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Lattice dynamics and elastic properties of corundum by the self-consistent
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We apply a recently developed density-functional method based on localized densities to study electronic,
structural, elastic, optical, and vibrational propertiesaofl,0;. Although our approach is generally less
accurate than conventional band-structure methods, calculation of polarization, and related properties is greatly
simplified and our results are in reasonably good agreement with experiment and other theoretical calculations.
We also assign the symmetry of zone center and other high-symmetry phonon modes and calculate the
variation of the zone-center mode frequencies as a function of wave vector direction.
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[. INTRODUCTION Recently, lattice-dynamical calculations for corundum were
performed by Heidet al!* by combining the mixed-basis
Corundum @-Al,O3, a-aluming is one of the most im- pseudopotential approach with modern density-functional
portant ceramic materials due its outstanding mechanical angerturbation theory. Finally, very recently, Ouyang and
optical characteristickBecause of its high chemical stability Ching*? used the finite difference method for the energy gra-
corundum finds broad application in a variety of technolo-dient in the orthogonalized linear combination of atomic or-
gies such as radiation detection, thin-film devices, lasebitals approach and obtained a high quality Birch fit to the
manufacturing, catalysis and corrosion, ballistic armor, weaequation of state of corundum.
applications and cutting tools, to name just a few. It is also In the present work we use a recently developed approach
important in high-pressure physics where it is used as a winbased on localized charge densities. In our method the den-
dow material for shock-wave experiments, while itssities are obtained self-consistently by solving one-electron
Cr3-doped form(ruby) serves as a pressure calibrant in Schrainger equations, one for each atomic site, whose po-
diamond-anvil cell experiments. The importance of corun-tentials are determined variationally from the total energy.
dum and its metastable polymorpBsy, 8,6, «, etc.2is fur-  This is analogous to the Kohn and SHdrformulation, the
ther enhanced by its abundance in the earth’s lower mantldifference being the use of the Thomas-Fermi approximation
where it exists as a high-pressure modificatién. to the kinetic energy contributions arising from the overlap-
There has been a steady experimental and theoretical gking charge densities. In accord with Janak’s theotthis
fort to map out the electronic, lattice-dynamical, elastic, op-variational formulation of potentials automatically minimizes
tical, etc., properties of corundum. However, the complexitythe total energy when the lowest one-electron levels for the
of its crystal structure has hampered the efforts to understanghtire system are occupied. To solve the Sdhmger equa-
it on a first-principles basis. Only recently, with the increasetions we use basis functions with radial dependence as listed
in computer power, has this begun to change. Followingn tables of Clementi and Ro€fti*®and angular dependence
early and limited calculations of the lattice parameters bygiven by spherical harmonics. This allows the charge densi-
Salascoet al,® who used a linear combination of Gaussian-ties to relax both radially and nonspherically. We call our
type orbitals within LDA, Ching and Xuand Mo and method the self-consistent atomic deformati¢8CAD)
Ching’ applied their method of the self-consistent orthogo-method. SCAD has evolved from Edwardsdhattempts to
nalized (frozen-cor¢ linear combination of atomic orbitals, extend the Gordon-Kif{ electron-gas model to account for
also based on Gaussian-type orbitals and LDA, to study elegionsphericity of ions. It is formally equivalent to the ap-
tronic, optical and structural properties of this material. Theproach of Corton®?° for spherical ions and closely related
band widths and various optical properties obtained by thento that of lvanov and Maksimat/
were further refined by Guet al.® using the linearized Recently, SCAD has been used to calculate electronic,
muffin-tin orbital method in the atomic-sphere approxima-structural and vibrational properties of number of alkali ha-
tion, and by Holmet al.® using the full-potential linearized lides with generally good agreement with experiment. There
muffin-tin orbital method. The last work also included calcu- has been a noted improvement in our calculations over the
lation of the elastic properties using the plane-wave pseudaesults obtained from the rigid-ion and related self-consistent
potential method. Elastic properties of corundum were fur-atomic model€? In addition, SCAD has been applied to cal-
ther studied by Boettgtt who used the high-precision, all- culate polarization and related properties for oxide-based
electron, full-potential linear combination of Gaussian typeperovskites>2* MgO and AIP*® This further confirmed the
orbitals-fitting function method with considerable successvalidity of our model for computing of polarization and re-
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lated properties and showed that it can serve as an efficient TABLE I. The seven lowest energy eigenvalu@s Ht) for O

