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Superheating field of superconductors within Ginzburg-Landau theory
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We study the superheating field of a bulk superconductor within Ginzburg-Landau theory, which is valid
near the critical temperature. We calculate, as functions of the Ginzburg-Landau parameter κ , the superheating
field Hsh and the critical momentum kc characterizing the wavelength of the instability of the Meissner state to
flux penetration. By mapping the two-dimensional linear stability theory into a one-dimensional eigenfunction
problem for an ordinary differential equation, we solve the problem numerically. We demonstrate agreement
between the numerics and analytics, and show convergence to the known results at both small and large κ . We
discuss the implications of the results for superconducting rf cavities used in particle accelerators.
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I. INTRODUCTION

One of the primary features of superconductivity is the
Meissner effect—the expulsion of a weak magnetic field
from a bulk superconducting material.1 For sufficiently large
magnetic fields, the Meissner state becomes unstable, and
the system undergoes a phase transition. The exact nature
of the transition depends on the so-called Ginzburg-Landau
parameter, κ = λ/ξ , where λ is the London penetration
depth and ξ is the superconducting coherence length. Type-I
superconductors, characterized by small κ , transition from
the Meissner state into a normal-metal state for magnetic
fields above the thermodynamic critical field Hc. Type-II
superconductors, with larger κ , instead transition into a
superconducting state with vortices above the first critical field
Hc1. This state is stable up to a second critical field Hc2, above
which the metal becomes normal. For any superconductor,
however, the Meissner superconducting state is metastable,
persisting up to the superheating field Hsh, well above Hc

or Hc1 (for type-I and -II superconductors, respectively). The
main goal of the present work is the calculation of Hsh as
function of κ for superconductors near the critical temperature
Tc where Ginzburg-Landau theory is applicable (we remind
that within Ginzburg-Landau theory, the transition from type-I
to type-II superconductors is at κ = 1/

√
2).

The metastability of the Meissner state is of interest in
the design of resonance rf cavities in particle accelerators,
where Hsh places a fundamental limit on the maximum
accelerating field.2 As type-II superconducting materials are
being considered in cavity designs, a precise calculation of
Hsh in this regime is of value. One must note, however,
that operating temperatures of superconducting rf cavities are
well below the critical temperature Tc and that at these low
temperatures Ginzburg-Landau theory is not quantitatively
valid. The numerical techniques developed here are also being
used within the Eilenberger formalism to address these lower
temperatures.3 Using this formalism, the limit κ → ∞ was
studied in Ref. 4 for arbitrary temperature.

Much work has already been done in calculating the super-
heating field within Ginzburg-Landau theory.5–12 The problem
is formulated as follows: The superconductor occupies a half
space with a magnetic field applied parallel to the surface.
The order parameter and vector potential are functions of

the distance from the surface and can be found by solving
a boundary value problem of ordinary differential equations.
The superheating field is then the largest magnetic field for
which the corresponding solution is a local minimum of the
free energy. For small values of κ , the superheating field
corresponds to the largest magnetic field for which a nontrivial
solution to the Ginzburg-Landau equations exist,12 as the
instability does not break translational invariance. However,
as κ increases, the one-dimensional solution is unstable to
two-dimensional perturbations, resulting in a lower estimate
of Hsh, as first shown in Ref. 7. The task at hand is to find
which perturbations destroy the Meissner state and at which
value of the applied magnetic field they first become unstable.

The present stability analysis is more challenging than
many such calculations, as the instability destabilizes an inter-
face with a pre-existing depth-dependence of field and super-
conducting order parameter. In section II, we map the partial
differential equation for the unstable mode into an eigenvalue
analysis for a family of one-dimensional ordinary differential
equations. The equations for the zero eigenvalues describe the
critical fluctuations to which the system is first unstable (as first
derived in Ref. 5 and solved in Ref. 9) This technique could be
useful in a variety of other linear stability calculations 13–15,
replacing thin interface approximations with a microscopic
depth-dependent treatment of the destabilizing interface.

