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Classification of octahedral tilting phases in the perovskitelike A2BX4 structure
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The possible lower symmetries (subgroups) of the A2BX4 structure (space-group symmetry D4& )

due to rigid octahedral tiltings at phase transitions are investigated. The method for obtaining sub-

groups determined by reducible representations (i.e., coupled order parameters) is described. This
method depends upon subgroup information for irreducible representations (i.e., single uncoupled or-
der parameters). All subgroup symmetries which are allowed by the coupling of two simple octahe-
dral tiltings are listed for this structure.

I. INTRODUCTION

During the last fifteen years a great interest has
developed in perovskites and perovskite-related structures.
Of particular interest has been the description and the
classification of their various phases with the ultimate aim
of clarifying the mechanism for the phase transitions.
The perovskites have the general structure formula ABX3,
space-group symmetry O~, and were shown to undergo
transitions (e.g. , SrTi03, NaNb03) arising from the con-
densation of soft phonon modes from the R and M Bril-
louin zone points of symmetry. ' The dominant mecha-
nism for the transitions was isolated, and the transitions
were described in terms of the tilting of the rigid BX6 oc-
tahedra. ' As the octahedra tilt and distort the original
structure, the symmetry of the structure is changed.
Similarly the mechanism for selected sequences of transi-
tions in the antifluorites [(AzBX6) (Refs. 5 and 6)] as well
in the perovskitelike ABX4 structures ' was identified as
the tilting of rigid octahedral units.

Complex sequences of transitions in the ABX3 struc-
tures can be described by coupling the rigid octahedral
tiltings of more simple (component) distortions. Glazer,
emphasizing this mechanism for transitions in the ABX3
structures, classified the possible displacive distortions
which could arise from the octahedral tiltings and listed
23 lower symmetry space groups. For the ABX3 struc-
tures [Fig. 1(a)] a three-dimensional network of corner-
linked octahedra is defined. Any tilting (and its accom-

panying corner displacements) will demand neighboring
octahedral corner displacements which in many cases in-
volve more than one x-y layer of octahedra. For example
tilting around the y axis automatically doubles the period-
icity the z direction [Fig. 2(a)].

Recently a similar approach was used to classify the se-
quences of transitions' ' which are allowed in the
ABX4 structures of space group symmetry D4„(e.g. ,

RbA1F4, T1A1F4). The ABX4 structures [Fig. 1(b)] have
BX6 octahedra corner linked only in the x-y plane. Suc-
cessive layers along the z axis are positioned directly
above one another. In contrast to the ABX3 structures
the tilting around the y axis does not necessarily double
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FIG. 1. Structures of (a) ABX3 type, (b) ABX4 type, and (c)
A2BX4 type. The BX6 octahedra are the hatched units. The B
atom is assumed to be at the center of the octahedron and an X
atom at each vertex. The solid circles are the A cations.

FIG. 2. (a) Titling of octahedra (around y in axis) in ABX3
structure. The lattice spacing (along z) of Fig. 1(a) is no longer
the repeat distance. The smallest cell change would result in a
doubling of the periodicity of the structure along z. (b) Titling of
the octahedra (around y axis) in ABX4 structure which does not
double the periodicity along z since the octahedra are not top-
bottom linked between layers.
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the periodicity along the z axis [Fig. 2(b)], because the
ochtahedral are not top-bottom linked between two layers.
A very thorough analysis of the subgroups of D4~ due to
coupled octahedral tiltings was performed by Deblieck
et al. ' but they made no connection to the mode symme-
try (i.e., to the space-group representations) which deter-
mine the new space group. Aleksandrov et al. " also
studied transitions in D4& due to coupled tiltings and they

did make the association to irreducible representations of
D4~. However they did not consider the complete variety
of couplings, as was easily seen by comparing their listing
of subgroups with those of Deblieck et al. ' In order that
the complete list be given of the possible subgroup sym-
metries for D4& together with their associated symmetry
labeling, we also analyzed the subgroup phases deter-
mined by coupled octahedral tiltings in D41h 12

TABLE I. Irreducible representations allowing octahedral tiltings in the A&BX4 structure are listed.
The subgroups resulting from the tilting are shown along with the conventional "basis" vectors and ori-
gins (in terms of the original conventional vectors of D4q ). The order parameter orbit is also indicated
for each subgroup.

