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A variety of structural transitions in nature do not involve a group-subgroup relationship. A two-dimensional
example is the transition between a square lattice and a triangular lattice, which is known to occur in vortex
lattices, Wigner crystals, skyrmion lattices, colloids, diblock copolymers, etc. A three-dimensional analog is the
shock-induced BCC to HCP transition in iron. We develop a systematic technique that incorporates site
symmetry and yields displacive transition mechanisms and free energy forms for such structural changes. This
procedure is demonstrated for the square to triangle transition.
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Landau theory of phase transitions is readily applicable tds a symmetry expansion of the density function where the
those transitions in which the parent and product phases hawveave vectoik is in the first Brillouin zoneg labels the IR,
a group-subgroup relationship. However, examples of transiy references different copies of the IR, anidbels the basis
tions abound in nature where no group-subgroup relation exunctions of the IR. The coefficients in this expansion,
ists in the two ordered phases of different symmétsy. 77, can be interpreted as carrying the transformation

prime example is the martensitic transition from a bOdy_properties The formalism describes small changes from the
centered cubi¢hcg to a hexagonal close-packéitp phase parent structure and the essential features of this change can

in iron that occurs at-13 GPa. A two-dimensional2D) b od by th v ind d «global” i
analog is the square lattice to triangular lattice transforma®€ Carr€d by these spatially independent “global” coeffi-

tion which is observed in a wide variety of disparate physicalc/€nts- This lack of reference to thetracell details makes
systems. the Landau theory quite general and easy to |mplement.

In these transitions various mechanisms involve different N many structural changes the “atomic” displacements
distortion paths in which site symmetries play a crucial role.are large and, for special values of the displacements, lead to
Therefore one must go beyond the conventional Landa@n increase in the symmetry of the structure. The relationship
theory and include this information in the description of thebetween the beginning and end symmetrynist group-
structural change. subgroup. When considering structural changes for such

To accomplish this, we use the reconstructive square ttransitions it is necessary to incorporate specific reference to
triangle transition as an example afigl extend the Landau the local displacements of the atoms and delineate the special
theory to incorporate local site symmetric informatidgin)  valugs) which determines the final structure. This connec-
propose a symmetry based algorithm that allows us to enution has been formulated by using a method of induced
merate pathsiiii) identify the primary and secondary order representation$The local displacements of an atom relative
parameters(OP’s) for each path and establish the corre-to the unit cell at the site, can be grouped as the basis
sponding Ginzburg-Landau free energy, and for a spe- functionsy!'(r) of IR's T'™. The IRT'" is an IR of the point
cific path, embed the special end point of the primary OP agyoupH of the siter,. A global representation of the entire

a function of local distortions. space groufss is then obtained as
We believe this systematic algorithmic procedure is quite

general and provides practical implementation of a broad K.y oK.y H
study of transition mechanisms and the resulting free ener- i (r):ggG D (9)0(9)yr(r). 2
gies. In our procedure we obtain displacive transition mecha-
nisms grouped according to irreducible representatititis) ~ Equation(2) is the required extension of the conventional
and provide primary and secondary OP displacement pathsandau theory which directly incorporates the site symmetry
The OP’s for each mechanism provide a single thermodyinformation. Thus, for example, a displacement of an atom
namic free energy representing the end phase as well as tﬁ@lative to the unit cell in the direction atrg will be corre-
intermediary phase. We have consistently applied our procdated with the displacement of every other atom in the same
dure to several three-dimension&BD) transitions and crystallographicorbit of the Wyckoff positionr,. The corre-
checked the implications against electronic structure calculdated displacements of these atoms transform according to
tions. the global basis functiow:‘“’y(r) constructed from this locall
Site-specific Landau theorylhe conventional Landau displacement.
theory of phase transitions assumes the change in density is Using thislocal to global (displacement) constructi@m
written in terms of basis functions of the IR of the original algorithm can be used to obtain possible mechanisms for
parent space grou@. For example transitions where the group-subgroup relationshipnat
obeyed. The method is systematic and can be used for any
«Y(r) (1) such symmetry relationship. As a prototype of such a proce-
dure we study the tetragonalPdmm) to hexagonal

k

Sp(n)=2 7,
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TABLE |. Common subgroups d?P4mmand P6mmwith matching Wyckoff positions.

