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The results of renormalization-group (RG) analysis in reciprocal space are reported for solid-solid

phase transitions. We list the Landau-Ginzburg-Wilson Hamiltonian densities for six-component

order parameters. The resulting RG recursion relations are derived by means of symmetric products

of basic invariants. A list of fixed points for the densities is given and the stable fixed points are

noted. Only two of the effective Hamiltonian densities possess stable fixed points. %'e indicate

those specific structural transitions which are allowed to be continuous as determined by RG
methods. We give critical exponents for the stable fixed points.

I. INTRODUCTION

Within the framework of both Landau theory' and
renormalization-group (RG) methods the description of
phase transitions induced by order parameters with a large
number of components (n & 3} yields some rather distinc-
tive results. As the dimension of the order parameter gets
higher a variety of quartic potential forms are found and
as a result the classification of symmetry changes by Lan-
dau theory becomes a more sophisticated job. Recently
we classified continuous phase transitions for commensu-
rate solids described by six-component order parameters
(n =6) and obtained their phase diagrams. [For such
transitions the order parameters transform as basis func-
tions of irreducible representations (irr cps) of space
groups. ] We found a case where a single potential violat-
ed both the Ascher conjecture (where the isotropy sub-

group was not maximal with respect to the physical sym-

metry group of the high-symmetry phase}, and the
Michel-Radicati conjecture5 (where the isotropy subgroup
was not maximal with respect to the symmetry group of
the potential}. For n=6 we also found examples where
three phases could coexist. This is not possible for n & 3.

Likewise, within the framework of RG methods certain
characteristics occur which are not present for n & 3. For
example, for n & 3 there is always a stable fixed point and
it is isotropic. For such systems fluctuations in the criti-
cal region are so strong that any anisotropy is erased. For
n & 4 the isotropic fixed point is no longer stable when an-
isotropic quartic terms are present. Moreover, for certain
systems a stable fixed point does not even exist. It has
bern conjectured that when the transition is predicted to
be continuous by Landau theory, the lack of a stable fixed
point signals a fluctuation-induced first-order transition.
Similarly if a given set of parameters for an effective
Hamiltonian falls outside of the attraction domain of the
stable fixed point, the ensuing phase transition is discon-
tinuous.

In the Landau theory one can tell whether or not an or-

der parameter can induce a continuous phase transition by
checking symmetry criteria such as the Landau condition'
(there must not exist a third-degree invariant), the Lifshitz
condition (the antisymmetric product of the representa-
tion of the order parameter must not contain the vector ir-

rep), etc. In the same spirit, Michel and Toledano9 have
recently presented a symmetry criterion for the lack of a
stable fixed point. The criterion is not as simple as the
above two conditions and we refer the reader to Ref. 9 for
further detail. The criterion was shown to work for all

types of effective Hamiltonians with four-component or-
der parameters. We have exploited it in the case of six-

component order parameters. '

In this paper we find the stable fixed points for the

types of effective Hamiltonians, with six-component order
parameters, which occur in the description of structural
transitions by solving RG recursion relations obtained
through the e-expansion method. We have recently ob-
tained Landau-Ginzburg-Wilson (LGW) Hamiltonian
densities for commensurate structural transitions. i There
are six distinct densities for n=6 They cor. respond to a
total of 43 different space-group representations according
to which the order parameters transform. We found one
additional Hamiltonian density to those found by
Toledano and Toledano" and it occurs in two different
space groups.

In Sec. II we briefly indicate the methods we have used
to systematically obtain the distinct Landau potential
forms. We emphasize our group-theoretical approach
which we recently implemented on a computer. ' *' In
this same section we reiterate the results of the minimiza-
tion of the quartic potentials applied to the six potential
forms for n=6. %'e wi11 place a special emphasis upon
the two forms which yield stable fixed points within RG
methods. In Sec. III we derive the RG recursion relations
and list the fixed points for all but one LGW Hamiltonian
density. In our derivation we use the symmetric algebra
and the invariant scalar product discussed in Ref. 9. In
Sec. IV we indicate the attraction domain for the stable
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fixed point of one of the densities. As was pointed out in
Ref. 14, the attraction domain is smaller than the stability
region of possible continuous transition obtained from the
Landau theory. We also list those specific structural tran-
sitions (driven by a six-component order parameter) which
can be continuous within the RG formalism as well as in
the Landau theory. In Sec. V we obtain the critical ex-
ponents for the stable fixed points.

II. LANDAU POTENTIALS
AND THEIR MINIMIZATION

The Landau theory' of continuous phase transitions is a
phenomenological theory. However, it is a very useful
theory because, when extended, it provides two important
pieces of information. First, it defines a framework
which can be used to obtain possible lower-symmetry
space groups resulting from the order-parameter orienta-
tion. Second, it suggests the construction of invariant po-
tentials which are then to be used as the polynomial con-
tributions in the effective LOW Hamiltonian density for
RG calculations.

The Landau theory assumes the existence of a macro-
scopic variable P, the order parameter, whose symmetry
determines the thermodynamic potential h (P). The po-
tential should be a smooth function of macroscopic vari-
ables P, T, and the order-paraineter components. At high
temperature the potential and equilibrium state should ex-
hibit the symmetry Go of the physical system and there-
fore (t) is to be equal to zero. As temperature is lowered, P
becomes nonzero at the equilibrium state. The symmetry
is thus spontaneously broken since the potential remains
invariant under transformations of Go. For our con-
siderations we take Go to be one of the 230 space groups
in three dimensions. P is to be an n-component vector
transforming according to a real irreducible orthogonal
representation of Go.

The potential h(P) can be expanded as a polynomial
series in terms of components of P with each polynomial
of each degree being an invariant under Go. Since the
Landau condition prohibits third-degree terms, the poten-
tial to fourth degree can be written as

ii (f)= f/+ —,P4($—),r 1

'~

with P4(P) of the general form
p —1

P4(p)= X &;jk(p p, pkpi=uoI()(p)'+ g Q I (p) . (2)
i,j,k, l @=1

The Q&jki are symmetric under interchange of subscripts.
Each I„(p) is an invariant polynomial of fourth degree,
~o(P)—:(P.P) and the u„are arbitrary coefficients carry-
ing the temperature md prmsure dependence of the poten-
tial.

