
PHYSICAL REVIEW E 83, 036701 (2011)

Geometry of nonlinear least squares with applications to sloppy models and optimization

Mark K. Transtrum, Benjamin B. Machta, and James P. Sethna
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA

(Received 8 October 2010; published 3 March 2011)

Parameter estimation by nonlinear least-squares minimization is a common problem that has an elegant
geometric interpretation: the possible parameter values of a model induce a manifold within the space of data
predictions. The minimization problem is then to find the point on the manifold closest to the experimental data. We
show that the model manifolds of a large class of models, known as sloppy models, have many universal features;
they are characterized by a geometric series of widths, extrinsic curvatures, and parameter-effect curvatures,
which we describe as a hyper-ribbon. A number of common difficulties in optimizing least-squares problems are
due to this common geometric structure. First, algorithms tend to run into the boundaries of the model manifold,
causing parameters to diverge or become unphysical before they have been optimized. We introduce the model
graph as an extension of the model manifold to remedy this problem. We argue that appropriate priors can remove
the boundaries and further improve the convergence rates. We show that typical fits will have many evaporated
parameters unless the data are very accurately known. Second, “bare” model parameters are usually ill-suited to
describing model behavior; cost contours in parameter space tend to form hierarchies of plateaus and long narrow
canyons. Geometrically, we understand this inconvenient parametrization as an extremely skewed coordinate
basis and show that it induces a large parameter-effect curvature on the manifold. By constructing alternative
coordinates based on geodesic motion, we show that these long narrow canyons are transformed in many cases
into a single quadratic, isotropic basin. We interpret the modified Gauss-Newton and Levenberg-Marquardt
fitting algorithms as an Euler approximation to geodesic motion in these natural coordinates on the model
manifold and the model graph, respectively. By adding a geodesic acceleration adjustment to these algorithms,
we alleviate the difficulties from parameter-effect curvature, improving both efficiency and success rates at finding
good fits.

DOI: 10.1103/PhysRevE.83.036701 PACS number(s): 02.60.Ed, 02.40.Ky, 02.60.Pn, 05.10.−a

I. INTRODUCTION

A ubiquitous problem in mathematical modeling involves
estimating parameter values from observational data. One of
the most common approaches to the problem is to minimize
a sum of squares of the deviations of predictions from
observations. A typical problem may be stated as follows:
given a regressor variable t , sampled at a set of points {tm}
with observed behavior {ym} and uncertainty {σm}, what values
of the parameters, θ , in some model, f (t,θ), best reproduce
or explain the observed behavior? This optimal value of the
parameters is known as the best fit.

To quantify how good a fit is, the standard approach is to
assume that the data can be reproduced from the model plus
a stochastic term that accounts for any discrepancies. That is
to say,

ym = f (tm,θ) + ζm,

where ζm are random variables assumed to be independently
distributed according to N(0,σm). Written another way, the
residuals given by

rm(θ) = ym − f (tm,θ)

σm

(1)

are random variables that are independently, normally dis-
tributed with zero mean and unit variance. The probability
distribution function of the residuals is then

P (�r,θ) = 1

(2π)M/2
exp

(
−1

2

M∑
m=1

rm(θ)2

)
, (2)

where M is the number of residuals. The stochastic part of the
residuals is assumed to enter through its dependence on the
observed data, while the parameter dependence enters through
the model. This distinction implies that while the residuals are
random variables, the matrix of derivatives of the residuals with
respect to the parameters is not. We represent this Jacobian
matrix by Jmμ,

Jmμ = ∂μrm.

In this paper, we employ the convention that Greek letters
index parameters, while Latin letters index data points, model
points, and residuals.

For a given set of observations {ym}, the distribution in
Eq. (2) is a likelihood function, with the most likely, or best-fit,
parameters being those that minimize the cost function, C,
defined by

C(θ) = 1

2

∑
m

rm(θ)2, (3)

which is a sum of squares. Therefore, if the noise is Gaus-
sian (normally) distributed, minimizing a sum of squares is
equivalent to a maximum likelihood estimation.

If the model happens to be linear in the parameters, it
is a linear least-squares problem and the best-fit values of
the parameters can be expressed analytically in terms of the
observed data and the Jacobian. If, however, the model is
nonlinear, the best fit cannot be found so easily. In fact, finding
the best fit of a nonlinear problem can be a very difficult task,
notwithstanding the many algorithms that are designed for this
specific purpose.

036701-11539-3755/2011/83(3)/036701(35) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.83.036701

TRANSTRUM, MACHTA, AND SETHNA PHYSICAL REVIEW E 83, 036701 (2011)

For example, a nonlinear least-squares problem may have
many local minima. Any search algorithm that is purely local
will at best converge to a local minima and fail to find the global
best fit. The natural solution is to employ a search method
designed to find a global minima, such as a genetic algorithm
or simulated annealing. We will not address such topics in
this paper, although the geometric framework that we develop
could be applied to such methods. We find, surprisingly, that
most fitting problems do not have many local minima. Instead,
we find a universality of cost landscapes, as we discuss later
in Sec. III, consisting of only one, or perhaps very few,
minima.

Instead of difficulties from local minima, the best fit of a
nonlinear least-squares problem is difficult to find because of
sloppiness, particularly if the model has many parameters.
Sloppiness is the property by which the behavior of the
model responds very strongly to only a few combinations
of parameters, known as stiff parameter combinations, and
very weakly to all other combinations of parameters, which
are known as sloppy parameter combinations. Although the
sloppy model framework has been developed in the context
of systems biology [1–7], models from many diverse fields
have been shown to lie within the sloppy model universality
class [8].

In this paper, we present the geometric framework for
studying nonlinear least-squares models. This approach has a
long, interesting history, originating with Jeffreys in 1939 [9],
and later continued by Rao [10,11] and many others [12,13].
An equivalent, alternative formulation began with Beale
in 1960 [14], and continued with the work of Bates and
Watts [15–18] and others [19–21]. The authors have used
this geometric approach previously to explain the extreme
difficulty of the data-fitting process [22], of which this work
is a continuation.

In Sec. II, we present a review of the phenomenon of slop-
piness and describe the model manifold, that is, the geometric
interpretation of a least-squares model. The geometric picture
naturally illustrates two major difficulties that arise when
optimizing sloppy models. First, parameters tend to diverge
or drift to unphysical values, geometrically corresponding
to running off the edge of the manifold, as we describe in
Sec. III. This is a consequence of the model manifold having
boundaries that give it the shape of a curving hyper-ribbon
in residual space with a geometric hierarchy of widths and
curvatures. We show in Sec. IV that the model graph, the
surface formed by plotting the residual output versus the
parameters, can help to remove the boundaries and improve
the fitting process. Generalizing the model graph suggests
the use of priors as additional residuals, as we do in Sec. V.
We see there that the natural scales of the experiment can be a
guide to adding priors to the cost function that can significantly
improve the convergence rate.

The second difficulty is that the model’s “bare” parameters
are often a poor coordinate choice for the manifold. In
Sec. VI, we construct new coordinates, which we call extended
geodesic coordinates. The coordinates remove the effects of
the bad coordinates all the way to the edge of the manifold. The
degree to which extended geodesic coordinates are effective at
facilitating optimization is related to the curvature of the
manifold. Section VII discusses several measures of cur-

vature and explores curvature of sloppy models. We show
that the parameter-effect curvature is typically the domi-
nant curvature of a sloppy model, explaining why extended
geodesic coordinates can be a huge simplification to the
optimization process. We also show that typical best fits will
usually have many evaporated parameters and then define
a new measure of curvature, the optimization curvature,
that is useful for understanding the limitation of iterative
algorithms.

We apply geodesic motion to numerical algorithms in
Sec. VIII, where we show that the modified Gauss-Newton
method and Levenberg-Marquardt method are an Euler ap-
proximation to geodesic motion. We then add a geodesic
acceleration correction to the Levenberg-Marquardt algo-
rithm and achieve much faster convergence rates over
standard algorithms and more reliability at finding good
fits.

II. THE MODEL MANIFOLD

In this section, we review the properties of sloppy models
and the geometric picture naturally associated with least-
squares models. To provide a concrete example of sloppiness
to which we can apply the geometric framework, consider the
problem of fitting three monotonically decreasing data points
to the model,

y(t,θ) = e−tθ1 + e−tθ2 ,

where θi > 0. Although simple, this model illustrates many
of the properties of more complicated models. Figure 1(a)
is an illustration of the data and several progressively better
fits. Because of the noise, the best fit does not pass exactly
through all the data points, although the fit is within the
errors.

A common tool to visualize the parameter dependence of
the cost is to plot contours of constant cost in parameters space,
as is done for our toy model in Fig. 1(b). This view illustrates
many properties of sloppy models. This particular model is
invariant to a permutation of the parameters, so the plot is
symmetric for reflections about the θ1 = θ2 line. We refer to the
θ1 = θ2 linear as the “fold line” for geometric reasons that will
be apparent in Sec. IV. Around the best fit, cost contours form
a long narrow canyon. The direction along the length of the
canyon is a sloppy direction, since this parameter combination
hardly changes the behavior of the model, and the direction
up a canyon wall is the stiff direction. Because this model has
few parameters, the sloppiness is not as dramatic as it is for
most sloppy models. It is not uncommon for real-life models
to have canyons with an aspect ratio much more extreme than
in Fig. 1(b), typically 1000 : 1 or more for models with 10 or
more parameters [6].

