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Lattice dynamics and elastic properties of corundum by the self-consistent
atomic deformation method
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We apply a recently developed density-functional method based on localized densities to study electronic,
structural, elastic, optical, and vibrational properties ofa-Al2O3. Although our approach is generally less
accurate than conventional band-structure methods, calculation of polarization, and related properties is greatly
simplified and our results are in reasonably good agreement with experiment and other theoretical calculations.
We also assign the symmetry of zone center and other high-symmetry phonon modes and calculate the
variation of the zone-center mode frequencies as a function of wave vector direction.
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I. INTRODUCTION

Corundum (a-Al2O3 , a-alumina! is one of the most im-
portant ceramic materials due its outstanding mechanical
optical characteristics.1 Because of its high chemical stabilit
corundum finds broad application in a variety of techno
gies such as radiation detection, thin-film devices, la
manufacturing, catalysis and corrosion, ballistic armor, w
applications and cutting tools, to name just a few. It is a
important in high-pressure physics where it is used as a w
dow material for shock-wave experiments, while
Cr13-doped form ~ruby! serves as a pressure calibrant
diamond-anvil cell experiments. The importance of coru
dum and its metastable polymorphsb,g,d,u,k, etc.,2 is fur-
ther enhanced by its abundance in the earth’s lower ma
where it exists as a high-pressure modification.3,4

There has been a steady experimental and theoretica
fort to map out the electronic, lattice-dynamical, elastic, o
tical, etc., properties of corundum. However, the complex
of its crystal structure has hampered the efforts to unders
it on a first-principles basis. Only recently, with the increa
in computer power, has this begun to change. Follow
early and limited calculations of the lattice parameters
Salascoet al.,5 who used a linear combination of Gaussia
type orbitals within LDA, Ching and Xu6 and Mo and
Ching7 applied their method of the self-consistent orthog
nalized ~frozen-core! linear combination of atomic orbitals
also based on Gaussian-type orbitals and LDA, to study e
tronic, optical and structural properties of this material. T
band widths and various optical properties obtained by th
were further refined by Guoet al.,8 using the linearized
muffin-tin orbital method in the atomic-sphere approxim
tion, and by Holmet al.,9 using the full-potential linearized
muffin-tin orbital method. The last work also included calc
lation of the elastic properties using the plane-wave pseu
potential method. Elastic properties of corundum were f
ther studied by Boettger10 who used the high-precision, al
electron, full-potential linear combination of Gaussian ty
orbitals-fitting function method with considerable succe
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Recently, lattice-dynamical calculations for corundum we
performed by Heidet al.11 by combining the mixed-basis
pseudopotential approach with modern density-functio
perturbation theory. Finally, very recently, Ouyang a
Ching12 used the finite difference method for the energy g
dient in the orthogonalized linear combination of atomic o
bitals approach and obtained a high quality Birch fit to t
equation of state of corundum.

In the present work we use a recently developed appro
based on localized charge densities. In our method the d
sities are obtained self-consistently by solving one-elect
Schrödinger equations, one for each atomic site, whose
tentials are determined variationally from the total ener
This is analogous to the Kohn and Sham13 formulation, the
difference being the use of the Thomas-Fermi approxima
to the kinetic energy contributions arising from the overla
ping charge densities. In accord with Janak’s theorem,14 this
variational formulation of potentials automatically minimize
the total energy when the lowest one-electron levels for
entire system are occupied. To solve the Schro¨dinger equa-
tions we use basis functions with radial dependence as li
in tables of Clementi and Roetti15,16 and angular dependenc
given by spherical harmonics. This allows the charge de
ties to relax both radially and nonspherically. We call o
method the self-consistent atomic deformation~SCAD!
method. SCAD has evolved from Edwardson’s17 attempts to
extend the Gordon-Kim18 electron-gas model to account fo
nonsphericity of ions. It is formally equivalent to the a
proach of Cortona19,20 for spherical ions and closely relate
to that of Ivanov and Maksimov.21

