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Two tables are presented which result from the symmetry analysis of the microstructure, i.e.,
atomic site locations, for a system with space-group symmetry R 3c (D 3d ). The first table contains in-
formation about transition order parameters. Representations, allowed subgroup symmetries, Landau
and Lifshitz frequencies, changes in primitive-cell size, lattice relationships, etc. , are listed. The
second table gives the listing of the frequencies of subduction by the representation of the space group
R3c for the representations of each site point group. After an explanation of the tables, examples are
presented which show how the tables are used. Examples include the classification of lattice and
magnetic modes, the testing of the tensor field criterion for phase transitions, and the determination
of nuclear quadrupole resonance line splitting at phase transitions.

I. INTRODUCTION

The determination of the space-group symmetry Go of
a crystalline solid conveys a certain level of information
about that structure. However in many investigations
more detailed microscopic symmetry information is need-
ed. For example, in vibrational considerations the modes
are classified' by selecting linear combinations of atomic
displacements which transform according to an irreduc-
ible representation (irrep) of Go. This selection depends
upon the number and locations of the atoms within the
unit cell. Similarly, when magnetic structures are ana-
lyzed, linear combinations of the atomic spins (magnetic
moments) are selected and classified according to the ir-
reps of Go. ' As with the vibrational modes, the allowed
magnetic modes also depend upon the location of the
magnetic atoms within the unit cell.

In a slightly different context, the Landau theory of
displacive phase transitions interprets a phase transition as
taking place due to the growth of a particular crystal dis-
placement. The transformation properties of the displace-
ment must be associated with the irrep inducing the tran-
sition. Thus a linear combination of atomic displacements
at diFerent sites (the distortion) must be such that it trans-
forms like a vector of this irrep. For order-disorder tran-
sitions, the distortion does not result from atomic dis-
placements but from a microscopic probability density
change. Again, the density change must transform as the
irrep inducing the transition.

The nuclear quadrupole resonance (NQR) frequency is
very sensitive to small differences in local Geld gradients,
and the nuclear spins of a particular species will have
well-separated resonance frequencies if they occupy ine-
quivalent sites. For a given structure, the resonant atoms
will be in a known site (and thus all equivalent sites). If
the structure undergoes a phase transition, previously
equivalent sites may become inequivalent in the new
lower-symmetry phase. Since the sites are now ine-
quivalent, line splitting will result, and the number of
lines is equal to the number of inequivalent sites occupied

by the resonant atoms. Thus NQR becomes an important
experimental method in analyzing phase transitions. '

Recently, Kovalev emphasized the importance of com-
piling two lists which would contain sufficient information
to exhaustively account for the microstructure and transi-
tions of a given space group. One list would indicate
transition subgroup symmetries while the other would in-
dicate site-group subduction frequencies of the space-
group irreps. Here we present two tables for the space
group R3c. The table of subgroups (Table I) contains
more information than the list suggested by Kovalev. In-
formation of irreps and subgroups, as well as Landau and
Lifshitz frequencies, new primitive-cell size, lattice rela-
tionships, and irrep subduction frequencies are given.
The additional information is extremely important for
practical analysis of group-subgroup relationships. The
second table (Table II) is the listing of site group subduc-
tion frequencies and is essentially the same as that dis-
cussed by Kovalev. In Sec. II the method is brieAy re-
viewed by which the subgroup table is obtained. The re-
sulting table is also explained. In Sec. III induced repre-
sentations of space groups are described and the compila-
tion of the second table is explained. In Sec. IV examples
of how to use the two tables are presented. Although
there are other situations where the tables are extremely
useful (e.g. , Raman and infrared activity, Iahn-Teller in-
stabilities, and band representations), only the examples
mentioned above will be explicitly given. These examples
give ample evidence of the usefulness of the tables.

II. ISOTROPY SUBGROUPS
OF SPACE GROUPS

The symmetry change which accompanies transitions
between crystalline phases has been a subject of much
study, both experimentally and theoretically. These stud-
ies are greatly facilitated by a knowledge of the subgroups
of the 230 crystallographic space groups. Most existing
tables of subgroups ' are not very useful for this pur-
pose. They do not provide the space-group representation
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which relates the symmetry change to the physical distor-
tion of the crystal. Their approach is based on a
mathematical selection without reference to the physical
transitions which the symmetry changes represent.