Sloppiness can be quantified by considering the quadratic
approximation of the cost around the best fit. The Hessian
(second derivative) matrix, Hμν , of the cost at the best fit
has eigenvalues that span many orders of magnitude and
whose logarithms tend to be evenly spaced, as illustrated in
Fig. 2. Eigenvectors of the Hessian with small eigenvalues are
the sloppy directions, while those with large eigenvalues are
the stiff directions. In terms of the residuals, the Hessian is

036701-2

GEOMETRY OF NONLINEAR LEAST SQUARES WITH . . . PHYSICAL REVIEW E 83, 036701 (2011)

FIG. 1. (Color online) (a) Fitting a nonlinear function to data, in this case the sum of two exponentials to three data points. Fit A has rate
constants that decay too quickly, resulting in a poor fit; B is an improvement over fit A, although the rates are too slow; the best fit minimizes
the cost (the sum of the squares of the residuals, which are deviations of model from data points). (b) Contours of constant cost in parameter
space. Note the “plateau” in the region of large rates where the model is essentially independent of parameter changes. Note also the long,
narrow canyon at lower rates, characteristic of a sloppy model. The sloppy direction is parallel to the canyon and the stiff direction is against
the canyon wall. (c) Model predictions in data space. The experimental data are represented by a single point. The set of all possible fitting
parameters induces a manifold of predictions in data space. The best fit is the point on the manifold nearest to the data. The plateau in (b) here is
the small region around the short cusp near the corner. To help visualize the three-dimensional structure, an animation of this manifold rotating
in three dimensions in available in the online supplemental material [23].

given by

Hμν = ∂μ∂νC

=
∑
m

∂μrm∂νrm +
∑
m

rm∂μ∂νrm (4)

≈
∑
m

∂μrm∂νrm (5)

= (J T J)μν. (6)

In the third and fourth line, we have made the approximation
that at the best fit the residuals are negligible. Although the best
fit does not ordinarily correspond to the residuals being exactly
zero, the Hessian is usually dominated by the term in Eq. (5)
when evaluated at the best fit. Furthermore, the dominant term,
J T J , is an important quantity geometrically that describes the
model-parameter response for all values of the parameters
independently of the data. The approximate Hessian is useful
to study the sloppiness of a model independently of the data at
points other than the best fit. It also shares the sloppy spectrum
of the exact Hessian. We call the eigenvectors of J T J the local
eigenparameters as they embody the varying stiff and sloppy
combinations of the “bare” parameters.

In addition to the stiff and sloppy parameter combinations
near the best fit, Fig. 1(b) also illustrates another property
common to sloppy models. Away from the best fit, the cost
function often depends less and less strongly on the parameters.
The contour plot shows a large plateau where the model is
insensitive to all parameter combinations. Because the plateau
occupies a large region of parameter space, most initial guesses
will lie on the plateau. When an initial parameter guess does
begin on a plateau such as this, even finding the canyon can be
a daunting task.

The process of finding the best fit of a sloppy model usually
consists of two steps. First, one explores the plateau to find the
canyon. Second, one follows the canyon to the best fit. One
will search to find a canyon and follow it, only to find a smaller
plateau within the canyon that must then be searched to find
another canyon. Qualitatively, the initial parameter guess does
not fit the data, and the cost gradient does not help much
to improve the fit. After adjusting the parameters, one finds
a particular parameter combination that can be adjusted to
fit some clump of the data. After optimizing this parameter
combination (following the canyon), the fit has improved but
is still not optimal. One must then search for another parameter
combination that will fit another aspect of the data, that is,

036701-3

TRANSTRUM, MACHTA, AND SETHNA PHYSICAL REVIEW E 83, 036701 (2011)

FIG. 2. Hessian eigenvalues for three sloppy models. Note
the extraordinarily large range of eigenvalues (15–17 orders of
magnitude, corresponding to valley aspect ratios of 107–109) in
Fig. 1(b). Notice also the roughly equal fractional spacing between
eigenvalues—there is no clean separation between important (stiff)
and irrelevant (sloppy) direction in parameter space. (a) The model
formed by summing six exponential terms with rates and amplitudes.
We use this model to investigate curvature in Sec. VII and as a
test problem to compare algorithms in Sec. VIII E. (b) The linear
problem of fitting polynomials is sloppy with the Hessian given by
the Hilbert matrix. (c) A more practical model from systems biology
of signaling the epidermal growth factor in rat pheochromocytoma
(PC12) cells [2], which also has a sloppy eigenvalue spectrum. Many
more examples can be found in [6,8].

find another canyon within the first. Neither of these steps,
searching the plateau or following the canyon, is trivial.

Although plotting contours of constant cost in parameter
space can be a useful and informative tool, it is not the only way
to visualize the data. We now turn to describing an alternative
geometric picture that helps to explain why the processes of
searching plateaus and following canyons can be so difficult.
The geometric picture provides a natural motivation for tools
to improve the optimization process.

Since the cost function has the special form of a sum of
squares, it has the properties of a Euclidean distance. We can
interpret the residuals as components of an M-dimensional
residual vector. The M-dimensional space in which this vector
lives is a Euclidean space that we refer to as data space.
By considering Eq. (1), we see that the residual vector is
the difference between a vector representing the data and
a vector representing the model (in units of the standard
deviation). If the model depends on N parameters, with
N < M, then by varying those N parameters, the model vector
will sweep out an N -dimensional surface embedded within
the M-dimensional Euclidean space. We call this surface the
model manifold; it is sometimes also known as the expectation
or regression surface [18,24]. The model manifold of our toy
model is shown in Fig. 1(c). The problem of minimizing the
cost is thus translated into the geometric problem of finding
the point on the model manifold that is closest to the data.

In transitioning from the parameter space picture to the
model manifold picture, we are now faced with the problem
of minimizing a function on a curved surface. Optimization on
manifolds is a problem that has been given much attention in
recent decades [25–33]. The general problem of minimizing
a function on a manifold is much more complicated than our
problem; however, because the cost function is linked here to

the structure of the manifold, the problem at hand is much
simpler.

The metric tensor measures distance on the manifold
corresponding to infinitesimal changes in the parameters. It
is induced from the Euclidean metric of the data space and
is found by considering how small changes in parameters
correspond to changes in the residuals. The two are related
through the Jacobian matrix,

drm = ∂μrmdθμ = Jmμdθμ,

where repeated indices imply summation. The square of the
distance moved in data space is then

dr2 = (J T J)μνdθμdθν. (7)

Equation (7) is known as the first fundamental form, and the
coefficient of the parameter infinitesimals is the metric tensor,

gμν = (J T J)μν =
∑
m

∂μrm∂νrm.

The metric tensor corresponds to the approximate Hessian
matrix in Eq. (5); therefore, the metric is the Hessian of the
cost at a point assuming that the point exactly reproduced the
data.

Qualitatively, the difference between the metric tensor and
the Jacobian matrix is that the former describes the local
intrinsic properties of the manifold while the latter describes
the local embedding. For nonlinear least-squares fits, the
embedding is crucial, since it is the embedding that defines
the cost function. To understand how the manifold is locally
embedded, consider a singular value decomposition of the
Jacobian,

J = U�V T ,

where V is an N × N unitary matrix satisfying V T V = 1 and
� is an N × N diagonal matrix of singular values. The matrix
U is almost unitary, in the sense that it is an M × N matrix
satisfying UT U = 1; however, UUT is not the identity [34].
In other words, the columns of U contain N residual space
vectors that are orthonormal spanning the range of J and not
the whole embedding space. In terms of the singular value
decomposition, the metric tensor is then given by

g = V �2V T ,

showing us that V is the matrix whose columns are the local
eigenparameters of the metric with eigenvalues λi = �2

ii .
The singular value decomposition tells us that the Jacobian

maps metric eigenvectors onto the data space vector Ui and
stretched by an amount

√
λi . We hence denote the columns

of U as the eigenpredictions. The product of singular values
describes the mapping of local volume elements of parameter
space to data space. A unit hypercube of parameter space
is stretched along the eigenpredictions by the appropriate
singular values to form a skewed, hyper-parallelepiped of
volume

√|g|.
The Jacobian and metric contain the first derivative infor-

mation relating changes in parameters to changes in residuals
or model behavior. The second derivative information is
contained in the connection coefficient. The connection itself
is a technical quantity describing how basis vectors on the

036701-4

GEOMETRY OF NONLINEAR LEAST SQUARES WITH . . . PHYSICAL REVIEW E 83, 036701 (2011)

tangent space move from point to point. The connection is
also closely related to geodesic motion, introduced properly
in Sec. VI. Qualitatively it describes how the metric changes
from point to point on the manifold. The relevant connection
is the Riemann, or metric, connection; it is calculated from the
metric by

α
μν = 1

2gαβ(∂μgβν + ∂νgβμ − ∂βgμν),

or in terms of the residuals

α
μν = gαβ

∑
m

∂βrm∂μ∂νrm, (8)

where gμν = (g−1)μν . One could now also calculate the
Riemann curvature by application of the standard formulas;
however, we postpone a discussion of curvature until Sec. VII.
For a more thorough discussion of concepts from differential
geometry, we refer the reader to any text on the subject [35–38].

We have calculated the metric tensor and the connection
coefficients from the premise that the cost function, by its
special functional form, has a natural interpretation as a
Euclidean distance that induces a metric on the model mani-
fold. Our approach is in the spirit of Bates and Watts’ treatment
of the subject [15–18]. However, the intrinsic properties of
the model manifold can be calculated in an alternative way
without reference to the embedding through the methods of
Jeffreys, Rao, and others [9–13]. This approach is known
as information geometry. We derive these quantities using
information geometry in Appendix A.

Given a vector in data space, we are often interested in
decomposing it into two components, one lying within the
tangent space of the model manifold at a point and one
perpendicular to the tangent space. For this purpose, we
introduce the projection operators P T and P N , which act on
data-space vectors and project into the tangent space and its
compliment, respectively. From the Jacobian at a point on the
manifold, these operators are

P T = δ − P N = J (g−1)J T , (9)

where δ is the identity operator. It is numerically more
accurate to compute these operators using the singular value
decomposition of the Jacobian:

P T = UUT .

Turning to the problem of optimization, the parameter space
picture leads one initially to follow the naive, gradient descent
direction, −∇μC. An algorithm that moves in the gradient
descent direction will decrease the cost most quickly for a
given change in the parameters. If the cost contours form long
narrow canyons, however, this direction is very inefficient;
algorithms tend to zigzag along the bottom of the canyon and
only slowly approach the best fit [34].

In contrast, the model manifold defines an alternative
direction, which we call the Gauss-Newton direction, which
decreases the cost most efficiently for a change in the behavior.
If one imagines sitting on the surface of the manifold, looking
at the point representing the data, then the Gauss-Newton
direction in data space is the point directed toward the data but
projected onto the manifold. Thus, if �v is the Gauss-Newton

direction in data space, it is given by

�v = −P T �r
= −J (g−1)J T �r
= −J (g−1)∇C

= − �Jμgμν∇νC, (10)

where we have used the fact that ∇C = J T r . The components
of the vector in parameter space, vμ, are related to the vector
in data space through the Jacobian

�v = �Jμvμ; (11)

therefore, the direction in parameter space vμ that decreases
the cost most efficiently per unit change in behavior is

vμ = −gμν∇νC. (12)

The term “Gauss-Newton” direction comes from the fact
that it is the direction given by the Gauss-Newton algorithm
described in Sec. VIII A. Because the Gauss-Newton direction
multiplies the gradient by the inverse metric, it magnifies
motion along the sloppy directions. This is the direction
that will move the parameters along the canyon toward the
best fit. The Gauss-Newton direction is purely geometric
and will be the same in data space regardless of how the
model is parametrized. The existence of the canyons is a
consequence of bad parametrization on the manifold, which
this parameter-independent approach can help to remedy.
Most sophisticated algorithms, such as conjugate gradient
and Levenberg-Marquardt algorithms, attempt to follow the
Gauss-Newton direction as much as possible so as not to get
stuck in the canyons.