In this work we present a detailed numerical study of the
problem of metastability of superconductors within Ginzburg-
Landau theory, both for its intrinsic importance and as a
prototypical illustration of the more general method – stripped,
for example of the additional complexities of Eilenberger
theory. Analytic treatments have been developed for limiting
cases, such as very large10 or small 12 values of the Ginzburg-
Landau parameter κ which are far from real experimental
cases. In Sec. III, we numerically explore the behavior of Hsh

over a wide range of values of κ , demonstrating convergence
to the known limiting cases. By comparing numerical values
of Hsh to the analytic approximations, we show that these
approximations give reasonably good estimates for Hsh even
at values of κ which are far from their expected validity
regimes. Additionally, we calculate accurately the critical
value κc ≈ 1.1495 which separates the regimes in which the
instability is due to one- and two-dimensional perturbations
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and describe the behavior of the critical momentum near this
transition. For 0.91 < κ < κc, superconductors go unstable
via uniform penetration of magnetic flux which then must
dynamically reform into a vortex lattice. For 1/

√
2 < κ <

0.91 we find that Hsh > Hc2, so at constant temperature the
instability leads directly into the normal state (as for type-I
superconductors with κ < 1/

√
2). Finally, we find that the

instability wavelength has no immediate connection with the
vortex lattice spacing.

The paper is organized as follows: in the next section we
present the Ginzburg-Landau free energy and the differential
equations to be studied for the stability analysis. In Sec. III
we give some details about the numerical calculations and
our main results. In Sec. IV we discuss the implications of the
results for accelerator cavity design and outline future research
directions. In the Appendices we derive analytic formulas,
valid at large κ , which we compare against the numerics.

II. GINZBURG-LANDAU THEORY AND
STABILITY ANALYSIS

The calculation of Hsh is a linear stability analysis of the
coupled system of superconducting order parameter and vector
potential. For a given configuration, we study the stability
to arbitrary two-dimensional perturbations by considering the
second variation of the free energy: if the second variation is
positive definite for all possible perturbations then the solution
is (meta)stable. The second variation can be expressed as
a Hermitian operator acting on the perturbations, so it is
sufficient to show that the eigenvalues of this operator are
all positive. By expanding the perturbations in Fourier modes
parallel to the surface, the eigenvalue problem can once again
be translated into a boundary value problem of an ordinary
differential equation. The eigenvalues now depend upon the
wave-number of the Fourier mode, but can otherwise be
solved in the same way as the Ginzburg-Landau equations.
The superheating field is then the largest applied magnetic
field for which the smallest eigenvalue is positive for all
Fourier modes. In this section we outline the derivation of
the relevant equations for the Ginzburg-Landau free energy
using the method described above.

The Ginzburg-Landau free energy for a superconductor
occupying the half space x > 0 in terms of the magnitude of
the superconducting order parameter f and the gauge-invariant
vector potential q is given by

F[f,q] =
∫

x>0
d3r

{
ξ 2(∇f )2 + 1

2
(1 − f 2)2

+ f 2q2 + (Ha − λ∇ × q)2
}
, (1)

where Ha is the applied magnetic field (in units of
√

2Hc), ξ is
the Ginzburg-Landau coherence length, and λ is the penetra-
tion depth. Note that after choosing the unit of length, the only

remaining free parameter in the theory is the ratio of these two
characteristic length scales, the Ginzburg-Landau parameter
κ = λ/ξ . The magnetic field inside of the superconductor is
given by H = λ∇ × q.

We take the applied field to be oriented along the z axis,
Ha = (0,0,Ha), and the order parameter f = f (x) to depend
only on the distance from the superconductor’s surface. We
have assumed that the order parameter is real and further
parametrize the vector potential as q = (0,q(x),0), which fixes
the gauge. The Ginzburg-Landau equations that extremize F
with respect to f and q are

ξ 2f ′′ − q2f + f − f 3 = 0,
(2)

λ2q ′′ − f 2q = 0,

and with our choices H = λq ′. Hereafter we use primes to
denote derivatives with respect to x.

