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We have classified continuous phase transitions in physical systems where the order parameter

transforms as a six-dimensional representation of a space group. The Landau potential is mini-

mized with the use of Kim's geometrical method and a table of isotropy subgroups recently obtained

by Stokes and Hatch. For most images of the active six-dimensional space-group representations,

the complete list of stable phases is presented along with the corresponding region in coupling coef-

ficient space {orpressure-temperature plane) for each stable phase.

I. INTRODUCTION

It is well known that Landau's phenomenological
description' of a continuous phase transition is very useful
in classifying syminetry changes which can take place
during such a transition. A good illustrative example is
given by Lyubarskii. The procedure can be summarized
as follows:

(1) Find the space group 6 of the high-symmetry phase
of a physical system (crystal, alloy, etc.) and the irreduci-
ble representation ("irrep") I' of the order parameter vi re-
sponsible for the transition. The irrep should comply
with the Landau and Lifshitz conditions' for a continu-
ous commensurate phase transition (referred to as an ac-
tive irrepz).

(2) Find a set of basic invariant polynomials in iI up to
degree four.

(3) Minimize the Landau potential consisting of this
basic set of invariants and thus dettumine vis correspond-
ing to the absolute minimum.

(4) Find the subgroup H of 6 that leaves fixed the
order-parameter components iso at the absolute minimum
found in step (3).

Step (3) is excessively laborious if carried out before
step (4). Also, often one only needs to know the possible
symmetries instead of the exact solution to {3). Birman
proposed that step (4) should be carried out before step {3)
is attempted. If a subgroup H af the space group 6 is ta
be a symnltry group of the lower symmetry phase after a
transition, the irrep I af 6 should subduce the identity
representation of H at least once. (The number of times
the identity representation occurs in the subduced repre-
sentation is called the subduction frequency. ) This is
called the subduction criterion. The group H is then
called an "isotropy subgroup" of the representation I'.
The chain subduction criterion further selects a minimal
set of all "isotropy subgroups. " If two "isotropy sub-
groups" Hi and H2 (Hi &H2) have the same subduction
frequency, then H2 is not eligible for any transition. That
is, we need to consider only the largest "isotropy sub-
group" in a chain of "isotropy subgroups" with the same
subduction frequency. Normally there are many distinct
chains at a given subduction frequency. The selection

procedure needs to be carried out for all chains of "isotro-

py subgroups" at each subduction frequency, 6 starting
from subduction frequency one down to the dimension of
the order parameter. Good examples are given in Refs. 6
and 7. Since smaller "isotropy subgroups" do not appear
in any physical context, the term isotropy subgroup is
used in the literature for the largest "isotropy subgroup"
in a given chain. The term maximal isotropy subgroup is
used to label a member of the set of "high-level" isotropy
subgroups of low index that are disjoint from each other
and are supergroups of "lower level" ones of high index
having higher subduction frequencies.

Many authors overlooked the direction of the order pa-
rameter that is left fixed by the elements af an isotropy
subgroup (called the H-invariant vector of the isotropy
subgroup). Vinberg et al. made an extensive table, based
on the abave selection, of possible phase transitions in
crystals with space group Ot, (Pm 3m). In addition to
listing isotropy subgroups, they included the invariant
vector corresponding to each isotrapy subgroup. The
minimization procedure is greatly facilitated if the full in-
formation of the isotropy subgroups and their invariant
vectors is available in advance.

In Kim's minimization method, instead of working
with order-parameter components, one treats each in-
dependent invariant polynomial as a variable. Further-
more the dependence of the potential on the radial and
directional parts of sI are separated. The directional mini-
ma of a low-degree Landau potential are obtained readily
as a function of directions. ' Then the absolute minimum
is the lowest of all directional minima in the space of
directions. The method utilizes already known geometri-
cal properties of the orbit space. " An orbit' is the set of
all representation vectors (order-parameter vectors in our
case) that are connected by group elements. All vectors
on an orbit yield the same numerical value for a group-
invariant function and the isotropy subgroups leaving the
vectors invariant are conjugate to each other. Thus a
group-invariant function should be regarded as a function
af the orbits rather than that of individual vectors. Con-
versely, an orbit can be completely specified by a set of I
algebraically independent invariant polynomials. The
number I is the dimension n of the representation vector
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33 CLASSIFICATION OF CONTINUOUS PHASE TRANSITIONS. I.

for finite groups, but is smaller than n for continuous
compact groups. Without ambiguity we can call the space
of the chosen I invariants the orbit space. Kim has
shown that the absolute minimum of a quartic invariant
polynomial occurs at the boundary of the projected orbit
space (with higher than quartic invariants discarded). It
is known" that the boundary of the orbit space consists of
orbits corresponding to "high-level" isotropy subgroups.
Often the boundary of the projected orbit space is closed
by orbits corresponding to first few "high-level" isotropy
subgroups. In this case the information on the invariant
vectors and isotropy subgroups is advantageous in build-
ing the orbit space (though one cannot tell it in advance).
Once the orbit space is depicted, the phase diagram can be
readily obtained.

The procedure of making a complete list of isotropy
subgroups for an irrep of a space group can be carried out
manually6 ' using a table' ' of space-group representa-
tions. A systematic procedure for obtaining a complete
list of isotropy subgroups has been given in the litera-
ture. ' ' However, it is very laborious and thus mistake-
prone. For point-group representations in three dimen-
sions the list of isotropy subgroups has been tabulated in
Ref. 18. For space-group representations the rocedure is
more complex and only some individual cases '6 ' have
been analyzed. With the aid of a corn uter, Stokes and
Hatchim' have made a complete list t of isotropy sub-

groups of all subduction frequencies along with corre-
sponding invariant vectors for all irreps (active or not)
corresponding to points of symmetry in the Brillouin zone
of each space group.