The obvious connection between sloppiness and the model
manifold is through the metric tensor. For sloppy models, the
metric tensor of the model manifold [the approximate Hessian
of Eq. (5)] has eigenvalues spread over many decades. This
property is not intrinsic to the manifold, however. In fact, one
can always reparametrize the manifold to make the metric at
a point any symmetric, positive-definite matrix. This might
naively suggest that sloppiness has no intrinsic geometric
meaning, and that it is simply a result of a poor choice of
parameters. The coordinate grid on the model manifold in data
space is extremely skewed, as in Fig. 3. By reparametrizing,
one can remove the skewedness and construct a more natural
coordinate mesh. We will revisit this idea in Sec. VI. We will
argue in this paper that, on the contrary, there is a geometrical
component to sloppy nonlinear models that is independent
of parametrization and in most cases that the human-picked
“bare” parameters naturally illuminate the sloppy intrinsic
structure of the model manifold.

In the original parametrization, sections of parameter space
are mapped onto very tiny volumes of data space. We remind
the reader that a unit volume of parameter space is mapped
into a volume of data space given by

√|g|. Because many
eigenvalues are nearly zero for sloppy models, the model
manifold necessarily occupies a tiny sliver of data space. In
fact, if a region of parameter space has larger eigenvalues by
even a small factor, the cumulative effect on the product is that
this region of parameter space will occupy most of the model
manifold. We typically find that most of the model manifold

036701-5

TRANSTRUM, MACHTA, AND SETHNA PHYSICAL REVIEW E 83, 036701 (2011)

FIG. 3. Skewed coordinates. A sloppy model is characterized by a
skewed coordinate mesh on the manifold. The volume of the parallel-
piped is given by the determinant of the metric, which is equal to the
product of the eigenvalues. Because sloppy models have many tiny
eigenvalues, these volumes can be very small with extremely skewed
coordinates. Our toy model has extremely skewed coordinates where
the parameters are nearly equal (near the fold line). Most of the
manifold is covered by regions where the coordinates are less skewed,
which corresponds to a very small region in parameter space.

is covered by a very small region of parameter space that
corresponds to the volumes of (slightly) less skewed meshes.

We will see when we discuss curvature that the large range
of eigenvalues in the metric tensor usually corresponds to a
large anisotropy in the extrinsic curvature. Another geometric
property of sloppy systems relates to the boundaries that
the model imposes on the manifold. The existence of the
boundaries for the toy model can be seen clearly in Fig. 1(c).
The surface drawn in the figure corresponds to the patch of
parameters within 0 � θ1,θ2 � ∞. The three boundaries of
the surface occur when the parameters reach their respective
bounds. The one exception to this is the fold line, which
corresponds to when the parameters are equal to one another.
This anomalous boundary (θ1 = θ2) is discussed further in
Sec. IV. Most nonlinear sloppy models have boundaries.

In the next section, we will discuss how boundaries arise
on the model manifold and why they pose problems for
optimization algorithms. Then, in Sec. IV we describe another
surface, the model graph, that removes the boundaries. The
surface described by the model graph is equivalent to a model
manifold with a linear Bayesian prior added as additional
residuals. In Sec. V, we show that introducing other priors
can be even more helpful in keeping algorithms away from the
boundaries.

III. BOUNDED MANIFOLDS

Sloppiness is closely related to the existence of boundaries
on the model manifold. This may seem to be a puzzling claim
because sloppiness has previously been understood to be a
statement relating to the local linearization of model space.
Here we will extend this idea and see that it relates to the global
structure of the manifold and how it produces difficulties for
the optimization process.

To understand the origin of the boundaries on model
manifolds, consider first the model of summing several
exponentials

y(t,θ) =
∑

μ

e−θμt .

We restrict ourselves to considering only positive arguments in
the exponentials, which limits the range of behavior for each
term to be between 0 and 1. This restriction already imposes
boundaries on the model manifold, but those boundaries
become much more narrow as we consider the range the model
can produce by holding just a few time points fixed.

Fixing the output of the model at a few time points
greatly reduces the values that the model can take on for
all the remaining points. Fixing the values that the model
takes on at a few data points is equivalent to considering a
lower-dimensional cross section of the model manifold, as
we have done in Fig. 4. The boundaries on this cross section
are very narrow; the corresponding manifold is long and thin.
Clearly, an algorithm that navigates the model manifold will
quickly run into the boundaries of this model unless it is
actively avoiding them.

In general, if a function is analytic, the results presented in
Fig. 4 are fairly generic; they come from general theorems
governing the interpolation of functions. If a function is
sampled at a sufficient number of time points to capture its
major features, then the behavior of the function at times

FIG. 4. (Color online) Fixing a few data points greatly restricts
the possible range of the model behavior between those data points
(lower). This is a consequence of interpolation of analytic functions.
In this case, f (t) is a sum of three exponentials with six parameters
(amplitudes and rates). Shown above is a three-dimensional slice of
possible models plotted in data space, with the value of f (0) fixed
to 1 and the value of f (1) fixed to 1/e. With these constraints we
are left with a four-dimensional surface, meaning that the manifold
of possible data shown here is indeed a volume. However, from a
carefully chosen perspective (upper right), this volume can be seen
to be extremely thin—in fact, most of its apparent width is curvature
of the nearly two-dimensional sheet, evidenced by being able to
see both the top (green) and bottom (black) simultaneously. (An
animation of points in this volume rotating in three-dimensional space
is available in the online supplemental material [23].) Generic aspects
of this picture illustrate the difficulty of fitting nonlinear problems.
Geodesics in this volume are just straight lines in three dimensions.
Although the manifold seems to be only slightly curved, its extreme
thinness means that geodesics travel very short distances before
running into model boundaries, necessitating the diagonal cutoff in
Levenberg-Marquardt algorithms as well as the priors discussed in
Sec. V.

036701-6

GEOMETRY OF NONLINEAR LEAST SQUARES WITH . . . PHYSICAL REVIEW E 83, 036701 (2011)

FIG. 5. (Color online) The possible values of a model at inter-
mediate time points are restricted by interpolating theorems. Taking
cross sections of the model manifold corresponds to fixing the model
values at a few time points, restricting the possible values at the
remaining times. Therefore, the model manifold will have a hierarchy
of progressively thinner widths, much like a hyper-ribbon.

between the sampling can be predicted with good accuracy by
an interpolating function. For polynomial fits, as considered
here, a function, f (t), sampled at n time points (t1,t2, . . . ,tn),
can be fit exactly by a unique polynomial of degree n − 1,
Pn−1(t). Then at some interpolating point, t , the discrepancy
in the interpolation and the function is given by

f (t) − Pn−1(t) = ω(t)f (n)(ξ)

n!
, (13)

where f (n)(t) is the nth derivative of the function and ξ lies
somewhere in the range t1 < ξ < tn [39]. The polynomial ω(t)
has roots at each of the interpolating points

ω(t) = (t − t1)(t − t2) · · · (t − tn).

By inspecting Eq. (13), it is clear that the discrepancy
between the interpolation and the actual function will become
vanishingly small if higher derivatives of the function do not
grow too fast (which is the case for analytic functions) and if
the sampling points are not too widely spaced (see Fig. 5).

The possible error of the interpolation function bounds
the allowed range of behavior, δfn, of the model at t0 after
constraining the nearby n data points, which corresponds to
measuring cross sections of the manifold. Consider the ratio
of successive cross sections,

δfn+1

δfn

= (t − tn+1)(n + 1)
f n+1(ξ)

f n(ξ ′)
.

If n is sufficiently large, then

(n + 1)
f n+1(ξ)

f n(ξ ′)
≈ 1

R
;

therefore, we find that

δfn+1

δfn

≈ t − tn+1

R
< 1

by the ratio test. Each cross section is thinner than the last by
a roughly constant factor � = δt/R, predicting a hierarchy
of widths on the model manifold. We describe the shape of a
model manifold with such a hierarchy as a hyper-ribbon. We
will now measure these widths for a few sloppy models and
see that the predicted hierarchy is in fact present.

As a first example, consider the sloppy model of fitting
polynomials

f (t,θ) =
∑
m

θmtm. (14)

If the parameters of the model are allowed to vary over all
real values, then one can always fit M data points exactly
with an (M − 1)th degree polynomial. However, we wish to
artificially restrict the range of the parameters to imitate the
limited range of behavior characteristic of nonlinear models.
A simple restriction is given by

∑
m θ2

m � 1. This constraint
enforces the condition that higher derivatives of the function
become small (roughly that the radius of convergence is 1)
and correspond to the unit hyper-sphere in parameter space. If
this function is sampled at time points (t1,t2, . . . ,tn), then the
model vector in data space can be written as

�f =

⎛
⎜⎜⎜⎜⎝

1 t1 t2
1 · · ·

1 t2 t2
2 · · ·

...
...

...
...

1 tn t2
n · · ·

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

θ0

θ1

θ2

...

⎞
⎟⎟⎟⎟⎠ . (15)

The matrix multiplying the vector of parameters is an example
of a Vandermonde matrix. The Vandermonde matrix is
known to be sloppy and, in fact, plays an important role in
the sloppy model universality class. The singular values of the
Vandermonde matrix are what produce the sloppy eigenvalue
spectrum of sloppy models. Reference [8] shows that these
singular values are indeed broadly spaced in log. For this
model, the Vandermonde matrix is exactly the Jacobian.

By limiting our parameter space to a hypersphere for the
model in Eq. (14), the corresponding model manifold is limited
to a hyperellipse in data space. The principal axes of this
hyperellipse are the eigenprediction directions we discussed
in Sec. II. The lengths of the principal axes are the singular
values. Consequently, there will be a hierarchy of progressively
thinner boundaries on the model manifold due to the wide-
ranging singular values of the Vandermonde matrix. For this
model, the purely local property of the metric tensor eigenvalue
spectrum is intimately connected to the global property of the
boundaries and shape of the model manifold.