The boundary conditions at the surface derive from the
requirement that the magnetic field be continuous, q ′(0) =
Ha/λ, and that no current passes through the boundary,
f ′(0) = 0. We also require that infinitely far from the surface
the sample is completely superconducting with no magnetic
field, giving us f (x) → 1 and q(x) → 0 as x → ∞. In the
limits κ → 0 and κ → ∞, Eqs. (2) can be explicitly solved
perturbatively; see Ref. 12 and Appendix B, respectively. For
arbitrary κ they can be solved numerically via a relaxation
method, as we discuss in Sec. III.

For a given solution (f,q) we consider the second variation
of F associated with small perturbations f → f + δf and
q → q + δq given by

δ2F =
∫

x>0
d3r{ξ 2(∇δf )2 + 4f δf q · δq + f 2δq2

× (3f 2 + q2 − 1)δf 2 + λ2(∇ × δq)2}. (3)

If the expression in Eq. (3) is positive for all possible
perturbations, then the solution is stable. Since our solution
(f,q) depends only on the distance from the boundary (and is
therefore translationally invariant along the y and z directions),
we can expand the perturbation in Fourier modes parallel to
the surface. As shown in Ref. 5, we can restrict our attention
to perturbations independent of z and write

δf (x,y) = δf̃ (x) cos ky,
(4)

δq(x,y) = (δq̃x sin ky,δq̃y cos ky,0),

where k is the wave number of the Fourier mode. The
remaining Fourier components [corresponding to replacing
cos → sin and vice versa in Eq. (4)] are redundant, as they
decouple from those given in Eq. (4) and satisfy the same
differential equations derived below.

After substituting into expression (3) for the second
variation and integrating by parts, we arrive at

δ2F =
∫ ∞

0
dx( δf̃ δq̃y δq̃x )

⎛
⎜⎜⎝

−ξ 2 d2

dx2 + q2 + 3f 2 + ξ 2k2 − 1 2f q 0

2f q −λ2 d2

dx2 + f 2 −λ2k d
dx

0 λ2k d
dx

f 2 + λ2k2

⎞
⎟⎟⎠

⎛
⎜⎝

δf̃

δq̃y

δq̃x

⎞
⎟⎠ . (5)
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The matrix operator in Eq. (5) is self-adjoint, and the second
variation will be positive definite if its eigenvalues are all
positive. In the eigenvalue equations for this operator, the
function δq̃x can be solved for algebraically. The resulting
differential equations for δf̃ and δq̃y are

−ξ 2δf̃ ′′ + (3f 2 + q2 − 1 + ξ 2k2)δf̃ + 2f qδq̃y = Eδf̃ , (6)

and

−λ2 d

dx

[
f 2 − E

f 2 + λ2k2 − E
δq̃ ′

y

]
+ f 2δq̃y + 2f qδf̃ = Eδq̃y,

(7)

where E is the stability eigenvalue. Note that by decomposing
in Fourier modes, we have transformed the two-dimensional
problem into a one-dimensional eigenvalue problem. Numer-
ically, it can be solved by the same relaxation method as
the Ginzburg-Landau equations—see Sec. III. The boundary
conditions associated with the eigenvalue equations derive
from the same physical requirements previously discussed:
We require δf̃ ′(0) = 0, since no current may flow through
the boundary, and δq̃ ′

y(0) = 0, since the magnetic field must
remain continuous. Additionally, we require δf̃ (x) → 0 and
δq̃y(x) → 0 as x → ∞. There is also an arbitrary overall
normalization, which we fix by requiring δf̃ (0) = 1.

The stability eigenvalue will depend on the solution of the
Ginzburg-Landau equations, i.e., the applied magnetic field
Ha , and the Fourier mode k under consideration. The problem
at hand is to find the applied magnetic field and Fourier
mode for which the smallest eigenvalue first becomes negative,
which is the case if the following two conditions hold:

E = 0,
dE

dk
= 0. (8)

The value of the magnetic field at which these conditions are
met is the superheating field Hsh, and the corresponding wave
number is known as the critical momentum kc. In the next
section we discuss in more detail the numerical approach used
to calculate these two quantities.