Recently, SCAD has been used to calculate electro
structural and vibrational properties of number of alkali h
lides with generally good agreement with experiment. Th
has been a noted improvement in our calculations over
results obtained from the rigid-ion and related self-consist
atomic models.22 In addition, SCAD has been applied to ca
culate polarization and related properties for oxide-ba
perovskites,23,24 MgO and AlP.25 This further confirmed the
validity of our model for computing of polarization and re
©2002 The American Physical Society02-1
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lated properties and showed that it can serve as an effic
alternative to the band-structure approach.26,27

II. METHOD

In the SCAD method the total electronic charge density
the system is the sum of the overlapped site localized de
ties

n~r !5(
i

ni~r2Ri !, ~1!

where theni are expanded in terms of spherical harmon
about the sites of the atomic nuclei

ni~r !5(
l ,m

nlm
( i )~r !Ylm~ r̂ !, ~2!

and the total energy is written

E@n~r !#5(
i

T0@ni~r !#1Tk@n~r !#

2(
i

Tk@ni~r !#1F@n~r !#. ~3!

HereT0@ni(r )# is the kinetic energy of a set of noninterac
ing electrons centered about the atomic site atRi andTk is a
functional which accounts for the kinetic energy due to ov
lapping densities. Here we use the local Thomas-Fermi
pression

Tk@n~r !#5
3

5
~3p2!2/3E n3/5~r !d3r . ~4!

The remaining functional F@n(r )# contains
exchange-correlation28 and electrostatic contributions to th
total energy. Notice that the expressionTk@n(r )#
2( iTk@ni(r )# in Eq. ~3! vanishes when the atoms are sep
rated by large distances.

Following a variational procedure similar to that of Koh
and Sham13 we find that29 the electrons comprisingni(r )
obey a single-particle Schro¨dinger equation with potential

v i~r !5
dE@n~r !#

dni~r !
5vF@n~r !#1vk@n~r !#2vk@ni~r !#,

~5!

where

vF@n~r !#5
dF@n~r !#

dn~r !
~6!

is the functional derivative ofF@n(r )# equal to the Kohn-
Sham potential and
22430
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vk@n~r !#5
dTk@n~r !#

dn~r !
. ~7!

This potential is further expressed in terms of spherical h
monics

v i~r !5(
l ,m

v lm
( i )~r !Ylm~ r̂ ! ~8!

about the sites of atomic nuclei and the associated one e
tron Schro¨dinger equations, one for each atomic site, a
solved to obtain new densitiesni(r ) and new on-site kinetic
energiesT0@ni(r )#. This procedure is then repeated un
self-consistency is reached. The one-electron Schro¨dinger
equations are solved using basis functions with radial dep
dence given by tabulated Slater functions15,16 and angular
dependence given by corresponding spherical harmon
Additional Ylm’s ~up to l 53) are included for radial func-
tions of the valence electrons~oxygenp states!, resulting in
density terms up tol 56 ~we simply drop those withl .4 in
the computation of the potential, with negligible error f
Al2O3). The solution forv i(r ) @and hence,ni(r ) andn(r )],
obtained by occupying the lowest one-electron energy lev
for the entire system, automatically minimizes the total e
ergy in accord with Janak’s theorem.14 These levels, calcu-
lated for corundum, are shown in Table I.

The energetics show that the picture of the electro
structure is completely ionic. The valence states of O
fully occupied and 0.36 Ht (1 Ht.27.2 eV) below the low-
est unoccupied states (3s) of Al. As a result, no additional
charge transfer is required to satisfy the requirements of J
ak’s theorem. For example, a transfer of 0.05 electrons fr
the highest occupied level to the lowest unoccupied le
gives an increase of 0.1 Ht in the total energy. In oth
words, the monopole charges are predicted by SCAD to h
fixed values,13 for Al and22 for O. For comparison with
our calculated value of 0.36 Ht, the experimentally det
mined band gaps are 0.32 Ht~Ref. 30! and 0.36 Ht~Ref. 31!.
Band structure calculations typically underestimate ba
gaps values by;40%. Correspondingly, our value of th
gap would be reduced by band broadening. However,
should keep in mind that this value is only an estimate si
the Hohenberg-Kohn theorem32 makes no formal statemen
about the one-electron states except for the connection
tween them and the true physical charge density.