The systematic application of group-theoretical
methods' ' ' ' have allowed us to select the relevant ir-
reps and to list comprehensively the possible lower sym-
metry phases induced from these irreps. We followed the
usual process' for obtaining irreps of the 230 space
groups. In order that the transition be continuous and
commensurate, only those irreps which satisfy both the
Landau' and the Lifshitz conditions are suitable, i.e., the
active irreps. ' Thus only irreps constructed from k

points of symmetry' are considered. The set of distinct
matrices D(GO):—[D(g)] of an irrep form a finite sub-

group of 0(n) and this same set of matrices (up to conju-
gation), which is called the image, ' may appear many
times in the collection of irreps of the space groups. For
irreps of six dimensions, only 11 distinct images occur in
all the active space-group irreps corresponding to k points
of symmetry. In Table I we list the images (column 1)
and the irreps which give rise to that image (column 2).
Our labeling of images is the same as that in Ref. 11. The
labeling of irreps is that of Cracknell et al. Notice,
however, that we claim the existence of an additional im-
age (and subsequently an additional potential) L» not ob-
tained in Ref. 11.

We show in Fig. 1 a lattice (tree) of group-subgroup re-
lations for the 11 images. By an appropriate selection of
bases in each irrep, an image group (the group of ma-
trices) can be made a "direct" subgroup of another (indi-
cated by a solid line in the figure). The "direct" subgroup
is simply a subset of matrices of the higher image group.
We have chosen bases such that the "direct" subgroup re-
lationships are satisfied simultaneously for all images in
the figure. The orders of the images are indicated on the
left-hand side in Fig. 1. The actual forms of the polyno-
mial invariants are usually affected by a change of basis.
We have also selected the basis of each image so that it is
compatible with the list of invariants of Ref. 11. The in-
variants are constructed by conventional projection opera-
tor methods. ' '2' For RG analysis we are primarily in-
terested in the fourth-degree invariants. We have listed
these invariants in column 3 of Table I for each image.
The explicit forms of these invariants are given in Table
II. These are the forms to be used in Eq. (2). In Table III
we list the u,jki, also used in Eq. (2), for each of the ten
quartic invariants. In Table IV we have listed the six
fourth-degree potential expansions which result for six-
component order parameters.

In order to obtain the phase diagram we need to mini-
mize the potential in the entire coupling coefficient space.
Kim's minimization method is suitable for this purpose.
In Ref. 3 we obtained the region (call it the stability re-
gion) in the coupling coefficient space corresponding to
each phase (a "phase diagram") and classified continuous
transitions allowed by Landau theory. For all cases with
n =6 there is a degeneracy of two lower-symmetry phases
(or coexistence of three phases at the transition from the
high-symmetry phase) at fourth degree. Of particular im-
portance to us in this paper are the potential h1 corre-
sponding to L „Li,Li, and L5, and the potential h6 cor-
responding to L((. The effective Hamiltonian densities
constructed from these two potentials will be shown to
have stable fixed points.

The potential h1 to fourth degree is written

& =—& +—(u I'+u I(4'+u I(4')r 1
00 11 22

In Fig. 2 we show the phase diagram for h1. Phases P1,
P2, (P6,P7), and ( Pl 1,P12) are stable phases in appropri-
ate regions of the coefficients u( and uq. Phases P6 and
P7 are distinct (inequivalent) phases but are degenerate for
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a fourth-degree expansion (similarly for Pl 1 and P12}.
However, the degeneracy between inequivalent phases is
lifted at higher degree. Which specific symmetry (isotro-

py subgroup) corresponds to a particular phase, Pl, for
example, is determined by the specific space-group repre-
sentation being considered. The elements of the isotropy
subgroup corresponding to P1 are those space-group ele-
ments whose matrix representatives leave the order pa-
rameter (a,0,0,0,0,0) invariant. Similarly, we obtain iso-
tropy subgroups with the correspondences P2
(a,a,0,0,0,0), P6 —(a,O, a, O,a, O), P7 —(O, a, O, a, 0,a},
Pll —(a,a,a,a,a,a), —P12 —(a,a, a, a, a, —a}.

The potential b s to fourth degree is written

L] h,

~92 — L, h, L, h, L h, 5 h

h,

b, = "I,+ —(u,r,—'+u, l',4)+u, r',4'+u, r',") .
2 4! 96— L11 he

In Tables V and VI we indicate the stability region for
each phase of h6. We have defined tang=

~

8/u
& ~

where
8 =uz+uz and tane=uqlu2. The symmetries of the
phases Cl and C23 are those space-group elements which
respectively leave invariant the order parameters
(a,b, 0,0,0,0) and (a,b, a,b, a,b). To illustrate how to use
the tables consider the region BgO and u~gO with
8=45'. For g&gL, =82.6' the phase Cl is stable. For
g&gL, the phase C23 is stable. gq is to be used for &&0
and Q ) +0.

48 — Lio h6

FIG. 1. "Direct" subgroup relationships for the six-
dimensional images (L1, L2, . . . , L11) of structural transitions.
The orders of the images are indicated on the left-hand side.
The fourth-degree invariant potentials (h1, h2, . . . , h6) which
arise from each image are indicated. Only the potentials h1 and
h6 yield Hamiltonian densities which have stable fixed points.
An image associated with a continuous transition within RG
analysis is indicated by a bold box.

TABLE I. Images of active space-group representations and their invariants of fourth degree. The
space group, its international number, and the irreps which give rise to each image are indicated.

Image

L2

L3

Llo

Space-group irrep

W1 r W2) fY3) fV4 of OIt (No. 225)

8'1, 8'2 of 0' (No. 209)

8 1) 8 2) 8 3) W4 of Tq (No. 216)

X3,X4 of Op (No. 224)
)X2 )E3 )X4 of Oq (No. 229)

N2, %4 of 0 (No. 214)

N2, %4 of 0' (No. 211)
X3 of Tq (No. 2 17)

Mz of' Oa2 (No. 222)
M4 of Oq (No. 224)
X4 of OI', (No. 227)
X4 of O~ (No. 228)
)V'2+, Xg of Oq (No. 229)

Xs of Tq (No. 215)
Xg, Xg, Mg of Og (No. 221)
Ms of Op (No. 223)
Xs of OI', (No. 225)
Xs of Oh (No. 226)

of T~ (No. 204)

X3,X4 of 01, (No. 223)

Xl @X2,
X3@X4 of Tq (No. 218)

M2M3 of 0 (No. 212)
M2M3 of 0 (No. 213)

Fourth-degree invariants

I2 1(4) I(4)
0) 1 ) 2

12 y(4) I(4)
0) 1 ) 2

I2 y(4} I(4)
Or I ) 2

I2 I(4} I(4) 1(4)
Or 1 ) 2 ) 3

12 I{4) I(4)
0) 1 ) 2

12 I(4) 1(4) I(4)
0) 1 ) 2 r 3

I2 I(4) I(4) 1(4) I(4)
0) 1 ) 2 ) 3 ) 6

I2 I(4) I{4) I(4)
0) 1 ) 2 ) 3

I(4) I(4) I(4) 1(4) I (4)
0) 1 r 2 ) 3 r 4 ) 5

I2 I(4) I(4) I(4) I(4)0) 1 ) 2 ) 3 r 4
I(4) I(4) I(4) I (4)

5 ) 7 ) 8 ) 9

I2 I(4) I(4) I(4)
0) 1 ) 2 ) 7
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TABLE II. Fourth-degree invariant polynomials used in

Table I.