III. NUMERICAL RESULTS

As explained in the previous section, the calculation of the
superheating field comprises two main steps: (i) solving the
Ginzburg-Landau equations (2), and (ii) solving the eigenvalue
problem (6),(7) with conditions (8). To solve these equations
we employ a relaxation method. The basic scheme is to replace
the ordinary differential equations with a set of finite difference
equations on a grid. From an initial guess to the solution,
the method iterates using Newton’s method to relax to the true
solution.16 The grid is chosen with a high density of points near
the boundary, with the density diminishing approximately as
the inverse distance from the boundary. This is similar to the
scheme used by Dolgert et al.12 to solve the Ginzburg-Landau
equations for type-I superconductors.

For κ near the type-I to -II transition, the relaxation method
typically converges without much difficulty. In the limiting
cases that κ becomes either very large or small, however, the
grid spacing must be chosen with care to achieve convergence.
The eigenfunction equations are particularly sensitive to the
grid choice. This is not surprising, since in either limit there

FIG. 1. Solving for the 1D Ginzburg-Landau superheating field.
By fixing value of the order parameter at the surface, we implicitly
define the applied magnetic field Ha(A) at the surface. This definition
produces a branch of unstable solutions, but guarantees that our
equations will have a solution for all guesses of A. The “nose”
of the curve occurs at the H 1D

sh , the superheating field ignoring
two-dimensional fluctuations, and is the largest Ha for which a
nontrivial solution to Eq. (2) can be found. This example was
calculated for κ = 1, and H 1D

sh ≈ 0.9.

are two well-separated length scales. For example, using units
λ = 1 and ξ = 1/κ , we find that a grid with density

ρ(x) = 150κ

1 + 25κx
(9)

leads to convergence for κ as high as 250. The grid points are
then generated recursively xi+1 = xi + 1/ρ(xi) with x0 = 0.
We find that if the grid is not sufficiently sparse at large x, the
relaxation method fails, presumably due to rounding errors.
On the other hand, if it is too sparse, the finite difference
equations poorly approximate the true differential equation.
Fortunately, the method converges quickly, allowing us to
explore the density by trial and error, as we have done to
get Eq. (9).

In solving Eq. (2), if a sufficiently large value for the applied
magnetic field is used, there may not be a nonzero solution
to the Ginzburg-Landau equations and the relaxation method
will often fail to converge, indicating that the proposed Ha

is above the actual superheating field. In practice therefore it
is more convenient to replace the boundary condition q ′(0) =
λHa with a condition on the value of the order parameter
f (0) = A, which then implicitly defines the applied magnetic
field as a function of A, Ha(A). This has the advantage that
Ha(A) is a differentiable function of A, as is the stability
eigenvalue, improving the speed and accuracy of the search
for the superheating field. The drawback to this approach is
that Ha(A) is not single valued, with an unstable branch of
solutions as illustrated in Fig. 1. For the problem at hand, this
turns out to be straightforward to address since we determine
the stability of each solution in the second step. To achieve the
conditions in Eq. (8), we vary both the Fourier mode k and the
value of the order parameter at the surface A.

The results of the procedure described above are sum-
marized in Figs. 2–5, where we also compare them with
analytical estimates which, for large values of κ , are derived
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in the appendixes. In Fig. 2 we plot the numerically calculated
superheating field as a function of κ (solid line). The vertical
line at κc � 1.1495 separates the regimes of one-dimensional
(1D, k = 0) and two-dimensional (2D, k 	= 0) critical pertur-
bations. We have checked the value of κc both by assuming
2D perturbations and finding when their critical momentum
goes to zero and by assuming 1D perturbation and finding
when the coefficient of the term quadratic in momentum in the
second variation of the free energy vanishes; these methods
lead to the same value within our numerical accuracy of
10−4. Our value of κc is higher than previous estimates, which
ranged from 0.55 to 1.10,9 and 1.13(±0.05).10 (The estimate
in Ref. 9 also comes from a numerical solution of the same
differential equations, although the accuracy is there limited,
presumably, by using a shooting method to find the solution.)
κc is larger than the boundary κ = 1/

√
2 separating type-I from

type-II superconductors. Type-II superconductors for which
κ < κc become unstable via a spatially uniform invasion of
magnetic flux. Additionally, we find that superheated type-II
superconductors with κ < 0.9192 can transition directly into
the normal state since the corresponding Hsh is larger than the
second critical field Hc2.

