania State Uriﬁlg crystal strucFure. Here We use grgup theoretical methogls
versity, University Park, PA 16802. to make a detailed analysis of possible proper ferroelectric
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symmetry, and the corresponding physical tensor properties
for that domain set. Since the domain patterns can vary
greatly, and since the questions of variety and resulting sym-
metries are not directly determined from the crystal symme-
try, these possibilities can become complicated and difficult
to obtain systematically. In the following we describe al-
lowed mesoscopic symmetries in crystals having point
soft mode, which upon softening produces a proper ferro-
FIG. 1. lllustration of two different symmetries for a twin structure pro- electric phase tr_ans_ltlon' The three C_ases we consider corre-
duced in a rhombohedral ferroelectric phase transit@nrhe four domains spond to polarization r(x,py,pz) oriented along[100],
have identical size so that the system hasrdsymmetry.(b) Two domains  [110], and[111], resulting in the single domain state symme-
are larger than the others. tries PAmm, Amn2, andR3m, respectively. For th¢111]
polarization direction the PZM—-PT and PMN-PT crystals
are examples of interest. The well known BaJi® an ex-
systems which can result from transitions in a cuBim3m ~ ample of a structural change with polarization along the
perovskite structure. The analysis will be performed for bott100] direction. KNbQ is an example of a material which
equal and non-equal volume fractions of different domains irndergoes a ftransition due to the spontaneous polarization
the structure. The volume fraction deviation from equal parfoward the cube edgeg10.
tition will cause the mesoscopic symmetry to become lower.  Multidomain symmmetries have been considered by
In fact, as analyzed previously for the PMN—PT andFouseketal’ and Fuksa and Janovédn the work of
PZN-PT Systemsl the effective macroscopic Symmetry proFouseket a|.7 all volume fraCFionS were aSSUmed equal and
duced by the microscopically rhombohedral crystal structurdnus the number of symmetries for the domain configuration
can range from cubie3m, tetragonal 4nm, orthorhombic ~ Were restricted. They considered multidomain symmetries
mm2, monoclinicm, all the way down to triclinic £ The  for the transition fronm3m to R3m. This corresponds to our

symmetry of the multi-domain structure does not necessarilﬁlll] polarization ordering. The equal volume restriction was
have to be a subgroup of the microscopic crystal symmetry€laxed in the work of Fuksa and JanoVemnd they listed
as shown in Fig. 1. In cage) all four domains are identical possible symmetries for tH&11] ordering. Here we consider
in size. The solid circles represent the endpoints of the pothe case of nonequal volume fractions and briefly describe an
larization direction vector in each domain, originating from algorithm to systematically obtain all possible domain con-
the center of the cube. The system has two mirror planes arfggurations. The algorithm has been implemented on com-
one four-fold rotation axis; therefore, the effective symmetryPuter and thus can easily yield similar results for multido-
of the structure is thm. In Fig. 1(b), the two right domains main configurations resulting from any phase transition. As
have equal volume fractiongepresented by solid circles exam.ples of our procedu.re we list .results for the experim.en—
and the two left domains have equal volume fracticepre- tally interesting perovskites mentioned above of ordering
sented by the open circlebut the two left domains have along[100], [110], and[111]. We compare our results for the
different volume fractions from the right domains. Therefore,[111] ordering with previously published work.
there is only one mirror plane in the structure and the sym-
metry of this twin is reduced to monoclinin. (In this article
if the domains have the same volume fraction they are repy. ALLOWED MESOSCOPIC SYMMETRIES
resented by the same symbol, e.g., solid circle, open circle,
solid triangle, etc., might be used, but different symbols im- At the transition the symmetry reduces from the parent
ply different volume fractions. group symmetnG to a phase of symmetry; C G, which is
The mesoscopic symmetry analysis must distinguish théhe symmetry of the domain sta. There is a one to one
following two different situations. The first kind of domain correspondence between the domain states and the left cosets
structure analysis is on domain geometry and includes thef F; in G. The groupG is the union of all these left cosets
consideration of the geometrical nature of domain configu-
ration in space, twinning patterns as well as domain wall G=F;+g,F;+...+9,F;.
orientation, and positioning. The second kind of domain
analysis, domain averaging, considers an average of the§mach coset representatigeof F, in G acting on the stat§;
domains without consideration of spatial occupation detailstakes it into the corresponding stefe whose symmetry is
The symmetry operations therefore refer to the global avergiFlgi‘l. The set of theser domain states formed by the
age in terms of volume fractions and the operation may notransition is represented &-{S,,S,...}. The action of the
exactly bring the local structure back to itself. This article isparent grougs on the seSis a mapping o5to Swhich, for
focused on the second kind of domain structure analysis. each elemeng e G, assigns a statg, to a stateS, for all
Of course, the domain pattern symmetry will be differentstates inS. This mapping must be an isomorphism which is
if the microscopic symmetry of the crystal structure is al-associative. The identity element of this mapping is the iden-
tered. The ultimate objective is to systematically obtain alltity element ofG. The action ofg on S results in a permuta-
allowed “domain sets,” their mesoscopic symmetry, infor- tion of the elements it and can be mapped onto a permu-
mation about the role of domain fractions in determining thattation matrixD(g). The mapping of all operatorse G onto
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permutation matrices results in a permutation representatiotnat interchange domair® andS, whereas the symmetry of
of G on Swhich contains a finite number of distinct matrices the nonconnected multidomain s&+(a,b,0,0,...,0) would
forming a permutation group. not.