alternative to the band-structure approdtH. and Al in the relaxedR3c structure of corundum. The five lowest
energy states of Al and five lowest energy states for O are fully
occupied.
Il. METHOD
lon 1 2 3 4 5 6 7

In the SCAD method the total electronic charge density of

the system is the sum of the overlapped site localized densi- Al —55.03 —3.769 —2.399 —2.397 —2.397 0.090 0.090

—18.56 —0.815 —0.334 —0.308 —0.269 0.222 0.232

ties
(=2 n(r—Ry), (D) STn(r)]
I ol (1= —51 v
where then; are expanded in terms of spherical harmonics
about the sites of the atomic nuclei This potential is further expressed in terms of spherical har-
monics
Mi(r) =2 N Yin(T), @ 0
m 0i(1) = 2 V(1) Yim(T) ®)

and the total energy is written
about the sites of atomic nuclei and the associated one elec-
tron Schrainger equations, one for each atomic site, are
E[n(r)]zz Toln(N) ]+ T[n(r)] solved to obtain new densities(r) and new on-site kinetic
: energiesTy[n;(r)]. This procedure is then repeated until
self-consistency is reached. The one-electron Sthger
_ . equations are solved using basis functions with radial depen-
Z Tni(n) ]+ FIn(n)]. @ dence given by tabulated Slater functibh® and angular
dependence given by corresponding spherical harmonics.

HereTo[n;(r)] is the kinetic energy of a set of noninteract- Additional Y|,’s (up to|=3) are included for radial func-
ing electrons centered about the atomic sitRaandT, isa  tions of the valence electroriexygenp states, resulting in
functional which accounts for the kinetic energy due to over-density terms up to=6 (we simply drop those with>4 in

lapping densities. Here we use the local Thomas-Fermi exhe computation of the potential, with negligible error for
pression Al,053). The solution forv;(r) [and hencen;(r) andn(r)],

obtained by occupying the lowest one-electron energy levels

3 for the entire system, automatically minimizes the total en-
Tn(r)]= §(3w2)2’3f n®S(r)dqr. (4)  ergy in accord with Janak’s theorethThese levels, calcu-
lated for corundum, are shown in Table I.
The remaining functional  F[n(r)] contains The energetics show that the picture of the electronic

exchange-correlatidf and electrostatic contributions to the structure is completely ionic. The valence states of O are
total energy. Notice that the expressiom,[n(r)]  fully occupied and 0.36 Ht (1 Ht27.2 eV) below the low-
—3.T[ni(r)] in Eq. (3) vanishes when the atoms are sepa-est unoccupied states g8 of Al. As a result, no additional
rated by large distances. charge transfer is required to satisfy the requirements of Jan-
Following a variational procedure similar to that of Kohn ak’s theorem. For example, a transfer of 0.05 electrons from
and Sharf? we find that® the electrons comprising;(r)  the highest occupied level to the lowest unoccupied level

obey a single-particle Schidinger equation with potential ~ gives an increase of 0.1 Ht in the total energy. In other
words, the monopole charges are predicted by SCAD to have