Irrep

X3+

X4+

Subgroup

D 2g (64)

D4g (138)

D,",(56)

D' (66)

D4", (134)

D,'„(48)

C,', {12)
D,' (65)

C,', (13)

co~ {10)
C'i (2)

D4p (141)
D4'~(139)

D2g (74)
Dpg(71)

C2g (15)

Cpp, (12)

C2p, (12)

D2g(122)

D2g {121)

D2s (74)

(72)

D ~4 (70)

D,",(69)

S4(82)
C (46)

C&, (43)
C2„(42)

D9 (24)

D ~g(23)

D ~~(22)

C2p ( Is)

Cpg (12)

C3(s)

Orbit

P3
PI

P3

Pl
CI

ps
PI
P11

C3

C12

P4
P3

C2

CI

C10

4DI

PI
P4

Ps

P12

P3

PI I

C13

C1
CIO

CI I

C9

C12

4D I

Basis vectors

(1,1,0),(0,0, 1),(1,—1,0)

( I, 1,0),( —I, 1,0),(0,0, I )

( I, 1,0),( —I, 1,0),(0,0, I )

(0,0, 1),(1,1,0),( —I, 1,0)

( I, 1,0),( —I, 1,0),(0,0, 1)

(1,1,0),( —1,1,0),(0,0, I )

(0, 1,—I),( —1,0,0),(0, 1,1)

(0,0,2),(0,—2,0),(1,0,0)

(0,0, —4)(2,2,0), —', ——', —' )

{0,—1,—1),(1,0,0),(0, —1,1)

{2,0,0),(0,2,0),(0,0,2)

(2,0,0),(0,2,0),(0,0,2)

(2,0,0),(0,2,0),(0,0,2)

(2,0,0),(0,2,0),(0,0,2)

(0,0,4), ( —2, —2, 0), ( q, —2, —I )

(0,0,4), ( —2, —2, 0), ( —', ——', —I )

(2,0,2),(0,—2,0),(0,0, —2)

( —1, 1, 1),(1,—1, 1),(1,1, —I)

( I, —1,0),(1,1,0),(0,0,2)

( I,—1,0),(1,1,0),(0,0,2)

(0,0,2),(1,—1,0),{I, 1,0)

(0,0,2),(1,—1,0),(1,1,0)

(0,0,2),(2,0,0),(0,2,0)

(2,0,0),(0,2,0),(0,0,2)

( I,—1,0),(1,1,0),(0,0,2)

( I, —1,0),(1,1,0),(0,0,2)

(2,0,0),(0,2,0),(0,0,2)

(2,0,0),(0,2,0),(0,0,2)

( I, 1,0),( —I, 1,0),(0,0,2)

( I, 1,0),( —I, 1,0),(0,0,2)

(0, —2,0), (2,0,0), (0,0, 2)

(2„0,0),(0,0,—2), ( —1,1,0)

(2,0,0),(0,0,—2),( —I, 1,0)

(2,0,0),(0,0,—2),( —I, 1,0)

Origin

(0,0,0)

(0, —I, ——')
(0,0,0)

1 1 1
( ——————}27 27 2

(0,0,0)

(0,0,0)

(0,0,0}

(0,0,0)

(0,0,—1)

(o,o,o)

(0,0,0)

(0,0,0)

7 5 5
( ——————)4' 4' 4

(0, —,', 0)

(o, —,', o)
(o, —,',o)

( —', o,o)

(0, -', 0)
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A &BX4 structures (e.g. , KzMgF4, Rb2CdClq) with
space-group symmetry D&q [Fig. 1(c)] are similar to the
ABX4 structures in that they consist of layers of octahe-
dral units separated by the A cation. However the suc-
cessive layers of the octahedra are shifted by one half the
conventional cell diagonal.

In spite of detailed studies of these structures' ' no
observed transitions connected with the octahedral tiltings
had been observed until recently. From EPR data a tran-
sition in Rb2CdC14 near 133 K has been found which is
attributed to the coupled octahedral tiltings arising from
X-point distortions. '

With the expectation that other tilting modes may be
found in the A2BX4 structures, in this paper we classify
the possible subgroups of D4& which arise from octahedral
tiltings. The procedure outlined in Ref. 12 will be used.
This approach relies heavily upon the detailed results of
subgroup listings for irreducible representations of D4h.
Thus in Sec. II we brieAy discuss our method of obtaining
all subgroup symmetries for the irreducible representa-
tions (irreps). The results for the specific case of D4h are
presented in Table I. In addition we show an example of
a simple octahedral tilting for each irrep. In Sec. III we
outline the method for obtaining subgroups due to cou-
pled tiltings. In Table II we then list all subgroups which
may be obtained by distortions of D4h for bicoupled (two
irrep) octahedral tiltings.