If H is an arbitrary subgroup @ then theH orbit of the The above procedure is also applicable in the reverse
stateS, is the setS, of distinct states generated by applying direction. This is the basis of our algorithmic approach. A
all elements ofH to S,. For any HCG, the setS more detailed discussion of the computer implementation
={S,,S,...} is either a singleH orbit S=S, or the union of  will be given elsewhere. Here we want to emphasize the
disjoint H orbits. An operatiorg e G takes arH orbit of S;  results which will be of interest for mesoscopic symmetries
into a gHg™ ! orbit of gS,. Thus the division of S  and tensor properties. Given a group symmétrghe most
={S,,...} intoH orbitsS=S,US,U... is transformed into a general form of S which satisfies the matrix equation
division of gHg ! orbits S=gS,0 'UgS,g 'U.... We  D(g)S=S for everyg in L gives us the most general multi-
will say that the two divisions 0§ under any two subgroups domain structure with that symmetry. This procedure reduces
H, andH, of G, are equivalent if there exists an operationto solving a set of simultaneous equations by computer, a
g e G which takes every orbit off; into an orbit ofH,. matrix equation resulting for each elemenin L. The sym-

A multidomain crystal has an average symmerif the ~ metry L of every multidomain structure corresponds to
effective property tensoU is invariant under the groupl. ~ (maps ontp one of the subgroups @?. SinceP is finite, it
Any effective property tensdd can be written as a function has a finite number of subgroups. If we consider every pos-
of tensor propertiet);, U,,...U, of the domain stateS,,  Sible symmetry that might be allowed by a multidomain
S,,...S, respectively, weighted by their volume fractions. structure(corresponding to all subgroups of the permutation
The essential information needed in order to obtain a macra@roupP), and obtain the multidomain structure for each sym-
scopic symmetry and thus the macroscopic properties is th@etry, we can obtain all possible multidomain structures. We
knowledge of the multidomain structure, their respective vol-construct by computer all subgroups Bfby requiring ele-
ume fractions, and the maximal set of symmetries whichment multiplication and group closure. We start with groups
preserve these volume fractions. The average symmetry wilf order two, check for equivalences, then go to groups of
be determined only by the symmetry of the domains as thegrder three, etc., on up to the order of the gréupVe then
transform into one another under the restriction that the symneed only consider each of these subgroups, one at a time,
metry transformation cannot disturb the relative weighting ofand obtain the general domain set structBrier each one.
the domains according to the volume fraction. With this phi-  The process of starting from symmetriesand obtain-
losophy in mind, the domains which are present in the strucing the domain configuration needs some clarification. First
ture, with their respective group symmetries, can be interthere are subgroups of the permutation gréyplefining the
preted as coexisting in space and being permuted by theymmetried ;, which generate the same multidomain struc-
elements of the symmetry operation corresponding to théure as a higher symmetry grolipWe are only interested in
coset decomposition. In fact, the same philosophy has beghe complete symmetry of a structure, so in the results pre-
used in all ceramics and alloys when they are assumed hsented here we list only the maximal symmetry group for a
mogeneous and isotropic. Our algorithm is based upon cosgiven multidomain structure. Second, a multidomain struc-
permutations corresponding to a given transition and theiture may be equivalent to another in that it is just a rotation
resulting symmetries. of the latter by a lost parent-group element. We can system-