SE[N(N)] fixed values,+ 3 for Al and — 2 for O. For comparison with
——— =ve[n(N) ]+ v n(N]—v ()], our calculated value of 0.36 Ht, the experimentally deter-
on;i(r) mined band gaps are 0.32 HRef. 30 and 0.36 H{(Ref. 31).
©) Band structure calculations typically underestimate band
gaps values by-~40%. Correspondingly, our value of the
where gap would be reduced by band broadening. However, one
should keep in mind that this value is only an estimate since
SF[N(r)] the Hohenberg-Kohn theoréfmakes no formal statement
veln(r)]= () (6)  about the one-electron states except for the connection be-
tween them and the true physical charge density.
is the functional derivative oF[n(r)] equal to the Kohn- In calculating the potentials we divide the space around
Sham potential and the atomic site aR; into the region inside a sphere of radius

vi(r)=
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re, the “cutoff” sphere, where there is a significant charge -1414.9
overlap from the neigboring sites, and the region outside the

“cutoff” sphere where there is no such significant overlap

(r. is such that the “cutoff” sphere typically includes 50

neighbors. Contributions to the potential from the atoms

outside the “cutoff” sphere are included using Ewald tech-  -141495
niques for point monopoles, dipoles and quadrupoles, anc~
directly forl =3 and 4. No point-pole approximation is made
for contributions to the potential from atoms inside the “cut-
off” sphere. To handle contributions from atoms inside the
“cutoff” sphere we extract parts of the potential that are 415
spherically symmetric abouR; and Lowdin transforni®

them to the correspondinyg, , expansions about the center

atR;. Thel>0 contributions, which are relatively smooth

near the atomic nuclei &;, are computed, together with

other smooth parts, on a three-dimensional grid centered a . | |
R; with a relatively coarse radial mesh and an angular grid 450 500 550 600
chosen for efficient integratio?‘f.Once the coefficients of the volume (a.u.)
smooth part of the potential are determined by numerical

integration they are interpolated from the coarse to the dense FIG. 1. SCAD total energy valuesircles and four-parameter
radial mesh and combined with thé wdin transformed and ~ Birch fit (solid line) for corundum.

the on-site parts. Finally, the contributions from poles of at- ) .

oms Outside the “Cutoﬁ" Sphere as We” as the potentia' dueoctahe(.jra”y COOI’dInated holégTh|S structure can a|§0 be
to the nuclei inside the sphere are added to form the condetermined by four parameters: the hexagonal lattice con-
plete representation of the potential for the atorRain the ~ Stantsaandc and two internal positions of the O and Al ions
form given by Eq.(8). A detailed discussion of numerical in the (1&) and (1Z), respectively. There have been sev-
methods involved in the application of the spherical versioreral measurements of the crystal parameters of

sive paper on the general SCAD method is in prepardfion. We use the data by Ishizavea al.** as the starting point for
our calculations. The detailed description of the structure of

corundum can be found in an older work by Wyckdff.
[ll. CALCULATION OF ELASTIC PROPERTIES We calculate the elastic moduli by applying small strains
to the equilibrium lattice, relaxing the structure and calculat-
— s o i ; %g the resulting change in the total energy. The equilibrium
R3c (D34, No. 167. Its primitive cell is rhombohedral with oz 1 o6 s obtained by optimizing each of the four

LV.VC; fc;rrguf units. Tlhe lstrugture Eag t|>etty|ewef(j as a Shg.htlystructural parameters independently while the other three are
IStorted hexagonal closed-packed fatlice of oxygen Icmﬁept constant. The structure is considered at equilibrium

W'.th aluminum ions occupying 2/ 3 of the o_ctahedral N1\ hen the variation of any of the parameters does not further
stices. Each OXygen 1on |s.coord|nate<.j W'th. four Nearesty, ver the total energy. The bulk modulus is calculated, as
neighbor aluminum ions while the aluminum ions are COOryascribed by Mehletal,*? from a four parameter Birch

din_ated Wi_th six oxygen ions at two different nearest- uatioft® fitted to the set of ¥, ,E;) with V,'s within 10%
neighbor distances. Four parameters are needed to descr@ the equilibrium volume. Fig. 1 shows the quality of our