A more useful approach is to first consider the types of
possible physical distortions in a crystal and then find the
corresponding subgroups. The distortions are classified
according to representations of the parent space group Gp.
We write a general distortion bp(r) as

n

hp(r)=- g tl, g;(r),
i =1

where P;(r) are basis functions of an n-dimensional repre-
sentation of Gp. By a slight extension, particle and/or
magnetic moment densities can be included. The symme-
try of the distortion is determined by the coe%cients g;
which form an n-dimensional vector g called the order
parameter. The subgroup G which results from this dis-
tortion consists of all elements g E Gp which leave the dis-
tortion invariant. Such a subgroup is called an isotropy
subgroup.

By considering all possible distortions of the form given
in Eq. (1) (or, equivalently, all possible directions of q),
one can obtain all of the distinct isotropy subgroups asso-
ciated with the representation. The details of this pro-
cedure have been given in a series of publications by
Hatch and Stokes' ' and will not be given here.

In Table I, we list the isotropy subgroups of R3c for ir-
reps at k points of symmetry. The space-group settings
given in Ref. 13 are used. For the monoclinic space
groups, the setting with "unique axis b, cell 1" is used.
In the trigonal system, the hexagonal axes are used.
These settings are the same as those given in the older edi-
tion, ' except for the centered monoclinic space groups.

The irreps are labeled using the convention of Miller
and Love. Some care must be taken in identifying ele-
ments of R 3c in Miller and Love with elements of R 3c in
Ref. 13~ Miller and Love use the "reverse setting" for the
rhombohedral lattice, while Ref. 13 uses the "obverse set-
ting. " The two settings are related by a sixfold rotation
C6. We rotate an element g' in Miller and Love by C6 to
obtain the corresponding element g in Ref. 13, i.e.,
g =C6g'(C6)

The meaning of each column of Table I is explained
below.

Irrep. The physically irreducible representation. The
label follows the convention of Miller and Love. In
cases where the irrep of Miller and Love is complex, the
physically irreducible representation is the direct sum of
Miller and Love's irrep with its complex conjugate. This
is indicated with two irrep labels. For example, T& T2 in-

dicates that the irrep is the direct sum of T& with its com-
plex conjugate, which is equivalent to T2. Unless
specifically stated otherwise, the term "irrep" in the fol-
luwing will always refer to physically irreducible represen-
tation.

I an. The "Landau frequency, " i.e., the number of
times the unit irrep of Gp is contained in the symmetrized
triple Kronecker product of the irrep. If a phase transi-
tion is continuous, then Landau theory requires that the

ao ———,'&3a1 ——,'a j,
bp ——aj,
co ——ck

From the "basis" column in the entry, we find that the
conventional basis vectors of the subgroup are

a= ——ap ——bp+ —'cp ————'~ 3a1 ——a J+ —ck,3 3 3 6 2 3

b=ao ———,
' &3a 1 ——,'aj,

c=—', ao+ —', bo+ —,
' co = —,

' +3a 1 +a j+ —,
' ck .

(3)

We see that both a and c are perpendicular to b, as they
must be, since the twofold axis is along b in the space
group P2& /c.

Elements of the subgroup P2&/c are easily identified as
elements of the parent group R3c. For example, we find
in Ref. 13 that one of the elements of P2 j /c is
x,y+ —,

' ~+ —,
' which is a twofold rotation about b followed

by a fractional translation, —,'b+ —,'c. We see from Eq. (3)
that the b axis in P2j/c is the ap axis in R3c. A twofold

Landau frequency be zero. This is known as the I.andau
condition. '

Lif. The "Lifshitz frequency, " i.e., the number of times
the vector representation of Gp is contained in the an-
tisymmetrized double Kronecker product of the irrep. If
the phase transition is continuous, and the lower-
symmetry phase is commensurate, then Landau theory re-
quires that the Lifshitz frequency be zero. This is known
as the Lifshitz condition,

Subgroup. The isotropy subgroups or lower-symmetry
space groups G. The space-group number is given, fol-
lowed by the short Hermann-Mauguin symbol as given in
Ref. 13.

Size. The relative size of the primitive unit cell in the
parent group and subgroup.

Basis. The conventional basis vectors of the lattice of G
in terms of the conventional basis vectors of the lattice of
Gp. The conventional basis vectors are the ones to which
the x,y, z coordinates refer in Ref. 13. Note that when
centered lattices are involved, these are not the primitive
basis vectors.