We will call a domain set “connected” with respect to a atically check for equivalence for each domain structure. We
group HCG, if the action ofH on any one of the domain list only one representative in an equivalence class. Third,
states yields the entire set of domain states, the set consists@fppose the symmetidly determines a nonconnected vector
a singleH orbit. If H is the symmetry of a multidomain S=(a,a,b,c,d,e) as a general multidomain structure of
structure, all elements of af-connected set must have equal symmetryL. It is possible that the vectds=(0,0b,0d,0)
volume fractions. A nonconnectétlC) set of domains con- also determines the same symmetry. This symmetry is not
sists of distinct connected components. In the NC set differebtainable by omittingd or d (i.e., the symmetry increases
ent components do not have the same volume fraction buvhenb or d is omitted and the addition of the other domains
the domain states in each component do. The symmetry dtorresponding t@, ¢, ande) does not decrease the symme-
the NC set is the intersection of the symmetries of its distinctry. We note thatS=(0,00,0d,0) is then a minimal domain
connected components. set for the symmetry. while S=(a,a,b,c,d,e) is not mini-

A multidomain structure can be represented by a vectomal. In the listing of our tables we only include the minimal
Swhere the components represent the relative fraction of thdomain set that determines the maximal symmetry group of
total volume each domain occupies in the crystal. For exthe domain structure. Additional nonconnected sets which
ample, a crystal composed of two domais;, and S, of  yield the same symmetry will not be listed. This allows us to
equal amounts is represented ®y (a,a,0,0,...,0) whereas a present a more compact listing in the tables. In our example
crystal composed of the two domains in unequal amountthe vectorS=(0,00,0,d,0) would yield a domain set which
(necessarily nonconnected is represented by S would be listed in our tables with symmetky because it is
=(a,b,0,0,...,0) whera+#b. The symmetnL of a multido- a minimal multidomain set. However, the vectds
main structure consists of all operators which le&Javari- =(a,a,b,c,d,e) and its symmetry would not be listed be-
ant, i.e., allg for which D(g)S=S. In the examples above, cause it yields the same symmetry, even though it is a non-
the symmetry ofS=(a,a,0,0,...,0) could include operators connected domain set of symmetry(See the discussion of
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12 8 TABLE I. All possible symmetrically distinct connected sets for ferroelec-

tric ordering along110]. Only nonzero contributions of the order param-
eters are shown in columns 3, 4, 5.
®: Set Gijup r, ry rs
2@ 1,2,..11,12 _m3m
(1,4,5,7,9,10 3y My (a,a,a)
(2,3,6,8,11,1p 3 My (a,a,a)
(1,59 3y Myy (a,a,a) (a,a,a)
(2-8111) 3><y227y e e (a.a,a)
1,2,39 4,/m,m, ,m, (a,0)
FIG. 2. Directions of polarization of domain states with orthorhombic or- (5 6 7,8 9,10,11,22 4,/mm,,m, (a,0)
dering along 110]. (5,8,10,11 szxzxy (a,0)
(5,8,9,12 4,m,m,, (0,0a) (a,0)
- . . 1,4 My M,y M. a0 a,0,0
a specific example in Sec. IJlSimilarly, suppose a con- E1,3),6,Z mxyyzmxxyzyj (04, —a) (; \/52) EO,a,O))
nected se6=(0,0a,a,0,0) with symmetnyL is listed in our (13 m,m2, (0a-a) (a3a) (040
tables. If the addition of domains 2 and 6, corresponding ta1,3 m,m.2, (0,a,0) (a,0)
the vectorS=(0,0,a,a,0b), does not decrease the symme-(5.7.9,10 25, 1my; (a,0) (0a,a)
try, this nonconnected set is not listed because it is not &9 My (a.aa) (a,0)  (0a,a)
5,10 2y, (a,—a,0) (a,0) (0a,a)

minimal set yielding the symmetrly. (See the specific ex-
ample in Sec. Il

Thus in the listing of our results we will listl) the
maximal symmetry for a multidomain structuf@) only one  class is(2,3,6,8,11,12 Only two domain classes of order 6
representative for each equivalence class; @donly the  are connected. All other connected domain structures con-
minimal domain set determining the symmetry. We do pro-taining six domains are equivalent to one of these two class
vide the most general domain structure for each symmetryepresentativiegUsing our computer algorithm we can eas-
This allows one to infer domain structures from the minimalily obtain a listing of all domain structures equivalent to a
form up to the most general form for each symmetry of anselected one. We do not give the complete listing of equiva-
equivalence class. We check by computer each disjoint orbient domains here because of space consideratitmsol-
to obtain the minimal domain configuration. umns 3, 4, 5 we give the directions of the order parameters

