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Calculation of Polarization Using a Density Functional Method with Localized Charge
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A density functional method, which represents the total charge density as a sum of self-consistently
determined localized densities, is described. While this approach is generally less accurate than con-
ventional band-structure methods, it offers a relatively simple interpretation of polarization and related
properties. The method is illustrated with results for NaCl, MgO, and AlP.

PACS numbers: 71.15.Mb, 63.20.Dj, 77.22.Ej
The most common applications of density functional
theory (DFT) follow the Kohn-Sham (KS) method [1], in
which the density is expressed in terms of Bloch func-
tions. The delocalized nature of these functions make the
computation of polarization, or rather changes in polariza-
tion, a nontrivial matter, which, only recently, has been
resolved [2,3]. On the other hand, if the charge density
can be represented as a sum over localized densities, then
changes in polarization are given directly by changes in
the dipole moment of the crystallographic unit cell. In this
Letter we demonstrate that the latter picture also can be
applied within DFT by a method we call self-consistent
atomic deformation (SCAD). In addition to simplified ex-
pressions for polarization, SCAD offers an efficient O�N�
(order N) method for treating large systems. That is, the
computational requirements of the SCAD method increase
in proportion to the number of atoms in the unit cell.

In the SCAD method the electronic density is given by

n�r� �
X

i

ni�r 2 Ri� , (1)

where the ni are localized and expanded in terms of spheri-
cal harmonics about the sites of the atomic nuclei,

ni�r� �
X

l,m

n
�i�
lm�r�Ylm�r̂� . (2)

Each atomiclike density ni is determined from the solu-
tions of a one-electron Schrödinger’s equation with a simi-
larly expressed potential

yi�r� �
X

l,m

y
�i�
lm�r�Ylm�r̂� , (3)

formulated variationally from the total energy [4]:

E�n� �
X

i

�T0�ni� 2 Tk�ni�� 1 Tk�n� 1 F�n� ; (4)

yi�r� � yF�n�r�� 1 yk�n�r�� 2 yk�ni�r�� . (5)

In the above expressions T0�ni� is the kinetic energy of
noninteracting electrons centered about the site at Ri ,
Tk is a functional to account for the kinetic energy due
to overlapping densities [the Thomas-Fermi (TF) expres-
sion is used here], F denotes all nonkinetic (exchange-
0031-9007�00�84(4)�709(4)$15.00 ©
correlation [5] and electrostatic) contributions to the total
energy and yF (yk) are the functional derivatives of F (Tk).

The one-electron Schrödinger’s equations are solved us-
ing basis functions with Slater-type radial dependence as
listed in the tables of Clementi and Roetti [6]. Angular
dependence is obtained by multiplying the radial functions
by spherical harmonics (Ylm) with lr # l # lmax where lr

identifies the radial function. The self-consistent solution
for yi (and hence, ni and n), obtained by occupying the
lowest one-electron energy levels for the entire system, al-
lowing for charge transfer when indicated, minimizes the
total energy in accord with Janak’s theorem [7]. This as-
pect of SCAD is the same as the KS formulation of DFT.
It can also be considered an extension of the Gordon-Kim
[8] method. In fact, some of the earliest density functional
formulations of total energy were done in terms of over-
lapping atomic densities [9].

Expressing the total density as a sum over localized den-
sities is not a fundamental approximation, since any den-
sity can be represented by Eq. (2). The Hohenberg-Kohn
theorem [10] ensures that the total density will be given
correctly, to the extent that the approximate total-energy
functional is adequate. If an adequate representation of
the total density is expressed in terms of localized densi-
ties, then changes in polarization, due to external fields or
structural distortions, are determined straightforwardly by
accounting for changes in dipole moments of the localized
densities. This is true provided there is no charge trans-
fer from one ion to another, which is the prevailing con-
dition in the SCAD model for nonmetallic systems. The
compounds treated here have their highest occupied levels
(negative-ion p states) filled with six electrons. Directional
bonding is achieved by distortion of the negative-ion den-
sity from spherical.

The numerical methods involved in implementing
SCAD have been discussed briefly in previous publica-
tions [11,12], a detailed discussion of the method for
spherically symmetric ions is available [13], and a more
comprehensive paper on the general SCAD method is
in preparation [14]. Two SCAD computer codes were
developed, largely independently, at BYU and NRL.
Detailed comparisons of results from the two codes
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were instrumental in resolving problems and improving
numerical methods. In general, errors resulting from the
kinetic energy overlap term can be significant [12]. The
lattice parameter for compounds that have overlapping
p-like and d-like densities, e.g., AgCl or GaP, tend to be
too large by �10%. However, as we shall see, the TF
approximation does reasonably well for the compounds
selected in this study.

