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Procedure for obtaining microscopic mechanisms of reconstructive phase transitions
in crystalline solids

Harold T. Stokes and Dorian M. Hatch
Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602

~Received 17 November 2001; published 4 April 2002!

A procedure for obtaining possible microscopic mechanisms for reconstructive phase transitions in crystal-
line solids is described. Both strains and atomic displacements are considered, and the procedure includes user
input of allowed strain tolerance, nearest-neighbor distances, and unit-cell size change. This method has been
implemented in a computer programCOMSUBS. We applyCOMSUBSto the pressure-induced phase transition in
NaCl and obtain 12 possible mechanisms, two of which are those proposed earlier by Buerger and Watanabe,
respectively. Furthermore, we show how to use energy calculations to determine the height of the energy
barrier for the transition.
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I. INTRODUCTION

In a reconstructive phase transition, there is no gro
subgroup relation between the symmetries of the two c
talline phases. The path from one phase to the other p
requires significant strain and/or large atomic displaceme

Examples of reconstructive phase transitions abound
nature. Many of the alkali halides undergo a transition fro
a NaCl-type structure to a CsCl-type structure. Motivated
the use of these solids, and in particular the use of NaCl
pressure standard, this transition type has been studied
considerable effort.1–6 Many alkali metals and transition
metals undergo a transition from the hcp to bcc phase.7 Ti,
representative of the transition metals, undergoes a trans
from thea to thev phase. This transition was first observ
by Jamieson8 and has been studied extensively since th
with static high-pressure9–11 and shock-wave techniques.12

The wurtzite to rocksalt transition in GaN,13 the bcc to fcc
transition in Cs,14 the fcc to hcp transition in Co, Fe, Tl, an
Am,15 the bcc to rutile type transition of SiO2,16 and many
other examples that could be mentioned stress the im
tance and interest in this kind of phase transformation.

Any detailed description of a reconstructive phase tran
tion must deal with two questions:~1! How are the atoms
mapped from one structure to the other?~2! What path do the
atoms take between these two structures? The mapping q
tion simply deals with how the two structures are relat
The path question is more difficult. It deals with actu
atomic displacements and strains that occur during the p
transition. In a previous paper we presented a system
procedure for obtaining possible mappings and paths fo
reconstructive phase transition17 based almost entirely on
symmetry considerations. In this paper we generalize
algorithmic procedure by considering a wider class of s
groups, by allowing user input for some important para
eters ~allowed strain, nearest-neighbor distances, and u
cell size change! and by implementing the procedure o
computer.

In our treatment, we assume that the path between the
structures involves an intermediate unstable structure w
definite space-group symmetryG. If we are considering a
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reconstructive phase transition from a structure with spa
group symmetryG1 to a structure with space-group symm
try G2, then our description is actually a two-step proce
G1→G→G2, whereG is a subgroup ofG1 and also a sub-
group ofG2 so that each stepG1→G andG→G2 is a tran-
sition with a group-subgroup relationship.

Therefore, our approach is based on a search for com
subgroups ofG1 andG2. For a given common subgroupG,
we then consider possible mappings of atoms fromG1 to G2.
The mappings are restricted by the constraint that the s
metryG must be maintained along the entire path fromG1 to
G2. No atomic displacements are allowed which destroy
symmetryG.

As an example, we apply our procedure to the pressu
induced phase transition in NaCl. At ambient pressure, N
exists in the well-known face-centered-cubic~fcc! structure
with space-group symmetryFm3̄m. When the pressure is
raised to'30 GPa, NaCl changes to a CsCl-like simp
cubic~sc! structure with space-group symmetryPm3̄m. This
pressure-induced transition has physical and geological
portance as it can be a basic model of other solid-solid tr
sitions due to its simplicity. The transition has been heav
studied but still, today, remains an interesting example
investigation, particularly when new methods of experime
tal investigation can be applied and new schemes of mo
calculations used.

Over the years, two main models have been proposed
this phase transition. The first one was proposed by Sho18

and later modified by Buerger.2 Buerger showed that a con
traction along one of the body diagonals of the unit cell
the NaCl structure and an expansion normal to it lead to
CsCl structure. In this model the transition is accomplish
via strains alone. Another model was introduced by Hy
and O’Keefe19 and emphasized later by Watanabeet al.6 In
this model the orientation relation is not the same as in
Buerger model; instead the@110#CsCl is parallel to@100#NaCl,
and @001#CsCl is parallel to @011#NaCl. They describe the
transition as an interplanar movement and a shuffle of ato
in adjacent (100)NaCl planes in an antiparallel manner.

We have implemented our method as a computer prog
calledCOMSUBS. When applied to the case of the phase tra
sition in NaCl,COMSUBSfinds 12 possible paths, 2 of whic
©2002 The American Physical Society14-1
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are the Buerger and Watanabe mechanisms mentioned a
We carry the example further by using energy calculatio

to find the barrier heights for the various paths found. In
case of the Buerger mechanism, we refine the path Bue
proposed and show that the energy barrier can be sig
cantly lowered by including additional strains and atom
displacements.

II. COMSUBS ALGORITHM

Consider two crystalline structures with space-group sy
metriesG1 and G2, respectively. We are given the lattic
parameters which define the size and shape of the unit
and we are given the positions of atoms inside the unit c
Space-group operators are denoted using the Seitz not

$R̂uvW %, i.e., a point operationR̂ followed by a translationvW of
the crystal. For space groupGi , we designate a set of rep
resentative operators$R̂i j uvW i j %, one for each point operatio
R̂i j .

The set of all pure translations in a space group forms
translation group. In three dimensions, translation groups
be generated with three primitive translations. We define
translationtW ik to be thekth generator of the translation grou
Ti associated withGi . The action of a point operationR̂i j on
the generatortW ik results in a linear combination of the thre
generators,

R̂i j tW ik5(
m

~R̂i j !mktW im , ~1!

where the matrix elements (R̂i j )mk are all integers since ev
ery point operation in a space group takes the lattice
itself.

Our goal is to find possible paths fromG1 to G2 such that
the strains and atomic displacements that occur along t
paths do not exceed some chosen reasonable limits. W
low all possible relative orientations and origins ofG1 and
G2. We assume that along the path fromG1 to G2, the space-
group symmetry of the crystal is some common subgroup
G1 and G2. Thus, to accomplish our goal, we search f
common symmetry subgroups.

We begin by searching for common sublattices, i.e., co
mon subgroupsT of the translation groupsT1 and T2. We
write the generatorssW i j of T in terms of the generators ofT1
and the generators ofT2,

sW i j 5(
k

~Ai !k j tW ik , ~2!

where the matrix elements (Ai)k j are all integers.
Along the path fromT1 to T2, the generators ofT evolve

from sW1 j to sW2 j . From the two end points of this path,sW1 j and
sW2 j , we can determine the minimum total strain required
go fromT1 to T2. We use the method of magic strains.20 We
first write the generators ofT in terms of Cartesian coordi
nates:
14411
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sW i j 5(
k

~Bi !k jêk , ~3!

whereê1 ,ê2 ,ê3 are unit vectors along Cartesianx,y,z axes,
respectively. If we define a transformation matrixS by B2
5SB1, the principal values of the strain tensor are given
the square root of the eigenvalues ofSTS, whereST is the
transpose ofS. The productSTS removes any antisymmetri
part of S due to pure rotations which may be introduced
the arbitrary choice of relative coordinate systems forT1 and
T2.