II. ISOTROPY SUBGROUPS DETERMINED
BY IRREDUCIBLE REPRESENTATIONS

The group-subgroup classification of continuous phase
transitions was initiated by Landau many years ago. '

Since that time his approach has been used to study tran-
sitions in a wide variety of physical systems. The method
of selection of subgroups proposed by Landau was by
minimization of the lowest-order expansion of the free en-
ergy (up to quartic order) in terms of the order parameter.
The order parameter represents the physical property of
the system that changes as the system goes through the
transition. Thus it denotes the "distortion" of the crystal
taking place at the transition. For a system with a mul-
ticornponent order parameter and multiple independent
quartic invariants, the minimization process becomes ex-
tremely dificult and numerical computer methods must
be used. '8

Emphasis on group-theoretical ideas have allowed a
more systematic approach to the classification of possible
space-group changes. The order parameter g is taken as a
vector in the carrier space of the representation of Go.
Stability of the system with respect to homogeneous and
inhomogeneous fluctuations can be implemented in terms
of symmetrized (Landau condition' ''

) and antisym-
metrized (Lifshitz condition' ) products of the irrep.
Rather than selecting subgroups through minimization,
the subgroups are selected by seeking the subgroup of Go
which leaves g invariant. The free-energy expansion is
not needed and the possible subgroups are dependent only
upon the choice of irrep. To obtain the maximal sub-
group of Go leaving a given g invariant (an isotropy sub-

group), the subduction ' and chain subduction criteria

are imposed. As g varies throughout the representation
space all possible isotropy subgroups of Go are obtained
corresponding to the given irrep. We have used essential-
ly this group theoretical procedure to obtain isotropy sub-
groups (ISG's) of all 230 space groups for all irreps aris-
ing from k points of symmetry.

The details of the method have been discussed recent-
ly, ' and we refer the reader to those discussions. How-
ever we do want to point out that, for an irrep D'*"' ' of
the space group Go, the representation determines a set of
distinct matrices (this set is called the image). The repre-
sentation is a map from Go onto the image, and each ma-
trix is an operator in the carrier space E of the representa-
tion. For a given g in E the complete set of matrices
leaving g fixed (the image isotropy subgroup) then defines
the ISG of Go by the inverse map. The same image, up to
equivalence, may occur for different representations and
for different space groups. The image isotropy subgroups
will be the same wherever that image occurs even though
the ISG's of the space groups will differ due to the variety
of representations being considered.

For example the C&, image is a set of eight matrices
which act in a two-dimensional carrier space E. For a
particular choice of axes (see Fig. 3) the eight matrices are
generated by the matrices ad, ——(, o') and C4, ——(, o').
This image appears often in the listing of representations
of the 230 space groups and in particular is an image of
interest for D4&. For this image the subgroup m(o. d),
consisting of the identity matrix and o.d, , leaves the vector
g"' in Fig. 3 fixed. The action of the image group on g"'
yields three additional vectors obtained by 90' rotations of

This family of vectors (points in the vector space of
Fig. 3) is called the orbit of g"' and each vector is left
fixed by a subgroup of the image group conjugate to
m(crd). This particular orbit is P3 in our notation and
the points of the orbit are numbered one through four.

C1

//foal"

P3

FIG. 3. Carrier space E for the C4., image. The vector g"' is
invariant under the image subgroup m (o.d ). The orbit of g"' is
obtained by 90' rotations and is denoted P3. A P1 orbit is ob-
tained by 90 rotations of a vector along the a axis. A C1 orbit is
obtained from a general vector and is left invariant under the im-
age subgroup consisting of the identity. Every vector in the re-
gion R has the same image symmetry group.
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TABLE II. The subgroups obtained from reducible representations of D4h are listed. The irreps be-

ing coupled are shown as well as the order parameter orbits and stratum subspaces. The subgroup con-
ventional basis vectors and origin are expressed in terms of the original conventional basis vectors of
D4

Ir reps

x+q x+

Subgroup

21

4

C2
7

C2

Orbit

Pl, P1

Pl, Pl
P3,P3

P3,P3
Cl, C1

1,2

1,2

1,1

(0,—2,0),(2,0,0),(0,0, 1)