Such a complete list of isotropy subgroups can be quite
useful, as explained below. First, in the application of
Landau theory one normally imposes the Landau and
Lifshitz conditions on the irreducible representation of the
order parameter and truncates the free-energy expansion
in order-parameter components to the fourth degree. The
Ascher ' and Michel-Radicati 2 conjectures state that a
fourth-degree Landau potential (cubic terms possibly in-
cluded) allows stable phases with maximal isotropy sub-

groups only. Some counterexamples '2 to the conjec-
tures have recently been found. A phase with a submaxi-
mal isotropy subgroup is therefore also eligible as an
equiiibrium state. Second, attempts have been made to
extend the applicability of the Landau theory to a certain
class of first-order phase transitions. 5 A well-known ex-
ample is the theory of BaTiO&.i To explain discontinu-
ous transitions in the framework of thermodynamic
theory, one can ease the Landau and/or Lifshitz condi-
tions or include higher-degree terms in the potential for
active representations. A higher-degree potential al-
lows ' phases with "lower-level" isotropy subgroups as
equilibria. If the potential is expanded to high enough de-
gree, all isotropy subgroups can be realized. A good ex-
ample is the cubic XI'model. (Often the fourth-degree
potential cannot distinguish different phases. To lift the
degeneracy one needs to consider higher-degree terms per-
turbatively. )

It was shown3 ' that thousands of space-group irreps
can be categorized into a much smaller number of images.
The set of distinct matrices (image) of an n-dimensional

irrep of a space group form an n-dimensional representa-
tion of a point group in n dimensions. With respect to
appropriately chosen bases, the set of irreps with

equivalent images yields the same basic set of invariants
and thus the same thermodynamic potential. In addition,
when the potential is truncated to the fourth degree,
several images can yield the same potential. In this case
the syminetry group of the potential is the centralizer, i.e.,
the maximal supergroup of the set of image groups that
leaves the quartic potential invariant. Thus the classifica-
tion of continuous phase transitions is further simplified
and a compact table of possible second-order transitions
for all active images can be constructed. Using this

strategy, Toledano and Toledano ' made an extensive list
of active images and tabulated possible second-order
phase transitions for each image. However, their table

contains errors and is not complete. In order to make an
error-free table we need to resort to computers and an ef-
ficient method of minimization.

In this paper we carry out this project using the
isotropy-subgroup tables prepared by Stokes and
Hatch N ' using a computer and Kim's minimization
technique. We analyze in detail the Landau potentials of
eight images for six-dimensional order parameters, classi-
fy the possible continuous phase transitions, and list the
stable phases in each region of the phase space, i.e.,
coupling-coefficient space or the usual pressure-tem-
perature (P-T) plane. (A similar program has been par-
tially carried out by Toledano and Meimarakis. ) These
eight examples have some interesting features: (1) degen-
eracies that are lifted by higher-degree terms, (2) violation
of the Ascher conjecture, ' and (3) violation of the
Michel-Radicati conjecture.

II. IMAGES AND INTEGRITY BASIS

For six-dimensional irreducible representations of space
groups, Gufan et a1.3 suggested that there can be, at
most, six distinct images complying with the Lifshitz con-
dition but not necessarily with the Landau condition.
Toledano and Toledano ' listed ten active images (labeled
L1—L10). We have found an additional active image (we
call it L11 to be consistent with the notation of Ref. 31).

The Landau potential can be expanded as a power series
in the order parameters. Since it is a group-invariant
polynomial series, it can be expressed as a polynomial
series in a set (called the integrity basis) of basic invariant
polynomials. %e tabulate all six-dimensional active im-
ages along with the integrity basis up to the sixth degree
in Table I. We use the international symbols for space
groups and those of Ref. 14 for representations. The basic
invariant polynomials are listed in Table II.

III. ORBIT REPRESENTATIVES
OF ACTIVE IMAGES

As we emphasized in the Introduction, knowledge of
the orbit structure, and particularly the invariant vectors,
is very useful in building the orbit space and thus in the
analysis of a Landau potential. We use the method
described in Ref. 17 to obtain the isotropy subgroups.
Identification of the subgroups as one of the 230 space
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TABLE I. Images of active six-dimensional space-group irreducible representations and their integrity bases up to the sixth degree.

Irrep labeling is the same as in Ref. 14.

L1

Space-group irrep

W], $'2, W3, 8'4 of 0~ (Em3m; No. 225)

Fourth-degree
invariant

I(4) I(4)
1 ) 2

Sixth-degree
invariant

I(6) I(6) I(6)
1 ~ 2 ~ 3

8'], 8'2 of 0 (F432; No. 209) I(4) I(4)
1 ~ 2

I(6) I(6) I(6) I(6)
1 ) 2 ) 3 ) 4

L3 8'], S"2,83, 8'4 of Tg (E43m; No. 216) I{4) I(4)
1 ~ 2 I(6) I(6) I(6)

1 ~ 2 ~ 3

X3,X4 of OI', ' (Pn3m; No. 224)

X] X2 X3 X4 of Oq ( Im3 m; No. 229)

I(4) I{4) I(4)
1 ~ 2 s 3

I(6) I(6) I(6) I(6)
1 ~ 2 s 3 s 5

N2, %4 of 08 (I4132; No. 214} I(4) I{4)
1 ~ 2

I(6) I(6) I(6) I(6)
1 ~ 2 ~ 3 ~ 6

%2,N4 of 0 ( I432; No, 211)

N2, N3 of Tq (I43m; No. 217)

M2 of O~ (Pn3n; No. 222)

M4 of Oq (Pn3m; No. 224)

X4 of Og (Fd3m; No. 227)

X4 of OA' (Fd3c; No. 228)

N+, X+ of 0„(Im3m; No. 229)

I(4) I(4) I(4)
1 ~ 2 ~ 3

I(6) I(6) I(6) I(6)
I s 2 ~ 3 ~ 5

X5 of Tq (P43m", No. 215)

X+5,X5,M5 of Oq (Pm3m; No. 221)