Now we can test whether or not the strain exceeds so
reasonable limit. We require that each principal value of
strain tensor be less than 11e and greater than (11e)21,
wheree is a parameter which we usually choose to be 0.
This rather liberal constraint results in a large number
possible common sublattices to be investigated further.

As an example, consider the pressure-induced phase
sition in NaCl. For the low-pressure structure,G15Fm3̄m
with lattice parametera154.84 Å. For the high-pressur
structure,G25Pm3̄m with lattice parametera252.98 Å. In
terms of Cartesian coordinates, the generators ofT1 andT2
are

tW115~0,1
2 a1 , 1

2 a1!,

tW125~ 1
2 a1,0,12 a1!,

tW135~ 1
2 a1 , 1

2 a1,0!,

tW215~a2,0,0!,

tW225~0,a2,0!,

tW235~0,0,a2!. ~4!

We limit the scope of our search by specifying a ma
mum allowed length for any of the generatorssW i j of T. In
NaCl, we consider only generators of length 6 Å or less. This
results in a list of 42 possible vectorssW1 j for G1 and 32
vectorssW2 j for G2. This effectively limits the size of the uni
cell of T. If we wanted to consider larger unit cells, then w
would need to allow longer generatorssW i j .

We next consider all possible triplets of generatorssW1 j of
T. Given 42 possible generators, this would result in 11 4
triplets. We limit this number by requiring that detA1.0.
We further require that as each triplet is considered, it rep
sent a different set of lattice points than any previously c
sidered triplet. Two sets of generators with matricesA1 and
A18 represent different lattices if eitherudetA1uÞudetA18u or
A1

21R̂1 jA18 contains any noninteger elements for any po
operatorR̂1 j in G1. For NaCl, this results in only ten triplet
of generatorssW1 j of T to be considered further.

Next, given a triplet of generatorssW1 j , we consider all
possible triplets of generatorssW2 j such that

~11e!21,s2 j /s1 j,11e ~5!

for each of the three pairs of generatorssW1 j ,sW2 j . We further
test the two triplets by calculating the principal values of t
4-2
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PROCEDURE FOR OBTAINING MICROSCOPIC . . . PHYSICAL REVIEW B 65 144114
strain tensor and require that they also lie between the va
of (11e)21 and 11e. This guarantees that not only th

lengths ofsW1 j andsW2 j agree~to within the accuracy specifie

by e), but also the angles between the pairssW1 j ,sW1 j 8 and

sW2 j ,sW2 j 8 also agree. Last, we require that detA2.0 and that

the unit cells specified by the generatorssW1 j and by the gen-
eratorssW2 j contain the same number of atoms. If the prim
tive unit cell of Gi containsNi atoms, then this means tha
N1detA15N2detA2. For NaCl, usinge50.5, this results in a
total of 343 matched sets of lattices, each of which we c
sider further as a possible path for the phase transition.

Let us pursue this example further by considering a p
ticular pair of matched lattices: a subgroup ofT1 generated
by

sW1152 tW115~0,2 1
2 a1 ,2 1

2 a1!,

sW1252 tW112 tW121 tW135~0,0,2a1!,

sW1352 tW111 tW121 tW135~a1,0,0!, ~6!

i.e.,

A15S 21 21 21

0 21 1

0 1 1
D ~7!

and

B15a1S 0 0 1

21/2 0 0

21/2 21 0
D , ~8!

and a subgroup ofT2 generated by

sW215 tW225~0,a2,0!,

sW225 tW211 tW221 tW235~a2 ,a2 ,a2!,

sW235 tW212 tW235~a1,0,2a1!, ~9!

i.e.,

A25S 0 1 1

1 1 0

0 1 21
D ~10!

and

B25a2S 0 1 1

1 1 0

0 1 21
D . ~11!

A continuous evolution from the subgroup ofT1 to the
subgroup ofT2 would define a possible path for the pha
transition. We can see that such a path would require a s
in the lattice. For example, the lengths ofsW1 j and sW2 j are
14411
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different. Also, the angle betweensW i1 andsW i2 changes from
45° to 54.7°. Using the method of magic strains, we can fi
the principal values of the strain tensor. From the matric
B1 andB2, we obtain

S5B2B1
215

a2

a1
S 1 1 21

0 21 21

21 1 21
D . ~12!

The square roots of the eigenvalues ofSTS are 1.23, 0.87,
0.87, which are therefore the principal values of the str
tensor. We can see that each of these values is greater
(11e)2150.66 and less than 11e51.5 ~usinge50.5). Us-
ing this criterion, the path between these two lattices is
ceptable for further consideration.

Using one of the common sublatticesT of T1 andT2, we
can next construct space groupsG which are common sub
groups ofG1 andG2. First we find the point groupP of T.
This is the intersection ofP1 andP2, wherePi is the set of
point operationsR̂i j in Gi which are also point operations o
T at the end point of the path whereG→Gi . Consider the
action of a point operatorR̂i j on one of the generatorssW ik of
Ti . We have

R̂i j sW ik5(
m

~Ai !mkR̂i j tW im

5(
m,n

~Ai !mk~R̂i j !nmtW in

5 (
m,n,p

~Ai !mk~R̂i j !nm~Ai
21!pnsW ip

5(
p

~Ai
21R̂i j Ai !pksW ip . ~13!

We see that ifR̂i j PPi , then every element of the matri
Ai

21R̂i j Ai must be an integer. Using this test, we can fi
every operator inP1 and in P2. The intersection ofP1 and
P2 requires that

A1
21R̂1 jA15A2

21R̂2 j 8A2 ~14!

for pairs of point operationsR̂1 j and R̂2 j 8 in G1 and G2,
respectively. The equality in the above equation means
the two matrices are equal, element by element. The ab
equation also defines a mapping of point operationsR̂1 j in
G1 onto point operationsR̂2 j 8 in G2. Along the path fromG1

to G2, each point operationR̂1 j at the beginning of the path
evolves into the point operationR̂2 j 8 at the end of the path
For convenience, we renumber the point operations inG2 so
that j 85 j .

Let us consider the above example further. For the po
operatorC2x (180° rotation about thex axis, using the nota-
tion of Miller and Love21!, we have

R̂1~C2x!5S 21 21 21

0 0 1

0 1 0
D ~15!
4-3
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and

A1
21R̂1~C2x!A15S 21 0 0

0 21 0

0 0 1
D , ~16!

which contains all integers. ThereforeC2xPP1. Similarly,

R̂1~C2y!5S 0 0 1

21 21 21

1 0 0
D ~17!

and

A1
21R̂1~C2y!A15S 1 0 0

21 21 0

0 0 21
D , ~18!

and we see thatC2yPP1. On the other hand, forC4z
1 (90°

rotation about thez axis! we have

R̂1~C4z
1 !5S 1 1 1

0 0 21

21 0 0
D ~19!

and

A1
21R̂1~C4z

1 !A15S 0 0 22

1/2 1 1

1/2 0 0
D , ~20!

and we see thatC4z
1 ¹P1. Repeating this process for each

the 48 point operators inG1, we find thatP154/mmmwith
the fourfold axis pointing along thex axis.