Subgroup IR,OP dir oP4mm New Wyckoff IR,OP dir ofP6mm New Wyckoff
Cmn2(35) rs,P1 2@ z'=z I's,P1 2@z’ =z

Cm(8) I's,P3 2@ x'=0,z'=z I's,P2 2@ x'=0,z'=z
Cm(8) I's,P3 2@ x'=0,z'=z I's,P1 2@ x'=0,z'=z
P1(1) I's 1@ x'=0,y'=0,72'=z I's 1(a x'=0, y'=0,2'=z
Pma2(28) Ms,P1 200y'=1/4,2' =2 M;,P1 2c)y'=3/4,7'=2
Pma2(28) Ms,P1 200y'=1/4,2' =2 M,,P1 200y'=1/4,2'=2
Pma2(28) X4,P3 2c)y'=0,2'=z Ms,P1 2c)y'=3l4,2'=2
Pma2(28) X4,P3 2c)y'=0,2'=z My, P1 2c)y'=14,2"=z
Ima2(46) As,P1 4b)y'=1/4,2' =1/2+1/2z L;,P1 Ab)y'=1/4,2'=1/2+1/2z
Ima2(46) As,P1 4b)y'=1/4,2' =1/2+1/2z L,,P1 4b)y'=1/4,2'=1/2+1/2z
Cmca2,(36) Zs,P1 4a) y'=0,z'=1/2 Ag,P1 4@y’ =0,2'=12
Cmc2,(36) Zs,P1 Aa)y'=0,z'=1/2z Ag,P2 4a)y'=0,z'=1/2
P2,(4) Z5,C1 4 x'=0, y=1/227'=z2 As,C1 4 x'=0,y'=1/2z, 7' =z

(P6mm) transition where we restrict displacements to be inlsoTROPYand indicates its quite general use for a wide range
the plane perpendicular to the tetragonal axis. The transitioof 3D reconstructive phase transitions, e.g., bcc to hcp or
mechanisms then effectively describe the square to trianglgraphite to diamond transitions.
lattice transitions in 2D. We assume that the transition is (1) Subgroups common to both grougsor the space
diffusionless and takes place by a continuous displacememjroup P6mm Stokes and Hatchlist 95 subgroups of
of the atoms from thé4mm phase. As a result there is an P6mm. They list only those subgroups obtained through
intermediary structure Gwhich is a subgroup dP4mmand  IR’s corresponding to points of symmetry in the Brillouin
at special values of the displacements the supergRijpm  zone and corresponding to one primary OP. We will consider
is subsequently obtained. Necessarily the intermediary groupnly such IR’s in our procedure since these are the most
is a subgroup ofboth PAmm and P6mm. The specific likely candidates for initial consideration. Of that list 46 are
modes of the displacements which drive the structure fronalso subgroups d?4mm. Since the intermediary group is to
P4mminto the intermediary grou, and then to the group be a subgroup of both, only these 46 are viable candidates.
P6mm can be obtained through thieduced representation (2) Subgroups which then have compatible Wyckoff posi-
constructed above. tions. In connecting the two phases atoms cannot be created
Enumeration of paths and free energiés.the transition nor destroyed. In th&4mm structure there is one kind of
from P4mm to P6mm we give a four step algorithm for atom and these atoms occupy only the Wyckdé#) position.
obtaining the possible paths of structural change. A softwar@he atoms of P@malso occupy only the(d) position in the
program,ISOTROPY, has been develop&dvhich allows one hexagonal space group. Each of the 46 subgroups obtained in
to determine a great deal of the information about 3D spacstep(1) are obtained by a specific IR froP4dmm and by a
groups and their properties and we use it in the steps of thepecific IR fromP6mm We must define an atom to atom
algorithm. The steps are performed in 3D and through proeorrespondence throughout the transition. In Table I, column
jection describe the square to triangle lattice transition. Thid, are listed those common subgroups that have consistent
allows us to demonstrate explicitly the full and direct use ofWyckoff occupation numbers. Notice that the number of pos-

TABLE Il. Possible mechanisms for tHdmmto Pémmtransition.