Io = ('0l+ pl +3}2+f2+'93+ (3)
I 1 3}i +01+r}2+g2+ r}3+g3

I2"=r}41+r)kz+ r}43
I3 rl lglrl202+ r}2(22}3(3+2}3(3'g1/1

I6 }101(92+02 93 03)+r}202(3)3+g3 3}l (1)
+ AD@3(ril+ 0'1 rjz —4)—

I7 rl lgl( r}1 gl )+ r}2(2(rl2 g2) +r}3(3(r)3 g3 )

rilgl( i2 g3)+r}242(rt3 gl )+r}303(r}1 g2)

I9 =rllkl(C2 —r}3)+r}2(2(43 r}l)+r)343(41 r}2)

TABLE III. Nonzero symmetric coefficients defining the
fourth-degree basic invariant polynomials.

FIG. 2. Phase diagram of h1 obtained from the quartic Lan-
dau potential. Continuous transitions to P1, P2, (P6,P7), and
{P11,P12) can occur in the regions of Q1, Q2 as shown. Note
that the line separating phases (P6,P7), and (P11,P12) is of
slope 2.

Invariant

g2

Coefficients

Qiiii =Qo
Qiijj QO /3r l /J Region Phase

TABLE V. Phase diagram for h6. See Table VI for angles

gL, (8) and gR (8).

g (4)
1

y(4)
3

1(4)
4

1(4)

I(4)

Qi'i'ii' =Q1

1122 Q 3344 Q 5566 Q 2 /6

Q 1234 Q 3456 Q 5612 Q 3 /24

Qi, i, i+2, i +2 —Q4/6

Q 1144 Q3366 Q5522 Q5/6

Q 1233 —Q 1244 — Q 1255 — Q 1266 Q 6/12
Q 3455 Q 3466 Q 3411 Q 3/22 Q 6/1 2

Q 56» Q 5622 Q 5633 Q 5644 Q 6/12

8~0
Q1) 0

8&0
Q1(0

8&0
Q1 +0

8)0
Q1 +0

Cl:
C23: g(gR

C1: everywhere

C1: everywhere

Cl: g) (L
C23: g((L

1(g)
7

1(4)
8

Q 1211 Q 1222 Q? /4
Q3433 Q3444 Q7/4

Qs65s = —Q5666=Q?/4

Q 1233 Q 1266 —Q 8 /1 2
Q 3455 — Q 3/22 —Q 8 / 12

Q56» = —Qs~ =Q8/12
(9

(deg)
gL, (8)
(deg)

gR(8)
(deg)

TABLE VI. The limiting angles (L (8) and (R(8) to be used
in Table V.

1(4)
9 Q 12~ = —Q 1255 =Q 9 /1 2

Q 3466 — Q 34 1 1
—Q 9 / 12

Q s622 = —Q s633 =Q9/12

Potential Fourth-degree invariants

h1

h2

h3

h4

hs
h6

I(&) I(4)
1 r 2

I(4) I(4) I(4)
1 r 2 r 3

I(4) I(4) I(4)
1 r 2 r 3

g {4) 1(4) I(4)
1 r 2 r 3

I(4) I(&) I(4)
1 r 2 r 3 r

I(4) I(4) I(4)
1 r 2 r ?

I(4)
6

I(4) 1{4)
4 r 5

4 r 5 r ? r 8 r 9

TABLE IV. Fourth-degree polynomials associated with the
six-dimensional images. Io is assumed present in all potentials.

5

10
15
20
25
30
35
40
45

55
60
65
70
75
80
85
90

89.8912
89.5680
89.0400
88.3220
87.4330
86.3950
85.2316
83.9673
82.6264
81.2326
79.8085
78.3753
76.9524
75.5572
74.2050
72.9091
71.6807
70.5288

63.4351
63.4376
63.4478
63.4743
63.5273
63.6179
63.7570
63.9551
64.2212
64.5633
64.9880
65.5003
66.1042
66.8018
67.5943
68.4812
69.4605
70.5288



HATCH, KIM, STOKES„AND FELIX 33

III. RENORMALIZATION-GROUP RECURSION
RELATIONS AND FIXED POINTS

Although the Landau theory provides a unique frame-
work to explain symmetry changes occurring in phase
transitions, it does not take fluctuations into account.
The order parameter in the Landau theory takes a uni-
form value throughout space. Thus it is bound to fail in
the critical region where fluctuations are dominant. Con-
sequently, it does not predict correct critical exponents in
cases where the dimension d &4, though its prediction is
close to correct values when d &4. The region of validity
for the Landau theory is roughly characterized by the
Ginzburg criterion, ' '

(g T)(4—d) /2

where u is the coefficient of the quartic term and
~&=

~

T —T,
~
. The Landau theory is valid outside hT.

In the critical region the assumption that the free energy
is a smooth function of the macroscopic variables is no
longer valid, i.e., the transition point is a singular point of
the free energy.

The renormalization-group idea provides a powerful
method for handling fluctuations. The effective Hamil-
tonian from which macroscopic properties are derived is
an extension of the Landau potential. However, in order
to derive macroscopic quantities, instead of using the
mean-field approximation which would bring us back to
the Landau theory, we start with the block spin method.
We eliminate short-wavelength microscopic degrees of
freedom by functionally integrating them out (rescaling
and renormalization). Then we require that the resulting
lattice configuration stay the same at the price of admit-
ting additional high-degree interactions. Due to rescaling
and renormalization, we are left with the same Hamiltoni-
an but with a different set of coefficients up to the fourth
degree plus high-degree interactions. The change of coef-
ficients under the renormalization-group transformation
is described by a set of first-order differential equations
(the RG recursion relations). At a flxei point the RG
transformation does not change the effective Hamiltonian,
which can only be realized when the correlation length is
zero or infinity. Since the correlation length diverges at
the critical point, the critical behavior is intimately related
to the properties of a fixed point. In fact, different fixed
points yield different critical exponents.

Imposing the Landau and Lifshitz condition (necessary
for a commensurate continuous transition) and allowing
only isotropic gradient contributions, the effective LGW
Hamiltonian density is

Qv
(6)

Critical behavior at a continuous transition resulting from
the Hamiltonian specified by the ii„ is determined by the
properties of the stable fixed points as A, ~O. This corre-
sponds to the scale invariance of the system at its critical
point. By definition, the left-hand side of Eq. (6) becomes
zero at a fixed point (denoted by uo, u i, . . . , u~' i ) and
thus

pv(i O', uni, . . . , up', )=O.