As a second example, consider the model consisting
of the sum of eight exponential terms, y = ∑

μ Aμe−θμt .
We use log parameters, rθμ = log θμ and rAμ = log Aμ, to
make parameters dimensionless and enforce positivity. We
numerically calculate several widths of the corresponding
model manifold in Fig. 6(a), where we see that they are
accurately predicted by the singular values of the Jacobian.
The widths in Fig. 6 were calculated by considering geodesic
motion in each of the eigendirections of the metric from some
point located near the center of the model manifold. We follow
the geodesic motion until it reaches a boundary; the length in
data space of the geodesic is the width. Alternatively, we can
choose M − N orthogonal unit vectors that span the space
perpendicular to the tangent plane at a point and a single
unit vector given by an eigenprediction of the Jacobian that
lies within the tangent plane. The (M − N + 1)-dimensional
hyperplane spanned by these unit vectors intersects the model
manifold along a one-dimensional curve. The width can be

036701-7

TRANSTRUM, MACHTA, AND SETHNA PHYSICAL REVIEW E 83, 036701 (2011)

FIG. 6. (Color online) (a) Geodesic cross-sectional widths of an
eight-dimensional model manifold along the eigendirections of the
metric from some central point, together with the square root of
the eigenvalues (singular values of the Jacobian) [22]. Notice the
hierarchy of these data-space distances—the widths and singular
values each spanning around four orders of magnitude. To a good
approximation, the cross-sectional widths are given by singular
values. In the limit of infinitely many exponential terms, this model
becomes linear. (b) Geodesic cross-sectional widths of a feed-forward
artificial neural network. Once again, the widths nicely track the
singular values.

taken to be the length of that intersection. The widths given by
these two methods are comparable.

We can show analytically that our exponential fitting
problem has model manifold widths proportional to the
corresponding singular values of the Jacobian in the limit of
a continuous distribution of exponents, θμ, using an argument
provided to us by Yoav Kallus. In this limit, the sum can be
replaced by an integral,

y(t) =
∫

dθA(θ)e−tθ = L{A(θ)},

where the model is now the Laplace transform of the ampli-
tudes A(θ). In this limit, the data can be fit without varying
the exponential rates, leaving only the linear amplitudes as
parameters. If we assume the data have been normalized
according to y(t = 0) � 1, then it is natural to consider
the hypertetrahedron of parameter space given by An > 0
and

∑
An � 1. In parameter space, this tetrahedron has a

maximum aspect ratio of
√

2/M , but the mapping to data space
distorts the tetrahedron by a constant Jacobian whose singular
values we have seen to span many orders of magnitude. The
resulting manifold thus must have a hierarchy of widths along
the eigenpredictions equal to the corresponding eigenvalues
within the relatively small factor

√
2/M .

As our third example, we consider a feed-forward artificial
neural network [40]. For computational ease, we choose a
small network consisting of a layer of four input neurons,
a layer of four hidden neurons, and an output layer of two
neurons. We use the hyperbolic tangent function as our sigmoid
function and vary the connection weights as parameters. As
this model is not known to reduce to a linear model in any limit,
it serves as a test that the agreement for fitting exponentials is
not special. Figure 6(b) shows indeed that the singular values of
the Jacobian agree with geodesic widths again for this model.

The result in Fig. 6 is one of our main results and requires
some discussion. Strictly speaking, the singular values of the
Jacobian have units of data space distance per unit parameter
space distance, while the units of the widths are the data
space distance independent of parameters. In the case of the
exponential model, we have used log parameters, making
the parameters dimensionless. In the neural network, the
parameters are the connection weights whose natural scale
is 1. In general, the exact agreement between the singular
values and the widths may not agree if the parameters utilize
different units or have another natural scale. One must note,
however, that the enormous range of singular values implies
that the units would have to be radically different from natural
values to lead to significant distortions.

Additionally, the two models presented in Fig. 6 are
particularly easy to fit to data. The fact that from a centrally
located point geodesics can explore nearly the entire range
of model behavior suggests that the boundaries are not a
serious impediment to the optimization. For more difficult
models, such as the PC12 model in systems biology [2],
we find that the widths estimated from the singular values
and from geodesic motion disagree. The geodesic widths are
much smaller than the singular value estimates. In this case,
although the spacing between geodesic widths is the same
as the spacing between the singular values, they are smaller
by several orders of magnitude. We believe that most typical
starting points of this model lie near a hypercorner of the
model manifold. If this is the case, then geodesics will be
unable to explore the full range of model behavior without
reaching a model boundary. We argue later in this section that
this phenomenon is one of the main difficulties in optimization,
and in fact we find that the PC12 model is a much more difficult
fitting problem than either the exponential or neural network
problem.

We have seen that sloppiness is the result of skewed
coordinates on the model manifold, and we will argue later
in Sec. VI that algorithms are sluggish as a result of this poor
parametrization. Figure 6 tells us that the “bare” model param-
eters are not as perverse as one might naively have thought.
Although the bare-parameter directions are inconvenient for
describing the model behavior, the local singular values
and eigenpredictions of the Jacobian are useful estimates of
the model’s global shape. The fact that the local stiff and
sloppy directions coincide with the global long and narrow
directions is a nontrivial result that seems to hold for most
models.

To complete our description of a typical sloppy model man-
ifold requires a discussion of curvature, which we postpone
until Sec. VII D. We will see that in addition to a hierarchy of
boundaries, the manifold typically has a hierarchy of extrinsic

036701-8

GEOMETRY OF NONLINEAR LEAST SQUARES WITH . . . PHYSICAL REVIEW E 83, 036701 (2011)

and parameter-effect curvatures whose scales are set by the
smallest and widest widths, respectively.

We argue elsewhere [22] that the ubiquity of sloppy models,
appearing everywhere from models in systems biology [6],
insect flight [8], variational quantum wave functions, inter-
atomic potentials [41], and a model of the next-generation
international linear collider [7], implies that a large class of
models have very narrow boundaries on their model manifolds.
The interpretation that multiparameter fits are a type of
high-dimensional analytic interpolation scheme, however, also
explains why so many models are sloppy. Whenever there are
more parameters than effective degrees of freedom among the
data points, then there are necessarily directions in parameter
space that have a limited effect on the model behavior,
implying the metric must have small eigenvalues. Because
successive parameter directions have a hierarchy of vanishing
effect on model behavior, the metric must have a hierarchy of
eigenvalues.

We view most multiparameter fits as a type of multidimen-
sional interpolation. Only a few stiff parameter combinations
need to be tuned to find a reasonable fit. The remaining sloppy
degrees of freedom do not alter the fit much, because they
fine-tune the interpolated model behavior, which, as we have
seen, is very restricted. This has important consequences for
interpreting the best-fit parameters. One should not expect
the best-fit parameters to necessarily represent the physical
values of the parameters, as each parameter can be varied
by many orders of magnitude along the sloppy directions.
Although the parameter values at a best fit cannot typically be
trusted, one can still make falsifiable predictions about model
behavior without knowing the parameter values by considering
an ensemble of parameters with reasonable fits [1–3,5].

For our fitting exponential example, part of the model
boundary was the “fold lines” where pairs of the exponents
are equal (see Fig. 1). No parameters were at extreme
values, but the model behavior was nonetheless singular.
Will such internal boundaries arise generically for large
nonlinear models? Model boundaries correspond to points on
the manifold where the metric is singular. Typical boundaries
occur when parameters are near their extreme values (such
as ±∞ or zero), where the model becomes unresponsive to
changes in the parameters. Formally, a singularity will occur
if the basis vectors on the model manifold given by �eμ = ∂μ�r
are linearly dependent, which is to say there exists a set of
nonzero αμ’s for which

αμ�eμ = 0. (16)

To satisfy Eq. (16), we may vary 2N parameters (the N

values of αμ plus the N parameters of the model) to satisfy
M equations. Therefore, if M < 2N , there will exist nontrivial
singular points of the metric at nonextreme values of the
parameters.

For models with M > 2N , we do not expect Eq. (16) to
be exactly satisfied generically except at extreme values of
the parameters when one or more of the basis vectors vanish,
�eμ = 0. However, many of the data points are interpolating
points as we have argued above, and we expect qualitatively to
be able to ignore several data points without much information
loss. In general, we expect that Eq. (16) could be satisfied to

machine precision at nontrivial values of the parameters even
for relatively small N .

Now that we understand the origin of boundaries on the
model manifold, we can discuss why they are problematic for
the process of optimization. It has been observed in the context
of training neural networks that metric singularities (i.e., model
boundaries) can have a strong influence on the fitting [42].
More generally, the process of fitting a sloppy model to data
involves the frustrating experience of applying a black-box
algorithm to the problem that appears to be converging, but
then returns a set of parameters that does not fit the data well
and includes parameter values that are far from any reasonable
value. We refer to this drift of the parameters to extreme values
as parameter evaporation.1 This phenomenon is troublesome
not just because it causes the algorithm to fail. Often, models
are more computationally expensive to evaluate when they are
near the extreme values of their parameters. Algorithms will
often not just fail to converge, but they will take a long time in
the process.

After an algorithm has failed and parameters have evap-
orated, one may resort to adjusting the parameter values by
hand and then reapplying the algorithm. Hopefully, iterating
this process will lead to a good fit. Even if one eventually
succeeds in finding a good fit, because of the necessity of
adjusting parameters by hand, it can be a long and boring
process.

Parameter evaporation is a direct consequence of the
boundaries of the model manifold. To understand this, recall
from Sec. II that the model manifold defines a natural direction,
the Gauss-Newton direction, that most algorithms try to
follow. The problem with blindly following the Gauss-Newton
direction is that it is purely local and ignores the fact that
sloppy models have boundaries. Consider our example model:
the model manifold has boundaries when the rates become
infinite. If an initial guess has overestimated or underestimated
the parameters, the Gauss-Newton direction can point toward
the boundary of the manifold, as does fit A in Fig. 7. If
one considers the parameter space picture, the Gauss-Newton
direction is clearly nonsensical, pointing away from the best
fit. Generally, while on a plateau region, the gradient direction
is better at avoiding the manifold boundaries. However, nearer
the best fit, the boundary is less important and the Gauss-
Newton direction is much more efficient than the downhill
direction, as is the case for fit B in Fig. 7.