To find P, we see from Eq. ~14! that R̂2 j 8
5A2A1

21R̂1 jA1A2
21, and we therefore calculat

A2A1
21R̂1 jA1A2

21 for each operatorR̂1 j in P1 and check if
the result is a point operator inG2. For example,

A2A1
21R̂1~C2x!A1A2

215S 0 0 21

0 21 0

21 0 0
D , ~21!

which is the point operatorC2e in G2 (180° rotation about
î2 k̂) and thereforeC2xPP. On the other hand,

A2A1
21R̂1~C2y!A1A2

215S 1/2 21 1/2

21/2 0 21/2

1/2 21 21/2
D , ~22!

andC2yP” P. Applying this test to each of the 16 operators
P1, we obtain P5mmm with the twofold axes alongı̂,
¤̂2 k̂, ¤̂1 k̂ in G1 and alongı̂2 k̂, ı̂1 k̂, ¤̂ in G2.

The point group ofG will be some subgroup of the lattic
point groupP. Therefore, consider some point groupP8,P.
The representative operators ofG will be of the form

$R̂j uvW j%, whereR̂jPP8 and is equal toR̂1 j in G1 and equal to
14411
R̂2 j in G2. The operator$R̂j uvW j% in G must be identical to

some operator$R1 j uvW 1 j1uW 1 j% in G1 and also to some opera
tor $R2 j uvW 2 j1uW 2 j% in G2, whereuW 1 jPT1 anduW 2 jPT2. If we
also include a possible shifttW in the origin of G2 with re-
spect toG1, we obtain the requirement

vW j5vW 1 j1uW 1 j5vW 2 j1uW 2 j1R̂2 jtW2tW . ~23!

In practice, we write each vector in this equation in term
of the generatorssW ik of Ti . Consider a vectorvW i j written in
terms of the generatorstW ik of Ti :

vW i j 5(
k

CktW ik . ~24!

Using the appropriate transformation, we can express
vector in terms of the generatorssW im of T:

vW i j 5(
k,m

Ck~Ai
21!mksW im5(

m
~Ai

21C!msW im . ~25!

We will simply denote this by the shorthand notatio
Ai

21vW i j , which means a multiplication of the matrixAi
21 and

the column matrixvW i j where the three rows contain the com
ponents ofvW i j in terms of the generators ofTi . The result is
a column matrix containing the components ofvW i j in terms
of the generators ofT. Using this notation, we write the
requirement in Eq.~23! more precisely as

vW j5A1
21~vW 1 j1uW 1 j !5A2

21~vW 2 j1uW 2 j1R̂2 jtW2tW !. ~26!

We must find vectorsuW 1 j , uW 2 j , andtW which satisfy simulta-
neously Eq.~26! for each operatorR̂jPP8. In practice, we
need only consider the operators corresponding to the g
erators ofP8. If there areN generators, then we must find
value oftW and values of theN pairs of vectors,uW 1 j anduW 2 j ,
which satisfy simultaneouslyN equations.

We proceed as follows. We try every possible value ofuW 1 j

in each of theN equations. The value ofuW 1 j can be restricted
to the translations inT1 which are inside the primitive uni
cell of T ~including uW 1 j50). For each set of theseN uW 1 j

values, we try to solve theN equations simultaneously fortW

and the vectorsuW 2 j using the method of Smith norma
forms.22 If successful, we can use the resulting generat

$R̂j uvW j% to obtain the remaining operators inG. One more
requirement must then be satisfied. The operators inG must
obey group multiplication. For every pair of point operatio
R̂j R̂k5R̂m , we must require that

vW j1R̂jvW k5vW m ~27!

to within a lattice vector inT. Having passed this final re
quirement, we now have a space groupG which is a sub-
group of bothG1 andG2.

Consider again the above example. A set of generator
P are C2x ,C2 f ,I in P1 and C2e ,C2c ,I in P2. Since detA1

52, there are two vectorsuW 1 j to be considered: namely

uW 1 j50 and uW 1 j52 tW111 tW135a1( 1
2 ,0,2 1

2 ). There are eight
4-4
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PROCEDURE FOR OBTAINING MICROSCOPIC . . . PHYSICAL REVIEW B 65 144114
ways of assigning u1 j to the three generators of P. Only two
of them result in a solution to the three equations~26!.

~1! uW 115uW 125uW 1350. This results invW 15vW 25vW 350, and
the three equations~26! can be satisfied withtW50 anduW 21

5uW 225uW 2350. In other words, the generating elements ofG
are $C2xu0%,$C2 f u0%,$I u0% when G→G1 and
$C2eu0%,$C2cu0%,$I u0% whenG→G2. Using an algorithm of
Hatch and Stokes,23 we identify the space groupG
5Pmmmwith the three principal lattice vectors

sW 118 52 tW111 tW121 tW135a1~1,0,0!,

sW 128 52 tW115a1~0,2 1
2 ,2 1

2 !,

sW 138 52 tW121 tW135a1~0,1
2 ,2 1

2 !,

sW 218 5 tW212 tW235a2~1,0,21!,

sW 228 5 tW225a2~0,1,0!,

sW 238 5 tW211 tW235a2~1,0,1!. ~28!

These are simply a rearrangement of the generatorssW i j of T

and define theaW ,bW ,cW axes ofG.
~2! uW 115uW 125uW 1352 tW111 tW13. This results invW 15vW 2

5vW 35 1
2 sW121

1
2 sW13 and the three equations can be satisfi

with tW52 1
4 tW22 anduW 215uW 225uW 235 tW21. In other words, the

generating elements of G are $C2xu2 tW111 tW13%,

$C2 f u2 tW111 tW13%, $I u2 tW111 tW13% when G→G1 and

$C2eu tW211
1
2 tW22%, $C2cu tW211

1
2 tW22%, $I u tW211

1
2 tW22% when G

→G2. We identify the space groupG5Pmmnwith the three
principal lattice vectors

sW 118 52 tW111 tW121 tW135a1~1,0,0!,

sW 128 52 tW121 tW135a1~0,1
2 ,2 1

2 !,

sW 138 5 tW115a1~0,1
2 , 1

2 !,

sW 218 5 tW212 tW235a2~1,0,21!,

sW 228 5 tW211 tW235a2~1,0,1!,

sW 238 52 tW225a2~0,21,0!. ~29!

The setting ofPmmn in the International Tables24 ~origin
choice 2! is obtained by shifting the origin ofG with respect
to G1 by 2 1

2 tW111
1
2 tW13, and we obtain the generators ofG

using the new coordinates defined above,$C2xu
1
2 sW 118 %,

$C2yu
1
2 sW 128 %, $I u0%. We also obtain these generators fromG2

by shifting the origin of G with respect to G2 by
1
2 tW211

1
4 tW22.

Next, we consider atomic displacements along the p
from G1 to G2. The atoms in a crystal belong to a fini
number of sets called Wyckoff positions. Types of Wycko
14411
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positions are labeled (a), (b), (c), etc., in the Internationa
Tables. Two different sets of atoms which belong to the sa
type of Wyckoff position can be brought into each othe
positions by a continuous change. Small displacements
not change the type of Wyckoff positions a set of ato
belongs to without changing the space-group symmetry
the crystal. Therefore, atoms must remain in the same ty
of Wyckoff positions along the entire path fromG1 to G2.
This means that Wyckoff positions near one end point of
path whereG becomesG1 must be the same type near th
other end point whereG becomesG2. This gives us an easy
method to tell whether it is possible for atomic positions
evolve fromG1 to G2 along the path given by the commo
subgroupG.