In calculating the potentials we divide the space arou
the atomic site atRi into the region inside a sphere of radiu

TABLE I. The seven lowest energy eigenvalues~in Ht! for O

and Al in the relaxedR3̄c structure of corundum. The five lowes
energy states of Al and five lowest energy states for O are f
occupied.

Ion 1 2 3 4 5 6 7

Al 255.03 23.769 22.399 22.397 22.397 0.090 0.090
O 218.56 20.815 20.334 20.308 20.269 0.222 0.232
2-2
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LATTICE DYNAMICS AND ELASTIC PROPERTIES OF . . . PHYSICAL REVIEW B 66, 224302 ~2002!
r c , the ‘‘cutoff’’ sphere, where there is a significant char
overlap from the neigboring sites, and the region outside
‘‘cutoff’’ sphere where there is no such significant overl
(r c is such that the ‘‘cutoff’’ sphere typically includes;50
neighbors!. Contributions to the potential from the atom
outside the ‘‘cutoff’’ sphere are included using Ewald tec
niques for point monopoles, dipoles and quadrupoles,
directly for l 53 and 4. No point-pole approximation is mad
for contributions to the potential from atoms inside the ‘‘cu
off’’ sphere. To handle contributions from atoms inside t
‘‘cutoff’’ sphere we extract parts of the potential that a
spherically symmetric aboutRj and Löwdin transform33

them to the correspondingYl ,m expansions about the cent
at Ri . The l .0 contributions, which are relatively smoot
near the atomic nuclei atRj , are computed, together wit
other smooth parts, on a three-dimensional grid centere
Ri with a relatively coarse radial mesh and an angular g
chosen for efficient integration.34 Once the coefficients of the
smooth part of the potential are determined by numer
integration they are interpolated from the coarse to the de
radial mesh and combined with the Lo¨wdin transformed and
the on-site parts. Finally, the contributions from poles of
oms outside the ‘‘cutoff’’ sphere as well as the potential d
to the nuclei inside the sphere are added to form the c
plete representation of the potential for the atom atRi in the
form given by Eq.~8!. A detailed discussion of numerica
methods involved in the application of the spherical vers
of SCAD has been described previously35 and a comprehen
sive paper on the general SCAD method is in preparatio36

III. CALCULATION OF ELASTIC PROPERTIES

Corundum belongs to the trigonal system, space gr
R3̄c (D3d

6 , No. 167!. Its primitive cell is rhombohedral with
two formula units. The structure can be viewed as a sligh
distorted hexagonal closed-packed lattice of oxygen i
with aluminum ions occupying 2/3 of the octahedral inte
stices. Each oxygen ion is coordinated with four neare
neighbor aluminum ions while the aluminum ions are co
dinated with six oxygen ions at two different neare
neighbor distances. Four parameters are needed to des
corundum in this setting: three primitive lattice vectors
equal lengths separated by equal angles and two interna
rameters describing the O and Al ions in the (6e) and (4c)
positions, respectively. Alternatively, the corundum struct
may be regarded as having six formula units in the hexa
nal unit cell, where thec axis is the threefold axis of the
primitive rhombohedral cell, with six layers of closed
packed oxygen ions and with the Al ions located inside

TABLE II. Prototypic atomic positions for the relaxedR3̄c
structure of corundum. Experimental values~Ref. 41! are given in
parentheses.

Prototype x/a y/b c/z Wyckoff

Al 0 0 0.3552~0.3523! 12~c!

O 0.3067~0.3064! 0 0.25 18~e!
22430
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octahedrally coordinated holes.37 This structure can also b
determined by four parameters: the hexagonal lattice c
stantsa andc and two internal positions of the O and Al ion
in the (18e) and (12c), respectively. There have been se
eral measurements of the crystal parameters
corundum38–41which differ by very little at low temperature
We use the data by Ishizawaet al.41 as the starting point for
our calculations. The detailed description of the structure
corundum can be found in an older work by Wyckoff.38

We calculate the elastic moduli by applying small stra
to the equilibrium lattice, relaxing the structure and calcul
ing the resulting change in the total energy. The equilibriu
R3̄c structure is obtained by optimizing each of the fo
structural parameters independently while the other three
kept constant. The structure is considered at equilibri
when the variation of any of the parameters does not furt
lower the total energy. The bulk modulus is calculated,
described by Mehlet al.,42 from a four parameter Birch
equation43 fitted to the set of (Vi ,Ei) with Vi ’s within 10%
of the equilibrium volume. Fig. 1 shows the quality of o
Birch fit and Tables II and III show the calculated values f
the equilibrium atomic positions, lattice constants and eq
librium bulk modulus. The comparison with experiment
very good.