corundum in this setting: three primitive lattice vectors c’fBirch fit and Tables Il and 11l show the calculated values for
equalt Ien%ths S%Paritﬁd gy e%u:: gnglgs ‘;?d t‘é‘;oc;minal Pie equilibrium atomic positions, lattice constants and equi-
rameters describing the L and Al 1ons in e]@nd (4) librium bulk modulus. The comparison with experiment is
positions, respectively. Alternatively, the corundum structureVery good

may b? regarded as havmg. six formula units in the hexago- In order to calculate the remaining elastic constants we
nal unit cell, where the axis is the threefold axis of the

primitive rhombohedral cell, with six layers of closed-  1ag|E i1 Lattice constantgin A), equilibrium bulk modulus
packed oxygen ions and with the Al ions located inside thein Gpg, and the high-frequency dielectric constant for the relaxed

R3c structure of corundum.

energy (H

700

TABLE II. Prototypic atomic positions for the relaxe@3c

structure of corundum. Experimental valu@ef. 41 are given in a-Al,04 a c By e 15
parentheses.
SCAD 4.748 13.02 265 35 3.4
Prototype x/a y/b c/z Wyckoff Experiment 4754 12992 267° 32¢ 3.1°
Al 0 0 0.35520.3523  12(c) “Reference 41.
o) 0.30670.3064 0 0.25 18e) *Reference 44.

‘Reference 45.
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TABLE IV. Strains and elastic moduli for corundum.

Strain Parameter@inlistede;=0) AE/V [to O(e?)] Space group V conserving
1 e1=6=a=(1+7) P-1e=y=(1+79)*-1 §V[Cy1+Cyot2C33-4C 4] 9 R3c yes
5 es=v —PVy+2VCy? R3c no
3 e1=e,=a V(Cy;+Cyp)a? R3c no
4 e1=x —PVyx+3VCiy? C2lc no
5 elz 1+T_1,62: 1_7_1 (Cll_ClZ)Tz C2/C yeS
Vi-r7 1 V2 1+ 1 )
6 €4= 0',63: 70 5VC440' C2/c yes
7 e1=e,=n,6,=e3=pu=J1(1+ 7)+ 7°/4-1 1V(3C 1~ Cyp+3C14+Cud) 72 C2lc yes

write the primitive vectors in the rhombohedral setting andwhereV is the volume of the undistorted lattice(V) is the
allow the lattice to be strained by some symmetric teriSor pressure of the undistorted lattice at volumjeandAV is the
change in the volume of the lattice due to the strain, (Ej.
n Ea 1 E By carefully selecting nonzero straiesin Eq. (10) we can

h ap Ch k . R .

2 2\/§ 3 directly calculate the corresponding elastic constants or their

a appropriate linear combinations from the curvature of the
0 1 1 least-squares fit of a set of valuefe(,AE;) to the third

& | = ﬁah §Ch order polynomial. We now give a brief description of this
ag procedure.
N S First, let us consider the strain
2 h 2\/§ h 3 h l
e1=e=a=(1+7) "-1=—27+O0[7’]
1
1+ el —eG Ees ~ and
X
1 1 v 213 2 2
X Eeﬁ te; EE4 VAR (9) egz’y:(l+ 77) —l:§77+0[77 ] (ll)
z
Ee e, 1+e This strain is volume conserving, therefore the pressure term
25 274 3 in Eq. (9) is zero and we have

wherea,;, andc,, are the lattice parameters of the correspond- 1

ing hexagonal unit cell and where any internal parameters  AE( )= =V[Cy;+ Cyy+ 2C43— 4Cy3] 72+ O[ 7],

specifying the basis vectors are chosen to minimize the total 9

energy for this lattice. In systems with trigonal symmetry (12

there are six independent elastic constants. Consequently, thg

total energy can be expressed in terms of the strain variables

{e as °

6 6 Cy11+Cqp+2C53— 4013:WAE (0). (13
— 3

E(leh)=Eo P(V)AV+V;1 1-21 Cijeiej/2+ O[{e}] We can pick a few values af in the interval[0,0.01], move

