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Procedure for obtaining microscopic mechanisms of reconstructive phase transitions
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A procedure for obtaining possible microscopic mechanisms for reconstructive phase transitions in crystal-
line solids is described. Both strains and atomic displacements are considered, and the procedure includes user
input of allowed strain tolerance, nearest-neighbor distances, and unit-cell size change. This method has been
implemented in a computer prograzomsuss We applycomsussto the pressure-induced phase transition in
NaCl and obtain 12 possible mechanisms, two of which are those proposed earlier by Buerger and Watanabe,
respectively. Furthermore, we show how to use energy calculations to determine the height of the energy
barrier for the transition.
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I. INTRODUCTION reconstructive phase transition from a structure with space-
group symmetnG; to a structure with space-group symme-
In a reconstructive phase transition, there is no grouptry Gz, then our description is actually a two-step process
subgroup relation between the symmetries of the two crysGi1—G— G, whereG is a subgroup of5; and also a sub-
talline phases. The path from one phase to the other pha§&0Up 0fG; so that each ste; —~G andG— G is a tran-
requires significant strain and/or large atomic displacement$tion With a group-subgroup relationship.
Examples of reconstructive phase transitions abound in Therefore, our approach is b"_"sed on a search for common
nature. Many of the alkali halides undergo a transition fromSUbgrOUIOS o5, andG,. For a given common subgrou®

a NaCl-type structure to a CsCl-type structure. Motivated b ﬁethrﬁg Cc?r;sgzrrgcissltl?il;gjagpl?ﬁs ggﬁtsct)g;ﬁr?at? tﬁé' svm-
the use of these solids, and in particular the use of NaCl as bpIng y y

. . . .metry G must be maintained along the entire path frémto
pressure standard,_t? IS transition 'type has been StUd'.E%d Wi ,. No atomic displacements are allowed which destroy the
considerable effort-® Many alkali metals and transition

i . symmetryG.
metals undergo a transition from the hcp to bcc pHaBe. As an example, we apply our procedure to the pressure-

representative of the transition metals, undergoes a transitiqRq,ced phase transition in NaCl. At ambient pressure, NaCl
from the« to thew phase. This transition was first observed exists in the well-known face-centered-culficc) structure
by Jamiesofand has been studied extensively since thenyith space-group symmetrgm3m. When the pressure is
with static high-pressufe* and shock-wave techniqués. raised to~30 GPa, NaCl changes to a CsCl-like simple
The wurtzite to rocksalt transition in Ga:N,the bcc to fcc CUbiC(SC) structure with space-group Symmeﬂ)yn?m_ This
transition in Cs'* the fcc to hcp transition in Co, Fe, Tl, and pressure-induced transition has physical and geological im-
Am,* the bcc to rutile type transition of Si3° and many  portance as it can be a basic model of other solid-solid tran-
other examples that could be mentioned stress the impositions due to its simplicity. The transition has been heavily
tance and interest in this kind of phase transformation. studied but still, today, remains an interesting example for

Any detailed description of a reconstructive phase transiinvestigation, particularly when new methods of experimen-
tion must deal with two questiongl) How are the atoms tal investigation can be applied and new schemes of model
mapped from one structure to the oth&PWhat path do the calculations used.
atoms take between these two structures? The mapping ques-Over the years, two main models have been proposed for
tion simply deals with how the two structures are relatedthis phase transition. The first one was proposed by %hoji
The path question is more difficult. It deals with actual and later modified by Buergé@mBuerger showed that a con-
atomic displacements and strains that occur during the phageaction along one of the body diagonals of the unit cell of
transition. In a previous paper we presented a systematitie NaCl structure and an expansion normal to it lead to the
procedure for obtaining possible mappings and paths for &sCl structure. In this model the transition is accomplished
reconstructive phase transitidnbased almost entirely on via strains alone. Another model was introduced by Hyde
symmetry considerations. In this paper we generalize thaand O’Keefé® and emphasized later by Watanakteal® In
algorithmic procedure by considering a wider class of subthis model the orientation relation is not the same as in the
groups, by allowing user input for some important param-Buerger model; instead t& 10|, is parallel tof 100|yacis
eters (allowed strain, nearest-neighbor distances, and unitand [001]csc is parallel to[011]yac- They describe the
cell size changeand by implementing the procedure on transition as an interplanar movement and a shuffle of atoms
computer. in adjacent (10Q),¢ planes in an antiparallel manner.

In our treatment, we assume that the path between the two We have implemented our method as a computer program
structures involves an intermediate unstable structure witlealledcomsuss When applied to the case of the phase tran-
definite space-group symmet(y. If we are considering a sition in NaCl,comsussfinds 12 possible paths, 2 of which
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are the Buerger and Watanabe mechanisms mentioned above. R .

We carry the example further by using energy calculations Sij= ; (Bi)ki€« 3
to find the barrier heights for the various paths found. In the
case of the Buerger mechanism, we refine the path Buergevheree, ,e,,e; are unit vectors along Cartesiary,z axes,
proposed and show that the energy barrier can be signifrespectively. If we define a transformation matgxy B,
cantly lowered by including additional strains and atomic=SB,, the principal values of the strain tensor are given by
displacements. the square root of the eigenvalues S, whereS' is the
transpose of. The productS'S removes any antisymmetric
part of S due to pure rotations which may be introduced by
the arbitrary choice of relative coordinate systemsTpand

Consider two crystalline structures with space-group sym- 2- )
metries G, and G,, respectively. We are given the lattice = NOW we can test whether or not the strain exceeds some

parameters which define the size and shape of the unit cefi€@sonable limit. We require that each principal Val“?ff the
and we are given the positions of atoms inside the unit celiStr@in tensor be less thantle and greater than (te) -

Space-group operators are denoted using the Seitz notati(%}‘l".eree is & parameter which we usually choose to be 0.50.
his rather liberal constraint results in a large number of

{Rlv}, i.e., a point operatioR followed by a translatiow of  sssible common sublattices to be investigated further.
the crystal. For space group;, we designate a set of rep- ~ Ag an example, consider the pressure-induced phase tran-

resentative operatofR;j|vij}, one for each point operation sition in NaCl. For the low-pressure structu@; =Fm3m
R;; with lattice parametem;=4.84 A. For the high-pressure

I . . .