M5 of Oq (Pm3n; No. 223)

X5 of OI', (Fm3m; No. 225)

X5 of O~ (Em3c; No. 226)

I(4) I(4) I(4) I(4)
1 s 2 s 3 s 6

I(6) I(6) I(6) I(6)
1 ~ 2 ~ 3 ~ 5

I(6) I(6)
7 s 8

L8 N],%2 of TI, (Im3; No. 204) I(4) I(4) I(4)
1 ~ 2 s 3

I(6) I(6) I(6) I(6)
1 s 2 ~ 3 s 5

I(6) I(6) I(6)
9 ~ 10 ~ ll

X3,X4 of Oq (Pm3n; No. 223) I(4) I(4) I(4) I(4)
1 s 2 ~ 3 s 4

I(4)
5

I(6) I(6)
1 s 2

(6) (6)I]2 s ~ ~ ~ s I16

X]@X2,
X3X4 of Tq (P43n; No. 218)

I{4) I(4) I() I(4)
1 & 2 s 3s 4

I(4) I(4) I(4) I(4)
5 s 7 & 8 s 9

I(6) I(6)
1 ~ 2
(6) (6)I]2 s ~ ~ ~ yI22

M2M3 of 0 ( P4332; No. 212}

M2M3 of 0 (P4132; No. 213)

I(4) I(4) I(4)
1 s 2 s 7

I(6) I(6) I{6) I(6)
1 s 2 a 3 & 4

I(6) I(6) I(6)
6 s 17 s 23

groups in a standard setting is discussed in Ref. 34. We
follow that description here. An orbit representative is
then obtained for each isotropy subgroup by usual group-
theoretical projection techniques. %'e tabulate the orbit
representatives of all isotropy subgroups for each active
image in Table III. (Our notation was dictated by ease of
recognition: I' stands for point, C for curve, and S for
two-dimensional surface. ) The corresponding isotropy
subgroups which leave them invariant are different for
each space group and representation. (See Ref. 35 for an
example. } Thus they are not listed here, but will be listed
elsewhere (Stokes and Hatch + ').

IV. IMAGES L1, I.2, I.3, AND 1.5

Let us consider the images L1, L2, L3, and L5, which
yield the same fourth-degree Landau potential. Here our
primary interest is in continuous phase transitions. %e
therefore will mainly be concerned with minimization of
the fourth-degree potential. However, we shall see that it
is necessary to keep the sixth-degree terms when degenera-
cies occur at the fourth degree.

The Landau free energy to the fourth degree is written
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TABLE II. Basic invariant polynomials of the integrity bases
for the images of Table I.

I2 =7/i+ (i+7/2+ 0&+7/3+ 03

=7/i+ gi+ 7/Z+ de+ 7/3+ d~

I2 7/ill+ "7202+ /43
=7/l(17/2(2+ 7/2027/303+ 7/43 /41

I4 =7/17/Z+gig2+ 7/27/3+ 4203+ 7/37/1+ 4k
I'S"=7/1&2+ 7/24+ 7/41

I6 =7/lgl(7/2+02 l3 '4)+ /24( 13+4
+7/43(7/i+Pi —

7/Z
—k)

I7 7/lg1(7/1 01)+7/202( /2 02) + )3(3( /3 (3)
Il"=g,gi(g2-k)+~24(~3-kl)+n43(~l-4)
I =7/ g {g 7/3)+7/2&2($3 —7/i)+7/3&3(gi —7/2)

I 1
= 7/1 +dl+ 7/2+ 02+ /3+ 03

I'361=(~2, g2, )(q22 g22)(q'3 g'3)

I'4 '
7/1 f27/2/2——7/3(3

I',"=~,g,~,g,(~3+g', )+~g2q3(3(pl+pi)+q43gigi(~2+4)
I6 7/1 pl 7/2(2(7/3 $3 ) +7/2/27/3(3(7/1 pl ) +7/3(37/1gl( 7/2 $2 )

I7 = 7/1 pl 7/2/2(7/1 pl —
7/2/2 ) + 7/2/27/3(3( 7/2)2 —7/3(3)

+7/43n41(7/43 7/ik)—
I8 —7/1gl( 7/2+ P2 7/3 d3) +7/242( 7/3+ g3 7/1

+~43(n'+0 ~' k)-
I9 =(7/i+Pi)(7/Z+(2)+(7/Z+d2)(7/3+4)+(7/3+g3)(7/1+(i)

I10 =7/1 pl(7/2+ $2) +7/2/2(7/3+ g3 ) +7/3(3( 7/1+ gl )

I 1 1 7/1/17/2(2(7/1+ gl )+7/2/27/343(7/2+ 42) +7/3(37/lgl(7/3+ g3)
I161 2 2 2+ (2'(2
I 13 =7/17/2+ 7/27/3+ 7/37/1+ gl42+ g203+ $3gl

I 14 =7/1(2 +7/2/3 +7/3/i +7/102+ 7/2/3+ 7/301

I 15 7/lgl7/242(7/1+ g2) +7/2/2 /3(3(7/2+ g3) +7/3(37/lgl(7/3+ Pl )

I 16 7/1(17/242(Pl +7/2)+ 7/2427/3(3(42+ 7/3) +7/3(37/ill((3+ 7/1)

I17 7/lgl(7/1 Pl) +7/2/2(7/2 02) +7/3/3(7/3 P3)

I 18 7/lgl( /2 g3)+7/242(7/3 gl)+ /343( ql g2)

I19 7/lgl(7/3 g2)+7/2(2(7/1 g3)+7/343(7/2 gl)

I20 7/ 1 gl( 7/17/2 f341 ) +7/242( 7/27/3 ( l(2 ) +7/343(7/37/1 (2(3 )

I21 /41(7/17/3 4241) + /242(7/27/1 0342) +7/3(3(7/37/2 glg3)