(OPs9 for this structure. At the onset of the polarizati@he

1. [110] DIPOLE ORDERING IN PEROVSKITE BASED primary OB there will be coupling to secondary OPs which
FERROELECTRIC SYSTEMS then become nonzero as a result of the transition. The sec-

As an example of our procedure, consider the case whe@dary OPs of interest to us in this discussion are the com-
the dipole moment orders at the transition toward the cub@onents of strain. For the phase transitions fiem3m the
edges(110 e.g., KNbQ. This ferroelectric distortion arises Strain contributions arel’'; = (et €,y+€,;) (volumetric
from theT', representation and changes the symmetry frondtrain, 'z =(ext+ e,y 26, V3ex—\/3€,y) (deviatoric
that of the parenPm3m to that of the microscopic ortho- Strain, andl's =(exy, €y, €x,) (shear strain The OP values
rhombic crystal structurdmn®. There are 12 possible do- Of the symmetric domain set are the volume-fraction-
main states, each being symmetrically related to[tti0]  Weighted average of the polarizations and strains for the
domain. Those 12 domain states are the followingi,4(0), ~ Structure. Along with the primary OP of dipole moment
2(a,-a,0), 3(-a,a,0), 4(-a,-a,0), 5@0a), 6(a0,-a), given in column 3, we give the direction of the secondary
7(-a,0,-a), 8(-a,0a), 9(0a,a), 10(0,4,-a), 11(0a,-a), strains in columns 4 and 5, which are also connected with the
and 12(0,a,a). Here we give the domain number and the Mesoscopic structural symmetry.
direction of the dipole moment. The twelve domain states are For some domain set entries there is no dipole moment
represented in Fig. 2. All possible connected sets obtained dyentribution, e.g., domain s¢6,7,9,10 has no mesoscopic
our algorithm are shown in Table I. In column 2 of Table | Polarization(no entry forI',) but this connected set does
the point group symmetry of the mesoscopic average strud?0ssess deviatoric and shear str@ntries forl'; andl's).
ture (the multidomain structubds given. Under the symme- Poling fields may be applied in a hierarchal fashion to
try transformations of the point group listed in column 2 anymove down the chain of symmetries. For example, from the
domain state in the set will transform into all of the listed domain set(1,2...11,12 with all domains present and of
domain states. As mentioned earlier, a set of domains igqual prominencdyielding the symmetrym3m), a shear
equivalent to another set if there exists a symmetry elemersitress of the form &,a,a) induces the domain set
of the parent phase which simultaneously transforms the firgtl,4,5,7,9,10 (of symmetry 3n) and then by imposing an
domain set into the second. Only one representative of eadtlectric field of the form &,a,a) the domain setl1,5,9 is
symmetry class of domains is given in column 1. For ex-obtained with symmetry 13.
ample, there are many domain sets of order 6. The domain A selection of the values for the OPg , I'; , I's does
class represented l§%,4,5,7,9,10is connected. There is also not necessarily guarantee a uniqgue symmetry. Notice that a
another class, inequivalent £&,4,5,7,9,18 consisting of 6  strain of the forml'; =(a,a,a) corresponds to two different
domains which is connected and the representative of thatymmetries  with  two  different domain  sets,
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TABLE II. All possible distinct symmetries of nonconnected sets for ferro- the nonconnected domain sét,2,3,4,(5,6,7,9 yields the
electric ordering alond110] are given. Only nonzero contributions of the symmetrym,m,m, . However, the non-connected domain set
order parameters are shown in columns 3, 4, 5. XY E ' .