The set of all pure translations in a space group forms itstructure G,= Pm3m with lattice parametea,=2.98 A. In
translation group. In three dimensions, translation groups caterms of Cartesian coordinates, the generator§,;cnd T,
be generated with three primitive translations. We define thare

translationt , to be thekth generator of the translation group
T, associated witli; . The action of a point operatid%ij on

the generatot;, results in a linear combination of the three flz=(%a1,0,%a1),
generators,

Il. comsuBs ALGORITHM

t11=(0,3a1,5a1),

t1s=(3a;,%a,,0),

Rijtik:% (Rij) mitim 1) f,,=(2,,0,0),

where the matrix elementsﬁ(j)mk are all integers since ev- t2=(02a,0),

ery point operation in a space group takes the lattice into >
toelf, pace aroup £,5=(0,02,). (@
Our goal is to find possible paths froBy to G, such that We limit the scope of our search by specifying a maxi-

the strains and atomic displacements that occur along theseum allowed length for any of the generatcfr@ of T. In
paths do not exceed some chosen reasonable limits. We alaCl, we consider only generators of lengt A orless. This
low all possible relative orientations and origins®f and  results in a list of 42 possible vectoé_;j for G, and 32
Go. We assume that along the path fr@n to G, the space-  yectorss,; for G,. This effectively limits the size of the unit
group symmetry of the crystal is some common subgroup oe|| of T. If we wanted to consider larger unit cells, then we

G, and G,. Thus, to accomplish our goal, we search forwould need to allow longer generatcfri?.

common symmetry subgroups. . . : -
We begin by searching for common sublattices, i.e., com-. W& Next consider all possible triplets of generateysof

. T. Given 42 possible generators, this would result in 11 480
mon subgroupd of the translation group3d; and T,. We triplets. We limit this number by requiring that d&t>0.

write the generators;; of T in terms of the generators % W further require that as each triplet is considered, it repre-
and the generators g, sent a different set of lattice points than any previously con-
sidered triplet. Two sets of generators with matriégsand
A; represent different lattices if eith¢detA,|# |detA;| or

Siizzk: (A i @ Al’llA?lJ-Ai contains any noninteger elements for any point
operatonfilj in G;. For NaCl, this results in only ten triplets
where the matrix elements\(),; are all integers. of generators,; of T to be considered further.
Along the path froniT; to T,, the generators of evolve Next, given a triplet of generators;;, we consider all

ffom S1j t0 S, . From the two end points of this pat,; and possible triplets of generatoﬁszi such that
S,j, we can determine the minimum total strain required to .
go fromT; to T,. We use the method of magic strafifane (1+e€) "<spyls<lte )
first write the generators of in terms of Cartesian coordi- for each of the three pairs of generat§[§,§zj . We further
nates: test the two triplets by calculating the principal values of the
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strain tensor and require that they also lie between the valugsfferent. Also, the angle betweesy, ands;, changes from
of (1+€)~" and 1+e. This guarantees that not only the 45° to 54.7°. Using the method of magic strains, we can find

lengths Ofglj andgzj agree(to within the accuracy specified the principal values of the strain tensor. From the matrices,
- s B, andB,, we obtain
by €), but also the angles between the pasis,s;;: and

Syj,Spjs also agree. Last, we require that Agt>0 and that a 11 -1

N _ 2
the unit cells specified by the generatsgs and by the gen- S=B;B; 1=a_1 0 -1 -1]. (12
erators§2j contain the same number of atoms. If the primi- -1 1 -1

tive unit cell of G; containsN; atoms, then this means that T,¢ square roots of the eigenvaluesS3s are 1.23, 0.87
N1detA; =N,detA,. For NaCl, usings=0.5, this resultsina .87, which are therefore the principal values of the strain
total of 343 matched sets of lattices, each of which we contensor. We can see that each of these values is greater than
sider further as a possible path for the phase transition.  (1+ ¢)~1=0.66 and less thanfL.e=1.5 (usinge=0.5). Us-

Let us pursue this example further by considering a paring this criterion, the path between these two lattices is ac-

ticular pair of matched lattices: a subgroupTof generated ceptable for further consideration.
P ' grouplarg Using one of the common sublattic&of T, andT,, we

by can next construct space grougswhich are common sub-
groups ofG; andG,. First we find the point group of T.
This is the intersection dP; and P,, whereP; is the set of
point operations?{ij in G; which are also point operations of
T at the end point of the path whet®— G;. Consider the

action of a point operatd?ij on one of the generatoéik of

= he 1 1
S1=—t11=(0,—za;,—zay),

S1o= —ti—titt13=(0,0-ay),

S13= — tar+ typt T13=(2,,0,0), (6) T,. We have
ie.,
1 -1 -1 Rijsik:% (ADmiRij tim
Al: 0 _1 1 (7) R R
0 1 1 :gﬁ (ADmRij)nmtin
and
0 0 1 :mEn:p (Ai)mk(Rij)nm(Afl)pnsip
B,—a,| 12 0 0], ® » )
—12 -1 0 :% (A "RijAD piSip - (13

and a subgroup of, generated by We see that ifR;; e P;, then every element of the matrix

Ai‘llA?iJ-Ai must be an integer. Using this test, we can find
every operator irP; and inP,. The intersection oP; and
P, requires that

Sp1= 1= (0,25,0),

Spo= tort topt tys=(az,a2,a2),
I AL TR A=A TRy A, (14)
Sps= a1~ tps=(a;,0,—ay), C) _ _ o .
for pairs of point operation®;; and R,;, in G; and Gy,
respectively. The equality in the above equation means that
1 the two matrices are equal, element by element. The above

equation also defines a mapping of point operati@rﬂjsin
G, onto point operation@zj, in G,. Along the path fronG,
to G,, each point operatioﬁlj at the beginning of the path

and evolves into the point operatidﬁzj, at the end of the path.
For convenience, we renumber the point operations.rso
01 that’=].
By=a,| 1 1 O [, (12) Let us consider the above example further. For the point
0 1 -1 operatorC,, (180° rotation about thg axis, using the nota-
tion of Miller and Loveé?), we have

-1 -1 -1

1
1 0 (10)
1

A continuous evolution from the subgroup @f to the
subgroup ofT, would define a possible path for the phase

transition. We can see that such a path would require a strain Ri(Co)=| 0 0O 1 (15)
in the lattice. For example, the lengths ®f; and's,; are 0 1 0
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and
-1 0 0
AR (CpoA;=| O -1 O, (16)
0 0 1

which contains all integers. Therefo@, e P,. Similarly,

o o0 1
Ri(Cp)=| -1 -1 -1 (17)
1 0 O
and
1 0 O
AT'R(CoA = -1 -1 0 [, (18)
0o o0 -1

and we see thaC,, e P;. On the other hand, fo€,, (90°
rotation about the axis) we have

1 1 1
Ry(Cp= 0 0 -1 (19
-1 0 O
and
0O 0 -2
AT'R(CA=| 12 1 1 |, (20)
1/2 0 O

and we see that,, ¢ P,. Repeating this process for each of

the 48 point operators i, we find thatP,;=4/mmmwith
the fourfold axis pointing along the axis.