( —1, —1,0), ( —1, 1,0),{0,0, —1)

(1,1,0),(0,0, 1),(0, —1,0)

{—1, —1,0), (0,0, —1),(1,—1,0)
( —1, 1,0), (0,0, —1),(0, —2, 0)

Origin

(0,0,0)

(0,0,0)

x+ ex+ D26
2h

C4J1
6

D2h
28

C23

C23

C2h
6

Cl

Pl, P1
P 1,P4

Pl, C2

PE,SE

P3, C8

Cl, C2
C 1,4D1

1,3

1,2

(0, —2,0),(0,0,2), ( —2,0,0)

( —2,0,0),(0,2,0),(0,0,—2)

(0,—2,0),(2,0,0),(0,0,2)

( —2,0,2),(0,—2,0),(0,0,2)

(0,0, —4), ( —2, —2,0), ( ——', -', 1)

( —2, 2, 0), (0,0, —2), (0, —2, 0)
( —1, —1, 1),( —1, 1, —1),(1,—1, —1)

(0,0,0}

(0,0,0)

(0,0,0)

(0,0,0)

X+3 e Pg D2h
21

22

D2d3

D
g1

11
C2~

13C2,
D6

6

D

D2h
11

6
C2u

C2v

C2

D3

c,'

Pl, P11

Pl, P11
P 1,P4

Pl, P4

PE, C2

P 1,C10

P1,C10

Pl, C8

P3,P5
P3,P5
P3, C3

P3,P12

P3,P12

P3, C13

P3, C13

P3,C9

C1,C12
Cl, C11

C 1,4D1

1,2

1,3

1,3

1,1

1,2

1, 1

1,2

1,2

(0, —2, 0), (2,0,0), (0,0, 2)

(0, —2,0),(2,0,0),(0,0,2)

( —1, —1,0), (1,—1,0), (0,0,2)

( —1, —1,0), (1,—1,0), (0,0,2)

( —1, —1,0), ( —1, 1,0), (0,0, —2)

(0,—2,0),(2,0,0),(0,0,2)

(0,—2,0),(2,0,0),(0,0,2}

(0, —2,0),(2,0,0),(0,0,2)

(0,0, —2),(1,—1,0),( —1,—1,0)

( —I, —1,0), (0,0, —2), (1,—1,0)
( —1, —1,0), (0,0, —2), (1,—1,0)

(0,0, —2), (1,—1,0), ( —1, —1,0)

( —1, —1,0), (0,0, —2), (1,—1,0)

(1,—1,0), ( —1, —1,0), (0,0, —2)

( —1, —1,0), ( —1, 1,0), (0,0, —2)

(0, —2, 0), (0,0, —2), (1,—1,0)

( —1, 1,0), (0,0, —2), (0, —2, 0)
( —1, —1,0), ( —1, 1,0), (0,0, —2)

( —1, 1,0), (0,0, —2), (0, —2, 0)

(0,0, —')
(0,o, —,

'
)

(0,0,0)

(0,0,0)

(0,0, —)

(0,0, —')
(0,0, —)

(0,0,0)

X4+ &+, D26
2h

D419

D2h
28

C2h
3

C23

D24
2h

C2h
6

6

Cl

Pl, PE

P 1,P4

Pl, C2

PE,SE

P3,P11

P3, C8

Cl, P4

Cl, C2
C 1,C 10

C1,4D1

1,3

1,1

1,3

1,3

(0, —2, 0), (0,0,2), ( —2, 0,0)
(0, —2, 0), ( —2, 0,0), (0,0, —2)

(0, —2, 0), (2,0,0), (0,0,2)

( —2,0,2), (0, —2,0), (0,0,2)

(0~0%4)%( 2%290)~( 4 9 4 7 2 )

(0,0,4), ( —2,2,0),( ——', ——', 1)

( —2, —2,0), (2, —2, 0),(0,0,2)

( —2, 2,0), (0,0, —2), (0, —2, 0)
(0,0, —4), ( —2, —2, 0), ( —2, 2, 1)

( —l, —1, 1),( —1, 1, —1),(1,—1, —1)

(0,0,0)

(0,0,0)

{0,0,0)

(0,0,0)

(0,0,0)
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TABLE II.