However, we must be careful. The type of Wyckoff pos
tion can depend on the origin of the space group. For
ample, in NaCl~structure inG1), the Na and Cl atoms are a
Wyckoff positionsa andb, respectively, if the origin is at a
Na atom, and at Wyckoff positionsb anda, respectively, if
the origin is at a Cl atom. We therefore consider all possi
shiftstW 8 of the origin ofG at the end point nearG2 such that
the translational partvW j of the operators inG remain the
same~to within a lattice vector inT). We must solve the
equation

R̂jtW 82tW 850 ~30!

for tW 8 ~to within a lattice vector inT) simultaneously for
each point operationR̂j in G. As before, we use the metho
of Smith normal forms to find solutions. For some spa
groups, the solutions to this equation depend on a cont
ously variable parameter; i.e., there are an infinite numbe
solutions. For example, the origin of space group 75P4 can
be anywhere along thez axis without affecting the translation
part vW j of any of the operators in that space group. We d
with these parameters below.

A type of Wyckoff position may have up to three degre
of freedom, including zero degrees of freedom when
atoms are at fixed positions. These degrees of freedom
usually denoted in International Tables by one or more of
symbols x,y,z. We call these ‘‘Wyckoff structural param
eters.’’ For example, in space group 221Pm3̄m, one of the
atoms at Wyckoff position~g! is at x,x,x. This position has
one degree of freedom and hence one Wyckoff structu
parameter, in this case labeled withx.

Sometimes, a Wyckoff position with different values
the structural parameters can describe the same set of at
In the above example, suppose thatx50.214; i.e., there is an
atom at (0.214,0.214,0.214). We see from the Internatio
Tables that there is another atom atx̄,x̄,x̄ or (20.214,
20.214,20.214). But this position also has the formx,x,x
with x520.214. Therefore, Wyckoff position~g! with either
x50.214 or x520.214 describes the same set of atom
positions. When we try mapping atoms at the two ends of
path fromG1 to G2, we must consider all possible values
the Wyckoff structural parameters that describe the ato
positions.
4-5
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Now we are ready to map atoms at one end of the p
onto atoms at the other end of the path. At each end of
path we must have the same types of Wyckoff positio
They are only allowed to differ in the values of the Wycko
structural parameters. We assume that these parameters
continuously from their values at one end of the path to th
values at the other end of the path. If there are any cont
ously variable parameters in the allowed origin shifts ofG as
described above, we choose these values at the end
near G2 to minimize the change in the Wyckoff structur
parameters along the path.

Now we have a possible path fromG1 to G2. Along this
path, the lattice parameters change and the Wyckoff st
tural parameters change. We check one more thing. We
at a structure halfway between the two end points of
path. In this structure, the lattice and Wyckoff parameters
chosen to be halfway between their values at the two
points of the path. We calculate nearest-neighbor atomic
tances in this structure. If this is too small, we reject t
path. Along this path, the lattice would need to expand
allow atoms to pass by each other, and we assume that
a strain would result in an energy barrier unfavorable for t
path.

Let us return once more to the example above. We fo
two cases for further consideration:~1! Pmmm and ~2!
Pmmn. In both G1 and G2, the Na atoms are at Wyckof
position~a! and the Cl atoms are at (b). In case~1!, position
~a! in G1 becomes positions~a! and ~h! in G, and position
~a! in G2 becomes positions~a! and ~d! in G. There is no
way that a structure with atoms at~a! and ~h! can evolve
continuously to a structure with atoms at~a! and~d! without
losing the symmetryPmmmof G. No change in origin will
remedy this situation. Therefore, we must reject case~1! as a
possible path for the phase transition.

On the other hand, in case~2!, we find that inG, the Na
atoms are at position~a! and the Cl atoms are at~b! at both
ends of the path. Therefore, we consider this case furt
Below, we give the structural parameters forG at the two end
points of the path fromG1 to G2.

Lattice parameters:

a54.84 Å→4.21 Å,

b53.42 Å→4.21 Å,

c53.42 Å→2.98 Å. ~31!

Atoms positions:

Na: ~ 1
4 , 1

4 , 3
4 !→~ 1

4 , 1
4 ,1!,

Cl: ~ 1
4 , 3

4 , 1
4 !→~ 1

4 , 3
4 , 1

2 !, ~32!

We must check one more thing. InG1, the nearest-
neighbor distance is 2.42 Å, and inG2 it is 2.58 Å. In the
structure at the midpoint between the structures at the
ends of the path, the nearest-neighbor distance is 2.49
appears that atoms do not approach each other unreaso
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close along this path. Therefore, we accept this path a
possible mechanism for the phase transition in NaCl.

III. RESULTS FOR NaCl

We applied theCOMSUBS algorithm to the case of the
pressure-induced phase transition in NaCl. For the lo
pressure structure,G15Fm3̄m with lattice parametera1

54.84 Å. For the high-pressure structure,G25Pm3̄m with
lattice parametera252.98 Å. We used the following criteria

~1! We considered only subgroups where the length of
generatorssW i j are 6 Å orless.

~2! We considered only subgroups where the principal
ements of the strain tensor are less than 11e and greater
than (11e)21, wheree50.5.

~3! The nearest-neighbor distance is 2.42 Å inG1 and
2.58 Å in G2. We considered only subgroups where t
nearest-neighbor distance in the structure halfway betw
G1 and G2 is greater than 2.00 Å~80% of the average o
2.42 Å and 2.58 Å!.

~4! We considered only maximal subgroups. These de
the possible mappings of atoms inG1 onto atoms inG2.
Subgroups of these maximal subgroups do not introduce
mappings. They only alter the path by allowing addition
distortions inG along the path. We will show how we con
sider the nonmaximal subgroups when we discuss theR3̄m
path in detail below.

Using these criteria, we obtained 12 subgroups, which
list in Table I. The first entry in the table is the only commo
subgroup found where there is no change in the size of
primitive unit cell. The next four entries are subgroups whe
the size of the primitive unit cell is doubled. The last sev
entries are subgroups where the size of the primitive unit
is four times larger. Subgroups with larger primitive un
cells were not found since we limited the length of the ge
eratorssW i j .

The mechanism proposed by Buerger2 is the first entry,
R3̄m, and the mechanism proposed by Watanabeet al.6 is
the fifth entry,Pmmn. ~In the Appendix, we treat these tw
mechanisms in more detail, listing the order parameters
associated distortions.!

In order to push this example further, we must calcul
energies of the different structures. We used a first-princip
calculation SSCAD,25 which uses density functional theor
with local density approximation for the exchange and c
relation energies.SSCAD is not very accurate, but it is fas
and we only intend to use it as an illustration of how
proceed further with this problem.

First, we calculated the energy per Na-Cl pair in both t
G1 andG2 structures atT50 for various values of the lattice
parametersa1 anda2, respectively. From an analysis of the
data, we obtained a pressure-induced phase transitionP
59.95 GPa with lattice parametersa155.18 Å and a2
53.16 Å. Comparing these results with the experimen
values (P530 GPa,a154.84 Å, anda252.98 Å), we see
thatSSCADis not very accurate. In general, density function
methods do poorly with predicting the pressure at wh
such phase transitions take place. However, our goal i
4-6
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TABLE I. Maximal common subgroupsG of the two phases of NaCl,G15Fm3̄m andG25Pm3̄m. G provides a possible path for th

transition of NaCl fromG1 to G2. At each end point of the path (G→Gi), we give the conventional lattice vectorssW i1 ,sW i2 ,sW i3 of G in terms
of the conventional lattice vectors ofGi as well as the atomic postions inG ~Wyckoff symbols in parentheses!. In the last column, an
estimate of the free energy barrierDFest is given.