To find P, we see from Eqg. (14
=AA'RjALA; Y, and  we  therefore
ALAT 'Ry jALA; ! for each operatoRy; in Py and check if
the result is a point operator i@,. For example,

that Ry

0 0o -1
AALR(CrOA A= O -1 0 |, (2D
-1 0 0

which is the point operato€,. in G, (180° rotation about
i—k) and thereforeC,, e P. On the other hand,

1/2 -1 1/2
AATRI(Co)A A= —12 0 —1/2), (22
1/2 -1 -—-1/2

calculate

PHYSICAL REVIEW B65 144114

IfQZJ in G,. The operatm{lfz |5J} in G must be identical to
some operato{RlJ|vlj+ull} in Gl and also to some opera-
tor{R21|v2]+uzj} in G, whereull eT, andu2J eT,. If we
also include a possible shift in the origin of G, with re-
spect toG,, we obtain the requirement

>

Uj:51j+ﬁlj:1})2j+62j+ﬁ2j;_7_:- (23)

In practice, we write each vector in this equation in terms
of the generators;, of T;. Consider a vectop;; written in
terms of the generatorts, of T;:

Jij = ; Ck{ik . (24)

Using the appropriate transformation, we can express this
vector in terms of the generatosg, of T:

0= 2 CUA DmiSim=2 (AT CluSim- (25
We will simply denote this by the shorthand notation
A, 'vj;, which means a multiplication of the mat * and
the column matrix?ij where the three rows contain the com-
ponents ofz?u in terms of the generators @f . The result is

a column matrix containing the componentslbjf in terms
of the generators off. Using this notation, we write the
requirement in Eq(23) more precisely as

Uj=A; N0+ Ug) =A; vy +Ug+ Ry 7— 7). (26)

We must find vectorﬁlj , sz , and 7 which satisfy simulta-

neously Eq.(26) for each operatolfzj e P’. In practice, we
need only consider the operators corresponding to the gen-
erators ofP’. If there areN generators, then we must find a

value of 7 and values of thé\ pairs of vectors;; anduy; ,
which satisfy simultaneousIi equations.

We proceed as follows. We try every possible value of

in each of theN equations. The value m]‘lj can be restricted
to the translations i, which are inside the primitive unit

cell of T (including Glj=0). For each set of thesd Glj
values, we try to solve thN equations simultaneously for

and the vectorsuzJ using the method of Smith normal
forms?2 If successful, we can use the resulting generators
{Rj|v]} to obtain the remaining operators (& One more
requirement must then be satisfied. The operatofs must
obey group multiplication. For every pair of point operations

R;R«=R, we must require that

(27)

v+ Ry =vny

andC,y & P. Applying this test to each of the 16 operators in g within a lattice vector inT. Having passed this final re-

Pl, we obtain P=mmm with the twofold axes along,
_] K, _]+k in G; and alongl Kk, 1+Kk, _] in G,.

The point group ofs will be some subgroup of the lattice

point groupP. Therefore, consider some point groBpC P.
The representative operators & will be of the form

{Rj|v;}, whereR; € P" and is equal t&,; in G, and equal to

quirement, we now have a space gro@pwhich is a sub-
group of bothG; andG..

Consider again the above example. A set of generators of
P areC,,,Cy,l in P, andC,.,C,:,l in P,. Since def;
=2, there are two vectorﬁlj to be considered: namely,

Uyj=0 anduyj=—ty;+t;5—=a,(3,0,—3). There are eight
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ways of assigning 4 to the three generators of.®nly two  positions are labeledaj, (b), (c), etc., in the International

of them result in a solution to the three equatid2e). Tables. Two different sets of atoms which belong to the same
(1) Uy;=Uy,=U;5=0. This results in;=v,=v5=0, and type _of Wyckoff po_sition can be brought into each other’s

the three equationé26) can be satisfied with=0 and 621 positions by a continuous change. Smgll displacements can-
- N . not change the type of Wyckoff positions a set of atoms

= Uzy=Up3=0. In other words, the generating elements>of 0|04 1o without changing the space-group symmetry of

are  {C,|0},{Cx|0},{I|0} when G—G; and

i ) the crystal. Therefore, atoms must remain in the same types
{C2¢|0},{C5c|0},{1|0} whenG— G,. Using an algorithm of ¢\ coff positions along the entire path fro®, to G,.
Hatch and Stokes we identify the space groupG

a . - ) This means that Wyckoff positions near one end point of the
=Pmmmuwith the three principal lattice vectors path whereG becomesG; must be the same type near the

other end point wher& become<s,. This gives us an easy
method to tell whether it is possible for atomic positions to
evolve fromG; to G, along the path given by the common

Shi=— L+ ot t13=2a4(1,0,0),

sh,=—tu=a;(0,-3,~3), subgroupG.
_ .. However, we must be careful. The type of Wyckoff posi-
S'a= —tittiz=a1(0,3,— 3), tion can depend on the origin of the space group. For ex-
S ample, in NaClstructure inG;), the Na and Cl atoms are at
s’ =ty —tr=a,(1,0,-1), Wyckoff positionsa andb, respgctively, if the origir_1 is ata
Na atom, and at Wyckoff positions and a, respectively, if
S'yo=1,=a,(0,1,0), the origin is at a Cl atom. We therefore consider all possible
shifts7' of the origin ofG at the end point neds, such that
Shy=ty+tz=a,(1,0,1). (28)  the translational parﬁj of the operators inG remain the

) - same(to within a lattice vector inT). We must solve the
These are simply a rearrangement of the generapisf T equation

and define the,b,c axes ofG.
- 52)_ Jl:j},l:uf'%:ulsz_tll—‘rtls. Th|S-reSUItS |nU1:U.2 . ﬁj;/_;lzo (30)
=v3=5S1,1T5S13 and the three equations can be satisfied
Hh ~— _L1f Vo= e U= 1. - - . . .
with 7= — 315 anduy;=Uz;=Ugs=t2;. In other words, the ¢, 2+ (15 within a lattice vector inT) simultaneously for

generating elements of G are {Col—tuttidhy  each point operatioR; in G. As before, we use the method