I22 /lgl(7/42 7/3gl)+ /242(7/203 7/i/2)+ /3(3(7/3gl 7/2(3)

I23 7/1(l(7/2 42)(7/3 g3)+ /202(7/3 43)( /1 gl)

+7/43(7/i —0'»(7/Z —CZ)

1 a
Go(A, i, A2) = ——

4 A 0+A 1 k, 1+A 212
(3)

An arbitrary point (A, i, A2) evaluated for any order-
parameter components g; lies vrithin the shaded region in
Fig. 1, which was, somewhat ambiguously but not
misleadingly, called the "orbit space. "

The absolute minimum is found9 by letting the contour
equation (3) meet the "orbit space" starting from
Go ———00. At given temperature and pressure the con-
tour is a straight line in the (A, i, A2) plane with a fixed
slope. The absolute minimum is found at the "orbit-
space" boundary point where the line makes the first con-
tact. In other words, one needs to find the extreme
boundary point of the "orbit space" for given A 1 and A2.
One can immediately notice that at fourth degree only the
protrudent orbits, P 1, P2, (P6,P7), and (P 11,P12), can
yield the absolute minimum.

The stable phases can be readily classified as illustrated
in the following. The reader will find Table IV useful for
this purpose. In the region A»0, 32~0, the line given
by Eq. (3) has a negative slope and moves in the upper-
right direction as Go increases. We see from Fig. 1 that
four phases, (P6,P7) and (P 1 1,P12), are eligible for the
absolute minimum and are thus eligible as continuous
transitions. The phases (P6,P7) are stable in the subre-
gion

Go(P6) =Go(A i
———,', A2 ——0)

& Go(P11)=Go(ki =
6 ~ A2= 12 )

or

2A) —A2 (0.

PZ

temperature dependence of the free energy. The radial
and directional behaviors of the potential have been
separated. The directional minimum along a direction
specified by A, l and A,2 is given by

2= 0
90 Ho+A)kj+32A2

'

G = 'I, +-,'(~,I,'+W, I—I"+W,I,'"')
2

=—
7/ + —,7/ (Ho+A ik, 1+328.2),2

(P6, P7)

(P II, P |2)

with g =—I2, A.
&

=—I'& '/I2, and A,2
—=I2 '/I2. As usual, the

positivity condition Ao+ A
&

A, ~+ A2A, 2 & 0 is assumed.
The coefficients a, Ao, A 1, and A2 carry the pressure and

FIG. 1. The "orbit space" (A, l, i,2) of images Ll, L2, L3, and
L5.
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TABLE III. Orbit structure of each six-dimensional image. An orbit of maximal isotropy subgroup is marked with an asterisk.
Dim is the dimension of the orbit or the subduction frequency.

Label Invariant vector Label Dim Invariant vector

P2
P3
P6
P7
P8
P11

Cl
C2
C5
C8
C9
C11
C14
C18
C21
C23

Image L1
Sl
S3
S4
S6
S8
S9
S10
S11
S14
S15

4D1
4D2
4D3
4D6
5D1
6D1

P2'

P7~
P8

P 12'

C1
C2
C5
C8
C9
C11
C14
C21

a a
a —a

Image L2
C22
C23

S1
S3
S4
S6
S8
S14
S15
S16

4D1
4D2
4D3
4D6
6D1

C —C

d
d

P1
P2'
P3
P6
P7
P8'
P11

C1
C2
C5
C8
C9
C11
C14

Image L3
C18
C23

51
S3
S4
S6
S8
S10
S11
S15
4D1
4D2
4D3
6D1

0
0

0

0

0
0
d
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Label Dim Invariant vector

TABLE III. {Continued).

Label Invariant vector

P1
P2'

Ps'

P11

C1
C2
C8
C9
C11
C12
C14
C15
C19

a —a
a a

b —b

a b

a —b

a —a

Image L4
C21
C22
C23

S3
S4
S6
S12
S13
S14
S15
S16

4D1
4D3
4D4
4D6
6D1

a —b
a —b

—C

P1
P2'
P3'
P6
P7'
P8

C1
C14
C23

S4
S9
S12

Image L5
a 0

a 0
a 0
0 a
a a

0 b

b b
a —b

P1
P2'

P6
P7'
PS'
P9
P11

C1
C12
C14
C22
C23

Image L6

a —a
a a

b —b
a b

54
S12
S15

4D3
6D1

P1'
P2'

P7'

P10
P11

C1
C11
C12
C13
C15
C19

0 a

0 0

0 0
0 0
b —b

Image L7
C20
C23

S6
S7
S12
513
S15
S16

4D1
4D3
4D4
4D5
6D1

Q —Q

a b

C —C

C

d —d
c d
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Invariant vector

TABLE III. (Cont( nQ&d).

Label Dim Invariant vector

P1*
P2'

P11

C1
C2
C11
C12
C23

S3
S4
S6
S7
S15
S16

Image L8
a 0
a a
a 0
0 a

a a
a b

a 0
0 a
a a
a a
a a
a a

0 0
0 0
0 a
a 0
a a

0 0 0
b 0 0
b b 0
b —b 0
a b a

0 c 0
b 0 c
c 0 0
0 b c
b c c
b c —c

p 1g

P2'
p4

P6
P 11*

C1
C2
C3
C4
C16
C17
C23

S3
S5
S18

Image L9
1

1

1

1

1

1

a 0
a a
a 0
0 a
a 0

a b 0
a 0 b

a 0 0
0 a b
a b b

a b —b
a b a

a 0
a 0

0 0
0 0
a 0
0 0
0 a

0 0
0 0
b 0
0 0
a 0
a 0
b a

0 c
0 0
c c

4D1
4D3
4D4
6D1

a a
a b

d 0 0
b c d
c
d e f

4D1
6D1

a b
a b

d 0
d 8

C1
C17
C23

Image L10
a b 0
a b —b

a b a

0 0
a 0
b a

C1'
C 14'
C23

Image L11
2 a b

2 a b
2 a b

0 0
b 0
b a

4D1
6D1

a b

a b
0 6D1 d e f

We similarly obtain the stable phases in each region of the
( A ~,A2 ) space and give them in Table V.