P (1,2,3,4,(5,6,7,9,(9,10,11,12 also yields the same symme-

Set Group r; r; rs try. Only minimal non-connected sets, representatives of
(12345678 mmym, (@b) each symmetry, are listed. Also, an allowed nonconnected set
(1.4,(5.8.10,11 20202, (a,0) (2,0,0) may not be shown because the symmétrythe equivalent
(1,2,3.4,(9,10 2./m, (a,b) (0,2,0) symmetry it determines can be obtained from a connected
(1,4,(5,8,9,12 My Myy2, (0,0R) (a,0) (a,0,0) set of domains. For example, the connected domaiilset
(1,59.,(2,8,13 3xyz (a,a,2) (a,a,2) yields the symmetry m,m2,. The domain set
(i’?’(g’m 2 (2,0,0) (a,t;) (0'2'0) (a,b,a,b,0,0,0,0,0,0,0,0) is nonconnected but it determines
213525;; nix (O;b) Ezzb; i%',aigi the same symmetry as that 0&,0,2,0,0,0,0,0,0,0,0,0), a
(1,3,(9) m, (0a,b) (a,b) (0,,0) connected set. The nonconnected domain  set
(1,3,(10 m, (0,a,b) (a,b) (0,2,0) (a,b,a,b,0,0,0,0,0,0,0,0) is not listed in Table II.

(9),(11) my (0.a,b) (a,b) (0.a,0) In Table Il we list the most general domain structure
(1).(5) 1 (abc)  (ab)  (abc) allowed by the representative symmetry of a given class.
2),(7) 1 (a,b,c) (a,b) (a,b,c)

This allows the reader to obtain a set of domain structures
yielding the same symmetry, progressing from the minimal
domain structure to the more general. The discussion of the
_ two examples in the paragraph above can be developed by
3m(1,4,5,7,9,10) and 322,8,11, respectively. The point considering the sets of numbers 4 and 13, respectively, of
group symmetry B is completely specified byl's Table 111,
=(a,a,a) while 32 needs the additiondl, , I'; distortions For a structure composed of domains 1 and 3, with equal
to obtain this structure. These additional distortions are nofolume fractions, the domain set is connected and the sym-
being considered in our limited discussion here, so these twmetry ism,m,2, (see Table)l If a shear stress, correspond-
domain structures cannot be separated using stress and elégy to Fg(ia,o,O), is added, then the domains are of dif-
tric field alone. Other examples of this type are evident inferent energies, their volume fractions are no longer equal,
our tables. the domain set is not connected but consists of two compo-
In Table 1l all possible distinct symmetries of minimal nents(1) and(3) respectively, and the symmetry changes to
nonconnected sets for ferroelectric ordering alpht0] are  m,. [This domain structure is equivalent to the domain struc-
given. Nonzero contributions of the order parameters areure (9),(11) of Table 1] There is an also an associated
shown in columns 3, 4, 5. The list is exhaustive as far aghange in dipole moment direction.
allowed symmetries of minimal nonconnected sets are con-
cerned and gives a representative for each class. It is not
exhaustive in showing all nonequivalent nonconnected dolV: [100] DIPOLE ORDERING IN PEROVSKITE BASED

main sets which can give the same symmetry. For exampld,ERROELECTRIC SYSTEMS
Now consider the case where the dipole moment orders

at the transition along thg100 cubic directions, e.g.
BaTiO;. This ferroelectric distortion also arises from thg

TABLE IIl. The most general domain structure for given symmetry1dfo]