{Cofl —tyttygh, {I|-ty+ttigy when G—G; and of Smith normal forms to find solutions. For some space
{Coeltort 30, {Cocltort2tat, {I|to+2t, when G groups, the solutions to this equation depend on a continu-
—G,. We identify the space group=P mmnwith the three  ously variable parameter; i.e., there are an infinite number of

principal lattice vectors solutions. For example, the origin of space groupPAbcan
. oL be anywhere along theaxis without affecting the translation
s11= —tuttpttiz=a;(1,0,0), partv; of any of the operators in that space group. We deal
. L with these parameters below.
s',=—tttiz=a(0,5,—3), A type of Wyckoff position may have up to three degrees
of freedom, including zero degrees of freedom when the
sh=t=a;(0%,3), atoms are at fixed positions. These degrees of freedom are

usually denoted in International Tables by one or more of the
symbolsx,y,z. We call these “Wyckoff structural param-

eters.” For example, in space group 2P3m, one of the
atoms at Wyckoff positiorig) is atx,x,x. This position has
one degree of freedom and hence one Wyckoff structural
>, - parameter, in this case labeled with

25~ ~ t22=3(0,~ 1,0 (29) Sometimes, a Wyckoff position with different values of
The setting ofPmmnin the International Tabl&$ (origin  the structural parameters can describe the same set of atoms.

choice 2 is obtained by shifting the origin d& with respect In the above example, suppose that0.214; i.e., there is an
to G, by —lflﬁlfls and we obtain the generators Gf atom at (0.214,0.214,0.214). We see from the International
2 2 ’

; ; : 12 Tables that there is another atom xix,x or (—0.214,
using the new coordinates defined aboV&s3s1y), —0.214-0.214). But this position also has the fopyx,x

{Czy| 25"z}, {1|0}. We also obtain these generators fr@ \yith x=—0.214. Therefore, Wyckoff positiofg) with either

by shifting the origin of G with respect ©0G, by  x=0.214 orx=-0.214 describes the same set of atomic

Tty +3ta,. positions. When we try mapping atoms at the two ends of the
Next, we consider atomic displacements along the patlpath fromG; to G,, we must consider all possible values of

from G; to G,. The atoms in a crystal belong to a finite the Wyckoff structural parameters that describe the atomic

number of sets called Wyckoff positions. Types of Wyckoff positions.

Sh1= Uy t5=a5(1,0,- 1),

Sho= Uyt 13=a5(1,0,1),
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Now we are ready to map atoms at one end of the patlelose along this path. Therefore, we accept this path as a
onto atoms at the other end of the path. At each end of thpossible mechanism for the phase transition in NaCl.
path we must have the same types of Wyckoff positions.
They are only allowed to differ in the values of the Wyckoff lIl. RESULTS EOR NaCl
structural parameters. We assume that these parameters vary
continuously from their values at one end of the path to their We applied thecomsuss algorithm to the case of the
values at the other end of the path. If there are any continupressure-induced phase transition in NaCl. For the low-
ously variable parameters in the allowed origin shift€&Sodis  pressure structureG;=Fm3m with lattice parametera,
described above, we choose these values at the end pointy g4 A For the high-pressure structu(bészgm with
near G, to minimize the change in the Wyckoff structural |attice parametea,=2.98 A. We used the following criteria

parameters along the path. , (1) We considered only subgroups where the length of the
Now we have a possible path fro®, to G,. Along this -
generators; are 6 A orless.

ath, the lattice parameters change and the ckoff stru : o

!coural parameters IC(J:hange. We checgli one more\:\r?i/ng. We look (2) We con5|dergd only subgroups where the principal el-
at a structure halfway between the two end points of th ements of Ehle strain tensor are less thaneland greater
path. In this structure, the lattice and Wyckoff parameters ar ha(r;)(};;]e) : Wh?ef.:r?if' dist < 242 A q
chosen to be halfway between their values at the two en € nearest-neighbor distance IS . Gn an

points of the path. We calculate nearest-neighbor atomic di 2.58 A in .GZ' We _conS|de.red only subgroups where the
tances in this structure. If this is too small, we reject thisnearest—nelghbor distance in the structure halfway between

path. Along this path, the lattice would need to expand toGl and G, is greater than 2.00 A80% of the average of

allow atoms to pass by each other, and we assume that sug'h424 AWand 252 A d onl imal sub Th gefi
a strain would result in an energy barrier unfavorable for this (4) € considered only maximal subgroups. these define
path. the possible mappings of atoms @, onto atoms inG,.

Let us return once more to the example above. We foun@L’bgr.OL”OS of these maximal subgroups do not mtrodu_qe new
two cases for further consideratiol) Pmmm and (2) mappings. They only alter the path by allowing additional

Pmmn In both G, and G,, the Na atoms are at Wyckoff distortions inG along the path. We will show how we con-
position(a) and the Cl atoms are ab). In case(1), position ~ Sider the nonmaximal subgroups when we discussRBia

(a) in G, becomes positionéa) and (h) in G, and position ~ Path in detail below. _ _

(a) in G, becomes positionéa) and (d) in G. There is no Using these criteria, we obtained 12 subgroups, which we
continuously to a structure with atoms(ad and(d) without ~ Subgroup found where there is no change in the size of the
losing the symmetr®mmmof G. No change in origin will ~ Primitive unit cell. The next four entries are subgroups where

remedy this situation. Therefore, we must reject das@s a  the size of the primitive unit cell is doubled. The last seven
possible path for the phase transition. entries are subgroups where the size of the primitive unit cell

On the other hand, in cagg), we find that inG, the Na 1S four times larger. Subgroups with larger primitive unit
atoms are at positiote) and the Cl atoms are #b) at both ~ Cells were not found since we limited the length of the gen-
ends of the path. Therefore, we consider this case furthegratorss;; .

Below, we give the structural parameters @at the two end The mechanism proposed by Buergér the first entry,
points of the path fronG; to G,. R3m, and the mechanism proposed by Watanabal?® is

Lattice parameters: the fifth entry,Pmmn (In the Appendix, we treat these two

mechanisms in more detail, listing the order parameters and
a=4.84 A-4.21 A, associated distortions.
In order to push this example further, we must calculate
b=3.42 A-4.21 A, energies of the different structures. We used a first-principles
calculation sscap?® which uses density functional theory
c=3.42 A-2.98 A. (31 with local density approximation for the exchange and cor-
relation energiesssCAD is not very accurate, but it is fast,
Atoms positions: and we only intend to use it as an illustration of how to
proceed further with this problem.
. 113 11 First, we calculated the energy per Na-Cl pair in both the
Na:  (7,2,2)—(3,3,1), : .
G; andG, structures al =0 for various values of the lattice
parameters, anda,, respectively. From an analysis of these
Cl:  (74.5)—(3.4.3), (32 data, we obtained a pressure-induced phase transitiéh at
=9.95 GPa with lattice parametem,=5.18 A and a,

We must check one more thing. I16,, the nearest- =3.16 A. Comparing these results with the experimental
neighbor distance is 2.42 A, and @, it is 2.58 A. In the  values P=30 GPa,a;=4.84 A, anda,=2.98 A), we see
structure at the midpoint between the structures at the twthatsscabpis not very accurate. In general, density functional
ends of the path, the nearest-neighbor distance is 2.49 A. thethods do poorly with predicting the pressure at which
appears that atoms do not approach each other unreasonablych phase transitions take place. However, our goal is to
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TABLE I. Maximal common subgroup& of the two phases of NaCG;=Fm3m andG,=Pm3m. G provides a possible path for the
transition of NaCl fromG; to G,. At each end point of the pattG(— G;), we give the conventional lattice vect(§1§,§i2 ,§i3 of Gin terms
of the conventional lattice vectors @&; as well as the atomic postions & (Wyckoff symbols in parenthesedn the last column, an
estimate of the free energy barri&d . is given.