Irreps

X4+ @P5

%+1 P5

Subgroup

D2h
21

1

D2d2

S4'
llC2,
13C2,

D6

D2h
7

6

D2

D2h
3

4C2,
6C2,

C2h

C2h
Dl

C'

D 19

D20
2h

C2h
3

C26

C2v

D6

C

D2h
17

D2h

D5

C12

D2h
13

D2h

C2h
2

C2h
5

7C2,
D3

C2

C2

C2h
5

C2

C2

Cl

D2d5

D2d8

Orbit

Pl, P11

Pl, P 11

Pl, P4

P 1,P4

Pl, C2
Pl, C10
P 1,C 10

Pl, C8

P3,P5
P3,P5
P3, C3

P3,P12

P3,P12

P3, C13

P3, C13

P3, C9

C 1,C12
Cl, cl 1

C1,4D 1

Pl, P11

Pl, P11

Pl, C12

P 1,C12

P1,C10

Pl, C8

P1,4D 1

P3,P5

P3,P5

P3, C3

P3, C13

C 1,P11
C 1,P11

C1,C12
C1,C12

C 1,C 10

Cl, C8

C1,4D 1

PS,P3

PS,P3

PS, Cl
PS, C1

PS, C9

P4,P4

P4, P4

Subspace

1,2

1,3

1,3

1,1

1,2

1,1

1,2

1,2

1,9

1,5

1,1

1,9

1,2

3, 1

1,3

Basis

(0, —2,0), (2,0,0), (0,0,2)

(0, —2,0), (2,0,0), (0,0, 2)

( —1, —1,0),(1,—1,0), (0,0, 2)

( —1, —1,0), (1,—1,0), (0,0,2)

( —1, —1,0), ( —1, 1,0),(0,0, —2)

(0, —2, 0), (2,0,0), (0,0,2)

(0, —2,0), (2,0,0), (0,0,2)

(0, —2,0), (2,0,0),(0,0,2)

{—1, 1,0), (0,0, —2), ( —1, —1,0)
(0,0, —2), ( —1, —1,0), ( —1, 1,0)
( —1, 1,0), (0,0, —2), ( —1, —1,0)

(0,0, —2), (1,—1,0), ( —1, —1,0)

(0,0, —2), ( —1, —1,0), ( —1, 1,0)

(1,—1,0), ( —1, —1,0),(0,0, —2)

( —1, —1,0), ( —1, 1,0), (0,0, —2)

(0, —2,0), (0,0, —2), (1,—1,0)

( —1, 1,0), (0,0, —2), (0, —2, 0)
(0,0, —2), (1,—1,0), ( —1, —1,0)

( —1, 1,0), (0,0, —2), (0, —2, 0)

(0,0, —2), (0, —2,0), ( —2,0,0)

(0,0, —2), (0, —2, 0), ( —2, 0,0)

(0, —2, 0), (0,0, —2), (2, —2,0)

(0, —2,0), (0,0, —2), (2, —2, 0)

{—2, 0,0), (0, —2, 0), (0,0,2)

{0,0, —2), (0, —2, 0), ( —2, 0,0)

(0, —2,0), (0,0, —2), (2, —2,0)

(2, —2,0), ( —2, —2,0), (0,0, —2)

(2, —2, 0), ( —2, —2, 0), (0,0, —2)

( —2, —2,0), ( —2, 2, 0), (0,0, —2)

(2, —2,0), ( —2, —2,0), (0,0, —2)

(0, —2,0), (0,0, 2), ( —2, 0,0)

(0, —2,0), (0,0,2), ( —2,0,0)

( —2, 2,0), (0,0, —2), (0, —2, 0)
(0, —2,0),{0,0, —2), (2, —2,0)

(0, —2,0), ( —2, 0,0),{0,0, —2)

(0,0, —2), (0, —2,0), ( —2, 0,0)

( —2, 2,0), (0,0, —2), (0, —2, 0)
(0, —1, —1),( —2, 0,0), (0, 1, —1)

(0, —1, —1),( —2, 0,0), (0, 1, —1)

(0, —1, —1),( —2, 0,0), (0, 1, —1)

(2,0, —4), (0,2, 0), ( —1,0,3)

(0, —1, —1),(0, 1, —1),(2, —2, 0)

(2,0,0),(0,—2,0),(0,0,—2)

(2,0,0),(0, —2,0),(0,0,—2)

Origin

(o,o, 4)
(0,0, —)

(0,0,0)

(0,0,0)

( ————)
1 1 ll

16 ' 16 ' 16

(0,0, —)

(0,0, —)

(0,0,0)

(o,o,o)

(0, —,0)

(0,0, —')
(0,0,0)

1 13 1
)16 7 16 ' 16

( ————)
I 13 1

16 ' 16 ' 16

( ————)
5 5 5
16 ' 16 ' 16
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TABLE II. (Continued).

