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Phase transitions in the perovskitelike A 2BX4 structure
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A comparison is made of two different approaches to the description of phase transitions in the
A2BX4 structure (space group D4&, I4/mmm) due to rigid octahedral tiltings. The lower-symmetry
subgroups due to coupling of the K»f (X2) and E&2~ (P4) representations (6 tilts) to other tilt-
ing modes are listed. All observed transitions in the A2BX4 structure are of the octahedral tilting
types. These are listed and correlated with the driving representations.

I. INTRODUCTION

A2BX4 crystals with the structure of K2MgF4 type are
layered perovskitelike compounds. One of the main
features of the perovskite structure, namely the flat
square-layers of BX6 octahedra corner linked within the
layer plane, is preserved in the AzBX4 structure. Layers
neighboring along the c axis in these crystals are shifted
by half of the body diagonal of the unit cell
G&=I4lmmm which has two formula units per conven-
tional cell [Fig. 1(a)]. As a rule the A cations are ar-
ranged almost in the plane formed by the X atoms at the
top (or bottom) of the octahedra and have nine nearest
neighbors. Crystals with the structure of K2MgF4 type
are widely exhibited by fluorides and oxides A 2 B +04
and Az B +O4 with large A cations. A large group of
chlorides and bromides is also known, where the sites of
the A cations in the general formula are occupied by or-
ganic chain alkylammonium cations (C„Hz„+&NH3)'+,
n =1,2, . . . , 5. ' Many of the compounds listed above
undergo phase transitions (PT's) or sequences of PT's.

It has been shown recently' that by considering the
mutual tilts of BX6 octahedra (rotational distortions), one
may describe all experimentally observed types of succes-
sive distortions within the A2BX4 structure.

These investigations were performed independently by
two research groups and the results were published in
Refs. 1 —3. However, each of these works has omissions
and the philosophies of approach taken by the two
groups are different. In this publication, we indicate the
distinct approaches of the two groups, we provide data
on the symmetry of rotationally distorted phases, and we
make a comparison of the calculated results with existing
experimental data. The latter two sets of information
correct omissions of the previous papers.

which consists of the determination of the space group
for the distorted phase G; by means of actually depicting
its structure. The advantage of this method is physical
clarity in the determination of the symmetry elements of
the distorted structure when superpositions of definite
types of distortions (in our case rotational ones) take
place. Earlier, such a procedure was successfully used in
the analysis of rotationa1 distortions in perovskites and
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II. PHILOSOPHIES OF APPROACH

Aleksandrov et al. ' have solved the problem of listing
the possible symmetry changes of the A2BX4 crystal
structure using mainly a direct crystallographic method,

FIG. 1. (a) Crystal structure of K2MgF4 type and (b) the first
Brillouin zone of body-centered tetragonal unit cell.
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elapsolites. It was assumed that in the first approxi-
mation the BX6 octahedra for small tilts do not undergo
any additional distortion, and the complex distortions
may be treated as a superposition of either tilts of
different kinds, or of those of the same kind but around
the different axes of Gp. For the layered perovskitelike
crystals A2BX4, it was shown' that in the square layers
of octahedra three kinds of tilts are possible: a tilt
around the normal to the layer plane (0 tilts) [Fig. 2(a)],
and two kinds of tilts (N and 4) which can both occur
around the ao and/or bo axes of Go. For 4 tilts around
bo, all octahedra in a column (looking down bo) are
turned in the same direction [Fig. 2(b)]. The symbol of
such a distortion is (040), i.e. , 4 tilts around the bo axis.
The simultaneous + tilts around both ap and bp are also
possible, which is indicated by the distortion symbol
(O'%0). The @ tilts are characterized by alternating tilt
angles along the axis of rotation. Figure 2(c) corresponds
to (0@0).

Besides the symmetry equivalent (%00) and (0&0) dis-
tortions, also (4C&0), (C&&@20), etc. , are possible. In all,
15 variants result from distortions in a single layer. All
of these were listed by Aleksandrov et al. ' This method
allowed the detection of one peculiarity inherent in lay-
ered crystals which is called polydistortion or distortional
polytypism. It distinguishes the variety of spatial sym-
metry variants in such crystals due to different combina-
tions of kinds and amplitudes (or angles) of distortions in
nearby layers, which are linked together comparatively
weakly. An example of the phenomenon was found in
the studied group of crystals.

