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Complete listing of order parameters for a crystalline phase transition:
A solution to the generalized inverse Landau problem
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For a given group-subgroup transition, the complete set of order parameters, primary and secondary, de-
scribe the distortions that accompany this transition. The task of obtaining all order-parametric distortions for
a group-subgroup pair is a long standing problem. An algorithm is presented here which obtains the irreducible
representations and order parameter directions for an arbitrary transition. Examples are given for a variety of
phase transitions showing the application and utility of the procedure. It is shown that a unique selection of
primary order parameters is not always possible.
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[. INTRODUCTION a group-subgroup transition. The OP which defines the tran-
sition and determines the symmetry of the lower symmetry
In two papers of the middle 1970's Ascher andPhase is called the primary OP. Quite generally, however,
Kobayashi defined two problems of great interest in the OP'S associated with multiple IR’s are coupled causing both
study of phase transitions. The first is referred to as the diredt"'mary and segondary OP’s to be .S|gn|f|can_t for a given
Landau problem: given the symmetry grothof a high structural transition. A secondary OP is one which couples to
symmetry phase. find all the possible order arameterthe primary OP in a very specific way. The coupling is al-
y s yp 1 _Poss! P ﬁ/ays of the form linear in the secondary OP and quadratic or
(OP's); for each of these determine the symmettiesf pos-  higher in the primary OP. At the phase transition the primary
sible low symmetry phases; write down the thermodynamicop pecomes nonzero. The secondary OP also becomes non-
potentials that describe the phases and the transitions bgero because of this coupling with the primary OP. These
tween them and find a suitable way of classifying these posecondary OP’s are invariant undey and in fact are left
tentials. In these papérsthey stated they did not want to invariant by a supergroipof L. The terminology of “im-
face this problem in its full generality but would instead proper”is often used when the property appears as a second-
study a less ambitious problem, the inverse Landau problen®ry order parameter. For example, an improper ferroelastic is
given a groupH and a subgroup, find the irreducible rep- One in which the strain is a secondary OP. There also exist
resentationIR) of H determined by this transition. group-subgroup relationships where a single primary OP is

i P not sufficient for defining the group-subgroup relationship,
Finding the IR of the symmetry reduction is important and multiple(coupled primary OP’s induce the transitich.

since it defines the cause of the transition. In the Landal,|.hen it is necessary to have two or more primary OP’s drive
philosophy an OP is a vector in an IR space. This vector Wil transition.

determine a set of symmetry elementsHrwhich leave the In this paper we present our approach to the solution of
vector invariant, thus determining an isotropy subgrdup the generalized inverse Landau problem, i.e., given a group
(epikernel in the terminology of Ascheand thus a relation- H and a subgroup, find all irreducible representations and
ship between the two groups. The search for the isotropP directions oH determined by this transition. Up to now
subgroup and the associated OP in the IR has been studiedtimere is no published solution to this problem. In Sec. Il we
several contexts. For space groups, listings of isotropy subdescribe an algorithm used to obtain the IR’s associated with
groups have been given by Toledano and Toledamal by & given group-subgroup pair. Primary IR’s as well as all sec-
Stokes and HatchThese publications addressed the directondary IR’s are obtained and there is no limitation that the
Landau problem for crystalline materials. Isotropy subgroupdR’s must be at points of symmetry of the Brillouin zone.
of OP directions in the context of other symmetry changesThUS.a complete .|I.Stlng of IR’s_ assocw?lted _W|th the transition
have also been studied, e.g., in non-Kékiylge isoelec- &€ given. In addmon_we obtgln OP directions within the IR
tronic moleculeg for the breakdown of translational symme- SPace. We refer to this algorithm as the complete order pa-
try of a polyethylene chaifiand for the formation of cubic rameter I|st|ng(QOPL) algorlt.hm. In Sec. Il we give some
phases in complex fluids. examples to'wh|ch the algorithm ha; beeq appllgd. We show
The free energy of a crystal can be expanded as a sum (TJlPat the choice of O@)'may be qrbltrary N a given case,
individually invariant polynomial forms of the OP compo- SINCe two or more distinct selections of tultiple) pri-
nents. The values of the OP at the minimum of the fred"@" OP’S_ may determine the same subgroup. The algorithm
energy determine the OP direction and therefore the resultir’:g"’ls.been |mplemented and is part of theTROPY softwaré
isotropy subgroup. The OP vector corresponds to a physic vailable on the internet.
property or distortion of the high symmetry structysym-
metry H). When the OP becomes nonzero it determines the
structure of reduced symmettgymmetryL). We now describe the COPL algorithm which finds all IR’s
Often only a single OP is referred to in the description ofand associated OP’s which arise in a given phase transition