Subgroup IR ofP4mm Dir. G, basis G, origin Atoms Displacement IR dP6mm

Cmn2(35) s P1 (1,2,0 (-1,1,0 (0,0, (0,0,0 Exy I's

Cm(8) I's P3 (1,2,0 (-1,1,0 (0,0, (0,0,0 (0,02) [1,1,0 I

P1(1) I's C1 (1,0,0 (0,1,0 (0,0, (0,0,0 (0,02) [1,0,0, [0,1,0 Iy

Pma2(28) Msg P1 (1,1,0 (-1,1,0 (0,0, (0,1/2,0 (0,02) [1,-1,0 M,
(0,12 [-1,1.0

Pma2(28) Msg P1 (1,1,0 (-1,1,0 (0,0, (0,1/2,0 (0,02) [1,-1,0 My
(012 [-1,1,0

Pma2(28) X4 P3 (2,0,0 (0,1,0 (0,0, (1/2,0,0 (0,02) [0,-1,0 M,
(1,02) [0,1,0

Pma2(28) X4 P3 (2,0,0 (0,1,0 (0,0, (12/2,0,0 (0,02) [0,-1,0 My
(1,02) [0,1,0
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sible intermediary subgroups has been reduced to 7 corr@ism they consider is antiparallel displacements of rows of
sponding to 13 possible path connections. We have retaineatoms. This particular transition path corresponds to>Xour
all 3D intermediary subgroups, including those not allowedmeghanism. Thus the transition mechanisms considered by
as IR’s in the strict 2D problem, e.g., the IR of PAmmm  Toledano and Dmitriev are contained within our procedure
through the subgrou®2,. These will be discarded as we While we obtainadditional independent paths to those they
look for appropriate microscopic 2D displacements in thefound. Of particular note are the two independent paths,
next step of the algorithm. M3,M, locking into theP6mm structure for each of thisl 5

(3) Subgroups that are obtained by microscopic displaceandX, IR’s of P4Ammm
ments or macroscopic straiiWe are considering structural  In Toledano and Dmitrie¥ it was shown that the super-
changes which are to take place by the microscopic displacegroup locks in at special values of the atomic shifts. They
ments of the atoms or by macroscopic strain. Using the inindicate that these lock-in values and the morphology of the
duced representation procedure mentioned above we now dehase diagram are governed by the nonlinear dependence of
termine which IR’s correspond tay displacements relative the OP7*«7(£,&,, .. .) on theatomic shiftsé; &, . .. .
to the unit cell at the Wyckoff () site of PAmm and also  For the local position dependent OP the Landau minimiza-
the Wyckoff 1(@) site of P6mm. This process reduces the tion becomes
number of intermediary paths to 4. We add a fifth mechanism

which is the shear straifi;, of the forme,, . This IR satis- 1_‘3
fied steps(1) and (2). We include this strain since it is a §t>
mechanism corresponding to a shape change of the unit cell - \ A Fo °
even though it does not arise by displacements of the atoms a O‘f/ \\
relative tothe unit cell. R4 N
In Table Il are listed the subgroups which provide mecha- N . N
nisms for theP4mmto P6mm transition. Since our interest AR ,'&
here is in the square to triangle lattice transition, we have PR e
keptonly strain distortions in the plane perpendicular to the < LY
tetragonal axis and displacements within this plane. We list d - \ Exy

information about the common subgroup following Ref. 3
and specifically give the displacement pattern which changes
the structure fronP4mmto the subgroup structure. We dis-
card the two mechanisms corresponding to helR. This

IR survived step three of our algorithm and corresponds to a

pure translational mode and/orxa andyz strains. But each M
of these possible mechanisms are not allowed in this 2D ﬁ 5
consideration. > / //«\/
(4) Displacive mechanisms for transition paths.Table a | WQQ/ .
[I, column 6, the atomic coordinates of a selection of Wyck- e S
off positons are given which are sufficient to yield the cor- / e /\,
related displacement mechanism for the transition through \/ L’
the given subgroup. The displacement vector is shown in NN L’
column 7. The displacements for other positions in the struc- %\/\1 L’
ture can be obtained by using the basis vectors of the lattice / v / 1.-1,0]

for the repeat distances. In Fig. 1 are shown the three mecha-
nisms for displacements relative to the unit cell, each of
which will drive a transition fromP4mm toward P6mm.
The P6mm structure will result only for special values of
atomic displacements. For each mechanism we have indi-
cated the primary displacement parameter. For each primary X
OP there are secondary OP’s which necessarily play a roll in ;? 4
the transition mechanism. In Table Il we list for each > <o <o <o
mechanism the primary and secondary OP’s, indicate the free ay
energy(to sixth degreen the primary OP and the end-point ¥ === =< 1
(lock-in) value of OP’s. The algorhithm is finished. I

Toledano and Dmitrie¥ initially consider three mecha- +_>
nisms for the square to triangle transition. They dropdfie
shear strain mechanism because it has a maximal limit value.
This mechanism corresponds to thg mechanism in our <9 <—$ <e [0,-1,0]
labeling. The second mechanism they consider arises from :_ !
parallel shifts of atomic rows. It is equivalent to the previous -
mechanism so they again do not consider it. The final mecha- FIG. 1. Deformation paths from the squaretriangular lattice.
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TABLE IIl. Primary and secondary OP’s for ti&4dmm transition and lock-in values corresponding to B@mm structure. The change
in orthorhombic lattice constantsi(( and 50) in going from theP4mm to the P6mm side of the transition are given in column B,(
=€t €, €2 €11~ €22, €3T €1).