Experimental data on A2BX4 structures (given in Refs.
1 and 2) indicated the absence of unit-cell multiplication
along the c~ axis of the Go phase [Fig. 1(a)]. As a result,
Aleksandrov et al. ' considered only the distortions G;
leading to unit-cell multiplication in the basic plane (001).
This means that the irreducible representations responsi-
ble for PT's Gp —+G; were restricted to the two-armed
K,3 star (in terms of Kovalev ) or to the X point of the
Brillouin zone of Go (in terms of Miller and Love ) [Fig.
1(b)].

The partial group-theoretical analysis of distortions in
A2BX4 crystals was performed in Refs. 1 and 2 in order
to obtain the correspondence between the kinds of tilts
and the irreducible representations of Gp belonging to the
K ]3 (X ) star of the wave vector. Those changes due to
rotational distortions of N and 4 tilts were left out in the
first paper. ' Only after acquaintance with the work later
published as Ref. 10 was this omission partially corrected
in Ref. 2.

Hatch and Stokes obtained the permissible rotational
distortions in a manner distinct from Refs. 1 and 2. Pre-
viously they had implemented on computer a systematic
method for obtaining subgroups resulting from a single
irreducible physical distortion. This procedure is an ex-
tension of the Landau theory of continuous phase transi-
tions (see Ref. 11 and references therein). The usual as-
sumption in the Landau theory is that only one irreduc-
ible representation (irrep) drives the transition to the
lower-symmetry (subgroup) phase. A listing of the al-

lowed subgroups for all Brillouin-zone points of symme-
try had been obtained and the order parameter direction
had been matched with the resulting lower-symmetry
phase and the multiple domains. '

Together with the subgroup and order parameter list-
ing, Hatch, Stokes, and Putnam' had also obtained a
connection between the Wyckoff point-group representa-
tions and the resulting representations of Gp which could
be induced from the representations of the Wyckoff point
group. Thus, for a given group-subgroup change, the
compatibility of this change with an assumed site distor-
tion could be checked. By using projection operator
techniques the specific sublattice displacements within a
unit cell could then be obtained. '

However, for the perovskitelike structures, coupled pa-
rameters (direct sums of representations) are of interest.
If G denotes the subgroup symmetry for the order pa-
rameter g' ', and G~ denotes the subgroup symmetry for
the order parameter g'~', then an allowed subgroup for
the bicoupled parametric transition will be the group-
theoretical intersection of G and G~. By considering all
possible domains for the Gp ~G and Gp —+ G~ transi-
tions, a complete listing of all bicoupled (bireducible) rep-
resentations can be found for these transitions.

In Refs. 3 and 10, Hatch and Stokes published a select-
ed listing of coupled irreps. In Ref. 10 the subgroups of
D4& (P4/mmm ) were published restricting attention to
the irreducible representations K,sr (X3 ) K]87
(~3 ) K18+ (Ms ) K2or ( ~ s ) and K&6'r (R 3 ).
These were the only representations which those authors
determined to be associated with tilting modes in the
perovskitelike ABX4 structure, and all tilting config-
urations were obtained by projection operator methods.
Specific examples of the tilting configurations were given
in Ref. 10. In Ref. 3 they published similar work for the
perovskitelike A 2BX4 structure. However, the two-
dimensional representations K„r (X2+ ) and K,2r (P4)
corresponding to the 6 tilts were omitted in that publica-
tion.

III. NEW RESULTS

Recognizing the need to include these representations
(e tilts) in the listing of bicoupled transitions, and the
need to give a more complete listing of the experimental-
ly observed transitions in the A2BX4 crystals due to the
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FICx. 2. Three types of octahedral tilting in layers of linked
octahedra: (a) (008); (b) (0%'0); (c) (0+0).
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coupling of 8 tilts with N and 4 tilts, in this section we
remedy the omissions of Refs. 1 —3.