Since the model manifold typically has several narrow
widths, it is reasonable to expect that a fit to noisy data will
evaporate many parameters to their limiting values (such as
∞ or zero), as we explore in Sec. VII G. Therefore, we do not
want to prevent the algorithm from evaporating parameters
altogether. Instead, we want to prevent the algorithm from
prematurely evaporating parameters and becoming stuck on

1The term parameter evaporation was originally used to describe
the drift of parameters to infinite values in the process of Monte
Carlo sampling [66]. In this case, the tendency of parameters to
run to unphysical values is a literal evaporation caused by the finite
temperature of the stochastic process. We now use the term to also
describe deterministic drifts in parameters to extreme values in the
optimization process.

036701-9

TRANSTRUM, MACHTA, AND SETHNA PHYSICAL REVIEW E 83, 036701 (2011)

FIG. 7. (Color online) (a) Falling off the edge of the model
manifold. The manifold in data space defines a “natural” direction,
known as the Gauss-Newton direction, in which an algorithm will
try to follow to the best fit. Often this direction will push parameters
toward the edge of the manifold. (b) Gradient and Gauss-Newton
directions in parameter space. The manifold edge corresponds to
infinite values of the parameters. Following the Gauss-Newton
direction to the edge of the manifold will cause parameters to
evaporate while on the plateau. While in a canyon, however, the
Gauss-Newton direction gives the most efficient direction to the
best fit.

the boundary (or lost on the plateau). Using the two natural
directions to avoid the manifold boundaries while navigating
canyons to the best fit is at the heart of the difficulty in
optimizing sloppy models. Fortunately, there exists a natural
interpolation between the two pictures, which we call the
model graph, and it is the subject of the next section. This
natural interpolation is exploited by the Levenberg-Marquardt
algorithm, which we discuss in Sec. VIII.

IV. THE MODEL GRAPH

We saw in Sec. III that the geometry of sloppiness explains
the phenomenon of parameter evaporation as algorithms push
parameters toward the boundary of the manifold. However,
as we mentioned in Sec. II, the model manifold picture is a
view that is complementary to the parameter space picture, as
illustrated in Fig. 1.

The parameter space picture has the advantage that bound-
aries typically do not exist (i.e., they lie at parameter values
equal to ∞). If model boundaries occur for parameter values
that are not infinite, but are otherwise unphysical, for example,
θ = 0 for our toy model, it is helpful to change parameters in
such a way as to map these boundaries to infinity. For the
case of summing exponentials, it is typical to work in log θ ,
which puts all boundaries at infinite parameter values and has
the added bonus of being dimensionless (avoiding problems
of choice of units). In addition to removing boundaries,
the parameter space does not have the complications from
curvature; it is a flat, Euclidean space.

The disadvantage of the parameter space picture is that
motion in parameter space is extremely disconnected from the

behavior of the model. This problem arises as an algorithm
searches the plateau looking for the canyon and again when it
follows the winding canyon toward the best fit.

The model manifold picture and the parameter space picture
can be combined to utilize the strengths of both approaches.
This combination is called the model graph because it is
the surface created by the graph of the model, that is, the
behavior plotted against the parameters. The model graph
is an N -dimensional surface embedded in an (M + N)-
dimensional Euclidean space. The embedding space is formed
by combining the M dimensions of data space with the N

dimensions of parameter space. The metric for the model graph
can be seen to be

gμν = g0
μν + λDμν, (17)

where g0
μν = (J T T)μν is the metric of the model manifold and

Dμν is the metric of parameter space. We discuss common
parameter space metrics below. We have introduced the free
parameter λ in Eq. (17), which gives the relative weight of
the parameter space metric to the data space metric. Most
of the work in optimizing an algorithm comes from a suitable
choice of λ, known as the damping parameter or the Levenberg-
Marquardt parameter.

If Dμν is the identity, then we call the metric in Eq. (17)
the Levenberg metric because of its role in the Levenberg
algorithm [43]. Another possible choice for Dμν is to populate
its diagonal with the diagonal elements of g0

μν while leaving
the off-diagonal elements zero. This choice appears in the
Levenberg-Marquardt algorithm [44] and has the advantage
that the resulting method is invariant to rescaling the param-
eters, that is, it is independent of units. It has the problem,
however, that if a parameter evaporates, then its corresponding
diagonal element may vanish and the model graph metric be-
comes singular. To avoid this dilemma, one often chooses D to
have diagonal elements given by the largest diagonal element
of g0 yet encountered by the algorithm [45]. This method is
scale invariant but guarantees that D is always positive definite.
We discuss these algorithms further in Sec. VIII.

It is our experience that the Marquardt metric is much less
useful than the Levenberg metric for preventing parameter
evaporation. While it may seem counterintuitive to have a
metric (and by extension an algorithm) that is sensitive to
whether the parameters are measured in inches or miles, we
stress that the purpose of the model graph is to introduce pa-
rameter dependence to the manifold. Presumably, the modeler
is measuring parameters in inches because inches are a more
natural unit for the model. By disregarding that information,
the Marquardt metric is losing a valuable sense of scale for the
parameters and is more sensitive to parameter evaporation. The
concept of natural units will be important in the discussion of
priors in Sec. V. On the other hand, the Marquardt method is
faster at following a narrow canyon and the best choice likely
depends on the particular problem.

If the choice of metric for the parameter space is constant,
∂αDμν = 0, then the connection coefficients of the model
graph (with all lowered indices) are the same as for the
model manifold given in Eq. (8). The connection with a raised

036701-10

GEOMETRY OF NONLINEAR LEAST SQUARES WITH . . . PHYSICAL REVIEW E 83, 036701 (2011)

FIG. 8. (Color online) The effect of the damping parameter is to
produce a new metric for the surface induced by the graph of the model
vs the input parameters. (a) Model graph, λ = 0. If the parameter is
zero, then the resulting graph is simply the original model manifold,
with no extent in the parameter directions. Here we see a flat two-
dimensional cross section; the z axis is a parameter value multiplied
by

√
λ = 0. (b) Model graph λ �= 0. If the parameter is increased, the

surface is “stretched” into a higher-dimensional embedding space.
This is an effective technique for removing the boundaries, as no such
boundary exists in the model graph. However, this comes at a cost of
removing the geometric connection between the cost function and the
structure of the surface. For very large damping parameters, the model
graph metric becomes a multiple of the parameter space metric, which
rotates the Gauss-Newton direction into the gradient direction. The
damping term, therefore, interpolates between the parameter space
metric and the data space metric. A three-dimensional animation of
this figure is available in the online supplemental material [23].

index will include a dependence on the parameter space metric:

μ
αβ = (g−1)μν

∑
m

∂νrm∂α∂βrm,

where g is given by Eq. (17).
By considering the model graph instead of the model

manifold, we can remove the problems associated with the
model boundaries. We return to our example problem to
illustrate this point. The embedding space for the model graph
is (3 + 2 = 5)-dimensional, so we are restricted to viewing
three-dimensional projections of the embedding space. In
Fig. 8, we illustrate the model graph (Levenberg metric) for
λ = 0, which is simply the model manifold, and for λ �= 0,
which shows that boundaries of the model manifold are
removed in the graph. Since the boundaries occur at θ = ∞,
they are infinity far from the origin on the model graph. Even
the boundary corresponding to the fold line has been removed,
as the fold has opened up like a folded sheet of paper. Since
generic boundaries correspond to singular points of the metric,
the model graph has no such boundaries as its metric is positive
definite for any λ > 0.

After removing the boundaries associated with the model
manifold, the next advantage of the model graph is to provide
a means of seamlessly interpolating between the natural

directions of both data space and parameter space. The
damping term, λ, appearing in Eq. (17) is well suited for this
interpolation in sloppy models. If we consider the Levenberg
metric, the eigenvectors of the model manifold metric, g0, are
unchanged by adding a multiple of the identity. However, the
corresponding eigenvalues are shifted by the λ parameter. It is
the sloppy eigenvalues that are dangerous to the Gauss-Newton
direction. Since the eigenvalues of a sloppy model span many
orders of magnitude, this means that all the eigenvalues that
were originally less than λ are cut off at λ in the model graph
metric, and the larger eigenvalues are virtually unaffected. By
adjusting the damping term, we can essentially wash out the
effects of the sloppy directions and preserve the Gauss-Newton
direction from the model manifold in the stiff directions. Since
the eigenvalues span many orders of magnitude, the parameter
does not need to be finely tuned; it can be adjusted very roughly
and an algorithm will still converge, as we will see in Sec. VIII.
We demonstrate how λ can interpolate between the two natural
directions for our example model in Fig. 9.

V. PRIORS

In Bayesian statistics, a “prior” is an a priori proba-
bility distribution in parameter space, giving information
about the relative probability densities for the model as
parameters are varied. For example, if one has preexisting
measurements of the parameters θm = θ0

m ± σm with normally
distributed uncertainties, then the probability density would be∏

m 1/
√

2πσ 2
m exp[−(θm − θ0

m)2/(2σ 2
m)] before fitting to the

current data. This corresponds to a negative-log-likelihood
cost that (apart from an overall constant) is the sum of squares,
which can be nicely interpreted as the effects of an additional
set of “prior residuals,”

rm = (
θm − θ0

m

)/
σm (18)

(interpreting the preexisting measurements as extra data
points). In this section, we will explore the more general
use of such extra terms, not to incorporate information about
parameter values, but rather to incorporate information about
the ranges of parameters expected to be useful in generating
good fits.

That is, we want to use priors to prevent parameter
combinations that are not constrained by the data from
taking excessively large values—we want to avoid parameter
evaporation. To illustrate again why this is problematic in
sloppy models, consider a linear sloppy model with true
parameters θ0, but fit to data with added noise ξi . The
observed best fit is then shifted to θ = θ0 + (J T J)−1(J T)ξ .
The measurement error in data space ξi is thus multiplied
by the inverse of the poorly conditioned matrix g = J T J , so
even a small measurement error produces a large parameter
space error. In Sec. VII G, we will see in nonlinear models
that such noise will generally shift the best fits to the boundary
(infinite parameter values) along directions where the noise is
large compared to the width of the model manifold. Thus, for
example, in fitting exponentials, positive noise in the data point
at t0 = 0 and negative noise at the data point at the first time
t1 > 0 can lead to one decay rate that evaporates to infinity,
tuned to fit the first data point without affecting the others.

036701-11

TRANSTRUM, MACHTA, AND SETHNA PHYSICAL REVIEW E 83, 036701 (2011)

FIG. 9. (Color online) (a) Gauss-Newton directions. The Gauss-Newton direction is prone to pointing parameters toward infinity, especially
in regions where the metric has very small eigenvalues. (b) Rotated Gauss-Newton directions. By adding a small damping parameter to the
metric, the Gauss-Newton direction is rotated into the gradient direction. The amount of rotation is determined by the eigenvalues of the metric
at any given point. Here, only a few points are rotated significantly. (c) Gradient directions. For large values of the damping parameter, the
natural direction is rotated everywhere into the gradient direction.