For κ < κc the instability is due to 1D perturbations. In this
regime, the Padé approximant

Hsh(κ)√
2Hc

≈ 2−3/4κ−1/2 1 + 4.682 512 0κ + 3.347 831 5κ2

1 + 4.019 599 4κ + 1.000 571 2κ2

(10)

derived in Ref. 12 (dot-dashed line) gives a good approxima-
tion to the actual Hsh, with deviation of less than about 1.5%.
In the opposite case κ > κc, 2D perturbations are the cause of
instability and the superheating field is approximately given
by10 (dashed line)

Hsh(κ)√
2Hc

≈
√

10

6
+ 0.3852√

κ
. (11)

Equation (11), derived in Appendix B, is also a good
approximation, deviating at most about 1% from the numerics.
Therefore our numerics show that the simple analytical
formulas for Hsh in Eqs. (10) and (11) can be used to accurately
estimate the superheating field for arbitrary value of the

FIG. 2. (Color online) Numerically calculated Hsh and corre-
sponding analytical approximations [Eqs. (10) and (11)] versus the
Ginzburg-Landau parameter κ .

FIG. 3. (Color online) Comparison between the numerical and
asymptotic critical momentum kc, Eq. (13). The approximate behavior
of kc near κc (dot-dashed) is given in Eq. (12).

Ginzburg-Landau parameter, when used in their respective
validity regions. We note that the numerical estimate of Hsh in
Ref. 9 differs from our own by a few percent, again presumably
due to the limitations of their method. We believe the numerical
results presented here to be reliable by comparing with
asymptotic solutions of the order parameter, vector potential,
and critical fluctuations for very large κ .

In Fig. 3 we show the numerical result for the critical
momentum kc versus κ . We see that kc → 0 as κ → κc from
above. Near κc, the behavior of kc is reminiscent of that of an
order parameter near a second-order phase transition:

kc � 1.2
√

κ − κc, (12)

where the prefactor has been estimated by fitting the numer-
ics. The dashed line is the asymptotic formula10 (see also
Appendix B)

λkc ≈ 0.9558κ3/4, (13)

which captures correctly the large-κ behavior.
In Fig. 4 we present a typical solution for the order param-

eter near the surface at H = Hsh for a large value of κ , along
with the analytic approximations presented in Appendix B.
The zeroth-order approximation f0, Eq. (A2), fails near the

FIG. 4. (Color online) Profile of the order parameter at Hsh for
κ = 50 together with analytic approximations given in Eqs. (A2) and
(A15).
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FIG. 5. (Color online) Numerical profile (solid line) of the critical
perturbation δq̃y determining Hsh for κ = 50 compared to the large-κ
perturbative result (dashed), Eq. (B22).

surface, as it does not satisfy the boundary condition f ′(0) =
0. On the other hand, including the first-order correction
in 1/κ , Eq. (A15), leads to excellent agreement with the
numerics. Finally, in Fig. 5 we show a typical example of
the depth dependence of the perturbation δq̃y at the critical
point where the solution first becomes unstable. We find
again good agreement between numerical and perturbative
calculations.

It is interesting to compare the wavelength of the critical
perturbation, 2π/kc, with the Abrikosov spacing a for the
arrangement of vortices at the superheating field: The naive
expectation is that the initial flux penetrations represent
nuclei for the final vortices. Kramer argues that this picture
is incorrect since the initial flux penetrations do not have
supercurrent singularities and do not carry a fluxoid quantum.5

We find that the numerical discrepancies between the two
lengths further support Kramer’s argument. In the weakly
type-II regime (κ ∼ 1), the initial flux penetration is from
infinitely long wavelengths (kc = 0); in contrast, the final
vortex state has a very high density, since Hsh ∼ Hc2.17 In the
strongly type-II limit (κ → ∞) both the inverse momentum
and the Abrikosov spacing (evaluated at the superheating field)
vanish, but at different rates, with 1/kc ∼ κ−3/4, while the
Abrikosov spacing, a, scales like a ∼ κ−3/4 at Hsh;18 see Fig. 6.
These results suggest that there is no immediate connection
between the initial penetration and the final vortex array. A
dynamical simulation could explore the transition between the
initial penetration and the final vortex state, similar to that done
by Frahm et al. for the transition from the normal state to the
vortex state.19