Using the approach of Hatch and Stokes, ' we give in
Table I the listing of transitions driven by uncoupled rep-

resentations of D4h. We list only those corresponding to
octahedral tilting modes. In Table II we list the transi-
tions resulting from the eouphng of the E&3r (X2+ ) and
K,2r (P4) representations with K,37 (X3 ), K,3r

TABLE I. Irreducible representations allowing octahedral tiltings in the A~BX~ structure are listed. The subgroups resulting
from the tilting are shown along with the conventional "basis" vectors and origins (in terms of the original conventional vectors of
D 4 J } Numbers in parentheses are from Ref. 1 5. The order parameter orbit is also indicated for each subgroup.

Irrep

X2+

Xq

P4

P,

Subgroup

D4I, (127)

D,'q (64)
D~i, (55)

D~g(138)
D2~(64}

D~I, (56)
D„'„(134)

D,z (66)

a,', (48)
C2q(12)
D~q(65}

C~p (12)

C2q {10)
C {2}

D4/, ( 141)
D 'g(139)

a",, (71)

C,h(15}

C,'„(12)
C,'h(12}

C,'(2)

D4I, (142)

D4q (140)

a,"„(12o)
a,"„(122)

D2d(121)

D,",(74)

D~I, (72)

D,"„(7o)

D~q (69)

S4(82}
C22 (46)

C2, (43)

C~, (42)

D q(24)

D'(23)
D2(22)

C,'„(15)
C',

g, (12)

C2(5)

Orbit

P1
P3
C1

P1
P3
C1
P1

P3
C1
P5
P1
P11

P4
P3

C2
C1

C10
C8
S1

4D1

P1

P3
C1

P1
P4
P5

P12
P3
P11

C13
C1

C10
C3

C11

C12

Basis vectors

(1,1,0),( —1,1,0),{0,0, 1)

(0,0, 1),(1,1,0),( —1,1,0)

(1,1,0),( —1,1,0),(0,0, 1)

(1,1,0),(—1,1,0),(0,0, 1)

(1,1,0),(0,0, 1),(1,—1,0)

(1,1,0),{—1,1,0),(0,0, 1)

(1,1,0),( —1,1,0),(0,0, 1)

(0,0, 1),(1,1,0)( —1,1,0)

(1,1,0),( —1,1,0),(0,0, 1)

(0,—1,1),(1,0,0),(0, 1,1)

(0,2,0),(0,0,2),(1,0,0)

)

(0,1,1),(1,0,0),(0,1,—1)

(—,1,1),( —,', —
—,', —,

' ), (1, &,
—1)

(2 0 0),(0 2 0) (0,0,2)

(2,0,0),(0,2,0),(0,0,2)

(2,0,0),(0,2,0),(0,0,2)

(2,0,0),(0,2,0),(0,0,2)

{0,0, —2),( —2, —2,0),( —1,1,1)

(0,0,—2),( —2, —2,0),( —1,1,1)

(2,0,—2),(0,2,0),(0,0,2)

( —1,1,1),(1,—1,1),(1,1,—1)

(1,10),( —1,1,0)(0,0,2)

(1,1,0),( —1, 1,0), (0,0,2)
(1,1,0),( —1,1,0),(0,0,2)

(1,1,0),( —1,1,0),(0,0,2)

(1,1,0),( —1,1,0),(0,0,2)

{0,0,2),(1,—1,0),(1,1,0)

(0,0,2),(1,—1,0),(1,1,0)

(2,0,0),(0,2,0),(0,0,2)

(2,0,0),(0,2,0),{0,0,2)

(1,1,0),( —1,1,0),(0,0,2)

(1,—1,0),(1,1,0,),(0,0,2)

(2,0,0),(0,2,0),(0,0,2)

{2,0,0),(0,2,0),(0,0,2)

(1,1,0),( —1,1,0),(0,0,2)

(1,1,0),(—1,1,0),(0,0,2)

{2,0,0),(0,2,0),(0,0,2)

(0,2,0),(0,0,2),(1,—1,0)