The orbit points P3 and P 8 are not protrudent, so they
cannot yield the absolute minimum of the fourth-degree
potential. Higher-degree expansions will make them eligi-
ble, ' however. Also, the degeneracies between pairs of
inequivalent orbits can be lifted by higher-degree terms.
The degeneracy between P 6 and P 7 is lifted by I3 '.

A. Images I.1 and I.3

Images L, 1 and I.3 have the identical integrity basis up
to the tenth degree. Twelfth-degree terms are needed to
distinguish these two images. The direction P11 can be
turned onto the direction I'12 by a group rotation belong-
ing to Ll or L3. Thus P 1 1 and P12 correspond to dif-
ferent domains or equivalent isotropy subgroups, i.e., they
are members of the same orbit.

8. Image I.2

F11 and P12 cannot be connected by any group
transformation belonging to I.2. The degeneracy between
them is lifted by I,'".

C. Image I.5

The symmetry group of the physical system, image L5,
is a subgroup of the symmetry group of the quartic poten-
tial, image Ll (P 1 1,P1.2) are special points on the orbit
C23 (a =b) of a submaximal isotropy subgroup in the
case of L5 (whereas their isotropy subgroup was maximal
in the case of Ll). Stability of the orbit point P 1 1 there-
fore violates the Ascher conjecture. ' A counterexample
to the Ascher conjecture in a four-dimensional case was
previously discussed by Toledano and Toledano.

Before we leave this section we would like to make a
few comments relevant to all of the above. As the tem-
perature is lowered through some critical temperature, the
coefficient a becomes negative and a continuous phase
transition takes place. Since the parameters ( Ao, A &, A2 )

change with temperature and pressure, it may happen that
the contour equation (3) becomes parallel to one of the
boundary lines in the region a «0. At first glance it
seems that a phase transition between the two adjacent
low-symmetry phases (e.g. , P6 and P 11) jointed by a line
may occur by continuous changes in g through an inter-
mediate phase (the line). Since the individual order-
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TABLE IV. Orbits of maximal isotropy subgroups and orbit parameters k s.

Phases Invariant vector A3

a 0 0
a a 0

0 0
0 0 1

4

Pj

P5

P6

P8

P9

a 0 a 0 0 0

a 0 0 a 0 0

0 a a 0 0 0

a 0 a 0 a 0

0 a 0 a 0

a 0 0

a a a —a 0

1

2

1

2

1

3

1

3

1

8

1

8

1

16

1

16

P10

P11

P12

a a 0

a a a

a a a

0 a —a

a a —a

1

6

1

6

1

12

1

12

1

16

1

12

1

36

parameter components can change widely during the tran-
sition without costing any energy, large fiuctuations will
be present at such a transition point. Moreover, degenera-
cies along the line must be lifted by including small
sixth-degree terms in the free-energy expansion. These
considerations implicate that the transition is actually of
first order. A detailed analysis will be published else-
where.

6= I2+ , (ApI2—+AiIi—'+A2I2 '+As 's ')
2

—:—ri + —,ri (Ap+Aili+A2A2+Asks) .
2

(4)

The directional minimum of the quartic potential is given

by

2— a
90 Ap+ A i A i+A iA2+Asl s

' (5)

TABLE V. Stable phases in each region of the (A1, A2)
space: Images L1, L2, L3, and L5.

V. IMAGES I.4, I.6, AND LS

Consider the images L4, L6, and L8. The free energy
to the fourth degree is written

1 a
Go ————

4 Ap+Aihi+A2A2+A3A3
(6)

The projected "orbit space" (A. i, A,2, i,s) is too complicated.
Thus we project it further:

A p A 2+ A 3A s =A [cos(8)A 2+ alii( 8)A s] =A A, '(8), (7)

1 0
4 Ap+Aik, i+Ah, '(8)

(i) 0'&8&63.4' (=tan '2): P2,P11,
(ii) 63.4'&8&135': P 11,
(iii) 135'&8&180': P 1 1, (P6,P7) .

The projected "orbit spaces" (A, i, A, '(8) ) at several angles 8
are depicted in Fig. 2. At a fixed angle 8 we can find the
absolute minimum in the same way as we did in Sec. IV.
Let us find stable phases in various regions of (A i,A, 8)
space.

Region L A &0, Ai&0. The contour of the directional
minima is a straight line with positive slope (A, i increases
as A,

' increases). The minimum value increases as the con-
tour moves in the upper-left direction. The possible
phases at different angles 8 are

Region

A1)0, A2~0

Stable phase

(P6,P7):
(P11,P12):

2A1 —A2 (0
2A1 —A2 ~0

Region II: A&0, A&&0. The contour has a negative
slope and moves in the lower-left direction:

A1&0, A2&. 0

A1(0, A2~0

A1&0, A2&0

P2:
{P11,P 12):

P1.

Pl:
P2:

2A1+A2 &..0
2A1+A2 ~0

everywhere

2A1 —A2 &. 0
2A1 —A2&0

(i ) 0' & 8 & 63.4': P 1,P2,
(ii) 63.4'&8&76.0' (=tan '4): P 1,P2,P11,
(iii) 76.0'&8&135': P 1,P11,
(iv) 135'&8&180': Pl .

Region IIL A ~0, A&~0. The contour has a positive
slope and moves in the lower-right direction:
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Pl Pl 8 = 63.4349

{P6,P7)
I
I
I

I

Fig 3(o)~'---PI2
Ol I

0

P I I

P2

0.25

(P6, P7}~

x' (8)

P2

0.2

Pl 8 = 75.9638'

P9

I

x' (8)

P I I

0.2 —O, I5
I

Z' (8)

Pll

O. I 5

Pl 8 = I04.0362' 8 = I I 6.565 I
' Pl

P2

—O. I 5

PI2 P I I

i

x' (8) O. I5 —0.2

P9

PI2 Pll

I

O x'(8) O. I

8= l35' Pl 8=I50 Pl

P2
I e'

1 1 II

P9 "'

I

!