A fixed point is stable if the trajectories of Eq. (6)
(originating from the neighborhood of the fixed point)
flow towards the fixed point as A,~O. Thus the eigen-
values ao, ai, . . . , a~ i of the matrix

i3P„
M~ —— (8)

BQy

evaluated at the fixed point must have positive real parts.
The right-hand side of Eq. (6) can be written as a dou-

ble series expansion in a=4 dand ii „—(Ref. 6}:
1

Pijkl ~iiijkl+ I ~ (~ijmniimnkl+iiikmniimnjl
ns, n

+ iilmn iimnjk )

to one-loop order. Michel has shown recently that the
functions P„of Eq. (6) can be written in a condensed form
by using two mathematical operations. If we let P~i" and
P4' ' be two polynomials of the form of Eq. (2) then the
scalar product is defined by

for a given H generates a P-dimensional vector space.
The most general vector of this space is of the form of
Eq. (2), i.e.,

p —1

P4 g——uijki0&4'j4kitii= uoIo(4)+ g ii„I„(P),
v=1

where ii„are now considered as components of the vector
and the I„as the bases. The RG method associates to a
selected initial vector in P4 a flow of vectors with the
same invariants I„($}but with varying coefficients. The
preservation of the invariants I„($}results from the co-
variance of the RG recursion relations under 0 (6). Thus,
the set of symmetry transformations [in 0(6)] of the po-
tential cannot decrease along the trajectory and can only
increase at a fixed point.

The flow of the coefficients u„ is governed by recursion
relations of the general form

H(x)= g (Vij};) + P.P+ ,
P4(i')—, —r 1

2 4~

where P;(x) are the local order-parameter components,
and P4($) is identical to the Landau potential defined in
Eqs. (1) and (2). In Eq. (5) x and V are physical dimen-
sional vectors while P is the order-parameter vector in the
irrep space. Our analysis is restricted to the six effective
Hamiltonian densities H&, 02, . . . , H6 with quartic in-
teractions h&, . . . , h6 occurring in structural transitions
(see Table IV). The set of invariant quartic polynomials

where

dP"' dP''
144, dQ( dPj i}Q;Bgj.

(P4 ~P4 ) g ~ijkliiijkl ~

(&) (2) (&) (2)

i,j,k, l

and the symmetric product is defined by

(10)

(12)
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TABLE VII. Scalar and symmetric products of fourth-degree basic invariants.

Basic
in variants

Scalar
product Symmetric product

lo Io
I2 I(4)

07 1

I2 I(4)

I2 I(4)
07 3

I2I()
I2 I(4)

I2 I(4)

I,', I',"
I2 I(4)

)

I(4) I(4)
1 7 1

I(4) I(4)
1 7 2

I(4) I(4)
1 7 3

I(4) I(4)
1 7 4

I(4) I(4)
1 7 5

I(4) I(4)
1 7 6

1{4) IC4)

I(4) I(4)
1 7 8

I(4) I(4)
1 7 9

I(4) I(4)
2 7 2

I(4) I(4)
2 7 3

I(4) I(4)
2 7 4

I(4) I(4)
2 7 5

I(4) I(4)
2 7 6

I(4) I(4)
2 7 7

I(4) I(4)
2 7 8

I(4) I(4)
2 7 9

I(4) I(4)
3 7 3

I(4) I(4)
3 7 4

3 7 5

I(4) I(4)
3 7 6

I(4) I(4)
7 7

I(4) I(4)
3 7 8

I(4) I(4)
3 7 9

I(4),I(4)

I(4) I(4)
4 7 5

I(4) I(4)
4 7 6

I(4) I(4)
4 7 7

I(4) I(4)
4 7 8

I(4) I(4)
4 7 9

I(4) r(4)
5 7 5

I(4) I(4}
5 7 6

I(4) I(4)

0

0

1

2

1

8

0

Io
—' I,'+ —'I',"
—,sr()+ —,r2 '

2 I(4)

1 I2+ 2 I(4)

1 I2+ 2 I(4)

3 I6(4)

-'I"'

3 Is(4)

—I' '

I(4)
1

1 r(4)

0
1 I(4)
1 I(4)

—I' '

1 I(4)

1 I(4)

1 I(4)

1 I(4)

36 I1 18 I2 18 I41 2 1 (4) 1 (4) 1 (4)

—I' '

12 6

I(4)

1 I(4)

18

72 I6
—Is ——I9(4) 1 (4)

(4) 1 (4) 1 (4)
72 7 24 I8 36 r9

36 o 36 1 18 4 18 I5(4) 1 (4) 1 (4)

—I' '

(4)

36I7 36I8 + 9I9(4) 1 (4)

I(4)
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Basic
in variants

Scalar
product

TABLE VII. ( Continued).

Symmetric product

I(4) I(4)
5 ~ 8

I(4) I(4)
5 ~ 9

I(4) I(4)
6 ~ 6

I(4) I(4)
6 ~ 7

I(4) I(4)
6 ~ 8

I(4) I(4)
6 ~ 9

I(4) I(4)
7 s 7

I(4) I(4)
7 t 8

I(4) I(4)
7 & 9

I(4) I(4)
8 ~ 8

I(4) I(4)
8 ~ 9

I(4) I(4)
9 ~ 9

1

2

1

2

3
2

Is
—I' '+ —I' '

2 1 (4) 1 (4) 5 (4)
24IO —72Ii + —,2I2 ' —9I'

2 1 (4) 1 (4) 5 (4) 5 (4) 5 (4)
18 0 24 1 36 2 72 4 36 5 18

is o 24 1 is 2 is 4 72 5 9 I~

36 I2 —
6 I3 —

72 I4
1 (4) 1 (4) 1 (4}

The operation (P4",P4 ') has the properties of an 0(n)
invariant scalar product in the polynomial space, and
P'&" AP~& ' defines a symmetric nonassociative algebra.
(See Ref. 26 for more detail. ) In terms of the symmetric
product, Eq. (9) can be written in the compact form

P„(u)= —eu „+—,
'

(u A u)„.

Because of the linear dependence of P4($) on I„($),
any scalar product in Eq. (10) or symmetric product in
Eq. (11) can be obtained from the products of the basic in-
variants, i.e., (I&,I„)or I„AI„. We have tabulated these
products in Table VII for all pairs of basic invariants
occurring in the six densities under consideration here.

The following general results have been obtained ~ for

Density

TABLE VIII. Nonlinear contributions to the recursion relations of Eq. (6).

