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Systematics of group-nonsubgroup transitions: Square to triangle transition
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A variety of structural transitions in nature do not involve a group-subgroup relationship. A two-dimensional
example is the transition between a square lattice and a triangular lattice, which is known to occur in vortex
lattices, Wigner crystals, skyrmion lattices, colloids, diblock copolymers, etc. A three-dimensional analog is the
shock-induced BCC to HCP transition in iron. We develop a systematic technique that incorporates site
symmetry and yields displacive transition mechanisms and free energy forms for such structural changes. This
procedure is demonstrated for the square to triangle transition.
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Landau theory of phase transitions is readily applicable
those transitions in which the parent and product phases
a group-subgroup relationship. However, examples of tra
tions abound in nature where no group-subgroup relation
ists in the two ordered phases of different symmetry.1 A
prime example is the martensitic transition from a bod
centered cubic~bcc! to a hexagonal close-packed~hcp! phase
in iron that occurs at;13 GPa. A two-dimensional~2D!
analog is the square lattice to triangular lattice transform
tion which is observed in a wide variety of disparate physi
systems.

In these transitions various mechanisms involve differ
distortion paths in which site symmetries play a crucial ro
Therefore one must go beyond the conventional Lan
theory and include this information in the description of t
structural change.

To accomplish this, we use the reconstructive square
triangle transition as an example and~i! extend the Landau
theory to incorporate local site symmetric information,~ii !
propose a symmetry based algorithm that allows us to e
merate paths,~iii ! identify the primary and secondary ord
parameters~OP’s! for each path and establish the corr
sponding Ginzburg-Landau free energy, and~iv! for a spe-
cific path, embed the special end point of the primary OP
a function of local distortions.

We believe this systematic algorithmic procedure is qu
general and provides practical implementation of a bro
study of transition mechanisms and the resulting free e
gies. In our procedure we obtain displacive transition mec
nisms grouped according to irreducible representations~IR’s!
and provide primary and secondary OP displacement pa
The OP’s for each mechanism provide a single thermo
namic free energy representing the end phase as well a
intermediary phase. We have consistently applied our pro
dure to several three-dimensional~3D! transitions and
checked the implications against electronic structure calc
tions.

Site-specific Landau theory.The conventional Landau
theory of phase transitions assumes the change in dens
written in terms of basis functions of the IR of the origin
parent space groupG. For example

dr~r !5 (
ka ,g,i

h i
ka ,gc i

ka ,g
~r ! ~1!
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is a symmetry expansion of the density function where
wave vectork is in the first Brillouin zone,a labels the IR,
g references different copies of the IR, andi labels the basis
functions of the IR. The coefficients in this expansio
h i

ka ,g , can be interpreted as carrying the transformat
properties. The formalism describes small changes from
parent structure and the essential features of this change
be carried by these spatially independent ‘‘global’’ coef
cients. This lack of reference to theintracell details makes
the Landau theory quite general and easy to implement.

In many structural changes the ‘‘atomic’’ displacemen
are large and, for special values of the displacements, lea
an increase in the symmetry of the structure. The relations
between the beginning and end symmetry isnot group-
subgroup. When considering structural changes for s
transitions it is necessary to incorporate specific referenc
the local displacements of the atoms and delineate the sp
value~s! which determines the final structure. This conne
tion has been formulated by using a method of induc
representations.2 The local displacements of an atom relati
to the unit cell at the siter0 can be grouped as the bas
functionsc i

H(r ) of IR’s GH. The IRGH is an IR of the point
groupH of the siter0. A global representation of the entir
space groupG is then obtained as

c i
ka,g

~r !5 (
gPG

Di , j
* ka,g

~g!u~g!c1
H~r !. ~2!

Equation ~2! is the required extension of the convention
Landau theory which directly incorporates the site symme
information. Thus, for example, a displacement of an at
relative to the unit cell in thex direction atr0 will be corre-
lated with the displacement of every other atom in the sa
crystallographicorbit of the Wyckoff positionr0. The corre-
lated displacements of these atoms transform accordin
the global basis functionc i

ka,g(r ) constructed from this loca
displacement.

Using thislocal to global (displacement) constructionan
algorithm can be used to obtain possible mechanisms
transitions where the group-subgroup relationship isnot
obeyed. The method is systematic and can be used for
such symmetry relationship. As a prototype of such a pro
dure we study the tetragonal (P4mm) to hexagonal
©2001 The American Physical Society04-1
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TABLE I. Common subgroups ofP4mmandP6mmwith matching Wyckoff positions.