Fig 3(b)~',
-0.25

PI2

x' (8)

(P6, P7)

.,+i

x' (8)
0

0.05

(P6, P7)
»"~1@„~~imp&

P I 2 P I I

FIG. 2. The "orbit space" (A, ~, A, '(6I)) of images L4, 1.6, and L8 at several angles 8.
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0.35
(Ps, p7)

8=45'

A (0, A) (0, 63.4'(0(76.0'.
P 1 is stable in the subregion Go(P 1) & Go(P 2), i.e.,

—,A) ——A2 (0 .1 1

P2 is stable in the subregion Go(P2) &Go(P1) and
Go(P2) & Go(P 11), i.e.,

c4)4AQ)0 and 33]+6321233(0
P 3 is stable in the subregion Go(P 11)& Go(P2), i.e.,

O. iO
0 y~ (8) 0.0625

0.55

8 = 135'

0.~0
-O. I 5 -0.05

FIG. 3. The enlarged diagrams of the lower-left corner of the
"orbit space" (A, „A,'(8) }at 8=45', 135'.

(i) 0 (8&63.4: (P6,P7), C19,C22,

(ii) 63.4'(8(116.6': P9,C22,

(iii) 116.6'(8(180': P2,P9,C22 .

The stable phases in regions I—III are easily obtained
by comparing the directional minimum values of the Lan-
dau potential in competing directions. For example, let us
consider region II, case (ii}:

(i) 0'&8(63.4': P 1,
(ii) 63.4'&8&104.0' [=tan '( —4)]: Pl, p9,
(iil) 104.0'&8& 116.6' [=tan '( —2)]: pl, p9,p2,
(iv) 116.6'&8&180': Pl,P2.

~&g&0+ I~ ~)0, A~&0. The contour has a negative
slope and moves in the upper-right direction. The lower-
left portion of the "orbit-space" boundary is convex and
consists of many different orbits (see Fig. 3):

In part (a) of Table VI we tabulate the stable phases in the
corresponding subregions of ( A i, A z, A 3 ) space.

When a phase of subduction frequency greater than one
is eligible, it is no longer possible to find the minimum in
an analytic form. This is the case in region IV. We will
illustrate how to find the absolute minimum at 8=45' and
135'. The stable phases at all angles 8 are listed in part (a)
Table VI. Let us parametrize the slope of the contour by
an angle P: tang =—A /A i .

Consider the case, 8=45'. For $~80.0'—:PU, the con-
tour is close to the vertical line and the point (P6,P7}
yields the absolute minimum. For PL =74.6'&P &80.0',
the protrudent portion [Fig. 3(a)] of the curve C19 yields
the absolute minimum. For P & 74.6' the boundary
portion of the curve C22 yields the absolute minimum.
As 8 deviates towards 63.4' or 0', the phase volume
b,P=PU —Pl for C19 diminishes. The upper and lower
limits at other angles 8, PU(8) and PL (8), are tabulated in

part (b) of Table VI. Here we have established that C19
and C22 yield the absolute minimum in region IV, case
(i): PL, & P & PU and P & Pi, respectively. Since a point on
a curve is specified by a single parameter, one can get the
minimum (located on the curves C19 and C22) as accu-
rately as the computer allows.

Consider the case 8=135'. At large angles P, i.e., when

4A)+232+33 (0, P2 gives the absolute minimum. In
the region 4Ai+2Az+A3&0 and P&62'=Pc, P9 gives
the minimum. Finally, in the region P &Pc, C22 yields
the minimum. The limiting angle Pc(8) is tabulated in
part (c) of Table VI.

Here again the degeneracy between P6 and P7 can be
lifted by a sinall sixth-degree term I& '. The orbit P12 is
a special point on the orbit C22 and the corresponding
phase can be realized at an isolated point in the P-T
plane. However, a slight deviation from the point can
easily move the absolute minimum to either P 11 or C22.

A. Images L4 and L6

L4 and I.6 have the identical integrity basis up to the
sixth degree. They begin to be different at the seventh de-
gree. L6 has a seventh degree invariant, whereas 1.4 does
not.

The two phases C19 and C22 in the region A & 0 and
A

~ ~0 comprise counterexamples to the Michel-Radicati
conjecture. In previous work the phase C22 of a sub-
maximal isotropy subgroup was found to be eligible.
However, the phase C19 was not found by any previous



1784 JAI SAM KIN, DORIAN M. HATCH, AND HAROLD T. STOICS

TABLE VI. (a) Stable phases in each region of ( A ~, A2, A3) space: Images L4, L6, and L8. The an-

gle P is defined as tang—=2

jest,

where 3—:A q+3 3 and tan8= —A3/Aq [see Eq. (7)j. (b) Limiting an-

gles pv(8) and Pl (8) tobe used in the region A &0, A~ &0 and 0&8&63.43'. (c) Limiting angle Pc(8)
tobe used in the region A «0, A~ «0 and 8«63.43'.

Region

A»0, A)«0

Stable phase

P2:
P 11.

0' & 8 & 63.43 4A )+2A2 —A3 &0
4A )+2A2 —A3 «0

P 11.63.43 &8&135'

135' & 8» 180'

everywhere

2A) —A2 —A3&O
2A) —A2 —A3«0

(P6,P7):
P11:

P1:
P2:

A &0, A)&0 2Ai —A2&0
2A) —A2«0

0'& 8 & 63.43'

P1:
P2:

2A) —A2»0
4A &+2Az —A3 &0
and 2A ~

—A2 «0
4A )+2A2 —A3 «0

63.43' & 8 & 75.96'

P 11.