ordering. . . .
¢ representation and changes the symmetry of the microscopic
Set No. Domain set Symmetry crystal structure fronPm3m to the tetragonaP4mm struc-
1 (a,2,3,2,3,2,3,2,2,3,2,3) mam ture. There are six possible domain states with each being
2 (a,a,a,a,b,b,b,b,b,b,b,b) 4, /m,m,m, symmetrically related to thg100] domain. The six domain
3 (a,b,b,a,a,b,a,b,a,a,b,b) 3y states are represented in Fig. 3. The labeling of OP directions
4 (a,a,a,a,b,b,b,b,c,c,c,c) m,m,m, are the following: 14,0,0), 2(—a,0,0), 3(0,0a), 4(0,0,
5 (ab,b,a,c.c.c.c.c.c.c.c) My MyyM, —a), 5(0a,0), 6(0—a,0). All possible connected sets aris-
6 (a,a,a,a,b,c,c,b,c,b,b,c) 4,m,2,, . . L . .
z XX ing from this transition are given in Table IV. In Table V all
7 (a,a,a,a,b,c,c,b,b,c,c,b) 4,mm,, . .. .
8 (ab.c.a.a.cab.aabc) 3,2, possible distinct symmetries of nhonconnected sets for ferro-
9 (a.b.b.c.ab.cbac.b.b) 3, m. electric ordering alond100] are given. Table VI lists the
10 (a,b,b,a,c,d,d,c,d,c,c,d) 2524y2, most general domain structure allowed by the symmetry rep-
1 (a,a,a,a,b,b,b,b,c,c.d,d) 2, /my resenting each equivalence class for [th@0] ordering.
12 (@,b,b,a,c,d.c,dc.c,dd) 2y Iy As an example of the use of the symmetry tables for
13 (a,b,a,b,c,c,c,c,d,e,d,e) m,m,2, . . .
14 (@b.abbaab.c.cde) o o ordering along100] consider the case discussed by Erhart
15 (abbac.d.d.c.c.d.d.c) m:ynixiyzyi and Cad>® As can be seen from Table IV, when a poling
16 (a,b,c.d,a,c,d,b,a,d,b,c) 34z field is applied alon@111] rather than one of the polarization
17 (a,a,b,b,c,c,dd,eef,f) 2 directions it leads to a three domain state containing the do-
18 (a.b.c.a,d.ef.g.f.dg.e 2 main set(1,3,5. If only two of these domains remain due to
19 (a,b,b,a,c,d,c,d,ee,f,f) 1 L . . .
additional poling then only the symmetrgm2 is possible.
20 (a,b,a,b,c,d,d,c,e,f,g,h) My . .
21 @b,b,c,d.ef,g,dfeq) My, This follows from the fact that domain sets,3) and (1,5
22 (a,b,c,d,e f,g,h,i,jkl) 1 are in the class corresponding to en(8y6) in Table IV. If
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TABLE V. All possible distinct symmetries of nonconnected sets for ferro-
, 3 electric ordering alond100] are given. Only nonzero contributions of the
order parameters are shown in columns 3, 4, 5.
2
6

Set Group r, Iy rg
o— 5
@ (1,2,(3,9 m,m,m, e (a,b)
1 (1,2.,(5 m,m,2, (0,0a) (a,b) e
(3.5 my (0.a,b) (a,b) (0,2,0)

- (1,9,(3) My, (a,a,b) (a,0) (a,b,b)
4 ; (1,35 1 (ab,c) (a,b) (a,b,c)
FIG. 3. Directions of polarization of domain states with tetragonal ordering
along[100].

nonconnected domain set for this symmetry, we do not di-

) ) ) minish the symmetry fronmg, . None of the three volume
the domains are of different volume fractions then Tables Vfractions need to be equal to obtain this symmetry. Thus our

and VI indicate the symmetry is reducedrto expanded consideration to nonconnected sets provides a
broader understanding of possible three-domain configura-

V. [111] DIPOLE ORDERING IN PEROVSKITE BASED tions yielding therrqy symmetry.

FERROELECTRIC SYSTEMS Similarly, [1235] (this domain set corresponds to our la-

Qeling (1,2,4,9) yields the symmetrymy, according to
Fouseket al.” The same symmetry is obtained by the non-
connected, nonminimal domain g&t4)(2)(5) or the noncon-
ilaected minimal domain sefl,4)(2). This domain set is

Now consider the case where the dipole moment order
at the transition along thgl11] cube diagonals, e.g., PZN—
PT. This ferroelectric distortion also arises from fhg rep-
resentation and changes the symmetry of the microscop ) X
crystal structure fromPm3m to R3m. There are eight pos- equ[}/s(laen(;;gqgmr 22%12)é§]’3)clcﬂr1e-zb|§n\éls”.to our labelin
sible homogeneous domain states with each being symmetrg—1 2.4.7. This domain set yields thF:a symmetry.an.., ac- 9
cally related to th¢111] domain. The eight domain states are d ) F e I7Thy inimal y é@d Xz =
represented in Fig. 4. The labeling of OP directions are0rding FO ouse tal. The minima con_necte omain set
1(a.a,a), 2(a,—a,—a), 3(—aa,—a), 4(—a,—a,a), 5 (1,2,9 3_/|elds this symmetry and.|S_ equivalent to our entry
(—a,—a,—a), 6(—aaa), 7(a,—aa), 8(aa—a). Al (2,3,9 in Table VII. The nonminimal, nonconnected set

possible connected sets arising from this transition are showﬁ’z’ép(?) does not destroy any symmetry and thus yields the

in Table VII. In Table VIII all possible distinct symmetries of Sam,issalvr:r:grt%a@rzemgﬁr results p111] ordering with those
nonconnected sets for ferroelectric ordering al are .
g aloht] of Fuksa and JanovBueve see that there are some differences

given. Table IX lists the most general domain structure al- . S .
lowed by the symmetry representing the equivalence clasy presentation of results. We distinguish inequivalent do-
for the [111] ordering main structures in our listings where they do not. Fuksa and