II. ALGORITHM
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H—L, whereLCH. We assume that we know which of the . -
elements oH are contained if.. In practice, this means that t=2> Aja, (4)
we know the space group symmetrylafthe lattice vectors '
of L in terms of the lattice vectors ¢, and the origin of the  wherea; are primitive lattice vectors dff. By primitive, we
space group setting df with respect to that oH. ~_mean that integer linear combinations of the lattice vectors
In general, an IR will be involved in a phase transition if reach all lattice points, including any centered lattice points.

the subduction frequency SinceL CH, the elementg\;; must be integers. Vectofsin

1 reciprocal space are written as

ns=r7 > x(h) (D

|L| hel _) N
| | o k=2 Bjb;. (5)
is nonzero. In this expressiow,h) is the character of the i

space group operatbr and|L| is the order oL. (In practice, g . .
we sum over the operators which the IR maps onto distincYVherebJ are reciprocal lattice vectors éf such that

matrices, andL| becomes the number of these operajors. ba=s. 6)
The subduction frequenay; is nonzero if and only if there e
exists a nonzero solution which satisfies the equation Equation(3) can now be written as

D(h)7=17, 2 Eﬂ:zj: A;Bj=n;, (7)

simultaneously for every operatbre L. In this expression,
D(h) is thenXxn matrix onto which the IR oH maps the wheren; are integers. We invert these equations and obtain

operatorh, and 7 is ann dimensional vector which points in @n expression for the allowed valuesjf:

the direction of the OP. In practice, needs to satisfy Eq2)
only for the generators df. This usually results in a small szz Aj’ilni . (8
number of simultaneous equations to be solved. :

The space-group symmetry determined by the OP can be

obtained by puttings back into Eq.(2) and trying every
operatorhe H (try all operators inH, not just those irL).
The set of operatons which satisfy Eq(2) form a groupL’
which is a supergroufeither proper or impropgnf L, i.e.,

Note that the eIemem‘Aj’i1 are not necessarily integers.
Let m be the least common denominator of all of the ele-
ments ofA~L. This means thaﬂnAj’il is an integer for every
j,i. We see from Eq(8) that if we increaséor decreaseany

LCL'CH. If L'=L the OP is primary: otherwise the OP is of the n; by m, the value ofB; changes by an integer and

secondary(This rule becomes more complicated in the casdnerefore does not result in an additional nonequivalent
of coupled primary OP’s. See the examples in the next sec/ector. Therefore a complete set of nonequivalenectors
tion.) can be generated from values mfin the range 6n;<m.

In principle, we could find all OP’s by simply evaluating This requires solving Eq8) m? times.
Eq. (1) for every IR of H. When we find an IR for which  We next identify the star ok to which each of thesk
ns#0, we could then find the direction of the order param-vectors belong. This gives us a complete set of possible stars

eter using Eq(2). In practice, a space group has an infinite 5f i \which can be involved in the phase transition. Only the
number of IR’s, so we must restrict the search in some WaWR's associated with these stars can satisfy @g.

IR's are associated with stars &fvectors. A star ofk Let us summarize the algorithm.
vectors is a set of distindnonequivalentk vectors gener- (1) Obtain a list ofk vectors from Eq(8), trying every
ated by point operations in the space group, i.e., given éteger 0<n;<m. This means solving E¢8) m® times re-
vectork, its star is given by{k,Rok,R3k, . .. Rk}, where  sulting in a list ofm® k vectors.
Ri are point operators in H. The vectors (2) Determine which star eadh vector belongs to.
K,RoK,R3K, ... ,Ryk are called “arms” of the star. We con-  (3) For each IR of each star, use Hd) to determine if
sider as arms of the star only distinkctvectors, i.e., those the IR is involved in the phase transitions0).
which are not related by a vector of the reciprocal lattice. ~ (4) For each IR involved in the phase transition, deter-

It can be shown that the subduction frequemgyin Eq.  mine the direction of the OP by solving simultaneously Eq.
(1) will be zero unless at least one of the arms of the star of2) for each generatdn of L.
K satisfies (5) Obtain the space-group symmetty determined by
the OP by finding all operatorlse H which satisfy Eq.(2)

k- t=integer 3y  for the OP found in the previous step.