2 (u Au)v

Qp

Qi

3 Qp +QpQ1 +QpQ2/6
7 2

2upui+ 2 ui+u2/24
2upu2+uiu2+ 3 Q2

1

H3

Qp

Qi

Q2

Qp

Q3

Q6

Qp

Qp

3 u 0+upu 1 +upu2/6+ u 3/96

2QpQ1+ 2 u 1 +u 2/24 —u 3/96

2upu2+ uiu2+ —,u 2+ u 3/48

2upu3+ Q2u3/3+ u 3/24
7 2
3 Qp+QpQ 1 + 6 QpQ2+Q 3/96+ 16 Q6

1 2 1 2

2upui+ 2 ui+ 24u2 —96u3 48 Q6

2Q0Q2+Q1Q2+ 3 Q2+ 48 Q3+ 8 Q6

2QpQ3+Q2Q3/3+ 24 Q3 —
6 Q6

1 1 52upu6+ 2 uiu6+ 4 u2u6 —
24 u3u6

7 1 1 1

3 up+ Qpui + 6 upu2+ 3 QOQ4+ 6 upu5+ 12 Q2Q4+ 96 Q 3+ 12 Q4Q5

2Q0Q I+ 2
Q 1+ 24 Q2 12 Q2Q4 96 Q3+ 12 Q4 12 4Q5+ 24 Q5

2 QpQ2+ Q1Q2+ 3 Q 2
—

6 Q2Q4+ 48 Q 3

2upu3+ 3 u2u3+ 24 u 3+ 3 Q3u4+ 6 u3u5

2upu4+uiu4 —
6 u2u4+ —,2 u2u5+ 12 Q4 6 Q4Q5

2Q0Q5+QIQ5 —
6 Q4Q5+ 3 u 5

7 2 1 1 1

3 Qp+Q0Q] + 6 Qpu2+ 3 QpQ4+ 6 QpQ5+ 12 Q2Q4+ 96 Q3 + 12 Q4Q5
1

8 Q7Q8+ 12 Qs 48 Q9
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Density

TABLE VIII. (Continued} .

2 (u hu)„

Q5

2upu ] + 2 u ] + 24 u 2
——,2 Q2u4 —

96 u 3 + ]2 u 4 ——,2 Q4Q5+ 24 Q 5

+ ]6 Q7+ 8 Q7Q8 16 QS+ pg Q9

2upu2+u]u2+ 3 u2 —
6 Qpu4+ 48 Q3+ 8 Q7+ 4 Q7us ]2 us

1 1+ 12 u8Q9+ 8 Q9
1 1 2, 1 1 1 12upu3+ 3 QQQ3+ 24 Q3+ 3 u3Q4+ 6 Q3Q5+ 2 Q7us 2 Q7Q9 6 Q8

1 1 2—Tusu9 —
6 u9

1 1 5 3 1
2upu4+u]Q4 —

6 u2u4+ ]2 Q2Q5+ )p Q4 —
6 Q4Q5+ 8 Q7us —

8 7Q9

]2 8 24 Qsu9+ 8 Q9
1 1 p 1 1 5

2upQ5+Q]Q5 —
6 Q4Q5+ 3 Q5+ 4 Q7us+ 4 Q7Q9 24 Q8+ 24 Q9

1 1

2upu7+ —,u]u7+ —4Q2Q7+ —„Q3us —24»Q9
I+ ]2 Q4Q8 ]2 Q4Q9+ ]2 Q5Q9

] 1 1 1 1 1

2upus+ TQ]us+ TQ2us+ ]2, Q2Q9+ 8 Q3Q7 12 3 8 8
1+ 4 Q4Q7+ 3 Q4us ]2 Q4Q9 ]2 Q5us

1 1 1 12u, u9+ —,u]Q9+» Q2us+ TQ~Q9 —
8 Q3Q7 —8»us —

]~
] 1

Q4Q7 ]2 Q4QS+ 3 Q4Q9+ 4 Q5Q7+ 3 Q5Q9

7 2 1

3 p+ p 1+ 6upu2

2upu]+ 2Q]+ 24Q2+ 16Q7
2

2upu2+u]Q2+ 3 Q2+ 8 Q7
3 12upu7+ 2 Q]Q7+ 4 Q2Q7

the fiow of the coefficients u„.
(i) For n & 5 the isotropic fixed point is unstable for any

density with anisotropic quartic invariants (every density
of our consideration here)

(ii) There is at most one stable fixed point for each H;,
and all other fixed points are on the boundary of its at-
traction basin.

Using the symmetric products of the basic invariants,
we have obtained the recursion relations [Eq. (6)] for each
density Hi, H2, . . . ,H6. In Table VIII, column 3, we list
—', (u h u)„, the second term of the right-hand side of Eq.
(13). We solved the RG fixed point equations, Eq. (7), nu-

merically. In Tables IX and X we list the fixed points
of Eq. (6) and the eigenvalues of the matrix of Eq. (8) at
each fixed point. In Table IX we also list the eigendirec-
tion for each eigenvalue obtained from H ~. We have indi-
cated by an asterisk ( e ) a stable fixed point. Notice only
two densities allow stable fixed points. Both stable fixed
points have the same location in the space of P4. Thus
only Hi and H6 allow continuous transitions and they
both exhibit the same critica/ phenomena.

These results are, in general, consistent with results ob-
tained by other authors for the case n=6. Jaric and Bir-
man applied RG methods to the R(4), X(3), and X(4) ir-
reps of Ot, . These irreps correspond to the Hamiltonian
density H4. They found no stable fixed point, which is
consistent with our results. Toledano and Meimarkis
considered the density arising from several 8' point irreps
of 03. This density corresponds to our Hi. They found
a stable fixed point as we did. Using the symmetry cri-
terion of Ref. 9 we studied' the fixed points of the densi-
ties Hi, . . . , H6. The results we obtained there are con-
sistent for all densities with the e-expansion results ob-
tained here. Independent of our work, Meimarkis and

Eigendirections

+ (1,0,0)
+(0,1,0)
+(0,0,1}

+(0,1,0)

+(0,0,1)

k(1, —1,0)

—e( —1, 3,T)1 1F2: e(0, 3,0)

F3: e( 3, 9,0)

F4 e( —0 0)

F5: e(0, —,, —, )
3 6

F6 e(0 —2)

F7 e( ———)
1 1 2

FS: e( ———)
3 3 6]]s]]s 1]

—p( —1 ———)
1 1

—e( —1, 9, —9)1

1—e( —1 ————)s 11 s 1]

k(3,2,0}

k( —1,1,10)
k(1, —2,0)

k(1,0,0)

+( —1,0, 16)
z( —3,8,0)

+ (0,1,2)

+(1,—1, —2}
k(0, —1,6}

k(0, 1,6)

2( —1,0,4)
+( 1,—2,0)

+(3,1,6)

+(1,—3,2)
+( —1, 1„6}

+(1,1,2}

+(1,0,0)
+(0,1,0)

TABLE IX. Fixed points (F) in terms of (Qp, Q] Q2), eigen-

values, and eigendirections for the Hamiltonian density H].
Stable fixed points are indicated by an asterisk. See Table X for
additional densities.