G S12,512,513 S21,522,S03 Atoms at G, at G, AdD (eV)

166 R3m (3,01),04,3).(T11)  (011),(110),(1.11) Na@ 0,0,0 0,0,0 0.077
Cl (b) 0,0,1/2 0,0,1/2

5 C2(1) (%IE),(%,O,%),(E,I%) (0,1,0),(0,11),(2,00)  Na(a) 0,0,0 0,1/6,0 0.91
Na (b) 0,1/2,1/2 0,1/6,1/2
Cl (c) 1/4,1/2,3/4 0,2/3,3/4

5 C2(2) (%,IE),(%,O,%),(EI%) (0,1,1),(0,11),(2,0,0) Na (c) 1/4,1/2,3/4 0,1/3,3/4 0.90
Cl (a) 0,0,0 0+ 1/6,0
Cl (b) 0,1/2,1/2 0,5/6,1/2

36 Cme2; (0,1,0,(0,0,0,(1,0,0 (T,O,l),(l,O;L),(O,Z,O) Na (a) 0,—1/4,0 0,0,1/8 2.08
Cl (a) 0,3/4,1/2 0,1/2,3/8

59 Pmmn (1,00),(04,%),(03,3 (1,0,,(1,01),(0,1,0) Na (a) 1/4,1/4,3/4 1/4,1/4,1 0.10
Cl (b) 1/4,3/4,1/4 1/4,3/4,1/12

13 P2/c(1) (1ih,05h,1tY  (002,(1,1,0),(11,0) Na(@) 3/4,3/4,0 3/4,3/4 1/4 1.17
Cl (e) 0,3/4,1/4 0,3/4,1/4
ClI (f) 1/2,1/4,1/4 1/2,3/4,1/4

13 P2/c(2) (13.3).045.15%  (002,(1,10),(110) Na()  01/4.1/4 0,1/4,1/4 1.04
Na (f) 1/2,3/4,1/4 1/2,1/4,1/4
Cl (9) 1/4,3/4,0 1/4,3/4,1/4

11 P2;/m (1.2,1,005,%),15.% (1,11),(1,0,1),(0,2,0) Na (e) 0,1/4,1/4 1/4,1/4,1/8 2.15
Na (e) 1/2,1/4,3/4 1/4,1/4,5/8
Cl (e) 3/4,1/4,0 3/4,1/4,1/8
Cl (e) 1/4,1/4,1/2  —1/4,1/4,5/8

7 Pc (11%’%'(0,%'%)](1;%) (1,11),(1,0,3),(0,2,0) Na (a) 0,—1/4,0 —1/8,0,0 0.92
Na (a) 1/2,1/4,0 3/8,1/2,1/4
Cl (a) 1/4,3/4,1/4 3/8,1,0
Cl (a) 3/4,1/4,1/4 7/8,1/2,1/4

15 C2fc (1’0,*1)’(1,0,1),(%1% (2,0,0),(0,20),(0,0,2 Na (e) 0,3/8,1/4 0,1/4,1/4 0.58
Na (e) 0,7/8,1/4 0,3/4,1/4
ClI (f) 3/4,5/8,1/4 3/4,1/2,1/2

2 P1 (%.T.g),(l,O,O),(O,O,l) (0,20),(1,11),(1,0,2) Na (i) 3/4,5/8,5/8 7/8,3/4,3/4 0.40
Na (i) 3/4,1/8,1/8 5/8,1/4,1/4
ClI (i) 1/4,3/8,7/8 3/8,1/4,3/4
Cl (i) 1/4,7/8,3/8 1/8,3/4,1/4

45 1ba2 (1,00),(020),(00)  (200),(0.20),002) Nag) 14380 141218 1.33

cl (c) 1/4,5/8,0 0,3/4+ 1/8

calculate the relative heights of energy barriers, and thesg — R3m are a=3.66 A and c=8.97 A at G, and a
relative values are not very sensitive to the pressure used. —447 A andc=5.47 A atG,. Halfway between, we ob-

At the phase transition fron®, to Go, the free energy tain the structure witm=4.06 A andc=7.22 A for which

d=E+PV is at a minimum at the two end points of the el h . d barrier heigh he>
path. Along the path, the free energy increases and goég% 57517(:‘;‘\3‘;6 the estimate arrier height to est

through a maximum value. This is the energy barrier be- ) i .
tweenG, and G,. We can obtain a very rough estimate of As a seco_nd example, consider the fifth entry in Table |
the height of the barrier by calculating the free enetgjor (the mechanism of Watanalet al). We calculate that the
the structure halfway betwedd, andG.,. lattice parameters fo6=Pmmnarea=5.81 A andb=c
For example, consider the first entry in TabléBlierger's =3.66 A atG, anda=b=4.47 A andc=3.16 A atG,.
mechanisth We calculate that the lattice parameters forHalfway between, we obtain the structure with-5.14 A,
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b=4.06 A, andc=3.41 A. However, we note that the rela- 0.08 .
tive positions of the atoms also change along the path. At the __—Rm
midpoint, the Na atoms are at 0,0,7/8 and the Cl atoms are at . R3m
0,1/2,3/8. We obtaid®.=0.101 eV. 0.061 c2/m

We note that these estimates are upper bounds on the \
barrier height. The path froi®, to G, which passes over the AD (eV) [ P2,/m
lowest barrier will most likely not be linear in the structural AN it
parameters. 0.04r N 0]

A. R3m hN y
- 0.02} N L

This is the path proposed by Buerdgefhe R3m path N
from G, to G, involves only strains. The Na atoms remain at I PN
the lattice points, and the Cl atoms remain at the body- N T
centered positions in the rhombohedral unit cellsRBm. Pm3m v Fm3m

(Note that in Table I, the atomic positions are given with
respect to the hexagonal unit cgln animation of Buerg-
er’s path can be seen on the interffatve show in Fig. 1 the
free energyA®d (relative to the values at the two end points
of the path as a function of the volume of the primitive unit
cell (containing one Na and one Cl atenThe dashed lines

show the free energies of thg, = Fm3m and G,=Pm3m
structures.