In order to calculate the remaining elastic constants

TABLE III. Lattice constants~in Å), equilibrium bulk modulus
~in GPa!, and the high-frequency dielectric constant for the relax

R3̄c structure of corundum.

a-Al2O3 a c B0 e`
xx e`

zz

SCAD 4.748 13.02 265 3.5 3.4
Experiment 4.754a 12.99a 267b 3.2c 3.1c

aReference 41.
bReference 44.
cReference 45.

FIG. 1. SCAD total energy values~circles! and four-parameter
Birch fit ~solid line! for corundum.
2-3



M. M. OSSOWSKIet al. PHYSICAL REVIEW B 66, 224302 ~2002!
TABLE IV. Strains and elastic moduli for corundum.

Strain Parameters~unlistedei50) DE/V @to O(e2)] Space group V conserving

1 e15e25a5(11h)21/321,e35g5(11h)2/321 1
9 V@C111C1212C3324C13#h

2 R3̄c yes

2 e35n 2PVn1
1
2 VC33n

2 R3̄c no

3 e15e25a V(C111C12)a
2

R3̄c no

4 e15x 2PVx1
1
2 VC11x

2 C2/c no

5 e15A11t

12t
21,e25A12t

11t
21 (C112C12)t

2 C2/c yes

6 e45s,e35
1
4 s2 1

2 VC44s
2 C2/c yes

7 e15e45h,e25e35m5A1/(11h)1h2/421 1
2 V( 5

4 C112C1213C141C44)h
2 C2/c yes
nd

nd
te
ot
try
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heir
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write the primitive vectors in the rhombohedral setting a
allow the lattice to be strained by some symmetric tensor«J:

S a1

a2

a3

D 5S 1
1

2
ah 2

1

2A3
ah

1

3
ch

0
1

A3
ah

1

3
ch

2
1

2
ah 2

1

2A3
ah

1

3
ch

D
3S 11e1

1

2
e6

1

2
e5

1

2
e6 11e2

1

2
e4

1

2
e5

1

2
e4 11e3

D S x̂

ŷ

ẑ
D , ~9!

whereah andch are the lattice parameters of the correspo
ing hexagonal unit cell and where any internal parame
specifying the basis vectors are chosen to minimize the t
energy for this lattice. In systems with trigonal symme
there are six independent elastic constants. Consequently
total energy can be expressed in terms of the strain varia
$ei% as

E~$ei%!5E02P~V!DV1V(
i 51

6

(
j 51

6

Ci j eiej /21O@$ei
3%#

5E02P~V!DV1V

3

¦

1

2
C11~e1

21e2
2!1C12e1 e2

1
1

2
C33e3

21C13~e11e2! e3

1
1

2
C44~e4

21e5
2!

1C14@~e12e2!e41e5e6#

1
1

4
~C112C12!e6

2

§
1O@$ei

3%#,

~10!
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whereV is the volume of the undistorted lattice,P(V) is the
pressure of the undistorted lattice at volumeV, andDV is the
change in the volume of the lattice due to the strain, Eq.~9!.
By carefully selecting nonzero strainsei in Eq. ~10! we can
directly calculate the corresponding elastic constants or t
appropriate linear combinations from the curvature of
least-squares fit of a set of values ($ei%,DEi) to the third
order polynomial. We now give a brief description of th
procedure.

First, let us consider the strain

e15e25a5~11h!21/32152
1

3
h1O@h2#

and

e35g5~11h!2/3215
2

3
h1O@h2#. ~11!