Subgroup IR,OP dir ofP4mm New Wyckoff IR,OP dir ofP6mm New Wyckoff

Cmm2(35) G3 ,P1 2~a! z85z G5 ,P1 2~a! z85z
Cm(8) G5 ,P3 2~a! x850, z85z G6 ,P2 2~a! x850, z85z
Cm(8) G5 ,P3 2~a! x850, z85z G6 ,P1 2~a! x850, z85z
P1(1) G5 1~a! x850, y850, z85z G6 1~a! x850, y850, z85z
Pma2(28) M5 ,P1 2~c! y851/4, z85z M3 ,P1 2~c! y853/4, z85z
Pma2(28) M5 ,P1 2~c! y851/4, z85z M4 ,P1 2~c! y851/4, z85z
Pma2(28) X4 ,P3 2~c! y850, z85z M3 ,P1 2~c! y853/4, z85z
Pma2(28) X4 ,P3 2~c! y850, z85z M4 ,P1 2~c! y851/4, z85z
Ima2(46) A5 ,P1 4~b! y851/4, z851/211/2z L3 ,P1 4~b! y851/4, z851/211/2z
Ima2(46) A5 ,P1 4~b! y851/4, z851/211/2z L4 ,P1 4~b! y851/4, z851/211/2z
Cmc21(36) Z5 ,P1 4~a! y850, z851/2z A6 ,P1 4~a! y850, z851/2z
Cmc21(36) Z5 ,P1 4~a! y850, z851/2z A6 ,P2 4~a! y850, z851/2z
P21(4) Z5 ,C1 4~a! x850, y851/2z, z85z A6 ,C1 4~a! x850, y851/2z, z85z
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(P6mm) transition where we restrict displacements to be
the plane perpendicular to the tetragonal axis. The transi
mechanisms then effectively describe the square to tria
lattice transitions in 2D. We assume that the transition
diffusionless and takes place by a continuous displacem
of the atoms from theP4mm phase. As a result there is a
intermediary structure Gs which is a subgroup ofP4mmand
at special values of the displacements the supergroupP6mm
is subsequently obtained. Necessarily the intermediary gr
is a subgroup ofboth P4mm and P6mm. The specific
modes of the displacements which drive the structure fr
P4mm into the intermediary groupGs and then to the group
P6mm can be obtained through theinduced representation
constructed above.

Enumeration of paths and free energies.In the transition
from P4mm to P6mm we give a four step algorithm fo
obtaining the possible paths of structural change. A softw
program,ISOTROPY, has been developed3 which allows one
to determine a great deal of the information about 3D sp
groups and their properties and we use it in the steps of
algorithm. The steps are performed in 3D and through p
jection describe the square to triangle lattice transition. T
allows us to demonstrate explicitly the full and direct use
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ISOTROPYand indicates its quite general use for a wide ran
of 3D reconstructive phase transitions, e.g., bcc to hcp
graphite to diamond transitions.

~1! Subgroups common to both groups.For the space
group P6mm Stokes and Hatch3 list 95 subgroups of
P6mm. They list only those subgroups obtained throu
IR’s corresponding to points of symmetry in the Brillou
zone and corresponding to one primary OP. We will consi
only such IR’s in our procedure since these are the m
likely candidates for initial consideration. Of that list 46 a
also subgroups ofP4mm. Since the intermediary group is t
be a subgroup of both, only these 46 are viable candida

~2! Subgroups which then have compatible Wyckoff po
tions. In connecting the two phases atoms cannot be cre
nor destroyed. In theP4mm structure there is one kind o
atom and these atoms occupy only the Wyckoff 1~a! position.
The atoms of P6mmalso occupy only the 1~a! position in the
hexagonal space group. Each of the 46 subgroups obtain
step~1! are obtained by a specific IR fromP4mm and by a
specific IR fromP6mm. We must define an atom to atom
correspondence throughout the transition. In Table I, colu
1, are listed those common subgroups that have consis
Wyckoff occupation numbers. Notice that the number of p
TABLE II. Possible mechanisms for theP4mm to P6mm transition.