IV. SUMMARY AND OUTLOOK

In this paper, we have numerically calculated within
Ginzburg-Landau theory the superheating field Hsh of
superconductors. We have considered values of the Ginzburg-
Landau parameter κ spanning over three orders of magnitude;
this has enabled us to show that the analytic approximations
in Eqs.(10) and (11) are in good agreement with the numerical
results, see Fig. 2. For κ larger than the critical value
κc � 1.1495, the critical perturbations have two-dimensional
character; their critical momentum kc is plotted in Fig. 3,

FIG. 6. (Color online) The wavelength of the critical perturbation
(2π/kc) and the Abrikosov vortex spacing (a) calculated at the
superheating field both vanish at large κ , although the former
diminishes much more quickly.

where we also show agreement between numerics and the
asymptotic formula for kc at large κ , Eq. (13). The above results
have been obtained by mapping the linear stability threshold
onto an eigenfunction problem. The technique of mapping the
linear stability problem onto a one-dimensional eigenfunction
problem is potentially a useful technique, and we hope others
find useful applications of the methods described here.

One of the primary motivations for this work is the
application to rf cavities in particle accelerators, where
the maximum accelerating field is limited by Hsh. While
the results presented here provide good estimates of Hsh for
many materials of interest near the critical temperature Tc,
we emphasize that the operating temperature of these cavities
is typically well below Tc, where Ginzburg-Landau theory is
not quantitatively accurate. The techniques presented here can
be applied to Eilenberger theory to more accurately determine
Hsh at low temperatures. The Eilenberger approach has already
been used4 to evaluate Hsh(T ) at any temperature in the infinite
κ limit for clean superconductors, and work is in progress to
address low temperatures for finite κ.3
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APPENDIX A: ORDER PARAMETER AND VECTOR
POTENTIAL IN THE LARGE κ LIMIT

In this appendix, we derive solutions to the Ginzburg-
Landau Eq. (2) valid in the large-κ limit. For convenience,
we work in units λ = 1, ξ = 1/κ . As a first step, we consider
the limit κ → ∞. Then Eqs. (2) reduce to

q ′′
0 = f 2

0 q0,
(A1)

0 = f0
(
f 2

0 − 1 + q2
0

)
,
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with solution6

q0(x) = −
√

2

cosh(x + �)
,

(A2)
f0(x) =

√
1 − q2

0 (x),

where the parameter � is determined by the field at the
surface via

Ha = q ′
0(0) =

√
2 sinh �

cosh2 �
. (A3)

The above solution satisfies the boundary conditions at
infinity, but it cannot satisfy the boundary condition for f at
the surface. An approximate solution, valid at finite but large
κ , which satisfies all boundary conditions, can be obtained by
boundary layer theory. We follow the approach of Ref. 11, so
we only sketch the steps of the calculation. Note that away
from the thermodynamic critical field, the scaling is different
than that used in Ref. 11: There the expansion is in powers of
κ−α and the inner variable is X = καx with α = 2/3; here we
use α = 1:

q = q0 + 1

κ
q1 + · · · ,

(A4)

f = f0 + 1

κ
f1 + · · · .

Substituting into Eqs. (2), we find the following “outer layer”
equations for q1 and f1:

q ′′
1 = 2f0f1q0 + f 2

0 q1,
(A5)

0 = f1
(
3f 2

0 − 1 + q2
0

) + 2f0q0q1,

which have the simple solutions f1 = q1 = 0. For the inner
layer, we introduce the variable X = κx and find the equations

f̃ ′′
0 = f̃0

(
f̃ 2

0 − 1 + q̃2
0

)
,

(A6)
q̃ ′′

0 = 0,

and

f̃ ′′
1 = f̃1

(
3f̃ 2

0 − 1 + q̃2
0

) + 2f̃0q̃0q̃1,
(A7)

q̃ ′′
1 = 0,

where we use tildes to denote functions of the inner variable
X. Equations (A6) have constant solutions

q̃0 = −b , f̃0 =
√

1 − b2, (A8)

while from the second of Eqs. (A7) and the boundary
conditions we get

q̃1 = HaX. (A9)