the atoms within the constraint of tHe3c symmetry until

we find a minimum, and computé(#). The set @,E) is

1 y then least-squares fitted to at least a third order polynomial

> Cu(e1Te)+Cpe e [to account for thed[{ %% ] term in Eq.(10)] and the second

derivative ofE(#) is taken atyp=0. In a similar manner we

can consider other strains which select out other elastic con-

stants or their linear combinations. These strains are listed in

—Eo— P(V)AV+V

1
+ §C3393+C13(el+ €) €3

Table IV.
1 3 . . _ .
x + —C44(e§+ eﬁ) +O[{el}]. More complicated is the calculation of other elastic con-
2 stants associated with strains for which the lattice adopts a
+Cif(e1—e)esteseq] lower symmetry than the trigon&3c. All remaining elastic
1 constants can be calculated from strains which lower the
+ Z(C“_ Clz)ef3 symmetry of the lattice to the space groGg/c. Now, how-

ever, we have broken the symmetry and it becomes possible
(10)  for the ions to move to new locations consistent with the
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new, lower, symmetry. Therefore, instead of two internal pa- TABLE V. Elastic moduli(in GP3 at zero pressure for corun-
rameters to relax we now have seven. The positions of théum.

atoms in theC2/c space group are listed below. The alumi-

num atoms are at the {8 positions
bi=+X1a1+yi13+2;83,

1

by=—2z;a+ 5 V1)@ X8,

b3=—X18 Y18~ 2383,

1
§+yl a2+X1a3. (14)

b4: + Zlal-l—

a-Al03 Cu Cz G Cs3 Cus Caa

SCAD 435 167 154 440
Experiment 497 164 111 498

aReference 44.

Again, for the unstrained latticgy=X restores theR3c
space group symmetry. The rest of the procedure is analo-
gous to the case of tHe3c symmetry. Notice that not all the
strains listed in Table IV are volume conserving. This, how-
ever, does not constitute a problem since in these cases the

For the unstrained lattice these reduce to the atomic position&lume change is either linear in the strathe elastic con-

in the R3c space group if

X1=Xal

Y1=Xal»

1
21:_+XA| y (15)
2
wherex,, is the position of the Al ion at (&) in the R3c
space group. Four of the oxygen atoms are also &) (®-
sitions

b5: + X2a1+ y2a2+ Zzag y

1
5‘)’2

b6: _22a1+ az_X2a3,

b7= —Xp8, — Y28, — 233,

bg=+2z,34+ a,+X,a;. (16

1
§+Y2

For the unstrained lattice these reduce to the atomic positionfk

in the R3c space group if

1
X2=Xo 2
y2=1-Xq,

1
2= (17)

where Xg is the position of the O ion at @ in the R3c
space group. Finally, the two oxygen atoms on the)(dites
have the coordinates

1
b9:X3al+ Za2+(l_X3)a3,

3
b10: (1_X3)a1+ Za2+ X3a3. (18)

stants involve only second derivatiyes we ensure that the
unstrained cell is at the global equilibrium volurxig where
P=0. Table V shows the results for calculated elastic con-
stants and compares them with experiment.

The comparison is good with the exception of elastic con-
stantsC,; and C,, which are 30% larger and 40% smaller,
respectively, than the experimental values. The all-electron,
full potential linear combinations of Gaussian-type orbitals-
fitting function method calculations show generally good
agreement for elastic constants and, surprisingly, a relatively
simple potential induced breathing methd@dsed on spheri-
cal iong also gives good agreement with experim&hnt.

IV. POLARIZATION AND LATTICE DYNAMICS

A convenient feature of SCAD is its relatively straightfor-
ward expression of polarizatidi:*’ In a band-structure ap-
proach, where the charge densities are expressed in terms of
functions that are extended throughout the crystal, the at-
tempt to calculate polarization in a unit cell leads to an am-
biguity arising from the presence of the term related to the
charge that may flow from one unit cell to another. This term,

TABLE VI. Calculated and symmetrized Born effective charges
i for corundum. The third set contains ttsereenedvalues
7*//€?? as calculated by Heidt al. (Ref. 1.