10A )
—A2 —A3 &0

10A) —A2 —A3 «0
75.96'& 8 & 135' P1

P11:
135' & 8 & 180'

0'&8&63.43'

63.43' & 8» 104.04'

everywhere

everywhere

P1:

P1:A«0, Aj&Q

P1:
P9:

12A )
—2A2+A3»0

12A )
—2A2+A3 «0

104.04' & 8 & 116.57' P1:
P2:

2A) —A2&0
4A )+2A2+A3 &0
and 2A~ —A2«0

4A)+2A2+A3 «0
2A) —A2&0
2Ai —A2«0

116.57' & 8 & 180' P9:
P1:
P2:

P&4v
4c &(( &0v
(f &(fc

(P6,P7):
C19
C22:

0' & 8 & 63.43'A «0, Ai«0

4 &(()c
0&bc

63.43' & 8 & 116.57 P9
C22:

116.57»8&180 P2:
P9:
C22.

4A )+2A2+A3»0
42~+232+23&0 and P&Pc
4&Pc

(b)

(( v(8)
(c)

8 (deg) pl. (8) 8 (deg) 8 (deg) Ac(8)

63.8224
62.8465
62.0616
61.4662
61.0587
60.8379
60.8032
60.9543
61.2919
61.8169
62.5307
63.4349

65
70
75
80
85
90
95

100
105
110
115
120

125
130
135
140
145
150
155
160
165
170
175
180

63.5651
63.9541
64.6029
65.S165
66.7038
68.1785
69.9597
72.0754
74.5680
77.5098
81.0450
85.5545

64.5311
65.8203
67.3025
68.9762
70.8377
72.8805
75.0945
77.4656
79.9750
82.5997
85.3122
88.0817

5

10
15
20
25
30
35
40
45
50
S5
60

89.1253
86.3430
83.6054
80.9445
78.3890
75.9638
73.6891
71.5809
69.6506
69.9061
66.3521
64.9906



33 CLASSIFICATION OF CONTINUOUS PHASE TRANSITIONS. I. 1785

authors. Note that C19 is a special curve on the two-

dimensional orbit S12 in the case of L6.

TABLE VII. {a) Stable phases in each region of {A &, A2, A7)
space: Image Lll. The angle g is defined as tang=—

~
B/A~ ~,

where B =A 2+ A 7 and tan8= A7/A2 [see Eq. (10)]. (b) Limit-
ing angles fL, (8) and g~(8) to be used in (a). For 8&90', the
limiting angles are given by fq(8) =f~(8 90') a—nd

fg(8)=gL, (8 90')—

{a)
Region

8 g0, A)&0

8 g0, Ai(0
8)0, A)~0

8&0, A(&0

C1:
C23:

C1

C1.

C1:
C23:

Phase

everywhere

everywhere

B. Image Is
P9 (see image L4 in Table IV for direction) is a special

point on the orbit C12 of a submaximal isotropy sub-

group in the case of LS (whereas its isotropy subgroup
was maximal in the case of L4 and L6). Since the syrn-

metry group of the quartic potential is the supergroup of
the physical symmetry, the Ascher conjecture is violated.
C 19 is a special curve on the four-dimensional orbit 4D4
C22 is a special curve on the two-dimensional orbit S16.
These two phases form counterexamples to the Michel-

Radicati conjecture.
Note that the symmetry level of C19 is lowered by one

as we go from L4 to L6, and those of C19 and C22 are
lowered by three and one, respectively, as we descend

from L4 to LS (see Fig. 2 of Ref. 31). This is due to the

lack of available high-level isotropy subgroups because LS
is small. The violation of the Ascher conjecture occurs

for the same reason. However, the violation of the

Michel-Radicati conjecture has to do more with the

orbit-space geometry than with the difference in sizes of
the physical and quartic potential symmetries. If the
violation occurs, it occurs already with the largest symme-

try group of the quartic potential. Here the violation is

due to the invariant I3 ', which is somewhat less sym-

metric than the others. Since I3 ' also appears in the
three remaining images (L 7, L9, and L 10 in the notation
of Toledano and Toledano) and none of the maximal

isotropy subgroups corresponds to C19 or C22, the
Michel-Radicati conjecture is violated in all these six-

dimensional images.

VI. IMAGE L, 11

This is the image that previous authors3' missed.
free energy to the fourth degree is written:

G= —Ip+ , (AoI2—+A|I) +ApIp '+A7I7 )
2

Q + 4 g (Ao+A 1kl+A212+A717)
2

Here again we project the "orbit space" (X~,A2, A7) to

A2A2+A7A7=8[cos(8)X2+Sln(8)A7) =BR, (8)

The projected "orbit spaces" (A, &, A, "(8)) at several angles
8 are depicted in Fig. 4. The "orbit space" at an angle 8
greater than 90' is the mirror image of that at 8—90', re-
flected with respect to the vertical axis A,"=0. The con-
vex portions of the "orbit-space" boundary correspond to
C 1 and C23 of maximal isotropy subgroups.

The absolute minimum of the free energy is found in
the same way as in Sec. V. Let us define an angle g:
tang—=

~

8/A
& ~

. Let us consider a typical region
8 &0, A»0 and 8=45'. For (& S2.6':—(L the contour
is close to the vertical line. Thus C1 gives the absolute
minimum. For g & gL it is C23 that yields the minimum.

gz (8) is tabulated in part (b) of Table VII. gx(8) is the
limiting angle for the region 8 &0, A»0. The stable
phases in various regions are listed in part (a) of Table
VII.