) The COPL algorithm has been implemented using the
for every lattice vectot of L (including vectors to any cen- data base of thesoTROPY software. Specifically, a general
tered lattice points This gives us a systematic way of lim- implementation of the COPL algorithm requires information
iting the number of IR’s to be tested. about space group settings, lattice vectors, reciprocal lattice

We write the primitive lattice vectoré of L as vectors, stars ok, IR's belonging to stars df, and matrices
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onto which the IR’s map operators of the space group. Thesto of b/a using symmetry along.This subgroup can be
are not just the the matrices of the IR’s of the little groups ofrealized as a minimum of the Landau free energy if one goes
K (which is what you usually find in tables of IR matriges t0 high enough order in the expansfobut the transition

but the matrices of the complete IR of the space group. ~ cannot be continuous. We obtain the following complete list-

ing of OP directions from the COPL algorithm for the
Il EXAMPLES (a,a,b) direction with lattice vectors (1,1,0),
: (=1,10),(0,0,1) and origin at (0,0,0):

After the discovery of its ferroelectricity in 1945, BaTjO

became one of the most widely investigated ferroelectric Iy (a) Pm3m 1
materialst® Both static and dynamic investigations studied +

the transitions in this material. It has the prototype perovskite Fs (@0 Pa/mmm 1
structure above 120°C and becomes tetragonal, then ortho- I'; (a,—a0 C2m 1
rhombic, and finally trigonal as temperature is lowered. The '+ (abb c2/m 1
barium atoms are at the Wyckoff) site and the titanium i (a,b,b) -

atoms at theb) site!* The change in symmetry from3m r, (a P43m 1
to P4Amm occurs in the first transition. For this transition, r; (a0 P42m 1
P4mm has the lattice vectors (1), (0,10),(0,0,1), and B

origin at (0,0,0) for one of the orientations of the tetragonal r, (aab) Cm 1
phase. The new lattice and origin are given here in terms of I's (0a—a) Amn2 1.

the parent group lattice vectors. The following is the com-
plete Ilstlng of OP’s and their directions for this SDECiﬁC The FZ IR again Corresponds to the onset of po|arization_

LCH pair obtained by the COPL algorithm The IRsTZ andT'; correspond to shear and deviatoric
o strain respectively. This example is relatively straight for-
ry (a) Pm3m 1 ward and is of current scientific interest.

BaAl,O, exhibits a ferroelectric phase transition at 396 K.
The low symmetry phase i$65;. Recently Abakumov
r, (0,0a) P4mm 1. et all® investigated this transition by transmission electron
microscopy. They found that the transition leads to a dou-
Here we indicate each IR determined by this group-subgroupling of the hexagonal lattice parameteso that the ferro-
pair, the direction of the OP in IR carrier space, the subgroug|ectric unit cell is four times larger. They proposed that the
determined by the OP, and the relative size of the unit cell ohigh temperature, high symmetry phas®8,22 with origin

the subgroup. The labeling of IR’s is that of Miller and (0,0,0) and lattice vectors (2@),(0,20),(0,0,1). The
Love'? and the specific form of the OP depends on the choicgopL algorithm yields the following OP’s:

of matrices for the IR. We used our own matrices which may

r; (a0 P4mmm 1

be obtained fromsoTrRoPY*° Symmetry does not determine r, (a) P6322 1
the value of the OP but will specify lines, planes, general r PG 1
points, etc. For example, the symbalin the OP forT', 2 (a) 8

represents an arbitrary constant and indicates that any point M; (aaa) P6322 4
of the line along the third IR axis gives the same subgroup. M, (a,aa) P6; 4