Subgroup IR ofP4mm Dir. Gs basis Gs origin Atoms Displacement IR ofP6mm

Cmm2(35) G3 P1 ~1,1,0! ~-1,1,0! ~0,0,1! ~0,0,0! exy G5

Cm(8) G5 P3 ~1,1,0! ~-1,1,0! ~0,0,1! ~0,0,0! (0,0,z) @1,1,0# G6

P1(1) G5 C1 ~1,0,0! ~0,1,0! ~0,0,1! ~0,0,0! (0,0,z) @1,0,0#, @0,1,0# G5

Pma2(28) M5 P1 ~1,1,0! ~-1,1,0! ~0,0,1! ~0,1/2,0! (0,0,z) @1,-1,0# M3

(0,1,z) @-1,1,0#
Pma2(28) M5 P1 ~1,1,0! ~-1,1,0! ~0,0,1! ~0,1/2,0! (0,0,z) @1,-1,0# M4

(0,1,z) @-1,1,0#
Pma2(28) X4 P3 ~2,0,0! ~0,1,0! ~0,0,1! ~1/2,0,0! (0,0,z) @0,-1,0# M3

(1,0,z) @0,1,0#
Pma2(28) X4 P3 ~2,0,0! ~0,1,0! ~0,0,1! ~1/2,0,0! (0,0,z) @0,-1,0# M4

(1,0,z) @0,1,0#
4-2
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sible intermediary subgroups has been reduced to 7 co
sponding to 13 possible path connections. We have reta
all 3D intermediary subgroups, including those not allow
as IR’s in the strict 2D problem, e.g., the Z5 IR of P4mmm
through the subgroupP21. These will be discarded as w
look for appropriate microscopic 2D displacements in
next step of the algorithm.

~3! Subgroups that are obtained by microscopic displa
ments or macroscopic strain.We are considering structura
changes which are to take place by the microscopic displ
ments of the atoms or by macroscopic strain. Using the
duced representation procedure mentioned above we now
termine which IR’s correspond tox,y displacements relative
to the unit cell at the Wyckoff 1~a! site of P4mm and also
the Wyckoff 1~a! site of P6mm. This process reduces th
number of intermediary paths to 4. We add a fifth mechan
which is the shear strainG3, of the formexy . This IR satis-
fied steps~1! and ~2!. We include this strain since it is
mechanism corresponding to a shape change of the unit
even though it does not arise by displacements of the at
relative to the unit cell.

In Table II are listed the subgroups which provide mec
nisms for theP4mm to P6mm transition. Since our interes
here is in the square to triangle lattice transition, we ha
kept only strain distortions in the plane perpendicular to t
tetragonal axis and displacements within this plane. We
information about the common subgroup following Ref.
and specifically give the displacement pattern which chan
the structure fromP4mm to the subgroup structure. We dis
card the two mechanisms corresponding to theG5 IR. This
IR survived step three of our algorithm and corresponds
pure translational mode and/or toxz andyz strains. But each
of these possible mechanisms are not allowed in this
consideration.

~4! Displacive mechanisms for transition paths.In Table
II, column 6, the atomic coordinates of a selection of Wyc
off positons are given which are sufficient to yield the co
related displacement mechanism for the transition thro
the given subgroup. The displacement vector is shown
column 7. The displacements for other positions in the str
ture can be obtained by using the basis vectors of the la
for the repeat distances. In Fig. 1 are shown the three me
nisms for displacements relative to the unit cell, each
which will drive a transition fromP4mm toward P6mm.
The P6mm structure will result only for special values o
atomic displacements. For each mechanism we have i
cated the primary displacement parameter. For each prim
OP there are secondary OP’s which necessarily play a ro
the transition mechanism. In Table III we list for eac
mechanism the primary and secondary OP’s, indicate the
energy~to sixth degreein the primary OP! and the end-point
~lock-in! value of OP’s. The algorhithm is finished.

Tolèdano and Dmitriev1 initially consider three mecha
nisms for the square to triangle transition. They drop theexy
shear strain mechanism because it has a maximal limit va
This mechanism corresponds to theG3 mechanism in our
labeling. The second mechanism they consider arises f
parallel shifts of atomic rows. It is equivalent to the previo
mechanism so they again do not consider it. The final mec
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nism they consider is antiparallel displacements of rows
atoms. This particular transition path corresponds to ourX4
mechanism. Thus the transition mechanisms considered
Tolèdano and Dmitriev are contained within our procedu
while we obtainadditional independent paths to those the
found. Of particular note are the two independent pat
M3 ,M4 locking into theP6mm structure for each of theM5
andX4 IR’s of P4mmm.

In Tolèdano and Dmitriev1 it was shown that the super
group locks in at special values of the atomic shifts. Th
indicate that these lock-in values and the morphology of
phase diagram are governed by the nonlinear dependen
the OPhka ,g(j1 ,j2 , . . . ) on theatomic shiftsj1 ,j2 , . . . .
For the local position dependent OP the Landau minimi
tion becomes

FIG. 1. Deformation paths from the square→ triangular lattice.
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TABLE III. Primary and secondary OP’s for theP4mm transition and lock-in values corresponding to theP6mm structure. The change

in orthorhombic lattice constants (aW o and bW o) in going from theP4mm to the P6mm side of the transition are given in column 5 (e1

5e111e22, e25e112e22, e35e12).