G sW12,sW12,sW13 sW21,sW22,sW23
Atoms at G1 at G2 DFest (eV)

166 R3̄m ( 1
2 ,0,12 ),(0,12 , 1

2 ),(1̄,1,1) (0,1,1),(1̄,1̄,0),(1,1̄,1) Na (a) 0,0,0 0,0,0 0.077

Cl (b) 0,0,1/2 0,0,1/2
5 C2(1) ( 1

2 ,1̄, 1
2 ),( 1

2 ,0,12 ),( 1
2 ,1̄, 1

2 ) (0,1,1̄),(0,1,1),(2,0,0) Na (a) 0,0,0 0,1/6,0 0.91

Na (b) 0,1/2,1/2 0,1/6,1/2
Cl (c) 1/4,1/2,3/4 0,2/3,3/4

5 C2(2) ( 1
2 ,1̄, 1

2 ),( 1
2 ,0,12 ),( 1

2 ,1̄, 1
2 ) (0,1,1̄),(0,1,1),(2,0,0) Na (c) 1/4,1/2,3/4 0,1/3,3/4 0.90

Cl (a) 0,0,0 0,21/6,0
Cl (b) 0,1/2,1/2 0,5/6,1/2

36 Cmc21 ~0,1,0!,~0,0,1!,~1,0,0! (1̄,0,1),(1,0,1),(0,2,0) Na (a) 0,21/4,0 0,0,1/8 2.08

Cl (a) 0,3/4,1/2 0,1/2,3/8
59 Pmmn (1,0,0),(0,12 , 1

2 ),(0,12 , 1
2 ) (1,0,1̄),(1,0,1),(0,1̄,0) Na (a) 1/4,1/4,3/4 1/4,1/4,1 0.10

Cl (b) 1/4,3/4,1/4 1/4,3/4,1/2
13 P2/c(1) (1,1

2 , 1
2 ),(0,12 , 1

2 ),(1,12 , 1
2 ) (0,0,2̄),(1̄,1̄,0),(1̄,1,0) Na (g) 3/4,3/4,0 3/4,3/4,21/4 1.17

Cl (e) 0,3/4,1/4 0,3/4,1/4
Cl ( f ) 1/2,1/4,1/4 1/2,3/4,1/4

13 P2/c(2) (1,1
2 , 1

2 ),(0,12 , 1
2 ),(1,12 , 1

2 ) (0,0,2̄),(1̄,1̄,0),(1̄,1,0) Na (e) 0,1/4,1/4 0,1/4,1/4 1.04

Na (f ) 1/2,3/4,1/4 1/2,1/4,1/4
Cl (g) 1/4,3/4,0 1/4,3/4,1/4

11 P21 /m (1,1
2 , 1

2 ),(0,12 , 1
2 ),(1,12 , 1

2 ) (1,1,1),(1,0,1̄),(0,2,0) Na (e) 0,1/4,1/4 1/4,1/4,1/8 2.15

Na (e) 1/2,1/4,3/4 1/4,1/4,5/8
Cl (e) 3/4,1/4,0 3/4,1/4,1/8
Cl (e) 1/4,1/4,1/2 21/4,1/4,5/8

7 Pc (1,1
2 , 1

2 ),(0,12 , 1
2 ),(1,12 , 1

2 ) (1,1,1),(1,0,1̄),(0,2,0) Na (a) 0,21/4,0 21/8,0,0 0.92

Na (a) 1/2,1/4,0 3/8,1/2,1/4
Cl (a) 1/4,3/4,1/4 3/8,1,0
Cl (a) 3/4,1/4,1/4 7/8,1/2,1/4

15 C2/c (1,0,1̄),(1,0,1),( 1
2 ,1̄, 1

2 ) (2̄,0,0),(0,2,0),(0,0,2̄) Na (e) 0,3/8,1/4 0,1/4,1/4 0.58

Na (e) 0,7/8,1/4 0,3/4,1/4
Cl ( f ) 3/4,5/8,1/4 3/4,1/2,1/2

2 P1̄ ( 1
2 ,1̄, 1

2 ),(1,0,0),(0,0,1) (0,2,0),(1,1,1),(1,0,1̄) Na (i ) 3/4,5/8,5/8 7/8,3/4,3/4 0.40

Na (i ) 3/4,1/8,1/8 5/8,1/4,1/4
Cl ( i ) 1/4,3/8,7/8 3/8,1/4,3/4
Cl ( i ) 1/4,7/8,3/8 1/8,3/4,1/4

45 Iba2 (1,0,0),(0,2̄,0),(0,0,1̄) (2,0,0),(0,2,0),(0,0,2) Na (c) 1/4,3/8,0 1/4,1/2,1/8 1.33

Cl (c) 1/4,5/8,0 0,3/4,21/8
e
d

e
o

be
of

fo

e I
calculate the relative heights of energy barriers, and th
relative values are not very sensitive to the pressure use

At the phase transition fromG1 to G2, the free energy
F5E1PV is at a minimum at the two end points of th
path. Along the path, the free energy increases and g
through a maximum value. This is the energy barrier
tweenG1 and G2. We can obtain a very rough estimate
the height of the barrier by calculating the free energyF for
the structure halfway betweenG1 andG2.

For example, consider the first entry in Table I~Buerger’s
mechanism!. We calculate that the lattice parameters
14411
se
.
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r

G5R3̄m are a53.66 Å and c58.97 Å at G1 and a
54.47 Å andc55.47 Å atG2. Halfway between, we ob-
tain the structure witha54.06 Å andc57.22 Å for which
we calculate the estimated barrier height to beDFest

50.077 eV.
As a second example, consider the fifth entry in Tabl

~the mechanism of Watanabeet al.!. We calculate that the
lattice parameters forG5Pmmn are a55.81 Å andb5c
53.66 Å atG1 and a5b54.47 Å andc53.16 Å atG2.
Halfway between, we obtain the structure witha55.14 Å,
4-7
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b54.06 Å, andc53.41 Å. However, we note that the rela
tive positions of the atoms also change along the path. At
midpoint, the Na atoms are at 0,0,7/8 and the Cl atoms ar
0,1/2,3/8. We obtainDFest50.101 eV.

We note that these estimates are upper bounds on
barrier height. The path fromG1 to G2 which passes over th
lowest barrier will most likely not be linear in the structur
parameters.

A. R3̄m

This is the path proposed by Buerger.2 The R3̄m path
from G1 to G2 involves only strains. The Na atoms remain
the lattice points, and the Cl atoms remain at the bo
centered positions in the rhombohedral unit cells inR3̄m.
~Note that in Table I, the atomic positions are given w
respect to the hexagonal unit cell.! An animation of Buerg-
er’s path can be seen on the internet.26 We show in Fig. 1 the
free energyDF ~relative to the values at the two end poin
of the path! as a function of the volume of the primitive un
cell ~containing one Na and one Cl atom!. The dashed lines
show the free energies of theG15Fm3̄m andG25Pm3̄m
structures.