This strain is volume conserving, therefore the pressure t
in Eq. ~9! is zero and we have

DE~h!5
1

9
V@C111C1212C3324C13#h

21O@h3#,

~12!

so

C111C1212C3324C135
9

2V
DE9~0!. ~13!

We can pick a few values ofh in the interval@0,0.01#, move
the atoms within the constraint of theR3̄c symmetry until
we find a minimum, and computeE(h). The set (h,E) is
then least-squares fitted to at least a third order polynom
@to account for theO@$h3%# term in Eq.~10!# and the second
derivative ofE(h) is taken ath50. In a similar manner we
can consider other strains which select out other elastic c
stants or their linear combinations. These strains are liste
Table IV.

More complicated is the calculation of other elastic co
stants associated with strains for which the lattice adop
lower symmetry than the trigonalR3̄c. All remaining elastic
constants can be calculated from strains which lower
symmetry of the lattice to the space groupC2/c. Now, how-
ever, we have broken the symmetry and it becomes poss
for the ions to move to new locations consistent with t
2-4
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LATTICE DYNAMICS AND ELASTIC PROPERTIES OF . . . PHYSICAL REVIEW B 66, 224302 ~2002!
new, lower, symmetry. Therefore, instead of two internal
rameters to relax we now have seven. The positions of
atoms in theC2/c space group are listed below. The alum
num atoms are at the (8f ) positions

b151x1a11y1a21z1a3 ,

b252z1a11S 1

2
2y1Da22x1a3 ,

b352x1a12y1a22z1a3 ,

b451z1a11S 1

2
1y1Da21x1a3 . ~14!

For the unstrained lattice these reduce to the atomic posit
in the R3̄c space group if

x15xAl ,

y15xAl ,

z15
1

2
1xAl , ~15!

wherexAl is the position of the Al ion at (4c) in the R3̄c
space group. Four of the oxygen atoms are also at (8f ) po-
sitions

b551x2a11y2a21z2a3 ,

b652z2a11S 1

2
2y2Da22x2a3 ,

b752x2a12y2a22z2a3 ,

b851z2a11S 1

2
1y2Da21x2a3 . ~16!

For the unstrained lattice these reduce to the atomic posit
in the R3̄c space group if

x25xO2
1

2
,

y2512xO,

z25
1

4
, ~17!

where xO is the position of the O ion at (6e) in the R3̄c
space group. Finally, the two oxygen atoms on the (4e) sites
have the coordinates

b95x3a11
1

4
a21~12x3!a3,

b105~12x3!a11
3

4
a21x3a3 . ~18!
22430
-
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Again, for the unstrained latticex35xO restores theR3̄c
space group symmetry. The rest of the procedure is an
gous to the case of theR3̄c symmetry. Notice that not all the
strains listed in Table IV are volume conserving. This, ho
ever, does not constitute a problem since in these case
volume change is either linear in the strain~the elastic con-
stants involve only second derivatives! or we ensure that the
unstrained cell is at the global equilibrium volumeV0 where
P50. Table V shows the results for calculated elastic co
stants and compares them with experiment.

The comparison is good with the exception of elastic co
stantsC13 and C44 which are 30% larger and 40% smalle
respectively, than the experimental values. The all-electr
full potential linear combinations of Gaussian-type orbita
fitting function method10 calculations show generally goo
agreement for elastic constants and, surprisingly, a relativ
simple potential induced breathing method~based on spheri-
cal ions! also gives good agreement with experiment.46

IV. POLARIZATION AND LATTICE DYNAMICS

A convenient feature of SCAD is its relatively straightfo
ward expression of polarization.25,47 In a band-structure ap
proach, where the charge densities are expressed in term
functions that are extended throughout the crystal, the
tempt to calculate polarization in a unit cell leads to an a
biguity arising from the presence of the term related to
charge that may flow from one unit cell to another. This ter

TABLE V. Elastic moduli ~in GPa! at zero pressure for corun
dum.

a-Al2O3 C11 C12 C13 C33 C14 C44

SCAD 435 167 154 440 224 86
Experimenta 497 164 111 498 224 147

aReference 44.

TABLE VI. Calculated and symmetrized Born effective charg
Zi* for corundum. The third set contains thescreenedvalues
Z i* /Ae`

zz as calculated by Heid,et al. ~Ref. 11!.