Irreps Subgroup

S4'

D6

C 1

C22

c,'

Cl

c,'
C2

C,'

C23

C2~
6

5

D2~
6

C24

1
C2U

10C2.
D

C2

c,-'

C

C26

C 3

C

c,4

C,
C22

4

C25

C21

C,'

C2

C2

c,'
c,'
Cl

Orbit

P4, C2

P4, C11

C3,P11
C3,P11
C3, C12
C3, C 10

C3, C8
C3, C8
C3,4D1
P11,P12
P11,P11

C2, P11
C2,P11
C2, C12
C2, C10

C2, C10

C2, C8

C2, 4D 1

C12,C9

C10,C11

C8,P5

C8,P5
C8, C3

C8, C13

C8, C13
S1,P11
S1,P11
S1,P11

S1,P11

S1,C10

S1,C10
Sl, C8

S1,C8

4D1, C12
4D1,4D 1

Subspace

1,1

1,2

1,1

1,1

1,1

1,3

1, 1

1,1

1,2

1,1

1,2

1,1

1,1

1,3

1,2

1,1

1,2

1,1

1,2

1,3

1,4

1,3

1,1

1,3

Basis

(0,0, —2), (0, —2, 0), (

(0,0, —2), (0, —2, 0), (

(0,0, —2), (0, —2, 0), (

—2, 0, —2)
—2, 0,0)
—2, 0,0)

(0, —
(0, —

2, 0), (0,0, —2), (2, —2, 0)
2, 0), (0,0, —2), (2, —2, 0)

(0, —2, 0), ( —2, 0,0), (0,0, —2)

( —2, —2, 0), ( —2, 2, 0), (0,0, —2)

(0, —1, 1), ( —2, 0,0), (0, —1, —1)
(0, —1, 1),( —2, 0,0), (0, —1, —1)
(0, —1, —1),(0, 1, —1),(2, —2, 0)
(0, —1, 1),( —2, 0,0), (0, —1, —1)
(0, —1, 1),( —2, 0,0), (0, —1, —1)
(0, —1, 1),( —2, 0,0), (0, —1, —1)

(0, —1, —1},(0, 1, —1),(2, —2,0)
(2, —2, 0), ( —2, —2,0), (0,0, —2)
(2, —2,0), ( —2, —2,0), (0,0, —2)

(0, —2,0), ( —2, 0,0), (0,0, —2)
(0, —2,0), ( —2, 0,0), (0,0, —2)
( —2, 2,0), (0,0, —2), (0, —2, 0)
( —2, 0,0), (0, —2, 0), (0,0, 2)

( —2, 0,0), (0, —2, 0), (0,0, 2)

(0,0,2), ( —2, 0,0), (0, —2, 0)

( —2, 2,0), (0,0, —2), (0, —2, 0)

(0, —2, 0), (0,0, —2), (2, —2, 0)

(2, —2,0), ( —2, —2, 0), (0,0, —2)

(2, —2,0), ( —2, —2, 0), (0,0, —2)

(2, —2,0), ( —2, —2, 0), (0,0, —2)

(2, —2,0), ( —2, —2, 0), (0,0, —2)

(2, —2, 0), ( —2, —2, 0), (0,0, —2)

(2, —2, 0), ( —2, —2, 0), (0,0, —2)
(0,0, —2), (0, —2, 0), ( —2, 0,0)
(0,0, —2), (0, —2, 0), ( —2, 0, —2)
(0,0, —2), (0, —2, 0), ( —2, 0, —2)

(0,0, —2), (0, —2, 0), ( —2, 0,0)

(0,0, —2), (0, —2, 0), ( —2, 0,0)

Origin

( ————)
5 9 5
16 ' 16 7 16

(0,0,0)

(0,0,0)

(0,0,0)

(0,0,0)

(0,0,0)

(0,0,0)

(0,0,0)

(0,0,0)

(0,0,0)

(0,0,0)

(
5 5 9

)16 7 16 7 16

(1 1 1)4' 4' 4

(o,o,o)

(0,0,0)

(0,0,0)

(0,0,0)

(0, —,0)

(o,o,o)

(0,0,0)

(0,0, —')
(0,0,0)

(0,0,0)

Notice that a vector of arbitrary length in the same
direction as g'" will have the same image isotropy sub-
group. The same class of conjugate image subgroups is
then defined for any orbit point of this subspace. This
subspace together with the three subspaces obtained by
the group action make up a stratum. In a similar fashion
other sets of invariant subspaces can be connected by con-
jugacy and they correspond to classes of conjugate image
subgroups. Each stratum defines a class of image isotropy
subgroups and, by the inverse map of the representation, a
conjugacy class of ISG's of the space group Go.