To obtain the free energy of theR3̄m path over the bar-
rier, we vary the value of the lattice parameterc from 8.97 Å
to 5.47 Å ~the values at the end pointsG1 and G2, respec-
tively!. For each value ofc, we minimize the free energy
with respect to the lattice parametera, holding the value ofc
constant.~Note that if we minimized the free energy holdin
the volume constant, the structure would always relax
Pm3̄m or Fm3̄m, the dashed lines in the figure.! We obtain
at the top of the barrier aR3̄m structure witha54.06 Å and
c56.90 Å and a barrier height equal to 0.070 eV, which
slightly lower than the estimate in Table I.

Next we consider the possibility that the symmetry of t
path from G1 to G2 may be some subgroup ofR3̄m. Re-
member that we included in Table I only the maximal co
mon subgroups ofG1 and G2. If we can lower the energy
14411
e
at

he

t
-

o

-

barrier by lowering the symmetry ofR3̄m, then there will
also be a corresponding normal mode lattice vibration wh
will be unstable. Therefore, we look for unstable norm
modes inR3̄m at the top of the barrier.

Using the frozen-phonon method withSSCAD, we calcu-
lated the frequencies of the normal modes at each of thk
points of symmetry in the first Brillouin zone. ForR3̄m,
these are theG, F, L, and T points ~using the notation of
Miller and Love21!. We found one unstable normal mode
the F point. This mode belongs to the irreducible represe
tation ~IR! F2

2 of R3̄m. This IR is three dimensional, which
means that the mode is threefold degenerate. Any lin
combination of the three degenerate modes is unstable.
way in which the unstable mode lowers the symmetry of
crystalline structure depends on the linear combination

FIG. 1. The relative free energyDF5DE1PV as a function of
volume V of the primitive unit cell for the Buerger mechanism
the pressure-induced phase transition in NaCl. The symmetry a

the path isR3̄m. The dashed lines show the free energy of the t
cubic phases, also as a function ofV. We also show how the heigh
of the barrier is lowered when we consider paths with less sym

try thanR3̄m, namely,R3m, C2/m, andP21 /m.
h
TABLE II. Maximal subgroups ofR3̄m which can arise from theF2
2 irreducible representation. At eac

end point of the path (G→Gi), we give the conventional lattice vectorssW i1 ,sW i2 ,sW i3 of G in terms of the
conventional lattice vectors ofGi as well as the atomic postions inG ~Wyckoff symbols in parentheses!. In
the last column, the free energy barrierDF is given.

G sW12,sW12,sW13 sW21,sW22,sW23
Atoms at G1 ,G2 DF (eV)

11 P21 /m ( 1
2 ,1,12 ),( 1

2 ,0,12 ),( 1
2 ,0,12 ) (0,1̄,1),(0,1̄,1̄),(1,0,0) Na (e) 1/4,1/4,0 0.05

Cl (e) 3/4,1/4,1/2
12 C2/m (1̄,1,0),(1̄,1̄,0),(0,0,1) (0,2̄,0),(2,0,2̄),(1,1,1) Na (g) 0,3/4,0 0.066

Na (i ) 3/4,0,1/2
Cl (h) 0,1/4,1/2
Cl ( i ) 1/4,0,0

160 R3m (1̄,0,1̄),(0,1̄,1),(1̄,1,1) (0,2̄,2̄),(2,2,0),(1,1̄,1) Na (a) 0,0,0 0.067

Na (b) 1/6,21/6,1/3
Cl (a) 0,0,1/2
Cl (b) 21/6,1/6,1/6
4-8
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these three modes. In this case, there are six possible l
symmetries, all subgroups ofR3̄m ~called isotropy sub-
groups; see the Appendix or Stokes and Hatch27!. Of these
six subgroups, three of them are maximal, and we list th
in Table II. The other three are subgroups of those listed
Table II and will be automatically considered when we lo
for unstable normal modes in the maximal subgroups.

We relaxed each of the structures in Table II, always ho
ing one structural parameter constant. For example, cons
the P21 /m structure. There are eight structural paramete
the lattice parametersa,b,c,b and the Wyckoff parameter
x,z for each of the two~e! sites. We held the monoclinic
angle b constant and relaxed the remaining seven par
eters.~If we relaxed all eight parameters, the structure wo
‘‘slide down the hill’’ and end up at one of the end points,G1
or G2.! We obtained

a55.09 Å,

b53.46 Å,

c53.26 Å,

b5107.5°,

xNa50.270,

zNa520.107,

xCl50.744,

zNa50.614. ~33!

The resulting free energy isDF50.055 eV. Repeating this
procedure forC2/m and R3m, we obtain the free energie
shown in the last column of Table II. These three energies
plotted on Fig. 1. As can be seen, the barrier is lowest for
P21 /m path.

We must also consider the possibility that some subgr
of P21 /m may provide a path with an even lower barrie
~Remember that we only considered the maximal isotro
subgroups ofR3̄m.! We look for unstable normal modes i
the P21 /m structure just as we did forR3̄m. We calculated
the frequencies of the normal modes at each of thek points
of symmetry in the first Brillouin zone ofP21 /m and found
no unstable modes~except for theG1

1 IR which preserves the
P21 /m symmetry and simply represents ‘‘sliding down th
hill’’ towards G1 or G2). We therefore conclude that th
lowest barrier for the Buerger mechanism~with our modifi-
cation! is encountered for the path withP21 /m symmetry.

B. Pmmn

This is the path proposed by Watanabeet al. The Pmmn
path fromG1 to G2 involves not only strains but also atom
shuffles. An animation of the path of Watanabeet al. can be
seen on the internet.26 There are five structural parameter
the lattice parametersa,b,c and the Wyckoff parameterz for
the Na ~a! site and for the Cl~b! site. To obtain the free
energy along the path fromG1 to G2, we choose values o
14411
er

m
in

-
er

s:

-
d

re
e

p

y

the Wyckoff parameterz for the Na~a! site and hold it con-
stant while minimizing the free energy with respect to t
remaining four structural parameters. At the top of the b
rier, we obtain thePmmnstructure with

a54.98 Å,

b54.04 Å,

c53.31 Å,

zNa50.880,

zCl50.369, ~34!

and a free energyDF50.077 eV. We found no unstabl
normal modes~except for those associated with theG1

1 IR)
and therefore conclude that the height of barrier for
mechanism of Watanabeet al. is DF50.077 eV. We note
that this barrier is not as low as theP21 /m path for our
modified Buerger mechanism. However, we recognize t
SSCADis not a very accurate way to calculate energy and t
the difference between 0.055 eV and 0.077 eV is not la
enough for us to be able to conclude that the Buerger me
nism is energetically more favorable than the mechanism
Watanabeet al. ~In CsCl there is a temperature-induce
phase transition to the NaCl structure at 445 °C. There
evidence from x-ray single-crystal and optical microsco
studies that this phase transition takes place via the me
nism of Watanabeet al.6!

There has been some previous work on the mechan
aspects of a phase transition of this type. Ruffet al.29 con-
cluded that the mechanism of Watanabeet al. was favored
for RbBr on the basis of isothermal-isobaric molecular d
namics. Nga and Ong,5 using two different molecular dy-
namics algorithms, show that the two mechanisms
roughly equivalent in NaCl. Penda´s et al.30 carried out a
study of the Buerger mechanism in LiCl using anab initio
perturbed ion method. Our first-principles calculations a
consistent with these findings.