(0,2,0),(0,0,2),(1,—1,0}

(0,2,0),(0,0,2),(1,—1,0)

Origin

(o,o,o)

(0,0,0)

(0,0,0)

(o,o,o)

(o,o,o)

(0,0,0)

(o,o,o)

(0,0,0)

(o,o,o)

(0,0,0}

(0,0,0)

(o,o,o)

(o,o,o}

(0,0,0)

(0,0,0}
(o,o,o)

( —', 0,0)

(0, —',0)

(0, —,',0}

(0, —',0)
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TABLE II. The subgroups obtained from reducible representations of D4I, are listed. The irreps being coupled are shown as well
as the order parameter orbits and stratum subspaces. The subgroup conventional basis vectors and origin are expressed in terms of
the original conventional basis vectors of D4&.

Irreps

Xz+ eX3+

Xz+ X4+

Xz+ @N1

Xz P4

Xz+ P5

P4X3+

Subgroup

Cza
3

Cz5

Dza
15

Cz~
5

CzI5

C,'

Cz~
3

Cza
6

Dz~
10

CzI4

Cza

C,'

28

5

Dz~25

Czi3

Cza
6

Czs3

Cl

D413

D45

7

Dz~8

Dz~
C8

Dz~17

Dz~
17

C12

Dz~
10

Dz~
14

C 5

D3

Dz~16

D4

Cz2

C9

C2

D4

Dzi15

D4

D2I,
18

Dz~
14

CzI5

D5

Cz,

Orbit

Pl, P1
P3,P3
P3,P3
P3, C1
Cl, P3
Cl, C1
Pl, Pl
P3,P3

P3,P3
P3, C1
Cl, P3
Cl, C1
Pl, pl
Pl, P3

Pl, C1
Pl, S1

P3, C 10

Cl, cl
C1,4D 1

Pl, P3

Pl, P3
Pl, C1

P3,P1

Cl, P3
Cl, C1
Pl, pl 1

P 1,P11
Pi, C8
P 1,C10
P3,P12

P3,P12

P3, C9

P3, C11

Cl, P5
Cl, C3

Cl, C12
C1,C13
C 1,4D1
Pl, P1
Pi, P3

Pl, C1

P3,P1

P3,P3
P3, C1
Cl, pl
Cl, P3

Subspace

1,2

1,1

1,1

1,1

1,1

1,1

1,2

1,1

1,1

1,1

1,1

1,1

1,3

1,5

1,1

1,2

1,1

l, l

1,1

1,1

13
1,1

l, l

1,1

1,2

1,1

1,1

1,1

l, l

1,1

1,1

1,1

Basis vectors

(0,2,0,)(2,0,0)(0,0,—l)
( —', —', ——'), ( —1, 1,0)(0,0, 1)

(1,1,0)(—1,1,0){0,0,1)

(1,1,0),( —1,1,0),(0,0,1)

(0,0,1),(1,—1,0),(1,1,0)

(1,1,0),( —1,1,0),(0,0,1)

(0,2,0),(2,0,0),{0,0,—1)

(0,0,1),(1,1,0),( —1,1,0)

(0,0, l),(1,—1,0),(l, l,o)

(1,—1,0),(1,1,0),( —1,1,1)

(0,0,1),(1,1,0),(—1,1,0)

(1,1,0),( —1,1,0),(0,0,1)

(2,,0,0),(0,0,2),(0,—2,0)

(2,0,0),(0,2,0),(0,0,2)

{2,0,0),(0,2,0),(0,0,2)

(2,0,—2),(0,2,0),(0,0,2)

(0,0,—2),( —2, —2,0),( —1,1,1)

(—2,2,0),(0,0,2),(2,0,0)

(—1,1,1),(l, —1,1),(1,1,—1)

{—1, —1,0),(1,—1,0), (0,0,2)

( —1, —1,0),(1,—1,0), (0,0,2)

( —1,1,0),( —1, —1,0)(0,0,2)

( —1,1,0),(0,0,—2),( —1, —1,0)

{—1,—1,0), ( —1,1,0),(0,0, —2)
{—1, —1,0), ( —1, 1,0),(0,0, —2)