Origin. The origin of the space-group setting of the
subgroup with respect to the origin of the space-group set-
ting of the parent group. This vector is given in terms of
the conventional basis vectors of the lattice of Gp.

Subduction. The irreps of R3c which subduce the in-
dentity representation of the given subgroup.

In order to illustrate the meaning of the entries in the
table, let us consider the following entry in Table I:

Irrep F2
Subgroup 14 P2&/c

Size 2
Basis

Origin
This entry gives a possible phase transition from space
group 167 (R 3c ) to space group 14 (P2, /c ). The conven-
tional basis vectors of the lattice of R3c are (using hexago-
nal axes)
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TABLE I. Information about transition order parameters for R3c. Irreps, allowed subgroup symmetries, Landau and Lifshitz fre-
quencies, new conventional basis vectors and origin (in terms of conventional lattice of R 3c), and the irreps of R3c which subduce the
identity irrep of each subgroup are shown.

Subgroup

167 R3c

148 R3

Size Basis

(1,0,0),(0,1,0),(0,0,1)

(1,00),(0,1,0)(0,0, 1)

Origin

Irrep I 1+, Landau= 1, Lifshitz=O
(o,o,o) r+

Irrep I 2+, Landau =0, Lifshitz =0
(o,o,o) r+, r+

Irrep r3+, Landau= 1, Lifshitz=O

Subduction

15 C2/c
2 P1

(1,1,0)(1,1,0),( T~, ~,T)
2 1 1 T 1 1 T Y 1

(1 1 1)

(0,0,0)

r+, r+
r+, r+, r+

155 R32 (1,0,0),(0, 1,0)(0,0, 1)
Irrep I 1, Landau=o, Lifshitz=o

(o 0, 1) r+,r;

161 R3c (1,o,o),(o, 1,o),(o,o, 1)
Irrep I 2, Landau =0, Lifshitz =0

(o,o,o) r+,r;
Irrep I 3, Landau=o, Liftshitz=0

9 Cc

1 P1

(1,1,0)(1,1,0)(T~, ~1, ~1 )

(1,1,0),(1,1,0),(T, ', '
)

2 1 1 T 1 1 T Y 1

(1 1 1)

(o,o,o)

r+, r+,r;,r;
r,+ r,+,r;,r;
r+, r+,2r+,r;,r;,2r;

13 P2/c
167 R3c
15 C2/c

2 P1

14 P21/c

15 C2/c
148 R3

2 P1

Irrep
(T,+, ' ),(1,o,0),(', ', '

)

(2,0,0),(0,2,0), (0,0, 1)

(y, y, 7),(2, 2,0),(y, y, y )

3)(3 3 T)(X T 3)Y 1 2 Y 1 2 4 1

Irrep
(', ,

' ),(1,0,0),(T,+, ' )

(,', ,),(2,2,0),(...)

(2,0,0),(0,2,0),(0,0, 1)
1 2 Y 1 2 4 1

F1+, Landau = 1, Lifshitz=0
(o,o,o) r+, r+,F+
(0,0,0)
(2 1 1)

(0,0,0)

r+,F+
I +, I +,2F+,F+
I 1+,I 2+,2I 3+, 3F1+ 3F2+

(0,0,0)

(0,0,0)
(0,0,0)

(0,0,0)

r+, r+,F+
I +, I +,2F+,F+
r+, r+,F+,F+
r+, r+,2r+, 3F+,3F+

F2+, Landau =0, Lifshitz =0

Irrep F1, Landau=o, Lifshitz=o
13 P2/c
15 C2/c
155 R32

2 P1
5 C2

1 P1

(2, ~4, ,'),(1,0,0),(T, &~, 1)

(T, +~, ~),(2,2,0),(~, ~, y)
(2,0,0),(0,2,0),(0,0, 1)

Y 1 2 Y 1 2 4 1

(', , )(2 2,0)( , ', )

Y 1 2 T 1 2 4 1

(1 1 1)

(T 1 1)

(0,0, ~1 )

T 1 1

(0,0,0)

r+ r+ F—
r+, r+,F+,F;,F;
r+, r;,F+,F;
I +, I +,2I +,F+,F+,2F, ,2F
I +, I +, I", ,I,2F+,F+,2F, ,F