IV. CONCLUSION

We have described and implemented a systematic me
called COMSUBS which finds possible mechanisms for
given reconstructive phase transition. Each mechanism
scribes a path between the two phases. Along this path,
crystalline structure has a definite symmetry which is a co
mon subgroup of the symmetries of the two phases.COM-

SUBS may be applied to any reconstructive phase transiti
We appliedCOMSUBS to the pressure-induced phase tran
tion in NaCl and found 12 possible paths.

Given the possible paths, there exist a number of meth
for determining which one is most energetically favorab
We have demonstrated one such method for the case o
phase transition in NaCl. Using the programSSCAD for first-
principles energy calculations, we determined that the p
proposed by Buerger and the path proposed by Watan
et al.are both much more energetically favorable than any
the other ten paths found byCOMSUBS.
4-9
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Note added in proof. It has come to our attention that a
intermediate phase with the monoclinicP21/m symmetry
has been observed31 for a Buerger-like mechanism in th
pressure-induced NaCl-CsCl phase transition in the silver
lides. Furthermore, recentab initio calculations32 for AgBr
have confirmed the existence of this stable monoclinic in
mediate phase.

APPENDIX: ORDER PARAMETERS

In the Landau theory of phase transitions, distortio
which accompany a transition are decomposed into parts
longing to different irreducible representations of the par
space group. Order parametershW , which are vectors in rep
resentation space, govern the amplitude of these distorti
In the parent phase, the order parameters are zero, and
transition, the order parameters become nonzero.

In reconstructive phase transitions, eitherG1 or G2 could
be considered to be the parent space group, since in e
case a distortion reduces the symmetry to the subgroupG.
Let us callG1 the parent space group. When the crystal h
the symmetryG1, the order parameters are zero. At the tra
sition, the order parameters become nonzero, reducing
symmetry toG. As the crystal moves along the path fromG1
to G2, the amplitudes of the order parameters evolve, ge
ally increasing in magnitude, until they reach particular v
ues. At that point, the symmetry of the crystal increases
becomesG2.

Distortions associated with a particular order parame
and IR reduce the symmetry ofG1 to some symmetryH
which is a subgroup ofG1. The symmetry groupH is called
an isotropy subgroup ofG1. Each order parameter dete
mines an isotropy subgroup. If the isotropy subgroupH is
equal toG, then the order parameter is called a primary or
parameter and the associated distortion reduces the sym
try of G1 all the way toG. Secondary order parameters d
termine isotropy subgroupsH which are supergroups ofG.
The distortion associated with a secondary order param
reduces the symmetry ofG1 to some structure which ha
more symmetry thanG.

Let us illustrate this with the pressure-induced phase tr
sition in NaCl discussed in great detail in this paper. In Ta
III, we list the order parameters for various paths fromG1 to
G2. We obtained these results with the aid of a softw
packageISOTROPY.28

The first entry in Table III is Buerger’sR3̄m path. We see
that the distortions which occur along the path are straine.
We use a notatione5(e1 ,e2 ,e3 ,e4 ,e5 ,e6) which denotes
the strain tensor

e5S e1 e4 e6

e4 e2 e5

e6 e5 e3

D , ~A1!

which we define so that a vector

rW5(
i

r i êi , ~A2!
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which is tied to points in the crystal, becomes, under
action of the strain,

rW 85(
i , j

ei j r j êi . ~A3!

In the above equations,êi refers to unit vectors of a Cartesia
coordinate system. Do not confuse this with the compone
ei of the strain.

In theG15Fm3̄m structure of NaCl, a general strain ca
be decomposed into parts which belong to the following I
~using the notation of Miller and Love21!:

G1
1 : ~a,a,a,0,0,0!,

G3
1 : ~a,a,2ā,0,0,0!,~A3a,A3ā,0,0,0,0!,

G5
1 : ~0,0,0,a,0,0!,~0,0,0,0,a,0!,~0,0,0,0,0,a!. ~A4!

We note thatG3
1 is a two-dimensional IR. The two strain

listed above forG3
1 transform like the two basis functions o

G3
1 . The order parameterhW associated with that IR is there

fore also two dimensional, the two components ofhW repre-
senting the amplitudes of those two strains. For example,
order parameterhW 5(h1 ,h2) would denote the strain (h1

1A3h2 ,h12A3h2 ,22h1,0,0,0). Similarly,G5
1 is a three-

dimensional IR, and the associated order parameter is th
fore also three dimensional.

From Table III, we see that the strain along theR3̄m path
is decomposed into parts that belong to the IR’s,G1

1 and

G5
1 . The strain along the entireR3̄m path fromG1 to G2 is

characterized by two independent amplitudesh1 andh2.
Note that the part of the strain that belongs toG5

1 is a

specific combinationhW 5(h2 ,h̄2 ,h2) of the three strains
listed above forG5

1 . The evolution of this part of the strain

along theR3̄m path is described by the single amplitudeh2.
At the end of the path,G becomesG2. We can obtain the

symmetric form of the strain tensor at that point using t
method of magic strains.20 We first obtain the matricesB1
andB2 as defined in Eq.~3!. Then we calculate the transfo
mation matrixS5B2B1

21 which takes an orthogonal coord
nate system fromG1 to G2. We obtain the symmetric strain
tensore from

e5U@UTSTSU#1/2UT, ~A5!

whereUTSTSU is diagonal (U contains the eigenvectors o
STS). When we apply this method to theR3̄m path, we
obtain the strain tensor at the end of the path:

e5S 0.026 0.205 0.205

0.205 0.026 20.205

0.205 20.205 0.026
D . ~A6!

We see from inspection that atG2 the values of the ampli-
tudes h1 ,h2 are equal to 0.026 and 0.205, respective
Along the path fromG1 to G2, the values ofh1 ,h2 evolve
from zero to 0.026,0.205, respectively.
4-10
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TABLE III. Order parameters along the possible paths for the phase transition in NaCl. The first three paths@R3̄m,Fmmn,C2(1)# are

from Table I. The last path (P21 /m) is from Table II. We give the space-group symmetryG along the path, the IR ofFm3̄m, the order

parameterhW ~primary order parameters are indicated with *), the isotropy subgroupH associated with the order parameter, the amplitudeh i

of the order parameter when the crystal has reached theG25Pm3̄m symmetry at the end of the path, and the distortions~strains and atomic
displacements! which take place. The strainse are given in terms of the six componentse1 ,e2 ,e3 ,e4 ,e5 ,e6, and the atomic displacement

of the Na and Cl atoms are given in dimensionless units with respect to the fcc unit cell ofFm3̄m.