(2,0,0),(0,2,0),(0,0,2)

(0,—2,0),(2,0,0),(0,0,2)

{2,0,0),(0,2,0),(0,0,2)

(2,0,0),(0,2,0),(0,0,2)

(0,0,2),(1,—1,0),(1,1,0)

(0,0,2),(1,1,0),( —1,1,0)

( —1,1,0),(0,0,2),(1,1,0)

{0,0,2),( I,—1,0),(1,10)

( —1,1,0),(0,0,2),(1,1,0)

(1,1,0),( —1,1,0),(0,0,2)

( —1,1,0),(0,0,2),(1,1,0)

(1,—1,0),(1,1,0),{0,0,2)

( —1,1,0),(0,0,2),(1,1,0)

( —1,—1,0),(1,—1,0),(0,0,2)

(
—1, —1,0), (0,0, —2), ( l, —1,0)

( —1, —1,0), (0,0, —2), ( 1, —1,0)

{0,—2,0), (2,0,0), (0,0, 2)

(1,—1,0), ( —1, —1,0),(0,0, —2)
( —1, l, o),{0,0, —2), (0, —2,0)
( —2, 0,0), (0,2,0), (0,0, —2)

( —1, —1,0), ( —1, 1,0),(0,0, —2)

Origin

(0,0,0)

(0,0,0)

(0,0,0)

(o,o,o)

(0,0,0)

(0,0,0)

(o,o,o)

(0,0,0)

(o,o,o)

(0,0,0)

(0,0,0)

(0,0,0)

(0,0,0)

(0,0,0)

(0,0,0)

(
1 1 1

)27 2) 2

(0,0,0)

(0,0,0)

(0,0,0)

(o,o, —,
'

)

(0,0,0)

{0,0,0)

(0,0,0)

(o,o,o)

(o,o,o)

(0,0,0)

( 2, 0,0)
1 1 3

)

1 1 3)4' 4' 4

(0,0,0)

(0,0,0)

{—2,0,0)
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TABLE II. (Continued).

Ir reps

P4EB X4

P4Xi+

P4Ps

Subgroup

C2

D7

D2h

D2

18

D214

5

D

C2,
C2

D8

C25

C26

C
Cl

17
D2h

17

15
D4h

6D4
13

D2h

D212

16

C22

C2h
6

2

C25

Cl

D5

D2d
4

D3

D4

C'
4

C2

Cl

C2h
6

C19

C26

C21

21C2,
6

C4

C,'

C4

C2

C2

C2h
6

Orbit

Cl, C1

Pl, pl
Pl, P3

Pl, C1

P3,P1

P3,P3
P3, C1
Cl, P1

Cl, P3

Cl, C1

P1,P4

Pl, P5

PI, P11
P 1,Clo
P 1,C12

P3,P1

P3,P1
P3,P3
P3,P3
P3, C1
P3, C1
P3, C2

P3, C3
P3, C8
P3,S1
P3,51

P3,4D1
Cl, P1
Cl, P3

Cl, C1

C1,C2

Cl, C3
Cl, C8
C1,S1

C1,4D1
Pl, P3

Pl, P3
P 1,P12
P 1,P12
P 1,P12
P 1,P12
Pl, C1

Pl, C9

P 1,C9

Pl, C11

Pl, Cl 1

P3,P5

Subspace

1,1

1,1

1,1

13
1,1

1,2

1,1

1,3

1,1

1,1

1,1

1,1

1,5

1,1

11
1,1

1,1

1,1

1,1

11
1,1

1,2

22
2,6

1,3

21

Basis vectors

( —1, 1,0), (0,0, —2), (0, —2,0)

{—1, —1,0), (1,—1,0),{0,0,2)

(0,0,—2), ( —1, —1,0), ( —1, 1,0)

( —1, —1,0), ( —1, 1,0), (0,0, —2)

{0,—2,0), (2,0,0), (0,0,2)

( —1, —1,0), ( —1, 1,0), (0,0, —2)
( —1, 1,0),{0,0, —2), (0, —2, 0)
( —2, 0,0),{0,2,0), (0,0, —2)