Al O

x y z x y z

Unsymmetrized
x 3.424 0.060 20.004 22.414 0.000 0.000
y 20.063 3.417 0.001 20.002 22.149 0.512
z 0.000 0.000 3.392 0.000 0.485 22.260

Symmetrized
x 3.420 0.061 0.000 22.411 0.000 0.000
y 20.061 3.420 0.000 0.000 22.149 0.515
z 0.000 0.000 3.391 0.000 0.484 22.264

Heid et al.
x 1.65 0 0 21.15 0 0
y 0 1.65 0 0 21.04 20.14
z 0 0 1.63 0 20.19 21.09
2-5



on-
eid

M. M. OSSOWSKIet al. PHYSICAL REVIEW B 66, 224302 ~2002!
TABLE VII. Calculated zone-center phonon frequencies~in cm21) for corundum. The compatibility relations as well as the corresp
dence to the conventional notation are shown. The modes having longitudinal components are labeled as LO. The values from Het al.
~Ref. 11! are given in parentheses.

Mode 1 2 3 4 5

G1
1(A1g):L1 ;S1 337~412! 589~636!

G2
1(A2g):L2 ;S2 240~301! 510~535! 788~748!

G3
1(Eg)~2-fold!:L3 ;S1S2 301~377! 327~429! 392~442! 537~568! 698~747!

G1
2(A1u):L2 ;S1 557~594! 683~688!

G2
2(A2u)(GT):L1 0~0! 521~500!LO 880~860!LO

G3
2(Eu)~2-fold!~GT!:L3 0~0! 266~382! 362~435! 473~565! 561~628!

G2
2(A2u),G3

2(Eu)(GL): S1S2 0(0)S1 0(0)S2 0(0)S2 266(382)S1 270(383)LOS2

309(396)LOS2 362(435)S1 410(482)LOS2 473(565)S1 553(625)LOS2

561(571)S2 561(628)S1 903(885)LOS2

G2
2(A2u),G3

2(Eu)(GF): S1S2 0(0)S1 0(0)S2 0(0)S2 266(382)S1 268(382)LOS2

326(406)LOS2 362(435)S1 416(484)LOS2 473(565)S1 550(626)LOS2

561(571)S2 561(628)S1 899(880)LOS2
n
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for
in general, may depend on the particular choice of the u
cell boundaries and, consequently, the volume integral o
rr(r ) is ill defined.48 This problem is solved by expressin
changes in polarization (P itself depends, even in the the
modynamic limit, on the structure of the surface! in terms of
currents flowing through the interior of a crystal.26,27 The
resulting Berry’s phase approach49,50 involves computation
of difficult integrals over the phases of electronic wave fun
tions. In SCAD, computation of polarization is relative
simple. First, the total charge density is represented as a
over localized charge densities and, unlike in the ba
structure methods, each charge density can be assoc
with a given ion site. Second, moments of charge are de
mined by integrationsover all space. This eliminates the
problem of accounting for the surface polarization char
arising when one attempts to compute the dipole momen
a unit cell by integratingover a finite volume. In SCAD we
calculate the change in the dipole momentDpi in terms of
the displacement of the monopole charges and the chang
the dipole moments of the ions in a structural unit of
crystal.58 A structural unit, for example, is specified by th
space group and occupied Wyckoff positions while the v
umeV of a structural unit is given by the determinant of t
matrix of primitive lattice vectors. Thus, following the defi
22430
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nition of polarization as the dipole moment per unit volum
we have

DP5
1

V (
i

Dpi . ~19!

The change of polarization obtained in this manner is w
defined47 as long as there is no charge transfer from one
to another. This is certainly the case for Al2O3 as we showed
in our discussion of the energy eigenstates in Sec. II.