, I 2+ 2I 3,I 1 I 2,2I 3,3F 1+ 3F2+, 3F1 3F2

Irrep F2, Landau=p, Lifshitz=O
14 P21/c
15 C2/c
161 R3c

2 P1
9 Cc

1 P1

4

4
4

(T,&,,'),(1,0,0),(...')
(2,0,0),(0,2,0)(0,0, 1)

T 1 2 Y 1 2 4 1

(y, y, y), (2,2,0),(7, T, y)
Y 1 2 Y 1 2 4 1

(1 1 1)

(r r r')

(o,o,o)

(T 1 1)

(0,0,0)

I +, I +,F;
I +,r+,F+,F;,F;
r+, r;,F+ F;
I +, I +,21 +,F+,F+,2F, ,2F
r+, r+, r;,r;,2F+,F+,F;,2F;
r+, r+,2r+, r;,r;,2I, ,3F+,3F+,3F, , 3F

2 P1

15 C2/c

15 C2/c
148 R3
155 R32

Irrep
2 1 1 Y 2 2 TT 1

(T, TT, T),(1,1,0),(1,1,0)
(V T T)(4pp)(1 1 T)
(V T T)(400)(1 1 T)

(2,0,0)(0,2,0),(0,0,2)

(2,0,0),(0,2,0),(0,0,2)

(0,0,0)
T T 1

(0,0,0)

(o,o, 1
)

I +, I +,2I +,L,
r,+,r+, r;,r;,L,
r+, r+,F;,L,
r+, r+,F;,L,
r+, r+,F+,F+,L „T,
I +,I, ,F+,F, ,L, , T

L1, Landau =0, Lifshitz= 2
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TABLE I. (Continued).

Subgroup Size Basis Origin Subduction

1 P1

2 P1
2 P1

2 Pl
5 C2

9 Cc

146 R3
2 P1

2 P1

5 C2

1 P1

1 Pl

Irrep

(yy T)(XT 3)(T YT2 1 1 Y 2 2 T Y 1

(~, ~, T),(~, T, ~),(T, T, ~)4 2 2 Y 2 2 T Y 1

4 2 2 T 2 2 T Y 1

(T 3 T)(T T T)(3 T 3)4 2 2 T 2 2 T Y 1

(V V Y) (400) (1 1 T)

(~,~,~),(4,0,0),(,', 1,T)

(2,0,0)(0,2,0),(0,0,2)
4 2 2 Y 2 2 Y T 2

(T T T)(Y 3 3)(3 3 3)
(3 3 3)(3 T3)(T3 3)4 2 2 Y 2 2 Y V 2

(2,2,0),(2,2,0),(T&,T, T2 )

4 2 2 Y 2 2 T Y 1

4 2 2 Y 2 2 Y 4 2

L1, Landau=0, Lifshitz=2
(0,0,0) r+, r+,21.+,r;,r;,2r;, 2L,

(0,0,0)

(0,0,0)

(0,0,0)
1 T 1

(0,0,0)

(0,0,0)

r+, I-+,2r+,F+,F+,2L,
I +, 1 +,2I +,F, ,F,2L,
I +, I +,2I +,F, ,F,2L,
r+, r+, I-;,r;,F+,F;,2L,
r+, r+, r;,r;,F+,F;,2L,
I +, I +,I, , I F+ F+,F, ,F,2L „2T,
r+, r+, 21 +,3F+,3F+,3L „2T,T,T
1 +,1 +,21 +,F+,F+,2F, ,2F,3L „2T,T, T
r+, r,+,r;,I,2F+,F+,2F, ,F,3L „2T,T, T
r+, r+,2r+, r;,r;,2r;,F+,F+,F;,F;,4L,
I +, I +,21 +,I, ,I,21,3F+,3F+,3F, ,3F,6L „4T,T,2T

2 P1

5 C2

1 P1

Irrep
2 T 2 1 T 2 1 2 2

(1,1,0),(1, 1,0),(Ty, ', +y)

Y T 2 1 1 2 1 2 2 (0,0,0)

r,+, r3 I1 13-,2T1T2, T3

1 1+, I 2+, 2I'2+, I, , I 2,21"3,4T1T2,2T

T1 T2, Landau =0, Lifshitz = 3

(0,0,0) 1,+, 1 +,2I,+,2T, T,T

Irrep T3, Landau =0, Lifshitz = 1

148 R3
155 R32

146 R3

(1,1,0),(0, 1,0),(0,0,2 )