(1,—1,O), {—1, —1,0), (o,o, —2)

( —1, 1,0),(0,0, —2), (0, —2,0)

{—2, 0,0), (0, —2, 0), (0,0, 2)

(0, —1, —1),(
—2,0,0), (0, 1, —1)

(2, —2, 0), (
—2, —2, 0), (0,0, —2)

(2, —2, 0), (
—2, —2,0), (0,0, —2)

(0, —2, 0), (0,0, —2), (2, —2,0)

(0,—2,0),{0,0,2),( —2,0,0)

(0,0,—2), (0, —2, 0), ( —2,0,0)
( —2, 0,0), (0, —2, 0), (0,0, 2)

(
—2, 0,0), (0, —2, 0),{0,0,2)

( —2, 0,0), (0, —2, 0), (0,0,2)

( —2, 0,0), (0, —2,0},(0,0, 2)

( —2, 0,0), (0, —2,0), (0,0, 2)
(0, —1, 1),(

—2, 0,0), (0, —1, —1)
(2, —2, 0),{—2, —2,0},(0,0, —2)
(0,0, —2), (0, —2, 0),{—2, 0,0)
(0,0, —2), (0, —2, 0), ( —2,0, —2)
(0, —2,0), (0,0, —2), (2, —2, 0)
(0,0, —2), (0, —2,0), ( —2, 0,0)
( —2, 0,0), (0, —2,0), (0,0, 2)

( —2, 0,0), (0, —2, 0), (0,0,2)

(0,0, —2), (0, —2, 0), ( —2, 0,0)

(0,—1, 1 ), ( —2, 0,0), (0, —1, —1 )

(2, —2,0), ( —2, —2,0), (0,0, —2)
(0,0, —2), (0, —2, 0), ( —2, 0,0)
(0, —2,0), (0,0, —2), (2, —2,0)
(0,0, —2), (0, —2, 0), ( —1,0, 1)

(0,0, —2), (0, —2,0), ( —2, 0,0)

(1,1, —2), (1,—1,0), (0,0, —2}
( —1, 1,0),{0,0,2), (1,1,0)

{—1, —1,0), (0,0,2), ( —1, 1,0)

(
—1, 1, —2), ( —1, —1,0), (

—1, 1,0)
(0,0,—2), (0, —2, 0), ( —1,0, 1)

(0, —1, 1),(0,0, —2), (1,—1,0)
(0,2,0),(0,0,2),{1,—1,0)

(1,1,—2), (1,—1,0), (0,0, —2)

( —1, 1, —2), ( —1, —1,0), ( —1, 1,0)
{—1, 1, —2},( —1, —1,0), ( —1, 1,0}

Origin

(0,—2,0)

1 1 3
)4~ 4' 4

(0,0,0)

(0,0,0)

(0, ——,0)

(o —-' o)

(
1 3 1

)4& 4& 4

(O, 2, 4)

(0,0,0)

(2,0,—1)
(1,0,0)

(0,0,0)

(0,0,0)

(0,0,0)

(0,0,0)

(0,1,0)

(o,o,o)

(0,0,0)

(0,0,0)

(0,0,0)

(0,—1,0)
(0,0,0)

(0,0,0)

1 0 1
)

(0 1 1)

1 0 1)
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TABLE II. (Continued).

Irreps Subgroup

C22
2U

C

C
C3

C,'

C3

C3

C,4

C,'

Orbit

P3,P5

P3, C3

P3, C3
P3, C10

P3, C12
P3., C12
C1,C8

C1,C13

C1,4D 1

Subspace

1,5

2, 1

1,1

1,1

1,9

1,1

Basis vectors

(0,0,2),{—1, —1,0),(1,—1,0)

(
—1, 1, —2), ( —1, —1,0), ( —1, 1,0)

{1, 1, —2), (1,—1,0), (0,0, —2)
(0,0,—2), (0, —2,0), ( —1,0, 1)

(0,—1, 1),(0,0, —2), (1,—1,0)
(0,2,0), (0,0,2), (1,—1,0)
(0,0,—2), (0, —2,0), ( —1,0, 1)

(
—1, 1, —2),{—1, —1,0), ( —1, 1,0)

(0, —1, 1),(0,0, —2), (1,—1,0)

Origin

(0,0,0)
(0 1 1)

(0,0,0)

(0,0,0)

(
1 0 1)

(0,0,0)

TABLE III. Symmetry of distorted phases arising due to octahedral tilts in crystals of K2MgF4 type. Distortions connected with
representations N 1+,P5 are not covered. MA is CH3NH3, EA is C2H5NH3;PA is C3H7NH3.