Al o
X y z X y z
Unsymmetrized
X 3.424 0.060 —0.004 -2.414  0.000 0.000
y —0.063 3.417 0.001 -0.002 -2.149 0.512
z 0.000 0.000 3.392 0.000 0.485 —2.260
Symmetrized
X 3.420 0.061 0.000 -—-2.411  0.000 0.000
y —0.061 3.420 0.000 0.000 —2.149 0.515
z 0.000 0.000 3.391 0.000 0.484 —2.264
Heid et al.

X 1.65 0 0 -1.15 0 0
y 0 1.65 0 0 -1.04 -0.14
z 0 0 1.63 0 -0.19 -1.09
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TABLE VII. Calculated zone-center phonon frequendiescm 1) for corundum. The compatibility relations as well as the correspon-
dence to the conventional notation are shown. The modes having longitudinal components are labeled as LO. The valuesdtah Heid
(Ref. 11) are given in parentheses.

Mode 1 2 3 4 5
I (Ag)iA1:3, 337412 589636)
I3 (Ay)iA7:3, 240301 510535 788748
'3 (Eg) (2-fold):A 3,343, 301(377) 327(429) 392(442) 537568 698747
L7 (AL):A3 557(594) 683689
T, (A)(TT):A, 0(0) 521(500L0 880(860LO
5 (E,)(2-fold)(T'T):A4 0(0) 266(382 362435 473565 561(628
I5 (A3 (El)(TL): 2.3, 0(0)2, 0(0)2, 0(0)2, 266(382} 270(383)LC,
309(396)LC, 362(435F 410(482)LC, 473(565) , 553(625)LC,
561(571F, 561(628% ; 903(885)LC,
T5(A5),T3(E)(TF): 3.3, 0(0)%, 0(0)2, 0(0)2, 266(382F 268(382)LC,
326(406)LC, 362(435), 416(484)LC, 473(565) 550(626)LC ,
561(571%, 561(628%, 899(880)LC,

in general, may depend on the particular choice of the unihition of polarization as the dipole moment per unit volume
cell boundaries and, consequently, the volume integral ovewe have

rp(r) is ill defined?® This problem is solved by expressing

changes in polarization(itself depends, even in the ther- 1

modynamic limit, on the structure of the surfade terms of AP=— E Ap;. (19
currents flowing through the interior of a crystaf’ The VA

resulting Berry's phase approdéfi® involves computation

of difficult integrals over the phases of electronic wave func-The change of polarization obtained in this manner is well
tions. In SCAD, computation of polarization is relatively defined” as long as there is no charge transfer from one ion
simple. First, the total charge density is represented as a suf@ another. This is certainly the case for,@; as we showed
over localized charge densities and, unlike in the bandin our discussion of the energy eigenstates in Sec. II.
structure methods, each charge density can be associated The high-frequency dielectric constart.] is determined
with a given ion site. Second, moments of charge are deteRy including additional terms in thie=1 parts of the poten-
mined by integrationver all space This eliminates the tial. For example, ifg, is the electric field strength in the
problem of accounting for the surface polarization chargeslirection, then the terr,r 4 /3 is added tw{}(r). In this
arising when one attempts to compute the dipole moment ofase the total macroscopic field is just the external field, and
a unit cell by integratingver a finite volumeln SCAD we the third (z2) column of the dielectric tensor is#P,/E,,
calculate the change in the dipole moméy; in terms of 4wP,/E,, and 1+4xP,/E,, where polarizatiorP is deter-

the displacement of the monopole charges and the change imined simply by adding the dipole moments induced on each
the dipole moments of the ions in a structural unit of aion in the structural unit divided by the volume of that unit.
crystal®® A structural unit, for example, is specified by the In principle, thel =0 contribution could be included for long
space group and occupied Wyckoff positions while the vol-wavelength or slab calculations. However, such contributions
umeV of a structural unit is given by the determinant of the were shown to be unimportant for MgO, NacCl, and AIP, as
matrix of primitive lattice vectors. Thus, following the defi- was clearly demonstrated by the continuity of the results for

TABLE VIII. Calculated phonon frequencidi cm™1) for the T(Z), L(A), andF(D) high-symmetry points in corundum. The values
from Heid et al. (Ref. 11) are given in parentheses.