There are three distinct orbit types (strata) for C4, (be-

sides the stratum consisting of the point at the origin).
One stratum corresponds to the P3 orbit structure. An
orbit corresponding to the image subgroup m (o „) we
denote Pl (see Fig. 3), and gives another stratum of E.
An orbit for the subgroup consisting just of the identity is
denoted C1 and gives the third stratum of E. Since any
vector in a stratum subspace has the same image isotropy
subgroup, any vector in region R of Fig. 3 (a stratum sub-
space of Cl) will have the image isotropy subgroup con-
sisting of the identity.

The above separation into strata has physical relevance
to the possible symmetry changes which are possible at
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phase transitions for a solid of space group symmetry Go.
At the transition the order parameter q will appear linear-
ly in some physical quantity (e.g. , particle density, or
charge density, or dipole moment, etc.) and the new sym-
metry is the isotropy subgroup of Go which leaves q in-
variant. As the parameters of the system are varied (pres-
sure, temperature, etc. ) the value of the order parameter
may vary. When it remains within a specific stratum sub-
space no symmetry change takes place and corresponding-
ly no phase transition takes place. Only when the order
parameter passes from one stratum subspace to another
(for example in going from the stratum containing the ori-
gin to a nonzero value of r/) will there be a symmetry
change and a phase transition. At a phase transition it
often happens that local inhomogeneities or fluctuations
will determine which member of the orbit is selected.
Different members of the same orbit will correspond to
different domains of the same lower symmetry phase, i.e.,
to different orientations of the order parameter and to the
corresponding conjugate symmetries. The entire conjuga-
cy class characterizes a single phase transition. Each im-
age is analyzed in a similar manner, the set of all orbits
being broken down into its component strata. Each orbit
corresponds to a single transition and the members of
each orbit denote the subspace orientations or domains of
the lower symmetry phase.

In Table I, we list the ISG's of D 4h for each irrep
which allows octahedral tilting distortions. By octahedral
tilting, we mean that the angles and distances between
atoms in the octahedron do not change to first order in
the displacements. We obtained the atomic displacements
of the possible distortions allowed by each irrep of D4~
using projection operator techniques and retained only
those compatible with octahedral tilting. In Fig. 4 we
show an example of the octahedral tilting distortions for
each irrep. Each figure represents four conventional unit
cells in the x-y plane. Each dot represents the center of
mass of an octahedral unit. The dots labeled —,

' lie a dis-
tance —,'c above the plane shown. The distortions deter-
mined by the X+3 and X4+ irreps do not cause cell dou-
bling in the z direction. Those determined by N& and P5
do, however, and thus x-y planes at both z =0 and z = —,'c
are shown.

The arrows represent a tilted octahedral unit. For ex-
ample, an arrow in the +x direction means that the atom
at (0,0~) moves in the +x direction, the atom at (0,0~)
moves in the —x direction, the atom at ( —,', 0, 0) moves in
the —z direction, the atom at ( —,', 0,0) moves in the +z
direction, and the atoms at (0, —,', 0) and (0, —,',0) do not
move at all. This particular example is a rotation of the
octahedral unit about the y axis.

Not all independent modes for each irrep are shown in
the figure, but the other modes can be obtained by sym-
metry. Note that we only found modes where the octahe-
dral units rotate about the x or y axis. We found no
modes where the octahedral units rotate about the z axis,
in contrast to the ABX3 and ABX4 structures. The irrep
labels in Table I follow the convention of Miller and
Love. We use the space-group settings of Hahn. The
basis vectors and origin of each subgroup is given in terms

1/2 " 1/2 1/2 1/2

X+
1r 1/2 1/2 1/2

1l——~l

1/2 1/2 1/2

1/2 'r 1/2 1/2

Z=C

Il————Hl

1/2 r 1/2 1/2 1/2

P 5 Il—
1/2 1/2 1/2

Z=-O 2=C

FIG. 4. Examples of octahedral tilting allowed by irreducible
representations of interest. Arrows indicate the displacement
directions of the top vertex of the rigid octahedral units. Each
dot represents the center of mass of the octahedral unit. The
dots labeled