No.
Tilts

(in layers) Space group

Irreducible
representations
of E» (X) star Examples

10
11
12
13
14
15

19
20
21
22

'Ref. 15.
Ref. 16.

'Ref. 17.
Ref. 18.

I layer
(006)
(006}
{ooe)
(ooe, )

(040)
{@1%20}
(0%0)

{0+0)

(440)

{4CO)
{440)

(N, 4 0)
{e,'4', 0)
(e,'e2'0)

(N, +20}
(owe)
(COB}
(046)

{+,%26)
(owe)

(e,e,e)
{4,e,e)
(4@6)

(N+e)
(ewe)
{eve)
(@+6)

II layer
(ooe)
(006)
(000)

(ooe, )

(0+0)
{e,e 20)

{400)

{400)

(440)

(4 40}
(4%0}

(N2+, 0)
{&1+20)
(@2+,0}
(4 24,0)
(ore)
(a oe)
(+06)

(+q+,6)
(406)

{+2@,e)
{a,e,e)
{eve}

(&+6)
(e ee)
(wee}
(N@e)

6;
18

5

D2h
9

C26

D4h
16

D4h
12

18

D20
2h

C4h

D2h
10

2

C 5

Cl
5

Cl
D 15

5

10

C2h
4

Cl

z
4 &, (X,+)

~7 (X2+ )

w7 (X2+ )

&,+&5 (X3+ +X4+ }

~, (X3+)

~5 (X4+ )

w3 {X3+)

~5 (X4+ }
~36&5 {X3+@X4+ )

&3EB&5 (X3+ EpX4+ )

~, (X, )

v5 (X4+ )

~,e~5er, (X3+ eX4+ +X2+ )

~5 (X4+)
~,e~, (X3+@X2+ )

~5~7 (X4+ +X2+ )

~5+~, (X4+ @X2+ )

~,+~, (X,+ @X2+ )

~,e~, (X,++X2 )

~5W7 (X4+ @X2+ )

~5e~, (X4+ SX2+ )

~, (X3+ @X4+SX2+ )

'Ref. 19.
Ref. 20.

~Ref. 21.

(MA)2MnC14, '
(MA)2CdC14 b

[(MA)zMnC1~, '(MA)zCdC1~"
(EA) MnC1, (PA) MnCl

{PA),CdC1, ,CaYCrO„'

Rb2CdC148

(EA }2MnC14, (PA)2CdCI4'
CaYCrG4

( MA)2MnC14, '( MA )2CdC14
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(X4 ), K, , r (N&+ ), and K,2r (P5) representations. In
Tables I and II we give the subgroup, the orbit, and
domain orientations (i.e., stratum subspace, see Ref. 3 for
more details), the new lattice basis vectors in terms of the
parent conventional basis, and the origin of the subgroup
in terms of the parent converitional basis. The irrep la-
bels in both tables follow the convention of Miller and
Love and we use the space-group settings of Hahn. '

In Table III we list experimentally observed transitions
for the A2BX4 structure. In this table we give the sub-

group, the primitive cell size change, the representation
corresponding to the transition (see Tables I and II), and
in the last column we give the experimentally observed
crystals undergoing the associated transition.

Tables I, II, and III augment the information given in
Refs. 1 —3. Tables I and II, when used with similar tables
in Ref. 3, give the complete listing of tilting modes in the
A2BX4 structure. Table III, when used with a similar
table in Ref. 2, gives the complete correspondence with
the experimentally observed transitions in this structure.
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