Fixed points Eigen values

(up, u], Q2)

F1: e(0,0,0)
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Toledano performed RG analysis of structural and mag-

netic transitions for n= 6. They obtained the same densi-

ties but they do not allow 06 as a possible density for
structural transitions. Their RG results, however, do
agree with ours.

By using the scalar products of basic invariants listed in

Table VII, we obtained the length (u', u') = ', z~ for the

stable fixed point. It is easily seen that this length is
greater than those of the other fixed points. This is con-
sistent with the general result stated in Ref. 26.

TABLE X. Fixed points and eigenvalues for four of the six Hamiltonian densities. Stable fixed

points are indicated by an asterisk. See Table IX for density Hl.

Density Fixed points Eigen values

( Q0, Q I, Q2, Q3)

«{0,0,0,0)

«(0, 3,0,0)

«{ 3, 9,0,0)

«( 7,0,0,0)

«(0, —'„—'„0)
«(0, 3,2,0)

«( ———0)I I 2

3 3 6

«{—0 ——)
6 12 24
17 » 17 ~ 17

«( —0 ——)
3 12 24
11 » 11 ~ 11

I 1 2 8
«( —————)3& 9&3&3

2 I 2 8
«( —————)5 15 5 5

—«(1,1,1,1)

—«(1, —1, —,, —, )

«( 1 ————)
I I I

~ 3&9~

—«( —1 ———)
I I I

—«( —1 ————)
3 I I

&5&5~ 5

—«( —1 ———)
I I I

&3&3&3
I I I

p9&9i 9«( 1 ————}

3 I I

7 I I—«( —1 —————)~ 17 i 17 i 17

7 I I
~ 11 i ll & Il—«( —1 ————)

«( 1y 9 y 9 j 9 )
I 7 I

7 I I
~ 15 ~ 15 ~ 15

—«( —1,—,—,——)

03 ( QP, Q I, Q2, Q3, Q6)

«(0,0,0,0,0)

«(0, 3,0,0,0)

«( 3, 9,0,0,0)

«( —,,0,0,0,0)

«(0, 5, 5,0,0)

«(0, —,, 2,0,0)

«( ———0 0)I I 2

3 3 6

6 12 24

3 12 24
7

«( —————0)I 1 2 8
3~ 9~3s3~

«( —————0)2 I 2 8
5~ 15' 5i 5~

«( —————2 1)I I I

«( —————2 —1)I I I

5 I I 2 I
«( ———————)12 i 36 ~ 6 i 3 i 3

5 I I 2 I
«( ————————)12' 36~ 6& 3~ 3

3 3 3 6 3
«( ——————}20 i 20 ~ 2 ~ 5 ~ 5

3 3 3 6 3
«( ———————)20 i 20 ~ 2 ~ 5 ~ 5

15 3 15 12 3
«( ——————)44 i 44 i 22 ~ 22 i 11

15 3 15 12 3
«( ———————)44 i 44 ~ 22 ~ 22 i 11

—«(1,1,1,1,1)
2 I I
3 i 3 7 3

—«(1, —1,—,—,—)

—«( —1,—,—,—,——)
I 2 I I

~ 3& 9&9&

«( 1 ————)
I I I I

«( —1 —————)
3 2 I I

~5&5&5~ 5

—«( —1 ————)
I I I I

7 3 7 3 0 3 i 3

«( —1 —————)
I I I I

3 2 I I
«( —1 ——————)~ 11 ~ 11 i Il ~ 11

7 7 I I—«( —1 ——————)17 ~ 17 i 17 ~ 17

7 7 I I
«( 1 —————)~ ll ~ 11 ~ 11 ~ Il

—«( —1 ————)
7 7 I I

~ 9s 9s 9& 9

—«( —1 —————)
7 7 I I
15 ~ 15 ~ 15 ~ 15

—«(1 —1 ———)
2 I 1

—«(1, —1, —,, —,, —, )
2 I I

—«( —1 —————)
I 2 I I

'3&9&9~ 9

—«{—1 ——— —)
I 2 I I

a 3~9' 9&

3 2 I I

—«( —1 —————)
3 2 I I

« 5~ 5~ 5' 5

—«( —1 ——————)
3 2 I I
ll i ll i 11 i 11

2 I I

( Q0, QI, Q2, Q3, Q4, Q5)

«(0,0,0,0,0,0)

«( —,,0,0,0,0,0)

—«(1,1,1,1,1,1)
I I I I I—«( —1 —————)7 7 7 7 7 7 & 7 0 7
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Density

TABLE X. (Continued)

Fixed points

e(0, 3,0,0,0,0)

g 3, 9,0,0,0,0)

e(0, 3,0,0,0,2)

P(0, 3,2,0,0,0)

«(0, 5, 5,0,0,0)

e(0, 9,0,0, 3,0)
3 3 6

e(0, —,,0,0,0, —, )

&( ———000)I 2

3 6 12

I 4 4

3 3 6

P( 3, 9,0,0,0, 3 )
I I 2

6 12 24

3 12 24

P( ———,3, 3,0,0)I I 2 S

2 I 2 8

6 6 6 6

e( —0 ——0 ————)
3 6 6 6

2 2 2 2 2e( —————0 ————)3» 9» 3» » 3» 3

e(1, —3, —2,0, —2, —2)

Eigen values

I I I I—e( —1 ——1 ——)

I I I I—~( —1 ——————)9» 9» 3» 9» 9
I I 2 2

—e( —1 ———1 —)
I I I 2

—e( ——1 ————)
I I 3 3 2
5» 5»5»S, 5

I I 7 7 7—e( ———1 —————)11 & 11 » 11 » 11 » 11

I I 7 5 7—e( —1 —————)» 9»9»9» 9»9
—e( —1 ———————)

I I 3 3 2
11 » 11 » ll » 11 » 11

g( 1 ~ ~ ~ )
I I 3 2 4
5» » 5» 5» 5» 5

I 1 I I 2—e( —1 ——————)9» 9» 9» 3» 9
7 7 7

17 » » 17 » 17 » 17 » 17
—e( ——,—1, ——,—,—,—)

I I 7 I 7
15 » 15 » IS » 3 » 15

—e( —I, ——,—,—,—,—)