Subgroup POP SOP GL free energy Lock-in value
CmnR(35) I'3,P1=(ey) Iy,P1=(ey) Feu(3513) I'3(a,:\2a—/3a;b, 1 2a—a)
Pma2(28) Ms,P1=(7,,0) I'3,P1=(e;);I'1,P1=(ey) Feu(28;M5) Mg (smal); I's(a, :v2a— +3a;b, : \2a—a)
Pma2(28) X4,P3=(73,73) I';,P1=(ep);I'1,P1=(e1) FoL(28:X,) X4(a/4);1“2(50:2a—> \/§a;50:a—>a)

(71=e3,7,=Mg atomic shuffle,p3=X, atomic shuffle,p,=e;,ns=e,)

Fou(35:0s) = A ni+ AL ni+ AL n2+ g{Y(md o+ mf ) + Fo(I's, T) + F (')

Fou(28Ms)=AP n3+ AP 3+ AP 3+ 9(12)(773,><+ W%,y) + 9(22)772,><772,y+ Fc(Ms, Iy, Ig) +FL(T') +F ('3)
FoL(28:X,) =AY 93+ AP ni+ AP nS+ 9 (mh,t m3y) + 98 (m3x— 3, Fe(Xa T1,T2) +F () +F(T)
Fe(I'3.T) =Cln2ns+ Cnini, Fe(Ms, Iy, I'3)=CP nin,+ CPnin, + CP nini+ CPnini+ CPninans,
Fo(Xa.T1,T2) =Cn3na+ CE mini+ CPnimt

FUT D) =AM 7+ A 93+ AD i+ AL 53, FLT ) = AP g+ AR 52, FL(T3) = AP 93+ AP 71

AF(&)1dn=(IF1an)(dnlI&). ©) calculations. These are the specific transformation path and
o o the specific functional dependence of the @Rn the dis-
A periodic dependence on atomic displacements results natysjon coordinate¢ for a given material. For the sake of
rallly fromtsuc?(iﬁswet sp;aual vtalur?.s r(])ftrt]he strain ang(/th( dls'implicity/illustration one could choose a polynomial form
placements of the structure at whic ere 1S an adailiong,ose roots are the special values of the distortion in the two

onset of Symfne”y- The Ginzburg-Landéi.) frge ENErgies  Hhases. Nonetheless, other forms such as the transcendental
and the lock-in values for each of our mechanisms are give rder parametérare also acceptable

in columns 4 and 5, respectively, of Table IlI. Our procedure is generally applicable to other reconstruc-

In order to display the allowed transitions for Various i tansitions such as beefcc, hcp—w, bcc—w,

ranges of coefficients we construct an effective free energy i cp— fcc, graphitesdiamond, etc. A very interesting ex-

terms of just our primary OP. Since we keep only up to SIXthample is a possible diamondbcc quantum crystal transition

degree terms, there is only one effective free energy €XpPang carbon in the core of certain white dwaff©ur approach

sion for the three mechanisms we obtained. The phase dig; 5155 include order-disorder and other types of mecha-
gram for the single component primary ORadl three of our nisms (e.g., axial OP’s through the association of these

mechanismsis shown in Fig. 4, p. 150, of Ref. 1. properties with appropriate IR’s. Finally, our specific results

tha?ﬂgggzoggvge rrc‘)iveaizvgilfepidr:mseﬁt:éng“fh;o;mlzlgrgh_ere are also applicable to many different physical systems
P group Y Lince the square lattice to triangular lattice transition is ob-

tent in order to enumerate transition paths corresponding tgerved in flux line latticésand vortex latticein supercon-

single primary OP’s. Coupled primary OP’s could also be : : . )
considered yielding additional mechanisms. However, M(ij;gt%rsduvgﬁﬂﬁ: l:réftsa;ztg]n%;tglectron deskyrmion crys

pieces of information in our theory depend on the micro-
scopic interactions and must be obtained for a specific mate- We acknowledge insightful discussions with E. Mottola,
rial either from experimental structural dafahere avail- W. Klein, and R.C. Albers. This work was supported by the
able or from electronic structure and molecular dynamicsU.S. Department of Energy.
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