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Comment on "Irrelevant variables, Landau expansions, and cubic anisotropy"
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The relationship of the XY model, which arises from a C4„ image, to the phase transition in the rare-

earth molybdate Tb2(Mo04)3 (TMO) is discussed. We point out that this model does not describe the

TMO transition, but that a Landau expansion arising from a C4 image is the appropriate free-energy model.

Recently, Galam' considered phase transitions occurring
in the XY model with cubic anisotropy. He emphasized, in
a quite thorough discussion, that the extension of the Lan-
dau expansion to higher orders may significantly affect the
resulting phase diagram. For the XY model, $s terms gen-
erate a new symmetry breaking and the generic phase ap-
pears as a possible lower-symmetry phase. ' Here we use the
term "generic phase" to characterize the phase which has
maximum symmetry breaking, i.e., the symmetry group
mapped onto the identity matrix by the homomorphism.
Higher-order terms beyond those of eighth order are "ir-
relevant" in that they do not introduce additional phase
symmetries.

Within the Landau theory of phase transitions the free-
energy expansion is constructed as an invariant function of
the representation basis. It is usually assumed that the tran-
sition is driven by a single, multicomponent order parameter—the vector of an irreducible representation (irrep). The
cubic XY model occurs in the description of many crystal
systems (see Ref. 2 for an example of the XI'model in sur-
face transitions). It is defined by the representation of a
space group whose complete set of distinct representation
matrices (image) is isomorphic to the point group in two
dimensions C4„. Thus the set of symmetry transformations
of the crystal map homomorphically onto a set of two-
dimensional representation matrices equivalent to the usual
vector representation of C4„, namely, mrs - (It f),
C4, - ( f)), etc. The Landau expansion for the C4„ image
is then an invariant polynomial expansion in terms of the
order-parameter components. For C4„ the expansion can be
constructed3 as a polynomial expansion of the two basic in-
variants Ii-r2 and I 2r4c s(os). To eighth degree the
free energy takes the form

F X u If'+vtI2+ wiItI2+yil/I2+ y2IJ

Here the terms with coefficients ~i, wi, and yl are anisotro-
pic terms of fourth, sixth, and eighth degree, respectively.
This form is equivalent to that used by Galam' and defines
the XY model. As mentioned, the XY model is the polyno-
mial expansion which is invariant under the order-parameter
symmetry (image group) C4„.

The C4„ image allows3 three inequivalent lower-symmetry
image subgroups, namely, m(y), m(d), and l. Each image
subgroup is the largest set of matrices leaving an order-
parameter direction fixed. The subgroup m(y) is the mir-
ror subgroup (Cts) with the mirror plane, o (y), defined by
$2-0. m(d) has the mirror plane defined by qadi-qb2e0.
The image subgroup j. is the subgroup corresponding to the
identity transformation (identity matrix) in the two-di-

mensional representation space. Corresponding to each im-
age subgroup a lower-symmetry crystalline phase (space
group) is obtained as a result of the inverse of the
homomorphic mapping. Thus there are three phases ob-
tainable as minima of the expansion obtained from C4„, or
the cubic XY model. Only the subgroups obtained from
m(y) and m(d) are possible when a fourth-order free-
energy expansion is used (i.e., possible as continuous transi-
tions) while all three are possible at eighth order and higher
(possible as first-order transitions). 24 This is consistent
with the major emphasis of Galam's paper.

However, Galam then incorrectly associates the cubic XY
model with the first-order phase transition in terbium mo-
lybbate (TMO), Tbt(Mo04)3. TMO is one of several rare-
earth molybdates which has been well studied' ' and has
many unusual properties. There is substantial structural evi-
dences that the transition in TMO is from a high-symmetry
phase D/e to a lower-symmetry phase C$„. For the space
group Dje there are four images' (or irreps) which give the
XF model. They are I'3, Ms, As, and Zs (we are using the
labeling of Ref. 9). If a Hamiltonian of arbitrary degree
(i.e., not just the fourth-degree expansion) is used, then the
following phases can be obtained as inverses to m(y),
m (d), and 1 and as minima of Etl. (1):

I s(C/h, CJ,C) ); Mq(S), C2„,C) )

As(SJ, CQ, C2 ); Zs(Cg, D24, Cj)

Notice that Cf„ is not possible as a minimum, at any order, of
an XY model arising from irreps ofDje. Thus the C4„ image
(XY model) does not allow the known space-group changes
in the transition of TMO and is not the appropriate model
for its description. However, as we discuss below, there is a
closely related image which does allow the space-group (and
cell size) change for the transition.