The high-frequency dielectric constant (e`) is determined
by including additional terms in thel 51 parts of the poten-
tial. For example, ifEz is the electric field strength in thez
direction, then the termEzrA4p/3 is added tov1,0

( i ) (r ). In this
case the total macroscopic field is just the external field,
the third ~z! column of the dielectric tensor is 4pPx /Ez ,
4pPy /Ez, and 114pPz /Ez , where polarizationP is deter-
mined simply by adding the dipole moments induced on e
ion in the structural unit divided by the volume of that un
In principle, thel 50 contribution could be included for long
wavelength or slab calculations. However, such contributi
were shown to be unimportant for MgO, NaCl, and AlP,
was clearly demonstrated by the continuity of the results
s
TABLE VIII. Calculated phonon frequencies~in cm21) for the T(Z), L(A), andF(D) high-symmetry points in corundum. The value
from Heid et al. ~Ref. 11! are given in parentheses.

Mode 1 2 3 4 5 6 7 8 9 10

T1~4-fold!:L3 143~224! 336~424! 423~505! 472~531! 622~692!
T3~2-fold!:L1 ,L2 267~324! 359~396! 520~531! 654~659! 845~825!
L1~2-fold!:none 152~231! 195~246! 218~311! 295~374! 319~404! 380~440! 392~456! 427~497! 436~518! 477~536!

500~580! 559~625! 600~654! 739~749! 824~818!
F1

1 :S1 228~259! 287~353! 363~435! 464~535! 529~559! 627~656! 762~705!
F2

1 :S2 108~222! 222~279! 293~364! 329~434! 411~481! 449~546! 544~623! 747~803!
F1

2 :S1 260~330! 305~365! 362~394! 387~447! 568~620! 659~657! 805~746!
F2

2 :S2 240~305! 266~347! 300~382! 373~468! 443~496! 485~604! 581~755! 732~760!
2-6
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phonon dispersion curves near theG point.25 We show our
values fore`

xx and e`
zz in Table III and compare them with

experiment.
In insulators, the nonanalytic contribution to the dynam

cal matrix, which determines the phonon frequencies at
zone center, is expressed through the high-frequency die
tric constante` and the Born effective charge tensorZi*
~Ref. 51!

Dia, j b
LO 5Dia, j b

TO 1
4pe2

V

~Z i* •q!a~Z j* •q!b

q•e`•q
, ~20!

whereZi* is defined as

Zi ;a,b* 5V
]Pa

]Ri ;b
, ~21!

where,Ri ;b is the coordinate of ioni in directionb. As with
e` , it is relatively easy to calculateZi* within SCAD. We
use the fact that SCAD gives a completely ionic picture
the electronic structure of Al2O3 with monopole charges
which do not vary for small displacementsdRi ;b of the ions.
Consequently, the Born effective charges can be compute

Zi ;a,b* 5Zidab1(
j

]pj ;a

]Ri ;b
, ~22!

whereZi are the monopoles andpj are the dipole moment
calculated self-consistently by SCAD for each displacem
Ri .

We calculate tensorsZi* separately forall ions in the unit
cell and rotate them into symmetrically equivalent sites
eraging the results obtained for each site. This way we
sure that the small numerical uncertainties due to
direction-dependent choice of the angular integration m
used in our calculation of the potentials are averaged
Table VI illustrates this procedure by showing the ‘‘raw’’ an
symmetrized Born effective charge tensors. To compare
Zi* values with those obtained from a mixed-basis pseu
potential approach and LDA~Ref. 11! our values need to be
divided byAe`

zz. While the off-diagonal elements in the Bor
effective charge tensors calculated by us remain small, t
are markedly larger than reported by Heidet al.,11 especially
for oxygen. For all the elements the sum rule in our calcu
tion is satisfied to better than 0.02.

Vibrational frequencies are calculated using a symm
trized frozen phonon technique.52,59 First, sets of orthogona
frozen modes are determined for each irreducible repre
tation ~IR!. The number of modes in a set for a given IR
the number of nonzero frequencies divided by their deg
eracy. Next, the energy as a function of displacement am
tude is calculated for each mode and their pairwise lin
combinations. The curvature of these energy functions
zero amplitude gives the elements of the block diagonali
analytical part of the dynamical matrixD, Eq. ~20!. We sup-
ply the elements ofD by calculating curvatures of parabola
from changes in energy for small displacements consis
with each frozen mode. In fact, to improve the accura
these calculations are carried out twice, the second pas
22430
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ing the projected modes with amplitudes consistent w
eigenvectors obtained in the first pass.