Then the first of Eqs. (A7) becomes

f̃ ′′
1 = 2(1 − b2)f̃1 − 2b

√
1 − b2HaX, (A10)

with solution

f̃1 = bHa√
1 − b2

X + Ae−√
2
√

1−b2X + Be
√

2
√

1−b2X (A11)

with A,B integration constants. Since f tends to a constant far
from the surface, we set B = 0. Vanishing of the derivative at
the surface then fixes

A = bHa√
2(1 − b2)

. (A12)

Next, we match the inner and outer solutions. Comparing
Eqs. (A2) and (A8) we get

b =
√

2

cosh �
. (A13)

We can express b in terms of the applied field using Eq. (A3)
to find

b =
√

1 −
√

1 − 2H 2
a . (A14)

Then, since f1 = q1 = 0, we need to compare the linear order
expansion of Eqs. (A2) at small x with q̃1/κ and f̃1/κ at large
X = κx. Using Eqs. (A3) and (A13), we find that the inner
and outer solutions match. Finally, the uniform approximate
solution is

q(x) = q0(x),
(A15)

f (x) =
√

1 − q2
0 (x) + 1

κ

bHa√
2(1 − b2)

e−√
2
√

1−b2κx

with corrections of order 1/κ2. In Fig. 4 we compare the second
of Eq. (A15) to numerics.

APPENDIX B: SUPERHEATING FIELD IN
THE LARGE-κ LIMIT

The calculation of the superheating field Hsh as a function
of κ for stability with respect to one-dimensional perturbations
(i.e., k = 0) can be found in Ref. 12 for κ → 0 and Ref. 11 for
κ → ∞. The latter calculation, however, is of little physical
relevance, as the actual instability at sufficiently large κ

is due to two-dimensional perturbations. Here we present
for completeness (albeit in a different form) Christiansen’s
perturbative calculation10 of the true superheating field Hsh(κ)
for κ � 1.

Our starting point is the following expression for the
“critical” second variation of the thermodynamic potential as
a functional of perturbations δf̃ , δq̃y , and momentum k [see
also Eq. (10) in Ref. 5]:

δ2F =
∫ ∞

0
dx

{
[3f 2 + q2 − 1 + (k/κ)2]δf̃ 2 + κ−2δf̃ ′2

+ 4f qδf̃ δq̃y + f 2δq̃2
y + (f 2 + k2)−1f 2δq̃ ′2

y

}
. (B1)

It is straightforward to check that variation of this functional
with respect to f and qy leads to Eqs. (6) and (7) with E = 0
and rescaled units λ = 1. Kramer estimated that the critical
momentum k ∝ √

κ . While we will show that this is not the
correct scaling, this form suggests to rescale lengths by 1/

√
κ

by defining x = w/
√

κ:

δ2F =
∫ ∞

0

dw√
κ

{
[3f 2 + q2 − 1 + (k/κ)2]δf̃ 2 + κ−1δf̃ ′2

+ 4f qδf̃ δq̃y + f 2δq̃2
y + (f 2 + k2)−1f 2κδq̃ ′

y

2}
,

(B2)

where now prime is the derivative with respect to w. (Note that
although k has units of inverse length, it is momentum parallel
to the surface, and therefore does not scale with x.)
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Minimization with respect to k leads to the equation

k

∫
dw

[
δf̃ 2

κ2
− κf 2

(f 2 + k2)2
δq̃ ′2

y

]
= 0. (B3)

Assuming k � 1, we can neglect f 2 � 1 in the denominator
and find

k4
∫

dw δf̃ 2 = κ3
∫

dw f 2δq̃ ′2
y , (B4)

which shows that (if our length rescaling is correct) the proper
scaling for the critical momentum is k ∝ κ3/4. If this is true,
then (k/κ)2 ∝ 1/

√
κ and κ/k2 ∝ 1/

√
κ , which shows that

the next-to-leading-order terms in curly braces in Eq. (B2)
are proportional to 1/