The irreducible representation whose image is C4 appears
for several irreps of Dje. The set of matrices are isomorph-
ic to the point group (in two dimensions) C4 and form a
subgroup of C4„. As one might expect, we obtain a larger
number of basic invariants fro~ C4 than allowed in C4„.
The appropriate invariant free energy is constructed from
the three invariants3 3 Ii r2, 12- r4 cos(48), and
I3 r sin(48). To sixth degree the C4 image yields the in-
variant free energy

5

p = X u~Ip +vlI2+v213+ wiI1I2+ w2I1I3

Notice that additional fourth-degree and sixth-degree terms
are allo~ed with C4 while not allowed with C4, . The C4 im-
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age occurs in particular for the M~ 8 M2 irrep. Moreover,
this is the only irrep of D~~ which can lead to C2„by means
of an invariant free-energy expansion of a single order
parameter. The image for this irrep, and thus the set of
transformation matrices, wi11 determine the corresponding
Landau invariant expansion. This is compatible with the
cell change and description in Ref. 5. The model obtained
from the C~ image is then the appropriate model for the
description of TMO. The justification for a C4 image
depends only upon the observed space-group change from
D/e to Cf„. From our list of possible subgroupss there is

only one possible image subgroup arising from M~ 8 M2
and it corresponds to the subgroup 1 of C» (while there are
three subgroups for the C4„ image). This is consistent with

the results of Gufan and Sakhnenko' for the C4 image. The
transition must always be to the generic phase, obtained as
the inverse of & which is Cf„ for this case.

As can be seen from comparing the two models the two
expansions are closely related. For example, the C~„expan-
sion can be obtained from the C4 expansion by requiring
u2(P, T) = w2(P, T) 0. It appears as though the C4„model
is obtained as a special case of the C4 model. Also Ref. 6
indicates that by a choice of basis the v2 and w2 terms can
be removed. %e make the following arguments, however,
to show that the models are not equivalent. First, the
models are to describe regions of P, T space near the transi-
tion. The conditions u2(P, T)- w2(P, T) -0 can be satisfied
for a point in the P-T plane but not in a region. Thus the
additional fourth- and sixth-order terms in the Cq free ener-
gy will appear for a dense set of P-T points. Similar argu-
ments apply to the choice of basis at points in the P-T
plane. Second, it is important to note that there is the signi-
ficant difference in the order-parameter symmetries giving
rise to the two free-energy expansions. The transformation
properties of the C4„order parameter are defined by the
larger set of transformation matrices (larger image group).
For example, the mirror reflection a.„ is not a transforma-
tion element of C4 but it is an element of C~„. %hen con-
sidering lower-symmetry phases we consider the largest set
of transformations which leave an order-parameter direction
fixed. For C4„, this subgroup can contain o.~. The element
o~ is not contained in the C4 image. Thus the listing of
subgroups for the C~„ image is different from the listing for
the C4 image. For C4 only one subgroup is possible, awhile

three are possible in C4„.
Minimization of F in Eq. (2) is obtained from tJF/"t)r -0,

t)F/i)8-0, and the second derivative stability conditions.

The condition 8F//t)8 = 0 leads to6

2u2+ w2r

V~+ WIr 2 (3)

tan(48) -—U2

U~
(4)

A continuous transition to the generic phase can occur
along a line in pressure, temperature (P, T) variables for
parameters restricted as above since we have the single
equation ui(P, T)-0. In distinction, the C4„ image does
not allow a continuous transition to the generic phase even
at a point in P, T variables. Thus C4 allows the possibility ofa
multieritieal point appearing in TMO for the transition to the

generic lour-symmetry phase. As suggested by Bastie and
Bornarel, 7 it would be interesting to apply hydrostatic pres-
sure to a TMO crystal and determine if the system moves
toward a tricritical point.

The transition for a Cs image is distinctive in that the
direction of the order parameter, determined by 8, can be
temperature dependent near the tricritical (or multicritical)
point. Considering only structural transitions, there are
several solids in which a multicritical point is known to exist
[(e.g. , BaTiOs (Ref. 10), SbSI (Ref. 11), NH4Cl (Ref. 12),
and potassium dihydrogen phosphate (Ref. 13)]. Because
of their image structures all are connected with transitions
to a fixed order-parameter direction on the first-order side
of (but near) the tricritical point even if the coefficients in
the Landau expansion are assumed pressure and tempera-
ture dependent. For the free energy of Eq. (2) at a continu-
ous transition, Eq. (4) implies no temperature dependence
of 8 when ~~ and ~2 are temperature independent. Howev-
er, if the system is near a tricritical point on the first-order
side (so that we need the expansion to sixth order for stabil-
ity), then Eq. (3) implies a temperature dependence of 8
even when ~~, ~2, ~~, and ~2 are independent of tempera-
ture. This temperature dependence comes from the order
parameter r which varies as ( T To) ' 2 on the —low-

symmetry side of the transition.

Notice that if we restrict our attention to a continuous tran-
sition, and thus consider the free-energy expansion to
fourth order, a continuous transition occurs at g~ -0, with

u2+uicos(48)+u2sin(48) )0,
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