(1,0,0)(0, 1,0),(0,0,2)

(1,0,0),(0,1,0),(0,0,2)

(0,0, 1 )

(0,0, ~3)

(0,0,0)

I 1+,12,T3

r+, r;, T,
r,+,r+, r;,r;,2T,

rotation about a hexagonal ap axis is denoted by x —y,y, z
(see, for example, p. 37 of Ref. 24). The fractional associ-
ated with this rotation in P2&/c is

—b+ —c= —ap+ —bp+ —cp1 1 5 2 1

2 2 6 3 6 (4)

From the "origin" column of the entry, we see that the
origin of P2&/c with respect to the origin of R3c is at

7 —ap+ 6 bp+ cp ~
1 1 1

Thus, we want to move the origin by an amount —v.. In
this case, R =x —y,y, z and its fractional with respect to
the origin of R3c is

( 6ap+ 3bp+ 6cp)+( 3ap+ 6bp+ —'cp)

—( —ap —
6 bp —

6 cp ) =ap+ bp+ ~ cp+1 1 1 1 (7)

inelementThus the symmetry
x —y+ 1,y+ 1,z+ —,'.

The index of the subgroup P2&/c in R3c is 6. This re-
sult is easily obtained. First, there are 12 elements in the
point group 3m of R3c, and there are 4 elements in the

R3c 1s

To find the fractional in R3c, we must move the origin.
Consider some symmetry element consisting of a point
operation R followed by a fractional translation v. If we
move the origin by an amount —~, the new fractional
translation v' is given by

v'=v+s —R v. .

point group 2/m of P2&/c. Thus the index of 2/m in 3m
is 12—:4=3.The size of the primitive unit cell in R3c is
twice as large as that in P2~/c (see the "size" column in
the entry). Thus, the index of the translation group of
P2&/c in the translation group of R3c is equal to 2. Com-
bining the point group with the translation group, we ob-
tain the index of the space group P2&/c in the space group
R3c: 3&2=6.

The number of possible domains in the lower-symmetry
phase is given by the index of the subgroup in the parent
group. In this case there are six possible domains of
P2&/c. Each of the six domains is a different isotropy
subgroup of R3c. But they are equivalent to each other.
They are simultaneously minima of the free energy and
thus thermodynamically equally probable. They represent
the same phase transition and thus only one of them is
listed in Table I.

In the last column of Table I we list the frequency of
subduction, by each irrep of R3c, of the identity irrep of
the given isotropy subgroup. In Sec. IV an example of
the use of the subduction frequencies will be given.

III. SITE SYMMETRY SUBDUCTION
FREQUENCIES

A crystal with space-group symmetry Gp can be parti-
tioned into "simple crystals. " Each simple crystal con-
sists of all atoms obtained from a representative atom by
transformations of Gp. Each simple crystal has all atoms
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in equivalent sites. A crystal will then consist of several
simple crystals having no atoms in common, and the ele-
ments of Go permute the atoms of each simple crystal
among themselves.

Let us label the primitive cells in the crystal by the lat-
tice translation vectors a. Considering a simple crystal,
label the first primitive cell by a=0 and suppose it con-
tains m atoms A„(r= 1, . . . , m) of type A. Let G(A&)
be the site symmetry group of atom A, (the first atom)
which is of order n. The elements of the site group
G ( A, ) are elements of the space group Go which leave
atom A

&
fixed. We represent these elements as

g &~
——

I R
&~ l a~~ j with p = 1, . . . , n. (We choose g» to be

the identity transformation. ) Let g„, be an element of the
space group Go which takes the atom at position I into
the atom at position r (r = 1, . . . , m ). Any element of Go
can then be written in the form, I E l ajg„,g,„.

Suppose that the functions y(a, 1,0), a= 1, . . . , 1, of
position r, are basis functions of an irreducible representa-
tion (index j) of the site group G( A, ), so that

gy(a, r, a) = I E l

a' jg, & g p(P, 1,0)d~(g ~q )~~
P

=g y(P, s, a')d'(g„)&
0

(12)

and the functions g(a, r, a) carry a representation I(dj) of
Go. I(dj) is the representation of Go induced by the site
group representation d and is written explicitly as

I(dj,g)&„„, d~——(g)p 5(g EG(A~)),

where

g =g, i
' IE

l

—a'jg IE
I ajg. i .