Although this case was investigated by Fousekl” we Janovec list many nonc_:onnected sets which are npt minimal.
found some differences. The ga35] of Fouseket al.” cor- TO. _systemanc_ally obtain non-connected ;ets which are not
responds to our labeling of domaifis,4,5. The domain set ”?'”'ma' we give the most genergl.domam s;ructure for a
(1,4,5 does not show up in our listing of connected sets ind!ven symmetry so that thg nonminimal domain sets can be
Table VIl and it is not equivalentnot just a “rotated” ver- constructed. However, their results and ours generally agree.

. . . . An example of field induced domain reorientation was
sion) to the three domain s€®,3,4 which does appear in ) 9 ;
that table. The symmetry of domain $&14,5 is my, accord- recently dest_:nbed by Cheet aI_. The domains corre-
ing to Fouseket al.” They considered only equal volume sponded to dipole moment ordering alofi D). Thus there
fractions to get this symmetry. However, thg, symmetry
is obtained in our work by the minimal domain d@b(4),

. . . . TABLE VI. The most general domain structure for given symmetrj/16f0]
shown in Table VIII. Moreover, by adding the third domain g g Y l

ordering.
to obtain the domain setl)(4)(5), which is not a minimal 2

Set No Domain set Symmetry
TABLE IV. All possible symmetrically distinct connected sets for ferroelec- + (a.a,a.a,a.a) m3m
tric ordering along[100]. Only nonzero contributions of the order param- 2 (a,a,b,b,a,a) 4,/m,m,,m,
eters are shown in columns 3, 4, 5. 3 (a.abb.c,c) m,m,m,

4 (a,a,b,c,a,a) 4,/mm, m,
Set Group r; ri ri 5 (a,b,a,b,a,b) ByydMyy

— 6 (a,a,b,b,c,d) m,m,2,

(1,2,3,4,5,8 m3m 7 (a,a,b,c,c,b) my,, M2,
(1,2,5,8 4,/mm, ,m, (a,0) 8 (a,b,c,c,d,d) 2y
(3.9 4,/m,m, m, B (a,0) 9 (a,b,c,c,b,a) 2y
(1,39 3yy2Myy (aa,a (aa,a 10 (a,a,b,c,d,e) m,
) 4,m,m,, (0,0, (@,0 11 (a,b,c,d,a,b) m,

(3,6 my,M,2y; (0,a-a) (a,y3a) (0,a,0 12 (a,b,c.d,ef) 1
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4 TABLE VIII. All possible distinct symmetries of nonconnected sets for
6 ferroelectric ordering alonfl11] are given. Only nonzero contributions of
the order parameters are shown in columns 3, 4, 5.

Set Group ry T3 rs
1,5,(2,3,6,9 25y /Mg, (a,0) (a,b,b)
(1,5,(4,8 25 Imy, (a,0) (a,b,b)
1,9,2,7 2y (a,—a,0) (a,0) (a,b,b)
3 (15,2637 1 @b)  (abc)
(1,6),(3,8 my (0,a,b) (a,b) (0,,0)
2 1),2,3 my, (a,a,b) (a,0) (a,b,b)
8 (1),(4) my, (a,a,b) (a0)  (ab,b)
FIG. 4. Directions of polarization of domain states with rhombohedral or-(l)’(6'7) My (a.a,b) (a,0) (a,b,b)
dering along 111]. (1),(8) My (a,a,b) (a,0) (a,b,b)
1,2, 1 (a,b,c) (a,b) (a,b,c)
D.2),(7) 1 (a,b,c) (a,b) (a,b,c)