—e( —1 ———————)
I I 3 2 4
II » 11 » 11 » 11 » 11

I I I 2 2
9» 9» 3»9» 9

—e( —1 ——————)

I 7 I 7 5—e( —1 ———————)17 » 17 » 17 » 17 » 17

I 7 I 7 5
11 & 11 » 11 11 11

—e( ——1 —————)

7 I I 5 4—e( —I —————)» 9»9»9»9»9
I 7 I 1 4—e( —1 ——————)15 » 15 » 15 » 3 » 15

e( 1 ——————)
I 3 2 I

11 » 11 » 11 » ll ' ll

—p( ————1 ———)
I 3 2 I 4

I I I 2 2
9» 9» 3» 9»9)

—e( —1 ——1 ——)
I I 2 2

( Qo»QI»Q2»Q7)

e(0,0,0,0)

e(0, —3,0,0)

e( 3, 9»0,0)

e( —,,0,0,0)

e(0, 3,2,0)

e( ———0)I 2

e( ———0)3 3 6
11 » 11 » 11 »

—e(0, —1, —,, —, )

—e(0, —1, 9, —9 )

{—1, 7, 7, 7)
I I I

I I I—e( —1 —————)»S» 5» 5

—g(0, —1, 3, 3)
—e{0,—1, 9, —9)

e( 1 ——————)
I I I
II » 11 » ll

IV. Al j.RACTION DOMAIN AND ASSOCIATED
STROCllJRAL TRANSlTSONS

%e now wish to consider in more detail the physicaI
system corresponding to the density WI. A sample of
flow trajectories are depicted in Fig. 3. The attraction
domain of the stable fixed point is found to be

u, ~O, u»0, and u, —6u, ~0.
One can find a candidate for the boundary of the attrac-
tion domain by setting one (or a linear combination) of the
P„'s equal to zero. Notice that the stable fixed point for
H& is 1ocated on the phase boundary between phases

(P6,P7) and (Pl 1,P12) (see Table IX and Fig. 2). In Fig.
4 we show the attraction domain. The directions of flow
near each fixed point are shown and these eigendirections
are also listed in Table IX. The unstable fixed points are
located on the boundary of the attraction domain as was
pointed out in Ref. 26.

Fixed points with the one unstable direction r [see Eq.
(5)] describe physical systems with continuous transitions.
For T & T„RG flow leads to an effective Landau poten-
tial whose minimum is given by /=0, since r&0 For.
T & T, RG flow leads again to an effective Landau poten-
tial whose minimum is now given by /&0. When T =T,
the system is on the critical surface. For Hi this is the
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I.O

0.0

—0.5
0.0 I.O

FIG. 3. A sample of the flows of quartic coefficients
( uo, a ~, ui) determined by Eq. (6). We show a projection along
the uo axis. Our sample is chosen in such a way that the three-
dimensional curves either originate from or flow through a point
of the uo ———„plane. For example, curves ending at the stable

fixed point originate from the plane uo ———,', and the ones which

originate from the origin (0,0,0} end at the plane uo ———„.All

curves (including those not shown in the figure) originating from
a point within the attraction domain flow towards the stable
fixed point while all others originating from outside the domain
veer away to infinity.

three-dimensional "surface" of uo, u i, and u2. If the sys-

tem intersects the critical surface within the attraction
domain the transition is continuous. Depending upon
where the physical system intersects in the attraction
domain the corresponding lower phase mill be determined.

For 2ui —ui &0 phases (P6,P7) are selected, while if
2u, —uz & 0 phases ( P11,P12) are selected. When the pa-
rameters u„are in the attraction domain, the RG flow

leads to the stable fixed point (3e/11, 3e/11, 6e/ll) and

the appropriate critica1 exponents describe the critical
phenomena. For any point of the attraction domain the
same critical exponents are obtained. Points outside of
the attraction domain, but in the Landau continuous tran-

sition region, will yield fluctuation-driven first-order tran-

sitions. Indeed, all other regions of the (u i, u z) plane (i.e.,
outside of the region u2 &0, ui —6ui &0) correspond to
continuous transitions in Landau theory and will be
fiuctuation-driven first-order transitions.

A similar description of the systems corresponding to

H6 can be given. The attraction domain is a four-

dimensional region symmetrical above and below the

u 7
——0 surface. The attraction domain also extends

symmetrically above and below u7 ——0. Comparison with

Tables V and VI indicate that continuous transitions to
phases C23 and Cl are possible. Notice, for example,
that the stable fixed point (3e/11, 3e/11, 6e/11, 0)
corresponds to tan8=u7/ut ——0, tang=

~

8/u i ~

=
~
uqlui

~

= —, =2, and B&0. Since g=63' 27' the

Ff $

'Fe

l.5

FIG. 4. Fixed points and attraction domain for the Hamil-
tonian density H~. The region defined by uoy0, u2&O, and

u2 —6u~ ~0 forms the attraction domain. The directions of
flow near each fixed point are shown. These eigendirections are
given in Table IX. RG flow, given by Eq. (6), attracts any point
initially within the attraction domain to the stable fixed point
F8 while any point initially outside of the attraction domain is
driven away to infinity.

stable fixed point is in the stability region of the phase
C23.

As discussed in Sec. II, the phases P6, P7, Pl 1, P12,
C23, and Cl preserve the isotropy subgroups whose ele-
ments leave the corresponding order-parameter directions
invariant. For example, the symmetry of P6 is the set of
space-group elements whose matrix representatives leave
(a,O,a, O, a, O) invariant. The representation of a space
group depends upon the details of the mapping of the
space-group elements onto the representation matrices.
Thus P6 will determine different subgroups for different
space-group irreps even though the irreps have the same
image. In Table XI we list subgroup symmetries which
correspond to each of the phases P6, P7, Pl 1, P12, C23,
and Cl. It is a list of continuous transitions allowed by
both Landau theory and RG theory. If Pl 1 and P12 are
not both listed they determine equivalent subgroup sym-
metries. Notice that P11 and P12 are inequivalent only
for the image 1.2 We hst the . subgroups as well as the
origin and lattice for each subgroup.