In practice, it is not often useful to know that the optimum
value of a parameter is actually infinite—especially if that
divergence is clearly due to noise. Also, we have seen in
Fig. 7(a) that, even if the best fit has sensible parameters,
algorithms searching for the best fits can be led toward the
model manifold boundary. If the parameters are diverging at
finite cost, the model must necessarily become insensitive to
the diverging parameters, often leading the algorithm to get
stuck. Even a very weak prior whose residuals diverge at
the model manifold boundaries can prevent these problems,
holding the parameters in ranges useful for fitting the data.

In this section, we advocate the use of priors for helping
algorithms navigate the model manifold in finding good fits.
These priors are pragmatic; they are not introduced to buffer
a model with “prior knowledge” about the system, but to use
the data to guess the parameter ranges outside of which the
fits will become insensitive to further parameter changes. Our
priors do not have meaning in the Bayesian sense, and indeed
should probably be relaxed to zero at late stages in the fitting
process.

The first issue is how to guess what ranges of parameter are
useful in fits—outside of which the model behavior becomes
insensitive to the parameter values. Consider, for example,

the Michaelis-Mentin reaction, a saturable reaction rate often
arising in systems biology (for example, Ref. [2]):

d[x∗]

dt
= kx[y∗][x]

1 + kmx[x]
. (19)

Here there are two parameters kx and kmx , governing the rate
of production of [x∗] from [x] in terms of the concentration
[y∗], where [x] + [x∗] = xmax and [y] + [y∗] = ymax.

Several model boundaries can be identified here. If kx and
kmxxmax are both very large, then only their ratio affects the
dynamics. In addition, if kmx is very small, then it has no
effect on the model. Our prior should enforce our belief that
kmx[x] is typically of order 1. If it were much larger than 1,
then we could have modeled the system with one less
parameter k = kx/kmx ; if it were much less than 1, the second
term in the denominator could have been dropped entirely.
Furthermore, if the data are best fit by one of these boundary
cases, say kmxxmax → ∞, they will be fit quite well by taking
kmxxmax � 1, but otherwise finite. In a typical model, we
might expect that kmxxmax = 10 will behave as if it were
infinite.

We can also place a prior on kx . Dimensional analysis here
involves the time scale at which the model is predictive. The

036701-12

GEOMETRY OF NONLINEAR LEAST SQUARES WITH . . . PHYSICAL REVIEW E 83, 036701 (2011)

prior should match the approximate time scale of the model’s
predictions to the rate of the modeled reaction. For example,
if an experiment takes time-series data with precision on the
order of seconds with intervals on the order minutes, then a
“fast” reaction is any that takes place faster than a few seconds
and a slow reaction is any that happens over a few minutes.
Even if the real reaction happens in microseconds, it makes
no sense to extract such information from the model and data.
Similarly, a slow reaction that takes place in years could be
well fit by any rate that is longer than a few minutes. As such,
we want a prior that prevents kxymaxxmax/τ from being far
from 1, where τ is the typical time scale of the data, perhaps
a minute here. In summary, we want priors to constrain both
kmxxmax and kxxmaxymax/τ to be of order 1.

We have found that a fairly wide range of priors can be
very effective at minimizing the problems associated with
parameter evaporation during fitting. To choose them, we
propose starting by changing to the natural units of the
problem by dividing by constants, such as time scales or
maximum protein concentrations, until all of the parameters
are dimensionless. (Alternatively, priors could be put into the
model in the original units, at the expense of more complicated
bookkeeping.) In these natural units, we expect all parameters
to be of order 1.

The second issue is to choose a form for the prior. For
parameters like these, where both large and near-zero values
are to be avoided, we add two priors for every parameter, one
that punishes high values and one that punishes small values:

Pr(θ) =
(√

whθ√
wl/θ

)
. (20)

This prior has a minimum contribution to the cost when θ2 =
wl

wh
, so in the proper units we choose wh = wl . With these new

priors, the metric becomes

gμν = ∂μr0i∂νr
0i + ∂μPr(θ)∂νPr(θ) (21)

= g0
μν + δμν

(
wl

θμ
+ whθ

μ

)
, (22)

which is positive definite for all (positive) values of θ . As
boundaries occur when the metric has an eigenvalue of zero,
no boundaries exist for this new model manifold. This is
reminiscent of the metric of the model graph, with the
difference being that we have permanently added this term
to the model. The best fit has been shifted in this new metric.

It remains to choose wh and wl . Though the choice is likely
to be somewhat model-specific, we have found that a choice
between 0.001 and 1 tends to be effective. That weights of
order 1 can be effective is somewhat surprising. It implies
that good fits can be found while punishing parameters for
differing only an order of magnitude from their values given
by dimensional analysis. That this works is a demonstration
of the extremely ill-posed nature of these sloppy models, and
the large ensemble of potential good fits in parameter space.

A complimentary picture of the benefit of priors takes place
in parameter space, where they contribute to the cost,

C = C0 +
∑

i

whθi/2 + wl/(2θi). (23)

The second derivative of the extra cost contribution with re-
spect to the log of the parameters is given by ∂2

∂ log(θ)2 (Pr(θ)2

2) =
whθ

2 + wl

2θ
. This is positive definite and concave, making the

entire cost surface large when parameters are large. This, in
turn, makes the cost surface easier to navigate by removing the
problems associated with parameter evaporation on plateaus.

To demonstrate the effectiveness of this method, we use the
PC12 model with 48 parameters described in [2]. We change to
dimensionless units as described above. To create an ensemble,
we start from 20 initial conditions, with each parameter taken
from a Gaussian distribution in its log centered on 0 (the
expected value from dimensional analysis), with a σ = log 10
(so that the bare parameters range over roughly two orders of
magnitude from 0.1 to 10). We put a prior as described above
centered on the initial condition, with varying weights. These
correspond to the priors that we would have calculated if we
had found those values by dimensional analysis instead. After
minimizing with the priors, we remove them and allow the
algorithm to reminimize. The results are plotted in Fig. 10.

Strikingly, even when a strong prior is centered at parameter
values a factor of ∼100 away from their “true” values, the
addition of the prior in the initial stages of convergence
dramatically increases the speed and success rate of finding
the best fit.

In Sec. IV, we introduced the model graph and the
Levenberg-Marquardt algorithm, whose rationale (to avoid
parameter evaporation) was similar to that motivating us here
to introduce priors. To conclude this section, we point out
that the model graph metric, Eq. (17), and the metric for
our particular choice of prior, Eq. (22), both serve to cut off
large steps along sloppy directions. Indeed, the Levenberg-
Marquardt algorithm takes a step identical to that for a model
with quadratic priors [Eq. (18)] with σm ≡ 1/

√
λ, except that

the center of the prior is not a fixed set of parameters θ0, but the
current parameter set θ∗. (That is, the second derivative of
the sum of the squares of these residuals,

∑
m[

√
λ(θ − θ∗)]2,

gives λδμν , the Levenberg term in the metric.) This Levenberg
term thus acts as a “moving prior”—acting to limit individual
algorithmic steps from moving too far toward the model

FIG. 10. (Color online) The final cost is plotted against the
number of Jacobian evaluations for five strengths of priors. After
minimizing with priors, the priors are removed and a maximum of
20 further Jacobian evaluations are performed. The prior strength is
measured by p, with p = 0 meaning no prior. The success rate is
R. The strongest priors converge the fastest, with medium strength
priors showing the highest success rate.

036701-13

TRANSTRUM, MACHTA, AND SETHNA PHYSICAL REVIEW E 83, 036701 (2011)

boundary, but not biasing the algorithm permanently toward
sensible values. Despite the use of a variable λ that can be used
to tune the algorithm toward sensible behavior (Fig. 9), we
shall see in Sec. VIII that the Levenberg-Marquardt algorithm
often fails, usually because of parameter evaporation. When
the useful ranges of parameters can be estimated beforehand,
adding priors can be a remarkably effective tool.

VI. EXTENDED GEODESIC COORDINATES

We have seen that the two difficulties of optimizing
sloppy models are that algorithms tend to run into the model
boundaries and that model parametrization tends to form long,
curved canyons around the best fit. We have discussed how the
first problem can be improved by the introduction of priors.
We now turn our attention to the second problem. In this
section, we consider the question of whether we can change the
parameters of a model in such a way as to remove this difficulty.
We construct coordinates geometrically by considering the
motion of geodesics on the manifold.

Given two nearby points on a manifold, one can consider
the many paths that connect them. If the points are very far
away, there may be complications due to the boundaries of
the manifold. For the moment, we assume that the points are
sufficiently close that boundaries can be ignored. The unique
path joining the two points whose distance is shortest is known
as the geodesic. The parameters corresponding to a geodesic
path can be found as the solution of the differential equation

ẍμ +

μ
αβẋαẋβ = 0, (24)

where

μ
αβ are the connection coefficients given by Eq. (8)

and the dot means differentiation with respect to the curve’s
affine parametrization. Using two points as boundary values,
the solution to the differential equation is then the shortest
distance between the two points. Alternatively, one can specify
a geodesic with an initial point and direction. In this case,
the geodesic is interpreted as the path drawn by parallel
transporting the tangent vector (also known as the curve’s
velocity). This second interpretation of geodesics will be the
most useful for understanding the coordinates we are about
to construct. The coordinates that we consider are polarlike
coordinates, with N − 1 angular coordinates and one radial
coordinate.

If we consider all geodesics that pass through the best
fit with a normalized velocity, vμvμ = 1, then each geodesic
is identified by N − 1 free parameters, corresponding to the
direction of the velocity at the best fit. (The normalization of
the velocity does not change the path of the geodesic—only the
time it takes to traverse the path.) These N − 1 free parameters
will be the angular coordinates of the new coordinate system.
There is no unique way of defining the angular coordinates.
One can choose N orthonormal unit vectors at the best fit,
and let the angular coordinates define a linear combination of
them. We typically choose eigendirections of the metric (the
eigenpredictions of Sec. II). Having specified a geodesic with
the N − 1 angular coordinates, the radial coordinate repre-
sents the distance moved along the geodesic. Since we have
chosen the velocity vector to be normalized to 1, the radial
component is the parametrization of the geodesic.