are eight domain states, shown again in Fi@).5They di-

vided the process of polarization into four regions. In the first

region only a small field was appli¢dee Fig. 8)] and thus  tion of domains at the mesoscopic level but still intrinsically
only fairly low energy domain switching could take place, linked to the microscopic crystal symmetry. There are many
namely 180° switching which removed domains 3 and 8different possibilities of domain structure configurations for
Thus, with no lattice distortion the domain configuration be-each given crystal system. Fousetkal.” composed a partial
comes that shown in Fig.(B). As indicated in the figure, the list of domain averaging for a cubic—rhombohedral ferro-
electric field of direction011] simultaneously selects do- electric system. Fuksa and JandVéen extended consider-
main set (4,7) of symmetry m,,;m,2;; (symmetrically ations to nonconnected sets for this same species. Our exten-
equivalent to the domain s€8,8 shown in Table VI) and sion adds the results of the other two ferroelectric phase
domain set1,2,5,6 (symmetrically equivalent to the domain transition  systems, i.e., cubic—tetragonal, cubic—
set(1,4,5,9 shown in Table VI). This latter domain set con- orthorhombic, and also considers the problem with the goal
tains all symmetry elements of the first, thus yielding theof systematic implementation for other phase transitions.
nonconnected domain sefl,2,5,6(4,7) of symmetry Since the analysis depends only on the symmetries of the
my,m,2,. In the second region a stronger field selects doparent and product phases the results obtained here are not
main set(4,7), resulting in two domains and the symmetry dependent on the specific perovskite structure. This structure
remainsm,,m, 2y, . In region three a rotation of the polariza- was used because of its practical importance in many ferro-
tion takes place and the microscopic domain symmetryelectric materials. Our results will apply for any structure
changes. Our model does not apply to this process. Due tith the m3m symmetry with a dipole moment ordering cor-
strong-field poling the fourth region is a single domain with responding to thé", soft mode.

dipole moment aligned along011] and of symmetry ISOTROPYcontains the computer implementati®of our
m, M, 2y, (symmetrically equivalent to the listing of domain algorithm and obtains domain average structures for any
structure(11) in Table ). space group phase transition. For domain structure analysis

of the first kind (domain geometry the task is more in-
VI. DISCUSSION AND CONCLUSION

Domain average engineering has shown great success TABLE IX. The most general domain structure for given symmetrj/dfl]

producing superior piezoelectric crystié. The effective  2r9eMng-
properties and symmetries are determined by the configuraset no. Domain set Symmetry
1 (a,a,a,a,a,a,a,a) m3m
TABLE VII. All possible symmetrically distinct connected sets for ferro- 2 (a,a,a,a,b,b,b,b) 43xyAMyy
electric ordering along111]. Only nonzero contributions of the order pa- 3 (a,b,b,b,a,b,b,b) 3,y My
rameters are shown in columns 3, 4, 5. 4 (a,b,b,a,a,b,b,a) My My M,
5 (a,b,b,a,b,a,a,b) 4,m,mg;,
Set Group r, ry rs 6 (a,b,b,b,c,d,d,d) 3y Myy
— 7 (a,a,b,b,a,a,b,b) 2, /my
(12345678 m3m 8 (a,b,b,c,a,b,b,c) 2 I,
(23,46,7.8 3y (a,a,a) 9 (a,b,a,b,b,a,b,a) mem,2,,
9 BNy (a,a,a) 10 (a,a,b,c,a,a,c,b) m,my 2.,
1,2,3,9 4,3,y Myy 11 (a,b,b,a,c,d,d,c) M,y My, 2,
(1,4,6,9 4,m,my, (0,0a) (a,0) 12 (a,a,b,b,c,c,d,d) X
(1,4,5,8 My, MM, (a,0) (a,0,0) 13 (a,b,c,d,a,c,b,d) 2y
2,39 3y My (a,a,a) (a,a,a) 14 (a,b,c,d,a,b,c,d) 1
1) 3yy My (a,a,a) (a,a,a) 15 (a,b,c,d,b,a,d,c) my
1,9 My, M2, (0,0a) (a,0) (a,0,0) 16 (a,b,b,c,d,e,e,f) my,

(3,9 mmy2;;  (0a,-a) (a,/3a) (0,2,0) 17 (a,b,c.d,e,f,g,h) 1
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domains. The limited number of domains in each given finite
sample may invalidate the statistical treatment used in this
article. Such large domain cases belong to the first kind of
mesoscopic symmetry problem mentioned above, which is
not discussed herg.
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