The function 5 is equal to one if g is in G( A
~ ) and is

equal to zero if not. Note that the dimension of the repre-
sentation I(d 1,g ) is infinite.

Kovalev has shown the following result. The irreduc-
ible representation D of space group Go is contained in
the induced representation I(d~) a total number of times
m(D, d~), given by

g ~~ q (a, 1,0)=g q (P, 1,0)d'(g ~~ )p
P

m (D,d') = — g gjd (g O'D (g),l

gEG(A ) j

(14)

y(a, r, a)=IE
l ajar(a, r, O) .

Then for any g in Go,

gy(a, r, a)=gIE
l ajg„,y(a, 1,0)

(10)

= IE I
a'jg, hagi, V(a 1 o» (11)

where g&q ——g, &
'IE

l

—a'jgIE
l
ajg„&. Both IE

l

—a'j
and g, &

must be chosen so that g&~ is an element of
G( A

&
). Thus

Using the transformation property, gy(r) =p'(r)
=p(g 'r), lj(m —1) functions are obtained through

y(a, r, O)=g„~y(a, 1,0) .

Functions associated with atoms in other cells are ob-
tained through

where XD and gd are the characters of the irrep D and the
irrep d~, respectively. The last expression is just the num-
ber of times the irrep D of Go subduces the irrep d of
G(A)).

Using the full group representation D'* ' ', we have
calculated the above subduction frequencies for all sites of
symmetry (and their irreps) and all irreps for k points of
symmetry of R3c. This result is shown in Table II. The
labeling of point group irreps is that of Bradley and
Cracknell. In Table III we reproduce those site point
group character tables needed for space group R3c. Also

exemplary basis functions are listed for each point group
irrep.

An approach emphasizing color groups was used previ-
ously to obtain subduction frequency tables for the I
point (k=O) space-group irreps. Also, the subduction-

TABLE II. Listing of the frequencies of subduction by each irrep of R3c for the irreps of the site
point group (see Table III).

Irrep

r+
r+
r+
r;
I2
I3
F(+
F+

F2
Li

Tj T2
T3

a (32)

Al
A2
E
Al
A2
E

A)+E
A2+E
A)+E
A, +E

A)+ A2+2E
2E

A)+ A2

b (3)

Ag

Ag
E g

A„
A„

Ag +Eg
Ag +Eg*
A„+E„*
A„+E„

Ag +Eg + A„+E„
E +Ef
Ag+ A„

c (3)

A

A

A

A

A+E
A+E
A+E
A+E'

2A +2E*
2E'
2A

Ag

Ag

2Ag

A„
2A„

Ag+2A„
Ag+2A„
2Ag+ A„
2Ag+ A„
3Ag+3A„
2Ag+2A„

Ag+ A„

e (2)

A

B
A+B

A

B
A+8
2A+B
A +2B
2A+B
A+2B

3A+3B
2A+2B
A+B

A

A

2A
A

A

2A
3A
3A
3A
3A
6A
4A
2A
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TABLE III. Site point-group character tables for R3c. For
each point-group irrep, exemplary basis functions for that irrep
are shown in parentheses.

Irreps

Point Group 1

Characters

Point group 1

W, (S„,S„S,)
A„(x,y, z)

Point group 2
A{z,S, )

8(x,y, S„,Sy)

Point group 3
A(z, S, )

E (x+iy, S„+i'�)
Point group 3

Ag(R, S, )

Eg (S +i' )

A„(z)
E„(x+ly )

Point group 32
3 ((R)

A2(z, S, )

E(x,y, S„+iS~)

E
1

1

E
1

2

E
1

2
1

2

1

1

2

I
1

—1

C2z
1

—1

C+
1

—1

—1

1

—1

C+
1

1

Cp
1

—1

Cg
1

—1

1

—1

Cg
1

1

C2
1

—1

0

S6
1

—1

—1

1

C22
1

—1

0

s+
1

—1

—1

1

C2
1

—1

0

frequency table for all k points of symmetry for the space
group Fd 3m has been previously published. These
tables yield the same type of information for their space
groups as our information in Table II for the space group
R 3e.

IV. APPLICATIONS

There are many physical applications where the infor-
mation contained in Tables I and II is useful. Only four
examples will be considered here. These examples, how-
ever, will be sufhcient to show the extent to which the mi-
crostructures of R3c are described and the ease with
which the information can be obtained from the tables.