In the following we use the notation of Miller and Love,53

adopted by Stokes and Hatch,54 and show the correspondin
Koster55 and conventional labels in Tables VII and VIII, fo
easy comparison with literature. In this paper we consider
high-symmetry pointsG, L, F, andT. In R3̄c, at G we have
two G1

1 modes, threeG2
1 modes, twoG1

2 modes, three
~counting the 0 frequency translational mode! G2

2 modes,
five doubly degenerateG3

1 , modes and five~counting the 0
frequency translational mode! doubly degenerateG3

2 modes.
The G3

2 degeneracy is removed atk'0 in directions other
than that of the crystallographic axisc. This effect, which is
included in the nonanalytic term of the dynamical matrixD,
Eq. ~20!, is due to long-range macroscopic polarization fie
that affect the modes with a LO component. The LO-T
splitting for theG3

2 modes is the largest in the plane perpe
dicular to thec axis. On the other hand, theG2

2 modes are
purely transverse in this plane and purely longitudinal in
c direction. The modes belonging toG1

1 , G2
1 , G3

1 and G1
2

are not polar modes and thus are not affected by the non
lytic term in Eq.~20!.

We show the calculated frequencies for theG point in
Table VII and for theT, L, andF points (GL andGF direc-
tions arenot in the plane perpendicular to theGZ direction—
the direction of thec axis.! in Table VIII. Our results are
compared with the results from the density-functional pert
bation theory calculations,11 which agree remarkably wel
with the experimental data obtained fork points along the
special linesL andS.56

A comment, however, must be made. For theG point we
have the following compatibility relations withS:G1

1 :S1 ,
G2

1 :S2 , G3
1 :S1S2 , G1

2 :S1 , G2
2 :S2 , G3

2 :S1S2. For F the
compatibility relations withS are F1

1 :S1 , F2
1 :S2 , F1

2 :S1 ,

FIG. 2. Calculated vs experimental~Refs. 45 and 57! zone cen-
ter phonon frequencies~in cm21) for corundum.
2-7
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F2
2 :S2. Counting modes atG we obtain 2G1

1→2S1 , 3G2
1

→3S2 , 10G3
1→5S115S2 , 2G1

2→2S1 , 3G2
2→3S2 ,

10G3
2→5S115S2. This results in 14S1 modes and 16S2,

consistent with theF point where we have 7F1
1 modes, 8

F2
1 modes, 7F1

2 modes and 8F2
1 modes. The authors of th

cited theoretical11 and experimental56 papers appear to hav
mislabeled theirS1 and S2 modes, effectively connecting
G2

2 andG3
2 LO modes toS1 andG1

2 andG3
2 TO modes to

S1, for bothGL andGF directions. This led to an incorrec
assignment of 15 modes toS1 and 15 modes toS2. Conse-
quently, their labels atF are also incorrect. Using the au
thors’ own assignments for the infrared-active and Ram
active and silent modes,11 which are correct, we were able t
properly relabel theirS1 and S2 modes. This new assign
ment is reflected in Tables VII and VIII.

To compare our results with the experimental infrared a
Raman data we did additional calculations for theG3

2 fre-
quencies atk'0 in the plane perpendicular toc. These fre-
quencies can be directly compared with the experime
values for the infrared-activeEu LO modes. The infrared-
active A2u LO frequencies have already been calculated
the G2

2 frequencies fork'0 in the GZ direction. The fre-
. B

e

ge

ev

.

22430
-

d

al

s

quencies of all the infrared-active TO and Raman-act
modes have been determined by diagonalizing the dynam
matrix D, Eq. ~20! without the macroscopic field term. Thes
results are shown in Fig. 2.

V. SUMMARY

We illustrate the SCAD method for calculating polariz
tion and related properties for the nontrivial case of coru
dum. The results which we obtain for phonon frequencies
in reasonably good agreement with experiment~we have an
average error of 14% and slightly larger error for the lo
frequency modes in Fig. 2 and Tables VII and VIII!. We find
excellent agreement for the structural parameters and mo
the elastic constants~with the exception ofC13 andC44).
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