For the calculations reported here, we use lmax � 2 for
the positive-ion p states and lmax � 3 for the negative-ion
p states of Cl21 and O22. Inclusion of higher l spheri-
cal harmonics in the bases for NaCl and MgO was tested
and found to be unimportant. We find that including the
l � 4 spherical harmonics in the basis for the p states of
phosphorus produces some change in the results for AlP.
For example, going from lmax � 3 to lmax � 4 produces
an 0.8% increase in the lattice parameter. Higher l values
were not tested because our code is currently limited to
lmax � 4.

Calculation of the potential and total energy involves
the definition of a “cutoff” radius, Rc. This serves two
functions: (1) short-range contributions from overlapping
densities are excluded for atoms with separations larger
than Rc; and (2) electrostatic interactions for separations
less than Rc are included “exactly,” while such interactions
for neighbors with separations greater than Rc are included
as point poles (monopoles, dipoles, and quadrupoles). The
present versions of our SCAD programs use the Ewald
technique for including the long-ranged interactions.
Strictly speaking, this makes the computation time scale
as O�N2� for large N . Efficient fast multipole algorithms
with O�N logN� or O�N� scaling are available [15], which
could be installed to handle long-ranged interactions for
large N . We estimate that N � 300 would result in about
half the total time devoted to the Ewald computations.

As long as one is interested in energy changes for small
distortions of a given structure, such as those needed to
compute lattice parameters, bulk moduli, and phonon
frequencies, then a value of Rc which includes �30
neighbors may be sufficient. However, if accurate ener-
gies associated with large distortions are required, as in
the comparison of the energies of two crystal structures,
then a larger Rc, including up to �90 neighbors, may
be needed. For example, the minimum energy for AlP
in the B3 (zinc blende) structure is found to be lower
than that in the B1 (rock salt) by �1.5 eV using large
Rc (converged) results. However, if we choose Rc to
contain 28 (26) neighbors in the B3 (B1) structures then
the energy difference is only �0.03 eV. At the same time,
using the smaller Rc changes the lattice parameter by less
than 1% and the bulk modulus by only a few percent.

The remaining results reported here were obtained us-
ing the 56 (46) neighbor SCAD model for the B1 (B3)
structures. Values for the lattice constants and bulk moduli
are listed in Table I. The overall comparison with experi-
ment is reasonably good, especially considering that the
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TABLE I. Comparison of SCAD-model results with experi-
mental values [16] for lattice parameters a (Bohr), bulk moduli
B (1012 dyn�cm2), dielectric constant e`, Born effective charges
Z�, and the optic mode frequencies nLO and nTO (cm21).

NaCl MgO A1P
Property SCAD Expt. SCAD Expt. SCAD Expt.

a 10.54 10.66 7.91 7.97 9.91 10.33
B 0.254 0.240 1.81 1.64 1.47 0.86
e` 2.26 2.35 2.86 3.01 6.56 7.54
Z� 1.15 1.11 2.21 1.98 2.93 2.31

nLO 160 162 358 396 440 422
270 259 777 712 564 504

experimental values are for room temperature. However,
for AlP the lattice constant is �4% too small, and this
error contributes to a substantial overestimate of the bulk
modulus.

We have computed the high frequency dielectric con-
stant, e`, for SCAD-modeled crystals with and without
surfaces. While our codes assume periodic boundary con-
ditions, we are able to model crystals with surfaces by cre-
ating a periodic array of slabs. This procedure was tested
by varying the width of the slabs and the space between
them.

Consider the application of an external electric field
with strength Ez in the z direction to a crystal with finite
size in the z direction. This requires the addition of terms
R�i�

z Ez
p

4p to y
�i�
0,0�r� and Ezr

p
4p�3 to y

�i�
1,0�r�, where R�i�

z
is the z component of Ri . However, if the crystal is infi-
nite in all directions, periodic boundary conditions remove
the l � 0 contribution. In either case, the external field
produces dipole (l � 1) contributions to the densities. For
the infinite crystal, polarization (P) produced by the elec-
tric field is determined simply by adding the dipole mo-
ments induced on each ion in the unit cell and dividing
by the volume per unit cell. In this case the total macro-
scopic electric field is just the external field, and the third
(z) column of the dielectric tensor is 4pPx�Ez , 4pPy�Ez ,
and 1 1 4pPz�Ez . Of course, the dielectric tensors for
the cubic-symmetry compounds treated here are diagonal
with equal elements (e`) on the diagonal.