Our discussion has assumed, as is usually done, only
isotropic gradient contributions to the Hamiltonian densi-

ty. Recently, Felix and Hatch showed ' that anisotropic
gradient terms can destroy the stability of the fixed point.
Such terms occur occasionally in structural systems with
order parameter components of n=2, 3, and 6. In all
cases where such terms are a11owed by symmetry the
stable fixed point becomes unstable. Our results indicate
that the transitions for images 1.5 and L», determined to
be continuous by the usual RG methods, will not possess
stable fixed points when considering the allowed anisotro-
pic gradient terms. Such anisotropic terms are allowed
every time these images occur. Thus, even though listed
here, the I.5 and I.~~ transitions are not expected to be
continuous within the more general RG methods.
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V. CRITICAL EXPONENTS

Using well-known scaling laws the values of all the
critical exponents can be obtained from the knowledge of
just two exponents. Brezin et al. have given general ex-
pressions for the exponent q of the pair correlation and

for the exponent v of the correlation length.
sions take the form

g =—„(1+—,e)[e(1—e/2) U' —(U*)'/2]

X (1+2m/3+5U*/12)

The expres-

TABLE XI. Lower-symmetry phases (subgroups) which may arise from continuous transitions according to RG analysis. All sub-

groups arise from the Hamiltonian densities Hl and H6. The origin and lattice of each subgroup is given. The transitions listed for
1.5 and Lll are not expected to be continuous due to allowed anisotropic gradient terms.

Space
group Irrep Subgroup

03

07

New primitive axes

( —2, 2, 2), (2, —2, 2), (2,2, —2}

( —2, 2,2), (2, —2, 2), (2,2, —2)

( —2, 2, 2), (2, —2, 2), (2,2, —2)

New origin

( ———)
I I

2~2~2

(0,0,0)

( ———)
I I I
4f 4& 4

OI P6

0
06

( —2, 2, 2), (2, —2, 2), (2,2, —2)

( —2„2,2), (2, —2, 2),{2,2, —2)

( —2, 2, 2), (2, —2, 2), (2,2, —2)

( ———)
1 I I
2&2~2

(0,0,0)
I I I

( ———)

fV3 P6

04
06

( —2, 2, 2), (2, —2, 2), (2,2, —2)

( —2, 2, 2), (2, —2, 2), (2,2, —2)

( —2, 2, 2), (2, —2,2},(2,2, —2)

( ———)
I I I
2~ 272

(0,0,0)

( ———)
I I 1

4~ 4r 4

0],

P7

P11

0

07

( —2, 2, 2), (2, —2, 2), (2,2, —2)

( —2, 2, 2),{2,—2, 2), (2,2, —2)

{—2, 2, 2), (2, —2, 2), (2, 2, —2)

( ———)
I I
27 2'2

(0,0,0)

( ———)
I I
4~ 4~ 4

0

0

P6

P7

PI 1

P12

P7

P11

P12

01
07

06

01
02
06

07

( —2, 2, 2), (2, —2, 2), (2,2, —2)

( —2, 2, 2), (2, —2, 2),{2,2, —2)

( —2, 2,2), (2, —2, 2), (2, 2, —2)

( —2, 2, 2), (2, —2, 2), (2,2, —2)

( —2, 2,2},(2, —2, 2), (2,2, —2)

( —2, 2,2), (2, —2, 2),{2,2, —2)

( —2, 2,2),{2,—2, 2), (2,2, —2)

( —2, 2,2), (2, —2, 2), (2,2, —2)

( ———)
I I I
27272

(0,0,0)

( ———)
I I

47 47 4

( ———)
11 3 7

( ———)
I I I
2~ 2~2

(0,0,0)

( ———)
1 I I
4P 4l 4

( ———)
11 3 7
4 F4~4

1.3 Td P6 Td

Td

T4

( —2, 2, 2), (2, —2, 2), (2,2, —2)

{—2, 2,2), (2, —2, 2), (2,2, —2)

( —2, 2, 2), (2, —2, 2), (2,2, —2)

( ———)
I I I

2~272

(0,0,0)

( ———)
I I I
4~4~4

Td Td

Td

T4

( —2, 2,2), (2, —2, 2)(2,2, —2)

( —2, 2,2), (2, —2,2), (2,2, —2)

( —2, 2, 2), (2, —2, 2), (2,2, —2)

( ———)
I I I

2 t 2 f 2

(0,0,0)
I I I

( ———)

Td

Td

8'3 P6

P11

P11

Td

Td'

Td

Td

T4

( —2, 2, 2), (2, —2,2),(2,2, —2)

(-2,2,2), (2, -2,2), (2,2, -2)
( —2, 2,2), (2, —2, 2), (2,2, —2)

( —2, 2, 2), (2, —2, 2), (2,2, —2)

( —2, 2,2), (2, —2, 2), (2,2, —2)

( —2, 2, 2), (2, —2, 2}„(2,2, —2)

I I I
{———)4~4~4

( ———)
3 3 3
4&4&4

(0,0,0)

( ———)
I I I

( ———)
3 3 3
4&4&4

(0,0,0)
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Image
Space
group

08

08

Irrep

TABLE XI. {Continued).

Subgroup

D7

C4

D7

C4

New primitive axes

(2,0,0),0,2,0},(0,0,2)

(1,1, —1),( —1, 1, 1),(1,—1, 1)

(2,0,0),{0,2,0),(0,0,2)

(1,1,-1),(-1,1, 1),(1,—1, 1)

New origin

( ———)
3 3 3
474s 4

(0,0,0)

( ———)
1 1 1

47 47 4

(0,0,0)

06

a' M2@M3

C1

C23

C1

C23

D2

D4

C4

(0, 1, 1),(0, —1, 1),(1,0,0)

{—1, 1, 1),(1,—1, 1),(1,1, —I)

(0, 1, 1),(0, —1, 1),{1,0,0)

( —1, 1, 1),(1,—1, 1),(1,1, —1)

(- —-)3 1 1

Ss 2~ 4

{0,0,0)

( —0 —)
I 1

(0,0,0)

( I/v —2)= — (1+@/2)+ ,', [eU' ——(U')/&],
2

pvith

U 5kl = g uiikl . (17)

Here the asterisk denotes the stable fixed point values of
the u;lkt. For the stable fixed point (3e/11, 3e/11, 6e/11)
of H i or (3e/11, 3e/11, 6e/11, 0) of Hs we obtain
U'= —',

, e. Using Eqs. (15) and (16), ri= —', (e/11) and

v= —,(1+—,', e). Notice that we obtain the same critical

exponents for both densities and thus the same critical
phenomena.

VI. CONCLUSION

%e have given a complete discussion, using RG
methods, of the critical properties for structural phase
transitions induced by six-component order parameters.
The discussion is as self-contained as practical and in-

cludes lists of space-group irreps, basic invariants, sym-
metric products of invariants, recursion relations, fixed
points, stable fixed points, attraction domains, and critical
exponents. The final list, Table XI, will be of particular
interest to experimentalists since it gives specific transi-
tions and their critical exponents (which we obtained in

Sec. V) for physical systems. As far as we know this is
the first published list of specific transitions which are al-
lowed to be continuous by RG theory for n=6
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