Subgroup POP SOP GL free energy Lock-in value

Cmm2(35) G3 ,P15(e3) G1 ,P15(e1) FGL(35;G3) G3(aW o :A2a→A3a;bW o :A2a→a)
Pma2(28) M5 ,P15(h2 ,0) G3 ,P15(e3);G1 ,P15(e1) FGL(28;M5) M5 ~small!; G3(aW o :A2a→A3a;bW o :A2a→a)
Pma2(28) X4 ,P35(h3 ,h3) G2 ,P15(e2);G1 ,P15(e1) FGL(28;X4) X4(a/4);G2(aW o :2a→A3a;bW o :a→a)

(h15e3 ,h25M5 atomic shuffle,h35X4 atomic shuffle,h45e1 ,h55e2)
FGL(35;G3)5A1

(1)h1
21A2

(1)h1
41A3

(1)h1
61g1

(1)(h1,x
2 1h1,y

2 )1FC(G3 ,G1)1FL(G1)
FGL(28;M5)5A1

(2)h2
21A2

(2)h2
41A3

(2)h2
61g1

(2)(h2,x
2 1h2,y

2 )1g2
(2)h2,xh2,y1FC(M5 ,G1 ,G3)1FL(G1)1FL(G3)

FGL(28;X4)5A1
(3)h3

21A2
(3)h3

41A3
(3)h3

61g1
(3)(h3,x

2 1h3,y
2 )1g2

(3)(h3,x
2 2h3,y

2 )FC(X4 ,G1 ,G2)1FL(G1)1FL(G2)
FC(G3 ,G1)5C1

(1)h1
2h41C2

(1)h1
2h4

2, FC(M5 ,G1 ,G3)5C1
(2)h2

2h41C2
(2)h2

2h11C3
(2)h2

2h4
21C4

(2)h2
2h5

21C5
(2)h2

2h4h5,
FC(X4 ,G1 ,G2)5C1

(3)h3
2h41C2

(3)h2
2h4

21C3
(3)h2

2h5
2

FL(G1)5A1
(4)h41A2

(4)h4
21A3

(4)h4
31A4

(4)h4
4, FL(G2)5A1

(5)h5
21A2

(5)h5
4, FL(G3)5A1

(6)h1
21A2

(6)h1
4
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A periodic dependence on atomic displacements results n
rally from successive special values of the strain and/or
placements of the structure at which there is an additio
onset of symmetry. The Ginzburg-Landau~GL! free energies
and the lock-in values for each of our mechanisms are gi
in columns 4 and 5, respectively, of Table III.

In order to display the allowed transitions for vario
ranges of coefficients we construct an effective free energ
terms of just our primary OP. Since we keep only up to si
degree terms, there is only one effective free energy exp
sion for the three mechanisms we obtained. The phase
gram for the single component primary OP’s~all three of our
mechanisms! is shown in Fig. 4, p. 150, of Ref. 1.

Conclusion.We have developed a systematic formalis
that uses space group and site symmetries to the fulles
tent in order to enumerate transition paths correspondin
single primary OP’s. Coupled primary OP’s could also
considered yielding additional mechanisms. However, t
pieces of information in our theory depend on the mic
scopic interactions and must be obtained for a specific m
rial either from experimental structural data~where avail-
able! or from electronic structure and molecular dynam
s

0
,
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calculations. These are the specific transformation path
the specific functional dependence of the OPh on the dis-
tortion coordinatej for a given material. For the sake o
simplicity/illustration one could choose a polynomial for
whose roots are the special values of the distortion in the
phases. Nonetheless, other forms such as the transcend
order parameter4 are also acceptable.

Our procedure is generally applicable to other reconstr
tive transitions such as bcc→fcc, hcp→v, bcc→v,
hcp→ fcc, graphite→diamond, etc. A very interesting ex
ample is a possible diamond→bcc quantum crystal transition
in carbon in the core of certain white dwarfs.5 Our approach
can also include order-disorder and other types of mec
nisms ~e.g., axial OP’s! through the association of thes
properties with appropriate IR’s. Finally, our specific resu
here are also applicable to many different physical syste
since the square lattice to triangular lattice transition is
served in flux line lattices6 and vortex lattices7 in supercon-
ductors, Wigner crystals in 2D electron gas,8 skyrmion crys-
tals in quantum Hall systems,9 etc.

We acknowledge insightful discussions with E. Motto
W. Klein, and R.C. Albers. This work was supported by t
U.S. Department of Energy.
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