To obtain the free energy of tHe3m path over the bar-
rier, we vary the value of the lattice parametdrom 8.97 A
to 5.47 A (the values at the end poin®, andG,, respec-
tively). For each value ot, we minimize the free energy modes inR3m at the top of the barrier.
with respect to the lattice parametgrholding the value ot Using the frozen-phonon method wiiscap, we calcu-
constant(Note that if we minimized the free energy holding |ateq the frequencies of the normal modes at each okthe
the_volume constant, the strgcturg WOU"_j always rel'ax tOpoints of symmetry in the first Brillouin zone. F&3m,
Pm3m or Fm3m, the dashed lines in the figuy&\Ve obtain

> these are thd’, F, L, and T points (using the notation of
at the top of the barrier R3m structure witha=4.06 Aand  Miller and Loveé?). We found one unstable normal mode at

c=6.90 A and a barrier height equal to 0.070 eV, which isthe F point. This mode belongs to the irreducible represen-
slightly lower than the estimate in Table I. tation (IR) F, of R3m. This IR is three dimensional, which
Next we consider the possibility that the symmetry of theneans that the mode is threefold degenerate. Any linear
path fromG; to G, may be some subgroup &3m. Re-  combination of the three degenerate modes is unstable. The
member that we included in Table | only the maximal com-way in which the unstable mode lowers the symmetry of the
mon subgroups 06G; andG,. If we can lower the energy crystalline structure depends on the linear combination of

FIG. 1. The relative free energy®=AE+ PV as a function of
volumeV of the primitive unit cell for the Buerger mechanism in
the pressure-induced phase transition in NaCl. The symmetry along
the path isR3m. The dashed lines show the free energy of the two
cubic phases, also as a function\ofWe also show how the height
of the barrier is lowered when we consider paths with less symme-

try than R§m, namely,R3m, C2/m, andP2,/m.

barrier by lowering the symmetry dR3m, then there will
also be a corresponding normal mode lattice vibration which
will be unstable. Therefore, we look for unstable normal

TABLE Il. Maximal subgroups oR3m which can arise from th&; irreducible representation. At each
end point of the pathG—G;), we give the conventional lattice vecto§§,§i2,§i3 of G in terms of the
conventional lattice vectors @; as well as the atomic postions @& (Wyckoff symbols in parenthesgdn
the last column, the free energy barrie® is given.

G 12,512,513 51,522,523 Atoms at G,,G, AD (eV)
11 P2;/m (%’1%’(;0%)](;0%) (0,1,1),(0,11),(1,0,0) Na (e) 1/4,1/4,0 0.05
Cl(e)  3/4,1/4,1/2
12 C2/m (1,1,0),(1,1,0),(0,0,1)  (0,20),(2,0,2,(1,1,1) Na(9) 0,3/4,0 0.066
Na (i) 3/4,0,1/2
cl(hy  0,1/4,1/2
CI (i) 1/4,0,0
160 R3m  (1,0,1),(0,11),(11,1)  (0.22),(2.20),(1,11) Na (@) 0,0,0 0.067
Na (b) 1/6,-1/6,1/3
Cl (a) 0,0,1/2
cl(b) —1/6,1/6,1/6
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these three modes. In this case, there are six possible lowdre Wyckoff parametez for the Na(a) site and hold it con-
SymmetrieS, all Subgroups diﬂgm (Ca”ed isotropy sub- stant while mlnllelng the free energy with respect to the
groups; see the Appendix or Stokes and H#iclOf these ~ remaining four structural parameters. At the top of the bar-
six subgroups, three of them are maximal, and we list thenfi€r, we obtain the®mmnstructure with

in Table Il. The other three are subgroups of those listed in

Table Il and will be automatically considered when we look a=4.98 A,
for unstable normal modes in the maximal subgroups. b=4.04 A
We relaxed each of the structures in Table II, always hold- o ’
ing one structural parameter constant. For example, consider c=331 A
the P2, /m structure. There are eight structural parameters: ' '
the lattice parametera,b,c,8 and the Wyckoff parameters 7 —0.880
X,z for each of the two(e) sites. We held the monoclinic Na™ > k
angle B constant and relaxed the remaining seven param- 2= 0.369, (34)

eters.(If we relaxed all eight parameters, the structure would
“slide down the hill” and end up at one of the end poin®, and a free energh®=0.077 eV. We found no unstable
or G,.) We obtained normal modegexcept for those associated with th¢ IR)

and therefore conclude that the height of barrier for the

a=5.09 A, mechanism of Watanabet al. is A®=0.077 eV. We note
b=346 A that this barrier is not as low as thHe2,/m path for our
' ' modified Buerger mechanism. However, we recognize that
c=326 A SSCADIS not a very accurate way to calculate energy and that
' the difference between 0.055 eV and 0.077 eV is not large
B=107.5°, enough for us to be able to conclude that the Buerger mecha-
nism is energetically more favorable than the mechanism of
Xna=0.270, Watanabeet al. (In CsCl there is a temperature-induced
phase transition to the NaCl structure at 445°C. There is
Zna= —0.107, evidence from x-ray single-crystal and optical microscope
studies that this phase transition takes place via the mecha-
Xc=0.744, nism of Watanabet al%)
There has been some previous work on the mechanistic
Zna=0.614. (33)  aspects of a phase transition of this type. Retffl?® con-

cluded that the mechanism of Watanadteal. was favored
for RbBr on the basis of isothermal-isobaric molecular dy-
namics. Nga and Onyusing two different molecular dy-
flamics algorithms, show that the two mechanisms are
foughly equivalent in NaCl. Pendeet al® carried out a

Wi | ider th ibility th b study of the Buerger mechanism in LiCl using ab initio
e must also consider the possibility that some su g_rourp))erturbed ion method. Our first-principles calculations are
of P2,/m may provide a path with an even lower barrier. consistent with these findings

(Remember that we only considered the maximal isotropy
subgroups oR3m.) We look for unstable normal modes in

the P2, /m structure just as we did fdR3m. We calculated ) ] )

the frequencies of the normal modes at each ofktpints We have described and implemented a systematic method
of symmetry in the first Brillouin zone dP2,/m and found ~ called comsuss which finds possible mechanisms for a
no unstable mode@xcept for thd’; IR which preserves the given reconstructive phase transition. Each mechanism de-
P2,/m symmetry and simply represents “sliding down the scribes a path between the two phases. Along this path, the
hill” towards G, or G,). We therefore conclude that the crystalline structure has a definite symmetry which is a com-
lowest barrier for the Buerger mechanigwith our modifi- MO subgroup of the symmetries of the two phasesv-

cation is encountered for the path wif2,/m symmetry. SUBS may be applied to any reconstrl_Jctive phase transitio_n.
We appliedcomsuBsto the pressure-induced phase transi-

tion in NaCl and found 12 possible paths.