Mode 1 2 3 4 5 6 7 8 9 10

T,(4-fold):A 5 143224 336424 423505 472531 622692

Ta(2-fold):A;, A, 267324 359396 520531 654659 845825

L,(2-fold:none 152231 195246 218311 295374 319404 380440) 392456 427(497) 436518 477536
500580 559625 600654 739749 824818

Fr3, 228259 287353 363435 464535 529559 6276560 762705
F 3, 108222 222279 293364 329434 411(481) 449546) 544623 747803
Fpi3s 260(330 305365 362394 387(447) 5686200 659657) 805746
F; 2, 240305 266(347) 300382 373468 443496 485604 581755 732760
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phonon dispersion curves near thepoint? We show our ing the projected modes with amplitudes consistent with
values foreX* and €27 in Table 1l and compare them with eigenvectors obtained in the first pass.
experiment. In the following we use the notation of Miller and Lov&,

In insulators, the nonanalytic contribution to the dynami-adopted by Stokes and Hatthand show the corresponding
cal matrix, which determines the phonon frequencies at th&oster® and conventional labels in Tables VIl and VIII, for
zone center, is expressed through the high-frequency diele@asy comparison with literature. In this paper we consider the
tric constante.. and the Born effective charge tensaf high-symmetry pointd’, L, F, andT. In R3c, atI’ we have

(Ref. 59 two I'; modes, threel', modes, twol'; modes, three
- . (counting the 0 frequency translational mpdé, modes,

plo _pro , 4me (Z7-DalZ] -Dg (200 five doubly degeneratE; , modes and fivécounting the 0

lwlf - TlalB Ty q-€.-q ' frequency translational mogldoubly degeneratE; modes.

TheI'; degeneracy is removed kt=0 in directions other

* '
whereZ is defined as than that of the crystallographic axas This effect, which is

9P included in the nonanalytic term of the dynamical mafix
A Bzv—“, (21 Eq. (20), is due to long-range macroscopic polarization fields
o IRi:p that affect the modes with a LO component. The LO-TO

where,R;. 4 is the coordinate of ionin direction8. As with ~ SPlitting for thel’s modes is the largest in the plane perpen-
€., it is relatively easy to calculat&® within SCAD. We dicular to thec axis. On the other hand, tHé, modes are

use the fact that SCAD gives a completely ionic picture forPurely transverse in this plane and purely longitudinal in the
the electronic structure of AD; with monopole charges ¢ direction. The modes belonging &, , I'; , T3 andT';
which do not vary for small displacemeni®;. ; of the ions. ~ are not polar modes and thus are not affected by the nonana-

Consequently, the Born effective charges can be computed &gic term in Eq.(20).
We show the calculated frequencies for thepoint in

. Pj. a Table VII and for theT, L, andF points ('L andI'F direc-
Ziap=Zibapt 2 IR’ (22)  tions arenotin the plane perpendicular to th& direction—

. 1h the direction of thec axis) in Table VIII. Our results are
whereZ; are the monopoles ang are the dipole moments compared with the results from the density-functional pertur-
calculated self-consistently by SCAD for each displacemenbation theory calculation¥, which agree remarkably well
R;. with the experimental data obtained fbrpoints along the
We calculate tensorg* separately foall ions in the unit ~ special linesA and..*
cell and rotate them into symmetrically equivalent sites av- A comment, however, must be made. For th@oint we
eraging the results obtained for each site. This way we erhave the following compatibility relations with:T'; :3,,
sure that the small numerical uncertainties due to thd;:3,, I'y:3,3,, ] :3,, I',:3,, I';:3,3,. ForF the
direction-dependent choice of the angular integration mesBompatibility relations with>, are |:1* S, |:2+ :S,, i3,
used in our calculation of the potentials are averaged out.