A. Lattice distortions

The lattice vibrations of a solid are classified by the ir-
reps of its space group. Specific linear combinations of
the atomic displacements are selected such that they
transform as the basis functions of the related irrep. Since
all atoms in a simple crystal are related by group transfor-
mations, the displacement of atom A

&
of cell a =0

uniquely determines the displacements of all others in the
simple crystal. The displacements of atom A& transform
as a polar vector representation of the site group G( A, ).
Thus the displacements of atom A &, a vector representa-
tion of G( A

& ), induce a representation of the space group
Gp. Only the representations of Gp contained in the in-
duced representation are allowed lattice vibrational
modes.

To be specific, consider calcite (CaCO~). At ambient
temperature and pressure, it has a space group symmetry
R3c. The crystal structure consists of three simple crys-
tals. The Ca atoms are at the 6 (b) sites. These positions
are generated by R3c from the position (0,0,0) and have
site symmetry 3. The C atoms are at the 6 (a) sites,
which are generated from (0,0, —,') and have site symmetry
32. The 0 atoms are the 18 (e) sites, which are generated
from (x, 0, —,'), and have site symmetry 2.

For the C atoms (site symmetry 32), a representation
I(d~) will be induced from vector representations d~ of 32.
For 32, the vector irreps are Az and E (see Table III),
corresponding to z and x,y displacements, respectively,
i.e., the irreps A2 of E are contained in the vector irrep
each once. From Table II, we see that either the irrep A2
or E induce representations which contain the following
irreps of R3c: I 2+, I z+, I, I &, F,+, 2F2+, F, , 2Fz,
3L ), 2T) T2, Tg. Each of these irreps represents an al-
lowed vibrational mode. Displacements of the C atoms in
each of these modes transform as basis functions of the
respective irrep. The first four of these irreps represent
k=0 modes (I point), and the remainder represent modes
for k on the first Brillouin zone boundary (F, L, and T
points). The notation 3L

&
means that there are three in-

dependent sets of modes which transform like the irrep
L &. One set arises from an A2 irrep, and two arise from
E irreps.

In a similar manner, the vibrational modes for the sim-
ple crystal of Ca atoms are seen to be I &, I 2, 2I 3

3F~, 3F2, 3L
~ 2T~ T2, Tg. Here, the irrep E„' of 3 is

reducible, and the basis functions, x+iy and x —I'y are in-
dependent of each other. (The representation is subduced
twice in the vector representation of 3.) Thus we must
count E,* twice wherever it occurs in Table II. For exam-
ple, there are two I & modes involving the Ca atoms, even
though E„* occurs only once in Table II for I

& at the (b)
site.

The vibrational modes for the simple crystal of 0 atoms
are I &, 2I 2+, 3I 3+, I &, 2I 2, 3I 3, 4F &+, 5F2+, 4F, ,
5F2, 9L&, 6T&Tz, 3T&. Note that in this case, the basis
functions of irrep B are x or y, and consequently B is con-
tained in the vector representation twice. Thus we must
count B twice wherever it occurs in Table II.

The detailed displacements making up the basis func-
tion for each irrep can be obtained by projection operator
methods if so desired. For example, the basis functions
for the above k=O modes are given in Ref. 31.

B. Magnetic distortions

To illustrate the use of the tables for a magnetic struc-
ture, consider the ilmenite-type crystals. They have a
space-group symmetry R 3c and include compounds such
as CoCO~ and MnCO&. The magnetic atoms are a simple
crystal and occupy the six (b) sites with symmetry 3. The
magnetic structure corresponds to a "magnetic distortion"
of the crystallographic space group R3c. This magnetic
distortion results from associating a dipole moment, an
axial vector, at each atomic position. Thus only the in-
duced representations I(dj) arising from the axial vector
irreps of 3 are to be considered.
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From Table III the irreps A~ and E~' of 3 are the z and
x,y components, respectively, of the magnetic moment.
Here Ez* is a reducible representation of 3. Considering
the irreps of R3c, and using Table II, the six (b) sites al-
low the magnetic distortions I &+, I z+, 21"3+, 3F] 3Fp+,
31 ] 2T] Tp T3 Since only the (b) sites allow magnetic
atoms, these irreps are the only allowed magnetic distor-
tions for CoCO& or MnCO3 at k points of symmetry. The
specific atomic dipole distortion can be obtained by pro-
jection operator techniques. The basis functions for the
above k=0 modes are given in Ref. 3.