8 (deg)

5
10
15
20
25
30
35
40
45

55
60
65
70

80
85
90

{b}
gL, (8)

89.8912
89.5680
89.0400
88.3220
87.4330
86.3950
85.2316
83.9673
82.6264
81.2326
79.8085
78.3753
76.9524
75.5572
74.2050
72.9091
71.6807
70.5288

63.4351
63.4376
63.4478
63.4743
63.5273
63.6179
63.7570
63.9551
64.2212
64.5633
64.9880
65.5003
66.1042
66.8018
67.5943
68.4812
69.4605
70.5288

VII. SUMMARY AND CONCLUSION

For a class of six-dimensional images we have made
lists of stable phases that can be realized in continuous
phase transitions. We have presented the phase structure
(the phase diagram) in each case. With the forthcoming
table of isotropy subgroups (Stokes and Hatch) @b' experi-
mentalists can rapidly compare observed space-group
changes against our lists or use our lists in a predictive
manner.

Also the above considerations of solid systems with
six-component order parameters have exhibited some
rather interesting features. In all cases the fourth-degree
potential does not distinguish two phases I'6 and I'7,
which makes it necessary to include a small perturbative
sixth-degree term I3 '. The Landau potential for images
I.1, 1.2, and I 3 allows stable phases, preserving maximal
symmetries. For space-group representations with images
L5 and LS, observation of phases (P 11,P 12) and P9 will
confirm the violation of the Ascher conjecture at work in
physical solids. It will be interesting to see experimentally
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CI

Ci4

8= 50

I

—0.5
I

0 x" (8) 0.5 -0.5 0 x" (8) 0.5

C14

8= 60'

CI4—
~, i/~;

a+gj g&+p, ,jg$$

:,'Q.':«l /rw ~" 8= 90'

-0.5
I

0 x" (8) 0.5 —0.5
I

0 x" {8}
I

0.5
Fio. 4. The "orbit space" (A, i, A,"(8)) of image 1.11 at several angles 8.

TABLE VIII. Isotropy subgroups of orbits P9, C19, and C22 for each space-group representation violating the maximality con-

jectures. In the case of L6, C19belongs to S12. In the case of L8, P9 belongs to C2, C19 to4D4, and C22 to S16.

Image Irrep

L4 X3 Og

X4 Op,

Oa

Space group

(Pn3m; No. 224)

{Pn3m; No. 224)

(Im3m; No. 229)

(Im3m; No. 229)

(Im3m; No. 229)

(Im3m; No. 229)

D20

20

17
D4a

17

(P421m; No. 113)

(P421m; No. 113}

(I41/acd; No. 142)

(I4,glacd; No. 142)

(I4ymmm; No. 139)

(I4/mmm; No. 139)

12C2„
12C2„
19C2„
19C2„
18

C2v
18C2„

(Cmc21', No. 36)

(Cmc21, No. 36)

(Fdd2; No. 43)

(Fdd2; No. 43)

(Fmm2; No. 42)

(Fmm2; No. 42)

g) 10

10C4„

11C4„

C22

(P41212; No. 92)

(P43212; No. 96)

{I4c2; No. 120)

(I4cm, No. 108)

(I4m2; No. 119)

(I41md; No. 109)

L6 X 0'
X4 O'

N2 Td

N3 Tg

M2 OP,

M4 Op,

X4 Og

(I432; No. 211)
(I432; No. 211)
(I43m; No. 217)

(I43m; No. 217)

(Pn3n; No. 222)

(Pn3m; No. 224)

(Fd3m; No. 227)

D10

D9
(I4122; No. 98)

(I422; No. 97)

(I42d; No. 122)

(I42m; No. 121)

{I42d; No. 122)

(I42m; No. 121}

(P421m; No. 113)

C3

C3
4

C1a
3

3

(B2; No. 5)

(B2; No. 5)

(Bb; No. 9)

(Bm; No. 8)

(Bb; No. 9)

(Bm; No. 8)

(Bm; No. 8)

C,'
C6

S2

S4
C5

C6

C2

(I4; No. 79)

(I41, No. 80)

(I4; No. 82)

{I4; No. 82}

(I4; No. 79)

(I41,' No. 80)

(P41,' No. 76)
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Space group

TABLE VIII. (Continued) .

P9 C22

Xg Og

N+
N+ O„'

(Id3c; No. 228)

{Im3m; No. 229)

(Im3m; No. 229) D4h
18

(P42lc; No. 114)

(I41/amd; No. 141)

(I4/mcm; No. 140)
C2a

6

Cza
3

(Bb; No. 9)

(82/b; No. 15}

(82/m; No. 12)

2C4,

C4A

(P4„-No. 76)

( I4/m'„No. 87)

{I4~/a; No. 88}

Tg (Im3; No. 204)

N2 Tp (Im3; No. 204)
D2~ (Ibca; No. 73)

D2q (Immm; No. 71)
C]g (Bb; No. 9)

Ciq (Bm; No. 8)

21Cg„
C20

2tt

(Iba2; No. 45)

(Imm2; No. 44)

phases C19 and C22 of nonmaximal symmetries in a
physical system whose order parameter transforms as a
representation whose image is I.4, I.6, or 1.8, and to
theoretically explain microscopic mechanisms for the
violation of the Michel-Radicati conjecture. The image
1.8 is particularly interesting because both conjectures are
violated in a single physical system. We indicate in Table
VIII the space-group changes corresponding to C19 and
C22 in images L4, L6, and LS. Further lists of continu-

ous phase transitions corresponding to order parameters
of arbitrary components will be published in near future.
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The space {A. «, A,2) is a projection of the space
(A, «, A,2, . . . , A.~ «), which is, in turn, the cross section of the
orbit space (I2, A, «, A,2, . . . , A,~ «) at I2 ——1. A point in the
space (A, «, A, 2, . . . , A,~ «) represents a stratum (Ref. 12) which
is a collection of orbits having the same isotropy subgroup (up
to conjugation}. Thus the space (k«, A,2) is a projected stratum
space. In view of the fact that the difference between orbit
and stratum is minor, one of us (J.S.K.) (Ref. 9) used a tem-

porary term "orbit space" to designate the space (k«, A,2). To
be consistent, we will keep using the term "orbit space. "