Given the possible paths, there exist a number of methods
This is the path proposed by Watanadteal ThePmmn  for determining which one is most energetically favorable.
path fromG; to G, involves not only strains but also atomic We have demonstrated one such method for the case of the

shuffles. An animation of the path of Watanadieal. can be  phase transition in NaCl. Using the prograscAb for first-

seen on the internéf. There are five structural parameters: principles energy calculations, we determined that the path
the lattice parametems,b,c and the Wyckoff parameterfor ~ proposed by Buerger and the path proposed by Watanabe
the Na(a) site and for the Cl(b) site. To obtain the free et al.are both much more energetically favorable than any of

energy along the path froi®, to G,, we choose values of the other ten paths found lyomsuBs

The resulting free energy 5& =0.055 eV. Repeating this-
procedure forC2/m and R3m, we obtain the free energies
shown in the last column of Table Il. These three energies ar:
plotted on Fig. 1. As can be seen, the barrier is lowest for th
P2, /m path.

IV. CONCLUSION

B. Pmmn
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Note added in prooflt has come to our attention that an which is tied to points in the crystal, becomes, under the
intermediate phase with the monoclinR2,/m symmetry  action of the strain,
has been observ&dfor a Buerger-like mechanism in the
pressure-induced NaCl-CsCl phase transition in the silver ha- Fr=> ere (A3)
lides. Furthermore, recemtb initio calculationd? for AgBr 7o

have confirmed the existence of this stable monoclinic inter- . . )
mediate phase. In the above equations; refers to unit vectors of a Cartesian

coordinate system. Do not confuse this with the components
e; of the strain.

In the G;=Fm3m structure of NaCl, a general strain can
In the Landau theory of phase transitions, distortionshe decomposed into parts which belong to the following IRs

which accompany a transition are decomposed into parts bgusing the notation of Miller and Lovd):

longing to different irreducible representations of the parent

space group. Order paramete}swhich are vectors in rep-
resentation space, govern the amplitude of these distortions. _
In the parent phase, the order parameters are zero, and at the I';: (aa2a,0,0,0,(y3a,32,0,0,0,0,
transition, the order parameters become nonzero.

In reconstructive phase transitions, eit&y or G, could I's: (0,0,0a,0,0),(0,0,0,0a,0),(0,0,0,0,0). (A4)
be considered to be the parent space group, since in eithg\r/e note thatl'; is a two-dimensional IR. The two strains

case a distortion reduces the symmetry to the subgfup . + : . ;
Let us callG, the parent space group. When the crystal hasIlsted above fod"; transform like the two basis functions of

the symmetnG;, the order parameters are zero. At the tran-L 3 - The order parametey associated with that IR is there-
sition, the order parameters become nonzero, reducing tHere also two dimensional, the two componentszofepre-
symmetry toG. As the crystal moves along the path fr@  senting the amplitudes of those two strains. For example, the
to G,, the amplitudes of the order parameters evolve, geneiprder parameter;;z(nl,nz) would denote the strainz(
ally increasing in magnitude, until they reach particular val-+ /35, 7, —3%,,—2%,,0,0,0). Similarly,T'2 is a three-
ues. At that point, the symmetry of the crystal increases andimensional IR, and the associated order parameter is there-
becomesG,. ) ) _ fore also three dimensional.
Distortions associated with a particular order parameter From Table IIl, we see that the strain along ®am path
an(_j lR. reduce the symmetry &, to some Sy“.“me”W is decomposed into parts that belong to the IR’s, and
which is a subgroup 0&,. The symmetry groupl is called N ) L )
an isotropy subgroup 06,;. Each order parameter deter- I's - The strain along the entii@3m path fromG, to G, is
mines an isotropy subgroup. If the isotropy subgrddips characterized by two Independept amplitudgsand 72-
equal toG, then the order parameter is called a primary order Note that the part of the strain that belongsIt9 is a
parameter and the associated distortion reduces the symmspecific combination;;=(n2,n2,n2) of the three strains
try of G, all the way toG. Secondary order parameters de-listed above fod's . The evolution of this part of the strain
termine isotropy sub'groupd'whlch are supergroups @. along theR3m path is described by the single amplituge
The distortion associated with a secondary order parameter at the end of the pathG becomesG,. We can obtain the
reduces the symmetry db; to some structure which has gymmetric form of the strain tensor at that point using the
more symmetry tha®. _ method of magic strain®. We first obtain the matriceB,
Let us illustrate this with the pressure-induced phase trans,q B, as defined in Eq(3). Then we calculate the transfor-
sition in NaCl discussed in great detail in this paper. In Tablemation matrixS= BzBfl which takes an orthogonal coordi-

[, we list the order parameters for various paths frémto nate system fronG; to G,. We obtain the symmetric strain
G,. We obtained these results with the aid of a SOﬂware[ensore from

packagasoTrROPY.?®

The first entry in Table Ill is BuergerB3m path. We see e=U[UTSTsu¥UT, (A5)
that the distortions which occur along the path are strains
We use a notatiore=(e;,e,,e3,64,65,6¢) Which denotes
the strain tensor

APPENDIX: ORDER PARAMETERS

ry: (aaa0,0,0,

whereUTSTSU is diagonal U contains the eigenvectors of

S'S). When we apply this method to thR3m path, we
obtain the strain tensor at the end of the path:

€1 € & 0.026 0.205 0.20
e=| € € &/, (A1) e=| 0205 0.026 —0.205|. (AB)
€ € € 0.205 —0.205 0.026
which we define so that a vector We see from inspection that &, the values of the ampli-
tudes 7,,7, are equal to 0.026 and 0.205, respectively.
;:2 re (A2) Along the path fromG; to G,, the values ofy,, 7, evolve
1~

i from zero to 0.026,0.205, respectively.
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TABLE lll. Order parameters along the possible paths for the phase transition in NaCl. The first thre@ﬁthgmmnCZ(l)] are
from Table I. The last pathR2,/m) is from Table Il. We give the space-group symmeByalong the path, the IR dfm3m, the order
parameterfy (primary order parameters are indicated with *), the isotropy subgkbapsociated with the order parameter, the amplitgide

of the order parameter when the crystal has reache®jheP m3m symmetry at the end of the path, and the distorti@bsains and atomic
displacemenjswhich take place. The strairgsare given in terms of the six componem®ts e, ,e;,€4,€5,65, and the atomic displacements

of the Na and CI atoms are given in dimensionless units with respect to the fcc unit Eatiin.