We refer to these coordinates as extended geodesic co-
ordinates and denote their Cartesian analog by γ μ. These
coordinates have the special property that those geodesics that
pass through the best fit appear as straight lines in parameter
space. (It is impossible for all geodesics to be straight lines if
the space is curved.)

In general, one cannot express this coordinate change
in an analytic form. The quadratic approximation to this
transformation is given by

γ ν ≈ θν
bf + vν

μδθμ + 1
2
ν

αβδθαδθβ. (25)

The coordinates given in Eq. (25) are known as Riemann
normal coordinates or geodesic coordinates. Within the general
relativity community, these coordinates are known as locally
inertial reference frames because they have the property that

α

μν(x = 0) = 0, that is, the Christoffel symbols vanish at the
special point around which the coordinates are constructed
[35].

Let us now consider the shape of cost contours for our
example model using extended geodesic coordinates. We can
consider both the shape of the coordinate mesh on the manifold
in data space as well as the shape of the cost contours in
parameter space. To illustrate the dramatic effect that these
coordinates can have, we have adjusted the data so that the
best fit does not lie so near the boundary. The results are in
Fig. 11.

FIG. 11. (Color online) (a) Extended geodesic coordinates. The
parameters of a model are not usually well suited to describing the
behavior of a model. By considering the manifold induced in data
space, one can construct more natural coordinates based on geodesic
motion that are more well-suited to describing the behavior of a
model (black grid). These coordinates remove all parameter-effect
curvature and are known as extended geodesic coordinates. Note that
we have moved the data point so that the best fit is not so near
a boundary in this picture. (b) Cost contours in extended geodesic
coordinates. Although the summing exponential model is nonlinear,
that nonlinearity does not translate into large extrinsic curvature. This
type of nonlinearity is known as parameter-effect curvature, which
the geodesic coordinates remove. This is most dramatically illustrated
by considering the contours of constant cost in geodesic coordinates.
The contours are nearly circular all the way out to the fold line and
the boundary, where the rates are infinite.

036701-14

GEOMETRY OF NONLINEAR LEAST SQUARES WITH . . . PHYSICAL REVIEW E 83, 036701 (2011)

The extended geodesic coordinates were constructed to
make the elongated ellipse that is characteristic of sloppy
models become circular. It was hoped that by making the trans-
formation nonlinear, it would straighten out the anharmonic
“banana” shape, rather than magnify it. It appears that this
wish has been granted spectacularly. Not only has the banana
been straightened out within the region of the long narrow
canyon, but the entire region of parameter space, including the
plateau, has been transformed into one manageable, isotropic
basin. Indeed, the cost contours of Fig. 11(b) are near-perfect
circles, all the way to the boundary where the rates go to zero,
infinity, or are equal.

To better understand how this elegant result comes about,
let us consider how the cost changes as we move along a
geodesic that passes through the best fit. The cost then becomes
parametrized by the same parameter describing the geodesic,
which we call τ . The chain rule gives us

d

dτ
= dθμ

dτ

∂

∂θμ
= vμ∂μ,

where vμ = θ̇μ. Applying this twice to the cost gives

d2C

dτ 2
= vμvνgμν + rmP N

mn∂μ∂νrn

dθμ

dτ

dθν

dτ
. (26)

The term vμvνgμν in Eq. (26) is the arbitrarily chosen
normalization of the velocity vector and is the same at all
points along the geodesic. The interesting piece in Eq. (26) is
the expression

P N = δ − J (J T J)−1J T ,

which we recognize as the projection operator that projects out
of the tangent space (or into the normal bundle).

Recognizing P N in Eq. (26), we see that any deviation of
the quadratic behavior of the cost will be when the nonlinearity
forces the geodesic out of the tangent plane, which is to say
that there is an extrinsic curvature. When there is no such
curvature, then the cost will be isotropic and quadratic in the
extended geodesic coordinates.

If the model happens to have as many parameters as
residuals, then the tangent space is exactly the embedding
space and the model will be flat. This can be seen explicitly
in the expression for P N , since J will be a square matrix if
M = N , with a well-defined inverse,

P N = δ − J (J T J)−1J T = δ − JJ−1(J T)−1J T = 0.

Furthermore, when there are as many parameters as residuals,
the extended geodesic coordinates can be chosen to be the
residuals themselves, and hence the cost contours will be
concentric circles.

In general, there will be more residuals than parameters;
however, we have seen in Sec. III that many of those
residuals are interpolating points that do not supply much
new information. Assuming that we can simply discard a few
residuals, then we can “force” the model to be flat by restricting
the embedding space. It is, therefore, likely that for most sloppy
models, the manifold will naturally be much more flat than one
would have expected. We will see when we discuss curvature
in Sec. VII that most of the nonlinearities of a sloppy model
do not produce extrinsic curvature, meaning the manifold is
typically much more flat than one would have guessed.

Nonlinearities that do not produce extrinsic curvature are
described as parameter-effect curvature [15]. As the name
suggests, these are “curvatures” that can be removed through a
different choice of parameter. By using geodesics, we have
found a coordinate system on the manifold that removes
all parameter-effect curvature at a point. It has been noted
previously that geodesics are linked to zero parameter-effect
curvature [46].

We believe it to be generally true for sloppy models that
nonlinearities are manifested primarily as parameter-effect
curvature, as we argue in [22] and in Sec. VII. We find similar
results when we consider geodesic coordinates in the PC12
model, neural networks, and many other models. Just as for
the summing exponential problem that produced Fig. 11(b),
cost contours for this real-life model are nearly circular all the
way to the model’s boundary.

Although the model manifold is much more flat than one
would have guessed, how does that result compare for the
model graph? We observed in Sec. IV that the model graph
interpolates between the model manifold and the parameter
space picture. If we find the cost contours for the model
graph at various values of λ, we can watch the cost contours
interpolate between the circles in Fig. 11(b) and the long
canyon that is characteristic of parameter space. This can be
seen clearly in Fig. 12.

With any set of coordinates, it is important to know
what portion of the manifold they cover. Extended geodesic
coordinates will only be defined in some region around the
best fit. It is clear from Fig. 11 that for our example problem,
the region for which the coordinates are valid extends to
the manifold boundaries. Certainly there are regions of the
manifold that are inaccessible to the geodesic coordinates.
Usually, extended geodesic coordinates will be limited by
geodesics reaching the boundaries, just as algorithms are
similarly hindered in finding the best fit.

VII. CURVATURE

In this section, we discuss the various types of curvature that
one might expect to encounter in a least-squares problem and
the measures that could be used to quantify those curvatures.
Curvature of the model manifold has had many interesting
applications. It has been illustrated by Bates and Watts that
the curvature is a convenient measure of the nonlinearity of
a model [15,16,18]. This will be critical when we discuss the
implications of geometry on numerical algorithms, since it is
the nonlinearity that makes these problems difficult.

Curvature has also been used to study confidence re-
gions [16,20,47–49], kurtosis (deviations from normality) in
parameter estimation [50], and criteria for determining if a
minimum is the global minimizer [51]. We will see below
that the large anisotropy in the metric produces a similar
anisotropy in the curvature of sloppy models. Furthermore,
we use curvature as a measure of how far an algorithm
can accurately step (Sec. VII F) and to estimate how many
parameters a best fit will typically evaporate (Sec. VII G).

In our discussion of geodesic coordinates in Sec. VI, we
saw how some of the nonlinearity of a model could be
removed by a clever choice of coordinates. We also argued
that the nonlinearity that could not be removed by a coordinate

036701-15

TRANSTRUM, MACHTA, AND SETHNA PHYSICAL REVIEW E 83, 036701 (2011)

FIG. 12. (Color online) By changing the value of the Levenberg-Marquardt parameter, the course of the geodesics on the corresponding
model graph are deformed, in turn distorting the shape of the cost contours in the geodesic coordinates. (a) λ = 0 is equivalent to the model
manifold. The cost contours for a relatively flat manifold, such as that produced by the sum of two exponentials, are nearly perfect, concentric
circles. The geodesics can be evaluated up to the boundary of the manifold, at which point the coordinates are no longer defined. Here we can
clearly see the stiff, long manifold direction (vertical) and the sloppy, thin manifold direction (horizontal). (b) Small λ (λ much smaller than
any of the eigenvalues of the metric) will produce cost contours that are still circular, but the manifold boundaries have been removed. In this
case, the fold line has disappeared, and cost contours that ended where parameters evaporated now stretch to infinity. (c) Moderate λ creates
cost contours that begin to stretch in regions where the damping parameter significantly affects the eigenvalue structure of the metric. The
deformed cost contours begin to take the plateau and canyon structures of the contours in parameter space. (d) Large λ effectively washes out
the information from the model manifold metric, leaving just a multiple of the parameter space metric. In this case, the contours are those of
parameter space—a long narrow curved canyon around the best fit. This figure analogous to Fig. 1(b), although the model here is a more sloppy
(and more realistic) example. An animation of the transition from small to large damping parameter is available in the online supplemental
material [23].

change would be expressed as an extrinsic curvature on the
expectation surface. Nonlinearity that does not produce an
extrinsic curvature is not irrelevant; it can still have a strong
influence on the model and can still limit the effectiveness of
optimization algorithms. Specifically, this type of nonlinearity
changes the way that distances are measured on the tangent
space. They may cause the basis vectors on the tangent space
to expand, shrink, or rotate. We follow the nomenclature of
Bates and Watts and refer to this type of nonlinearity as
parameter-effect curvature [15,18]. We emphasize that this
is not a “real” curvature in the sense that it does not cause the
shape of the expectation surface to vary from a flat surface, but
its effects on the behavior of the model are similar to the effect
of real curvature. This “curvature” could be removed through
a more convenient choice of coordinates, which is precisely
what we have done by constructing geodesic coordinates in
Sec. VI. A functional definition of parameter-effect curvature
would be the nonlinearities that are annihilated by operating
with P N . Alternatively, one can think of the parameter-effect
curvature as the curvatures of the coordinate mesh. We discuss
parameter-effect curvature in Sec. VII C.

Bates and Watts refer to all nonlinearity that cannot be
removed by changes of coordinates as intrinsic curvature [18].
We will not follow this convention; instead, we follow

the differential geometry community and further distinguish
between intrinsic or Riemann curvature (Sec. VII A) and
extrinsic or embedding curvature [36] (Sec. VII B). The former
refers to the curvature that could be measured on a surface
without reference to the embedding. The latter refers to the
curvature that arises due to the manner in which the model has
been embedded. From a complete knowledge of the extrinsic
curvature, one could also calculate the intrinsic curvature.
Based on our discussion up to this point, one would expect
that both the intrinsic and the extrinsic curvature should be
expressible in terms of some combination of P N and ∂μ∂νrm.
This turns out to be the case, as we will shortly see.