G IR hW H h i at G2 Distortions

166 R3̄m G1
1 (h1) 225 Fm3̄m 0.026 e5(h1 ,h1 ,h1,0,0,0)

G5
1

*( h2 ,h̄2 ,h2) 166 R3̄m 0.205 e5(0,0,0,h2 ,h̄2 ,h2)
59 Pmmn G1

1 (h1) 225 Fm3̄m 20.010 e5(h1 ,h1 ,h1,0,0,0)

G3
1 (h2 ,A3h2) 139 I4/mmm 20.060 e5(2h2 ,h̄2 ,h̄2,0,0,0)

G5
1 (0,h3,0) 71 Immm 20.180 e5(0,0,0,0,h3,0)

X5
2 *(0,0,0,0,0,h4) 59 Pmmn 1/8 Na15(0,h4 ,h4), Na25(0,h̄4 ,h̄4)

X5
2 *(0,0,0,0,0,h5) 59 Pmmn 1/8 Cl15(0,h5 ,h5), Cl25(0,h̄5 ,h̄5)

5 C2(1) G1
1 (h1) 225 Fm3̄m 0.008 e5(h1 ,h1 ,h1,0,0,0)

G3
1

(h2 ,A3h̄2) 139 I4/mmm 20.135 e5(h̄2,2h2 ,h̄2,0,0,0)
G5

1
(h3 ,h̄3 ,h4) 12 C2/m 0.106,0.088 e5(0,0,0,h3 ,h̄3 ,h4)

G4
2 (h5,0,h5) 44 Imm2 21/24 Na15(h5,0,h5), Na25(h5,0,h5)

G4
2 (h6,0,h6) 44 Imm2 1/12 Cl15(h6,0,h6), Cl25(h6,0,h6)

L1
1 (0,h7,0,0) 166 R3̄m 0 Cl15(h̄7 ,h̄7 ,h7), Cl25(h7 ,h7 ,h̄7)

L3
1

*(0,0,(21A3)h8 ,h̄8,0,0,0,0) 12 C2/m 1/8 Cl15(h̄8,2h8 ,h8), Cl25(h8,2h̄8 ,h̄8)
L3

2 *(0,0,h9 ,(21A3)h9,0,0,0,0) 15 C2/c 1/8 Na15(h9,0,h9), Na25(h̄9,0,h̄9)
11 P21 /m G1

1 (h1) 225 Fm3̄m 0.026 e5(h1 ,h1 ,h1,0,0,0)

G3
1

(h2 ,A3h̄2) 139 I4/mmm 0 e5(h̄2,2h2 ,h̄2,0,0,0)
G5

1
(h3 ,h̄3 ,h4) 12 C2/m 20.205,0.205 e5(0,0,0,h3 ,h̄3 ,h4)

X3
2 *( h5,0,0) 129 P4/nmm 0 Na15(0,h5,0), Na25(0,h̄5,0)

X3
2 *( h6,0,0) 129 P4/nmm 0 Cl15(0,h6,0), Cl25(0,h̄6,0)

X5
2 *( h7,0,0,0,0,0) 59Pmmn 0 Na15(h7,0,h̄7), Na25(h̄7,0,h7)

X5
2 *( h8,0,0,0,0,0) 59Pmmn 0 Cl15(h8,0,h̄8), Cl25(h̄8,0,h8)
f
-

am

-
a

ce
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e
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e
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and

e
.
and
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88,
In Table III we list the isotropy subgroupsH for each
order parameter. We note that for theR3̄m path the isotropy
subgroupH associated with the order parameter forG5

1 is

R3̄m. The strain with amplitudeh2 reduces the symmetry o
Fm3̄m all the way toR3̄m. This is a primary order param
eter.

The isotropy subgroup associated with the order par
eter forG1

1 is Fm3̄m which is the same asG1. The diagonal
strain tensor with amplitudeh1 does not reduce the symme
try of G1 at all. It simply causes a change in volume. It is
secondary order parameter.

The next entry in Table III is thePmmnpath of Watanabe
et al. Here we see that in addition to strains, atomic displa
ments are also listed as distortions. They belong to the
dimensional IRX5

2 . This IR is listed twice in the table sinc
the displacements of the Na and Cl are independent of e
other and are therefore governed by two independent o
parameters, each belonging to the same IRX5

2 .
From Table I, we see that along the path fromG1 to G2,

the Na atom moves from~1/4,1/4,3/4! to ~1/4,1/4,1!. The
displacement is thus equal to~0,0,1/4! in terms of the unit
14411
-

-
x-

ch
er

cell of Pmmnand equal to~0,1/8,1/8! in terms of the unit

cell of G15Fm3̄m. This is consistent with Table III, where
the displacement of this atom~denoted by Na1! is given by
(0,h4 ,h4). The value ofh4 varies from zero to 1/8 as th
crystal evolves fromG1 to G2.

Na2 is the other Na atom in the unit cell belonging to t
Wyckoff ~a! position. It moves from~3/4,3/4,1/4! to ~3/4,
3/4,0! along the path, its displacement being in a directi
opposite to that of Na1.

There are two primary order parameters. Both the Na
the Cl displacements reduce the symmetry ofG1 all the way
to Pmmn.

The C2 (1) path in Table III is an example of a mor
complex situation.~This path is the second entry in Table I!
There are nine structural parameters, five of them strains
four of them atomic displacements. We note that two of
IRs, L3

1 andL3
2 , are eight dimensional.

The order parameter associated withG5
1 has two indepen-

dent amplitudesh3 andh4. At the end of the path atG2, the
values of these two amplitudes become 0.106 and 0.0
respectively.
4-11
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From Table I we see that the displacement of Na1 is eq
to (0,1/6,0)2(0,0,0)5(0,1/6,0) in terms of the unit cell o
C2 and equal to~1/12,0,1/12! in terms of the unit cell of
G15Fm3̄m. Similarly, the displacement of Na2 is equal
(0,1/6,1/2)2(0,1/2,1/2)5(0,21/3,0) in terms of the unit
cell of C2 and equal to (21/6,0,21/6) in terms of the unit
cell of G15Fm3̄m. This is consistent with Table III, wher
the displacement of Na1 is equal to (h51h9,0,h51h9) and
the displacement of Na2 is equal to (h52h9,0,h52h9). At
G2, the valuesh5521/24 andh951/8 give us net displace
ments of~1/12,0,1/12! and (21/6,0,21/6) for Na1 and Na2,
respectively.

We note in Table III that for theC2 path none of the
isotropy subgroups areC2. None of these distortions alon
can reduce the symmetry ofG1 all the way toC2. However,
the intersection of all of the isotropy subgroups isC2, so the
combined effect of all of the distortions is to reduce t
symmetry toC2. In this case, there can be no single ord
parameter. At least two of the order parameters must
‘‘coupled’’ so that they become nonzero together. In th
na

r.,

,

a,

J

ff,

.G

e

14411
al

r
e

case, the intersection ofC2/m andC2/c is C2, so the order
parameters associated withL3

1 andL3
2 are a set of coupled

primary order parameters.
The final entry in Table III is theP21 /m path which is the

distortedR3̄m path in Table II with the lowest-energy barrie
~according to our calculations!. ~Do not confuse this with the
P21 /m path in Table I which describes an entirely differe
atomic mapping.! The distortion at the end pointG2 is iden-

tical to that of theR3̄m path. The net atomic displacemen
are all zero, and the netG3

1 strain, which does not appear i

R3̄m, is zero. However, along the path, the atomic displa
ments and theG3

1 strain take on nonzero values. Along th
path, they evolve from zero through some nonzero val
and then back to zero again at the end of the path. Also n
that theG5

1 strain is broken into two independent parts d
scribed by two parameters.

Here again we have a case where there is no single
mary order parameter. The order parameters associated
X3

2 andX5
2 are a set of coupled primary order parameter
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