Table VI illustrates this procedure by showing the “raw” and 1000 e

symmetrized Born effective charge tensors. To compare oul L [g 1o )
Z* values with those obtained from a mixed-basis pseudo- < 1_2- Lo 4’
potential approach and LDARef. 11 our values need to be sof | > rz— _
divided by+/e?%. While the off-diagonal elements in the Born > ri- LO 0.
effective charge tensors calculated by us remain small, the) e r* 1
are markedly larger than reported by Heidal,'! especially 0 rl*

= 600 3 .

for oxygen. For all the elements the sum rule in our calcula-
tion is satisfied to better than 0.02. _
Vibrational frequencies are calculated using a symme-
trized frozen phonon techniqd@®® First, sets of orthogonal
frozen modes are determined for each irreducible represen
tation (IR). The number of modes in a set for a given IR is L i
the number of nonzero frequencies divided by their degen-
eracy. Next, the energy as a function of displacement ampli- 200
tude is calculated for each mode and their pairwise linear
combinations. The curvature of these energy functions at r T
zero amplitude gives the elements of the block diagonalizec . | . | . | . | .
analytical part of the dynamical matrD, Eg. (20). We sup- % 200 400 600 800 1000
ply the elements oD by calculating curvatures of parabolas SCAD
from changes in energy for small displacements consistent
with each frozen mode. In fact, to improve the accuracy, FIG. 2. Calculated vs experimentd@efs. 45 and 57zone cen-
these calculations are carried out twice, the second pass ugr phonon frequencigén cm™1) for corundum.

experumen

IS
s
<
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F, :3,. Counting modes af we obtain I°; —23,,, 3’5 quencies of all the infrared-active TO and Raman-active
—33,, 100 —53,+53,, 2I';—23,, 3I,—33,, modes have been determined by diagonalizing the dynamical
10l'; —53,+53,,. This results in 14, modes and 1&., matrix D, Eq.(20) without the macroscopic field term. These
consistent with theF point where we have F; modes, 8 results are shown in Fig. 2.

F, modes, 7, modes and &, modes. The authors of the

cited theoreticd! and experimentat papers appear to have V. SUMMARY
mislabeled theirY; and 2, modes, effectively connecting
I'; andI'; LO modes toX; andI'; andI'; TO modes to We illustrate the SCAD method for calculating polariza-

3, for bothT'L andT'F directions. This led to an incorrect tion and related properties for the nontrivial case of corun-
assignment of 15 modes ¥, and 15 modes t&,. Conse- dum. The results which we obtain for phonon frequencies are
quently, their labels aF are also incorrect. Using the au- in reasonably good agreement with experimene: have an
thors’ own assignments for the infrared-active and Raman@verage error of 14% and slightly larger error for the low-
active and silent modés,which are correct, we were able to frequency modes in Fig. 2 and Tables VIl and VINVe find
properly relabel thei; and 3, modes. This new assign- excellent_ agreement fpr the structur_al parameters and most of
ment is reflected in Tables VII and VIII. the elastic constanisvith the exception ofC;3 andCyy).

To compare our results with the experimental infrared and
Raman data we did additional calculations for the fre-
guencies ak~0 in the plane perpendicular © These fre-
guencies can be directly compared with the experimental This work was supported by the National Research Coun-
values for the infrared-activE,, LO modes. The infrared- cil and the Office of Naval Research. We are grateful to Dr.
active A,, LO frequencies have already been calculated ag. L. Feldman and Dr. A. G. Petukhov for helpful discus-
the I'; frequencies fok~0 in theI'Z direction. The fre- sions.
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