C. Displacive transitions

The Landau theory of continuous phase transitions
classifies allowed transitions from a given higher-
symmetry space group. An extension of the Landau
theory was used to construct Table I. To apply the infor-
mation in Table I to a specific crystal, we must use an ad-
ditional group-theoretical criterion, discussed by Bir-
man, ' namely, the tensor-field criterion. This criterion
states that if a transition is due to a physical property de-
scribed by an I-component tensor defined on the atoms of
a crystal, then the irrep causing the transition must be
contained in the representation induced by the tensor
field. Thus the irrep must have a nonzero subduction fre-
quency as calculated by Eq. (14).

As an example, consider the transition in CaCO& to the
P2~/c phase. The transition is induced by the F~ irrep.
The relationship of the subgroup to R3c has been de-
scribed in Sec. II. Consider the transition as resulting
from a lattice distortion. Then, as was done in Sec. IV A,
the (a) sites give rise to two Fz displacement modes, the
(b) sites give rise to two F~ modes, and the (e) sites give
rise to five Fz modes. Thus the Fz does satisfy the ten-
sor field criterion, and we see that all of the atoms can
participate in the distortion at the transition. It was
shown in Ref. 34 by projection operator techniques that a
mode corresponding to an alternate rotation of the CO3
groups transforms according to Fz, and this mode has
been observed experimentally in the transition to P2&, /c.

D. NQR resonance

This section discusses the use of the tables in connec-
tion with NQR resonance in phase transitions. ' As
mentioned in the Introduction, nuclear spin resonance is
very sensitive to differences of local field gradients and
thus exhibits diferent frequencies at inequivalent sites.
Although NQR is taken as the prototypic experimental
technique, any spectroscopic technique which is sensitive
to inequivalent sites is analyzed in the same manner as
described here. If a crystal undergoes a phase transition,
the resonant atoms in equivalent sites may occupy ine-
quivalent sites at the transition. This abrupt change in

site symmetry causes a change in the NQR spectrum.
Consider the representation of Go induced by the iden-

tity representation of site A &. 2
&

is taken as the atomic
site of the resonant atom. The representation I(d') in-
duced from the identity irrep d of site A i is called the
permutation representation and indicates how the atoms
of the simple crystal permute under the elements of the
space group Go. We see from Eq. (14) that when d is the
identity irrep of the site group [Xd(g) =1], then the identi-
ty irrep of Go [XD(g) = 1] is contained in the induced rep-
resentation once and only once [m(D, d')=1]. If a phase
transition occurs, equivalent sites may become ine-
quivalent with respect to the subgroup G. The single sim-
ple crystal in Go becomes more than one simple crystal in
G. The number of resulting simple crystals in G is simply
given by the number of irreps in I(d ') which subduce the
identity irrep of G. This information is easily obtained by
combining the information of Tables I, II, and III.

As an example, consider sodium nitrate (NaNO3) which
has a phase with symmetry R3c. The sodium nuclei are
the resonant spins for this structure. They are situated at
the six (b) sites. Consider a transition to R3 induced by
irrep I z . This transition is not an actual known transi-
tion in NaNO&, but we consider it just for illustration of
the method. From Table I in the last column, we find
that the irreps, I &+ and I z+, each subduce the identity ir-
rep of R3 once. From Table II, we see that the identity
irrep Ag of point group 3 associated with the (b) sites is
contained in each of these two irreps once. Therefore, the
irrep I(d') contains the irreps, I ~+ and I 3+, each once.
There are two irreps in I(d') which subduce the identity
irrep of G, and consequently, the sodium atoms find
themselves in two different simple crystals in R 3. The
NQR line arising from the sodium nuclei in R3c splits
into two distinct lines at the phase transition.

V. CONCLUSION

We have discussed the philosophy of construction and
the content of two very useful tables. These tables con-
tain information resulting from the symmetry analysis of
the microstructure (atomic site locations) of the space
group R3c. As has been shown, a number of questions
can be answered, simply by looking up the information in
our listings. Not all possible uses of the tables have been
discussed but enough examples to show the variety and
significance of the types of questions which can be
answered by the information provided. We have obtained
similar tables for each of the 230 crystallographic space
groups. They will appear in a separate publication.
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