G IR 7 H 7 at G, Distortions
166 R3m ry (71) 225 Fm3m 0.026 e=(71,71,71,0,0,0)
Ig *( 772,;21772) 166 R3m 0.205 92(0,0,01772152,772)
59 Pmmn ry (71) 225 Fm3m —0.010 e=(71,71,71,0,0,0)
r; (72,\372) 139 14/mmm —0.060 e=(272, 72, 172:0,0,0)
re (0,73,0) 71 Immm -0.180 e=(0,0,0,073,0)
Xs *(0,0,0,0,09,) 59 Pmmn 1/8 Nal=(0,7,,74), Na2=(0,74,74)
Xg *(0,0,0,0,0975) 59 Pmmn 1/8 Cl1=(0,75,75), Cl2=(0,75,7s)
5 C2(1) Fl+ (11) 225 Fm3m 0.008 e=(71,71,71,0,0,0)
ry (72,372) 139 14/mmm —0.135 e= (72275, 72,0,0,0)
rs (73,73, 712) 12 C2/m 0.106,0.088 e=(0,0,0773, 73, 7)
r, (75,0,75) 44 Imm2 —1/24 Nal=(7s,0,75), Na2=(#s,0,75)
r, (76,0,76) 44 Imm2 1/12 Cl1=(7¢,0,76), Cl2=(7%¢,0,76)
Ly (0,77,0,0) 166 R3m 0 CIL=(77,77.77), Cl2=(77,77,77)
Ly *(0,0.(2+3)7s,7,0000) 12 C2im 1/8 Cl1= (78,275, 78), CI2= (75,275, 75)
Ly *(0,0,79,(2+13)75,0,0,0,0) 15 C2/c 1/8 Nal=(70,0,70), Na2=(7,0,7)
11 P2;/m ry (11) 225 Fm3m 0.026 e=(71,71,71,0,0,0)
F; (7]2,\/552) 139 14/mmm 0 92(5212772,;210:010)
rs (73,73, 72) 12 C2/m —0.205,0.205 e=(0,0,0773, 73, 74)
X3 *(75,0,0) 129 P4/nmm 0 Nal=(0,75,0), Na2=(0,7s,0)
X3 *(16,0,0) 129 P4/nmm 0 Cl1=(0,76,0), ClI2=(0,76,0)
Xs *( 77,0,0,0,0,0) 59Pmmn 0 Nal=(70,77), Na2=(7,0,9,)
Xs *( 7,0,0,0,0,0) 59Pmmn 0 Cl1=(75,0,75), CI2=(75,0,75)

In Table Il we list the isotropy subgroupd for each cell of Pmmnand equal t00,1/8,1/8 in terms of the unit

order parameter. We note that for tR8m path the isotropy cell of Glemgm. This is consistent with Table Ill, where
subgroupH associated with the order parameter faf is  the displacement of this atofdenoted by Nallis given by

R3m. The strain with amplitudey, reduces the symmetry of (0,74,74). The value of, varies from zero to 1/8 as the

Fm3m all the way toR3m. This is a primary order param- Crystal evolves fronG, to G. _ _
eter. Na2 is the other Na atom in the unit cell belonging to the

The isotropy subgroup associated with the order paramWyckoff (a) position. It moves from(3/4,3/4,1/4 to (3/4,
eter forl'} is Fm3m which is the same aS,. The diagonal 3/4,0 along the path, its displacement being in a direction
strain tensor with amplitude; does not reduce the symme- OPPOSite to that of Nal.
try of G, at all. It simply causes a change in volume. Itis a | N€re are two primary order parameters. Both the Na and
secondary order parameter. the CI displacements reduce the symmetrysgfall the way
The next entry in Table 11l is th® mmnpath of Watanabe 0 Pmmn
et al. Here we see that in addition to strains, atomic displace- The C2 (1) path in Table Il is an example of a more
ments are also listed as distortions. They belong to the sixcomplex situation(This path is the second entry in Tablg I.
dimensional IRX; . This IR is listed twice in the table since There are nine structural parameters, five of them strains and
the displacements of the Na and Cl are independent of eadur of them atomic displacements. We note that two of the
other and are therefore governed by two independent ordéRs, L, andL; , are eight dimensional.
parameters, each belonging to the sameXiR The order parameter associated with has two indepen-
From Table |, we see that along the path fr@yto G,, dent amplitudes; and »,. At the end of the path &,, the
the Na atom moves fronil/4,1/4,3/4 to (1/4,1/4,3. The values of these two amplitudes become 0.106 and 0.088,
displacement is thus equal £0,0,1/9 in terms of the unit respectively.
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From Table | we see that the displacement of Nal is equatase, the intersection @2/m andC2/c is C2, so the order

to (0,1/6,0)(0,0,0)=(0,1/6,0) in terms of the unit cell of
C2 and_equal t0(1/12,0,1/12 in terms of the unit cell of
G;,=Fm3m. Similarly, the displacement of Na2 is equal to
(0,1/6,1/2)-(0,1/2,1/2) (0,—1/3,0) in terms of the unit
cell of C2 andgqual to £ 1/6,0~1/6) in terms of the unit

cell of G;=Fm3m. This is consistent with Table Ill, where
the displacement of Nal is equal tg4+ 74,0,75+ 1) and
the displacement of Na2 is equal tg{— 79,0,75— 79). At
G,, the valuesys= —1/24 andngy= 1/8 give us net displace-
ments 0f(1/12,0,1/12 and (— 1/6,0—1/6) for Nal and Na2,
respectively.

We note in Table Il that for theC2 path none of the
isotropy subgroups ar€2. None of these distortions alone
can reduce the symmetry & all the way toC2. However,
the intersection of all of the isotropy subgroup<i&, so the

parameters associated with§ andL; are a set of coupled
primary order parameters.
The final entry in Table Il is thé2, /m path which is the

distortedR3m path in Table Il with the lowest-energy barrier
(according to our calculationgDo not confuse this with the
P2, /m path in Table | which describes an entirely different
atomic mapping.The distortion at the end poif@, is iden-

tical to that of theR3m path. The net atomic displacements
are all zero, and the nét; strain, which does not appear in

R3m, is zero. However, along the path, the atomic displace-
ments and thd™; strain take on nonzero values. Along the
path, they evolve from zero through some nonzero values
and then back to zero again at the end of the path. Also note
that thel's strain is broken into two independent parts de-

combined effect of all of the distortions is to reduce thescribed by two parameters.

symmetry toC2. In this case, there can be no single order

Here again we have a case where there is no single pri-

parameter. At least two of the order parameters must beiary order parameter. The order parameters associated with
“coupled” so that they become nonzero together. In thisX; andXg are a set of coupled primary order parameters.
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