√
κ . Therefore terms of order 1/κ can

be neglected and, in particular, we can neglect κ−1δf̃ ′2 and use
everywhere the lowest-order solution for f and q, Eq. (A2).
Hence the approximate functional in the large-κ limit is

δ2F � 1√
κ

∫ ∞

0
dw

{ [
2f 2

0 + (k/κ)2
]
δf̃ 2

+ 4f0q0δf̃ δq̃y + f 2
0 δq̃2

y + k−2f 2
0 κδq̃ ′2

y

}
. (B5)

By minimizing Eq. (B5) with respect to δf̃ , we find

[
2f 2

0 + (k/κ)2] δf̃ = −2f0q0δq̃y, (B6)

and solving for δf̃,

δf̃ = − 2f0q0δq̃y

2f 2
0 + (k/κ)2

� −q0δq̃y

f0
+

(
k

κ

)2
q0δq̃y

2f 3
0

, (B7)

where in the last step we kept only the leading- and the next-
to-leading-order terms. Substituting back into Eq. (B5) gives

δ2F =
∫ ∞

0

dw√
κ

[ (
1 − 3q2

0

)
δq̃2

y

+
(

k

κ

)2
q2

0

f 2
0

δq̃2
y + κ

k2
f 2

0 δq̃ ′2
y

]
. (B8)

The first term in square brackets is the leading term. Neglecting
the other terms, since q2

0 is a monotonically decreasing
function of w, the variation qy that minimizes the functional
is a δ function at the surface. Then the condition for the
metastability is

1 − 3q2
0 (0) = 0. (B9)

Using Eq. (A2) we obtain

cosh � =
√

6 , sinh � =
√

5 (B10)

and substituting into Eq. (A3)

H∞
sh =

√
10

6
. (B11)

To calculate the large-κ correction, we expand the function
q0(w) in the first term in square brackets in Eq. (B8) to linear

order, while q0 and f0 in the subleading terms can be simply
evaluated at the surface. Setting

� � arccosh
√

6 − c√
κ

, (B12)

k = (
5
6

)1/4
k̃κ3/4, (B13)

and using Eq. (A3) we find

δ2F = 2

√
5

6

∫ ∞

0

dw

κ

[(
− c + w + 1

4
k̃2

)
δq̃2

y + 2

5k̃2
δq̃ ′2

y

]
.

(B14)

The variational equation for δq̃y derived from this functional
has as a solution the Airy function

δq̃y(w) = Ai

[(
5k̃2

2

)1/3 (
w − c + 1

4
k̃2

)]
. (B15)

Imposing the boundary condition δq̃ ′
y(0) = 0, we find that for

a given k̃ the lowest possible c is

c = z0

(
5k̃2

2

)−1/3

+ 1

4
k̃2, (B16)

where

z0 ≈ 1.018 793 (B17)

is the smallest number satisfying Ai′(−z0) = 0. Finally mini-
mizing c with respect to k̃ we find

k̃ = (
4
3z0

)3/8( 2
5

)1/8
(B18)

and

c = (
2
5

)1/4( 4
3z0

)3/4
. (B19)

Substituting Eq. (B12) into Eq. (A3) we obtain

Hsh =
√

10

6
+ 2c

3
√

3κ
≈

√
10

6
+ 0.3852√

κ
(B20)

and from Eqs. (B13), (B17), and (B18)

k = (
160
243

)1/8
z

3/8
0 κ3/4

≈ 0.9558κ3/4. (B21)

These results agree with those of Ref. 10. We compare
these two formulas with numerics in Figs. 2 and 3,
respectively.

Finally, fixing the arbitrary normalization of the perturba-
tion by requiring δq̃y(0) = 1, using Eqs. (B15)–(B19), and
restoring dimensions we find

δq̃y(x) = Ai

[(
10

3
z0

)1/4 √
κx

λ
− z0

]/
Ai[−z0], (B22)

which shows that the “penetration depth” of the perturbation
is of the order of the geometric average of coherence length
and magnetic-field penetration depth. This functional form
is plotted in Fig. 5 for κ = 50 along with the numerically
calculated δq̃y .
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