In the slab simulation, polarization is determined from
dipole moments of ions far enough from the surface to
give a position independent result for P. Then, to obtain
the dielectric constant from the polarization, we need to
use the total macroscopic electric field in the bulk. For the
slab geometry, the moments induced by the external field
can themselves produce a macroscopic electric field in the
z direction. We determine this induced macroscopic field
from the variation of the electrostatic potential at the nu-
cleus of each ion in the bulk, due to all the other ions, as
a function of the ion’s position. The induced field, com-
puted in this way, is independent of position as long as the
periodic slabs are sufficiently thick and far enough apart.
We have tested this with calculations for MgO and find
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that the dielectric constant obtained this way agrees pre-
cisely with that determined by the simpler method which
exploits periodic boundary conditions. Values of e` for
NaCl, MgO, and AlP are listed in Table I for comparison
with experiment. The agreement is reasonably good, with
the SCAD values consistently too small. We note that the
KS method overestimates e` by a similar amount [17].

The values of e` and Z�, the Born effective charge,
determine the splitting of the longitudinal and transverse
optic (LO and TO) modes. Specifically, the dynamical
matrix has a term that depends on the direction of the wave
vector [18]. In our case the LO mode frequency becomes

n2
LO � n2

TO 1
4pe2�Z��2

Ve`m
, (6)

where e is the electronic charge, V is the volume per primi-
tive cell, and m is the reduced mass. Computation of Z�

is straightforward using SCAD [11]. We simply displace
an ion a small amount and determine the induced dipole
moments on all the ions in the unit cell. The induced mo-
ments together with the moment due to the displacement
give the net change in polarization, which in turn defines
Z�. Results for Z� of the positive ions of NaCl, MgO, and
AlP are listed in Table I. (Values for the negative ions are,
of course, the negative of those for the positive ions.) We
use the frozen-mode method [19] to compute the TO mode
frequency and Eq. (6) to get the LO mode frequency. The
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FIG. 1. Dispersion curves in the D direction for NaCl, based
on frequencies determined from SCAD frozen-mode energies
(�) and Eq. (6) (�) for comparison with experimental values
[16] (3).
LO and TO mode frequencies are also listed in Table I.
While the agreement with experimental values is reason-
ably good, the SCAD values for the LO-TO splitting are
consistently too large, owing to e` values that are too small
and Z� values that are too large.

Finally, we have carried out frozen-mode calculations
for wave vectors at the fractions 1�4, 1�2, 3�4, and 1 of
the way from G to X in the Brillouin zone. The modes at X
require a 4-ion supercell, modes at X�2, an 8-ion supercell,
and modes at X�4 and 3X�4, a 16-ion supercell. If our
calculations for Z� and e` are carried out correctly, then
the value determined for nLO should join smoothly with
the frequencies along the LO branch from G to X. These
results are displayed in Figs. 1, 2, and 3. In these plots,
lines for the optical branches are determined by a Fourier
expansion that exactly fits the five frequencies determined
from G to X. The lines presented for the acoustic modes
are determined by a lower order, least squares fit, since the
errors from the frozen-mode method are generally more
pronounced for the lower frequency modes. The LO mode
frequencies at G do appear to join smoothly with the rest
of the frequencies on the LO branches.

In conclusion, we have described calculations of polar-
ization and related properties for NaCl, MgO, and AlP us-
ing a density functional method in which the total density
is expressed as a sum of self-consistently determined lo-
calized densities. Based on the comparison of our results
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FIG. 2. Dispersion curves in the D direction for MgO, based
on frequencies determined from SCAD frozen-mode energies
(�) and Eq. (6) (�) for comparison with experimental values
[16] (3).
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FIG. 3. Dispersion curves in the D direction for AlP, based on
frequencies determined from SCAD frozen-mode energies (�)
and Eq. (6) (�) for comparison with experimental values [16]
(3) and from other DFT calculations [20] (±).

to experimental quantities, the internal consistency of our
results for crystals with and without surfaces, and the fact
that our computed values for nLO join smoothly with the
other modes on the LO branch, we believe our basic ap-
proach for computing polarization and related properties is
valid. It is evidently applicable to a wider range of prob-
lems than would be expected from presentation [3] of the
band-structure approach.
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