~
lie a distance zc above the plane shown. Not all

independent modes for each irrep are shown but other modes
can be obtained by symmetry. See text for more details.

of the basis vectors of D4h. (Note that conventional basis
vectors are used and they are therefore nonprimitive for
the case of D4h and other centered lattices. )

III. ISOTROPY SUBGROUPS
OF REDUCIBLE REPRESENTATIONS

To obtain ISG's for a reducible representation we select
a vector from the reducible carrier space with nonzero
components in each of the irreducible subspaces. Thus if
g' ' is a vector from the irreducible carrier space E' '

(with subgroup symmetry G ) and g'~' is a vector from
the irreducible carrier E'~' (with subgroup symmetry G~)
then the subgroup corresponding to g' '63('~' in the re-
ducible carrier space E' 'E'~' will be the elements of Go
which simultaneously leave g' ' and g'~' fixed, i.e., the in-
tersection of the groups G' ' and G'~'. Every vector of
the same stratum subspace determines the same isotropy
subgroup. However, distinct subspaces of the same stra-
tum yield conjugate subgroups of Go and therefore may
give distinct intersections for G ' ' and G '~'. Thus to ob-
tain all isotropy subgroups for reducible representations
(RISG's), vectors from all strata as well as all stratum
subspaces must be considered for both g and g. This in-
tersection process is most simply performed by computer
methods using the results obtained earlier for each irrep.

In Table II we list all RISG's due to the direct sum of
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any two of the irreps listed in Table I. As mentioned
above the complete variety of stratum subspaces is to be
considered in the intersection process. As a specific ex-
ample, the intersection of Dqt, (an ISG of X3 ) with D2t,
(an ISG of X~ ) yields the isotropy subgroup Czt, for the
reducible representation X+3 &X4+ (see Table II). The in-
tersection of D2t, with I C2

~ 000 ID P I C2
yields D2&, a»sotropy subgroup distinct from C».
IC2„~ 000IDzt, t Cz 000I ' is an ISG conjugate to D2t,
and arises from a different subspace of the same stratum.
The column labeled "Subspaces" in Table II indicates
which ISG's are used in the intersection. Subspace 1 al-
ways refers to the ISG given in Table I. The numbering
of the other subspaces are our own arbitrary numbering
and simply refers to some ISG conjugate to the one given
in Table I.

The labeling of the orbit (Pl, P3, Cl, etc. ) follows a
convention first introduced in Ref. (18). Note that the ir-
reps L+3 and L4+ both yield the C4, image discussed
above. As we can see in Table I, there are three isotropy
subgroups (labeled Pl, P3, Cl) for each of these two ir-
reps. They correspond to the three strata shown in Fig. 3.
The directions of g for orbits of X+& and P5 can be ob-
tained in a manner similar to those for C4, .

We have also imposed a subduction criterion in the list-
ing of Table II. This criterion selects the maximum stra-
tum dimension yielding a given RISG. For example con-
sider the subgroup obtained from peg where g is a vector
of irrep X+3, orbit P3, and subspace 1 and g is a vector of
irrep L+4, orbit P1, and subspace 1. We will use the nota-

tion (X3, P3, 1)e(X4,P1,1), for example, for such a selec-
tion. The subgroup which results is Cz~. The same sub-
group is obtained from coupling the higher dimensional
stratum (X+3,C1,1) with the higher dimensional stratum
of (X4+,Cl, 1). Thus the peg order parameter of
(X3,P3, 1 )e (X4,P1,1) is simply a special case of the more
general sum (Xq, C1,1)e(X4,C1,1), i.e., the parameters
of P3 and P1 are special directions of the larger subspaces
of Cl and C1, respectively, in the reducible carrier space.
Thus only the more general sum result is given in Table
II.

IV. CONCLUSION

Based upon experience with perovskite-related struc-
tures, it is to be expected that additional transitions in the
A2BX4 structure will be found which result from octahe-
dral tilting. In many real systems the description of the
phase transitions must be given in terms of coupled order
parameters (reducible representations). The present work
classifies all transitions obtainable by bicoupled octahedra
tilting parameters and is intended to be a practical and
useful guide to those investigating the D4& lower symme-
try phases.
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