The physical distortion associated with the (8)Odirection
of ', is the onset of polarization in thedirection, with the ~ We note that the low symmetry pha&pace grouf?6; and
(a,0) direction ofl"; is the onset of tetragonal strain along ~ size 4 is fully determined by the IRM,. Thus the OP
and with the(a) direction of T'; is a volume change. This (&,a,a) for M5 is the primary OP. The OP's for IRE; and
example of the use of the COPL algorithm is straight forwardM 1 are secondary OP’s. All correspond physically to atomic
and offers no surprises. displacement modes. This example is of interest because
Ferroelectric perovskit&(B’B”)O5 alloys are of impor- there is no published OP information for this transition.
tance lately because of their large piezoelectric properties Shape memory alloys are materials of practical impor-
and the discovery of a monoclinic phad®etween the te- tance as they are being used as actuators, couplers, smart
tragonal and rhombohedral phases. An analysis of the experipaterials, medical guide wires, and stents, and they are im-
mental data of a Pb-based perovskite alloy has been YivenPortant scientifically as fertile grounds for new methods in
based upon the symmetry adapted free energy functions fdpe investigation of phase transitions. The prototype shape-
different phases obtained as subgroupsPuﬁEm. The pri- memory.all'oys are Ni-Ti, Au-Cd, and other .pseudo—'bi.nary
mary OP space is taken to I , the same as that used in alloys T|(N|_,)_()(X=Fe, Al,Cu). These materials exhibit a
the preceding paragraph, and the different phases are oBhase transition from thig2 structure(syipmetryPm3m).t(_)
tained for different directions of the OP within that space.the B19" structure (symmetry P2,/m).™ The monoclinic
The OP direction for the monoclinit, phase lies in the Phase has the lattice vectors (1,1,6)(,10)(0,0,1) and ori-
plane @,a,b),*° and its symmetry isCm. (a andb are gin (03,0) relative to the original simple cubic phase. From
independent arbitrary constants. We cannot determine the réhe COPL algorithm we obtain the following listing of OP’s:
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ry (a) Pm3mm 1 . —_

N Iy (@ Pm3m 1

rs (a0 P4/mmm 1 T} @ PrE 1

r, (a-a0 C2/m 1 ry (a,a,a) R3 1

Iy (ab,b) c2/im 1 s (a.a,a) R3m 1

M; (a,0,0) P4anmm 2 Ty @ Pas2 1

- I'; @ P43m 1

M3 (a,0,0) P4/nmm 2 r; (2,a,2) R3m 1

Ms (0,0a,0,0,0 Pmma 2 rs (a,a,a) R32 1

P L _ o Ar o (di (a,0,0,0p,0,0,0) P3mi1 3
IRsI';, I';, andI's yield strain contributions to the tran- 3303

- . ST s S ST o 2 (A1 (a,0,0,00,0,0,0) P3 3
sition while IR'sM, , M5, M5 define atomic displacement 3:3:3

distortions. This example is of interest because the descrip=t  (3,3,0)  (02,0,0,02,0,-b,0,0a,b) p3l2 9

tion of this transition has not included the full complement of%, (:,10 (0,2,b,0,0a4,0,—b,0,0a,b) P3 9

OP’s Nand the corresponding distortions that accompany (,10) (0ab00a0-b00ab) P3 9

them:" It is also interesting in that the transition cannot beE o (02,b,0,02.0.—b.0,02.b) P312 9

induced by a single IR. Notice that no single OP gives the**  (5:3,0) A05,08,07h,0.08, '

subgroupP2,/m. However, there are sets of two coupled
OP’s which do. The selection of the pail; ,M, gives

P2,/m as does the pairMs ,M; (Pmma)P4/nmm In the above list theA and 3 IR’'s occur on lines of
=P2,/m) W'.th the sa’mg orngin anq baS|s.' The ch0|ce Ofsymmetry in the Brillouin zone. The coordinates of tke
these two primary OPS. IS arbitrary n that elthe_r pair can be\/ector on those lines are given, following the IR symbol.
used as the primary driving mechanisms for this transmon..l_his example is of interest because of its large number of

There is another phase transition in the Ni-Ti alloys which P's and because the primary OP arises from a line of svm-
has attracted considerable attention. This is the transitioﬁ) ’ P y y

from theB2 phase to th&® phase P3) .18 TheR phase has metry2., in the Brillouin zone. This example has additional
a cell size increase of 9, the origin is at (0,0,0), and thdnterest because there is an ambiguity in selecting the pri-
lattice vectors are (2,1,~1),(~1,2—1),(1,1,1). Fromthe Mary OP. We see that each of the OE'5(0,2,b,0,0a,0,
COPL algorithm we get the following complete listing of ~P.0,08,b) and%5(0.a,0,0,02,0,—b,0,0a,b) individually

OP’s: fully determine theP3 subgroup.
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