All types of curvature appear in least-squares models, and
we will now discuss each of them.

A. Intrinsic (Riemann) curvature

The embedding plays a crucial role in nonlinear least-
squares fits—the residuals embed the model manifold ex-
plicitly in data space. We will be primarily interested in
the extrinsic curvature. However, because most studies of
differential geometry focus on the intrinsic curvature, we
discuss it.

036701-16

GEOMETRY OF NONLINEAR LEAST SQUARES WITH . . . PHYSICAL REVIEW E 83, 036701 (2011)

The Riemann curvature tensor, Rα
βγ δ , is one measure

of intrinsic curvature. Since intrinsic curvature makes no
reference to the embedding space, curvature is measured by
moving a vector, V μ, around infinitesimal closed loops and
observing the change the curvature induces on the vector,
which is expressed mathematically by

Rα
βγ δV

β = ∇γ ∇δV
α − ∇δ∇γ V α.

This expression in turn can be written independently of V μ in
terms of the Christoffel symbols and their derivatives, by the
standard formula

Rα
βγ δ = ∂γ
α

βδ − ∂δ

α
βγ +
ε

βδ

α
εγ −
ε

βγ
α
εδ.

From this we can express Rα
βγ δ in terms of derivatives of

the residuals. Even though Rα
βγ δ depends on derivatives of
,

suggesting that it would require a third derivative of the
residuals, one can in fact represent it in terms of second
derivatives and P N ,

Rαβγ δ = ∂α∂γ rmP N
mn∂β∂δrn − ∂α∂δrmP N

mn∂β∂γ rn,

which is the Gauss-Codazzi equation extended to the case of
more than one independent normal direction [37].

The toy model that we have used throughout this work
to illustrate concepts has intrinsic curvature. The curvature
becomes most apparent when viewed from another angle, as
in Fig. 13.

Intrinsic or Riemann curvature is an important mathemat-
ical quantity that is described by a single, four-index tensor;
however, we do not use intrinsic curvature to study optimiza-
tion algorithms. Extrinsic and parameter-effect curvature, in
contrast, cannot be simple tensors but will depend on a chosen
direction. These curvatures are the key to understanding
nonlinear least-squares fitting.

B. Extrinsic curvature

Extrinsic curvature is easier to visualize than intrinsic
curvature since it makes reference to the embedding space,
which is where one naturally imagines curved surfaces. It is
important to understand that extrinsic and intrinsic curvature
are fundamentally different and are not merely different ways
of describing the same concept. In differentiating between
intrinsic and extrinsic curvature, the simplest illustrative

FIG. 13. (Color online) Intrinsic and extrinsic curvature. Intrinsic
curvature is inherent to the manifold and cannot be removed by an
alternative embedding. A model that is the sum of two exponential
terms has all types of curvature. This is the same model manifold
as in Fig. 1(c), viewed from an alternative angle to highlight the
curvature. From this viewing angle, the extrinsic curvature becomes
apparent. This is also an example of intrinsic curvature. An animation
of this surface rotating in three dimensions is available in the online
supplemental material [23].

FIG. 14. (Color online) A ruled surface has no intrinsic curvature;
however, it may have extrinsic curvature. The model manifold formed
from a single exponential rate and amplitude is an example of a
ruled surface. This model could be isometrically embedded in another
space to remove the curvature. An animation of this surface rotating
in three-dimensional space is available in the online supplemental
material [23].

example is a cylinder, which has no intrinsic curvature but does
have extrinsic curvature. One could imagine taking a piece
of paper, clearly a flat, two-dimensional surface embedded
in three-dimensional space, and rolling it into a cylinder.
Rolling the paper does not affect distances on the surface,
preserving its intrinsic properties, but it does change the way
that it is embedded in three-dimensional space. The rolled
paper remains intrinsically flat, but it now has an extrinsic
curvature. A surface whose extrinsic curvature can be removed
by an alternative, isometric embedding is known as a ruled
surface [52]. While an extrinsic curvature does not always
imply the existence of an intrinsic curvature, an intrinsic
curvature requires that there also be extrinsic curvature. Our
toy model, therefore, also exhibits extrinsic curvature as in
Fig. 13. One model whose manifold is a ruled surface is given
by a two-parameter model that varies an exponential rate and
an amplitude:

y = Ae−θt .

The manifold for this model with three data points is drawn in
Fig. 14.2

There are two measures of extrinsic curvature that we
discuss. The first is known as geodesic curvature because it
measures the deviation of a geodesic from a straight line in the
embedding space. The second measure is known as the shape
operator. These two measures are complimentary and should
be used together to understand the way a space is curved. Both
geodesic curvature and the shape operator have analogous
measures of parameter-effect curvature that will allow us to
compare the relative importance of the two types of curvature.

Measures of extrinsic and parameter-effect curvature to
quantify nonlinearities have been proposed previously by
Bates and Watts [15,17,18]. Although the measure they use
is equivalent to the presentation of the next few sections, their

2This example is also a separable nonlinear least-squares problem.
Separable problems containing a mixture of linear and nonlinear
parameters are amenable to the method known as variable projection
[67–69]. Variable projection consists of first performing a linear least-
squares optimization on the linear parameters, making them implicit
functions of the nonlinear parameters. The geometric effect of this
procedure is to reduce the dimensionality of the model manifold,
effectively selecting a submanifold that now depends on the location
of the data. We will not discuss this method further in this paper, but
we note that it is likely to have interesting geometric properties.

036701-17

TRANSTRUM, MACHTA, AND SETHNA PHYSICAL REVIEW E 83, 036701 (2011)

approach is different. The goal of this section is to express
curvature measures of nonlinearity in a more standard way
using the language of differential geometry. In so doing, we
hope to make the results accessible to a larger audience.

1. Geodesic curvature

Consider a geodesic parametrized by τ , tracing a path
through parameter space, θμ(τ), which in turn defines a path
through residual space, �r(θ (τ)). The parametrization allows us
to discuss the velocity, �v = d�r

dτ
, and the acceleration, �a = d �v

dτ
. A

little calculus puts these expressions in a more practical form:

�v = θ̇μ∂μ�r,
�a = θ̇μθ̇ νP N∂μ∂ν�r.

Notice that the normal projection operator emerges naturally
in the expression for �a.

For any curve that has instantaneous velocity and acceler-
ation vectors, one can find a circle that locally approximates
the path. The circle has radius

R = v2

|�a|
and a corresponding curvature

K = R−1 = |�a|
v2

.

Because the path that we are considering is a geodesic, it will
be as near a straight line in data space as possible without
leaving the expectation surface. That is to say, the curvature
of the geodesic path will be a measure of how the surface
is curving within the embedding space, that is, an extrinsic
curvature. The curvature associated with a geodesic path is
illustrated in Fig. 15.

In our previous discussion of geodesics, we saw that a
geodesic is fully specified by a point and a direction. Therefore,
we can define the geodesic curvature of any point on the
surface, corresponding to a direction, vμ, by

K(v) = |vμvνP N∂μ∂ν�r|
vαvα

. (27)

At each point on the surface, there is a different value of the
geodesic curvature for each direction on the surface.

FIG. 15. (Color online) Geodesic curvature. A direction on a
curved surface defines a geodesic. The deviation of the geodesic from
a straight line in the embedding space is measured by the geodesic
curvature. It is the inverse radius of the circle fit to the geodesic path at
the point. A three-dimensional animation of this surface is available
in the online supplemental material [23].

2. Shape operator

Another measure of extrinsic curvature, complimentary to
the geodesic curvature, is the shape operator, Sμν . While the
geodesic curvature requires us to choose an arbitrary direction
on the surface, the shape operator requires us to choose an
arbitrary direction normal to the surface.

To understand the shape operator, let us first consider the
special case of an N -dimensional surface embedded in an
(N + 1)-dimensional space. If this is the case, then at any
point on the surface there is a unique (up to a sign) unit vector
normal to the surface, n̂. If this is the case, Sμν is given by

Sμν = n̂ · (∂μ∂ν�r). (28)

Sμν is known as the shape operator because it describes
how the surface is shaped around the unit normal, n̂. It is a
symmetric, covariant rank-2 tensor. We are usually interested
in finding the eigenvalues of the shape operator with a single
raised index:

Sμ
ν = gμαSαν.

The eigenvectors of Sμ
ν are known as the principal curvature

directions, and the eigenvalues are the extrinsic curvatures in
those directions. In the case in which there is only one direction
normal to the surface, the (absolute value of the) eigenvalues
of Sμ

ν are equal to the geodesic curvatures in the respective
eigendirections. The eigenvalues, {kμ}, may be either positive
or negative. Positive values indicate that the curvature is toward
the direction of the normal, while negative values indicate that
it is curving away, as illustrated in Fig. 16.

In general, there will not be a unique normal vector. If an N -
dimensional surface is embedded in an M-dimensional space,
then there will M − N independent shape operators, and one
is left to perform an eigenvalue analysis for each as described
above [36]. Fortunately, for the case of a least-squares problem,
there is a natural direction to choose: the normal component
of the unfit data, −P N �r , making the shape operator

Sμν = −�rP N∂μ∂ν�r
|P N �r| , (29)

where we introduce the minus as convention. In general,
around an arbitrary vector �V , the shape operator becomes

S(�V)μν =
�V P N∂μ∂ν�r
|P N �V | . (30)

FIG. 16. (Color online) Shape operator. Specifying a direction
normal to a curved surface, n̂, defines a shape operator. The
eigenvalues of the shape operator are the principal curvatures and
the corresponding eigenvectors are the directions of principal curva-
ture. A three-dimensional animation of this surface is available in the
online supplemental material [23].

036701-18

GEOMETRY OF NONLINEAR LEAST SQUARES WITH . . . PHYSICAL REVIEW E 83, 036701 (2011)

FIG. 17. (a) Linear grid. A sloppy linear model may have a skewed coordinate grid, but the shape of the grid is constant, having no
parameter-effect curvature. (b) Compressed grid. By reparametrizing the model, the grid may become stretched or compressed in regions of
the manifold. (c) Rotating, compressed grid. Another parametrization may not only stretch the grid, but also cause the coordinates to rotate.
The parameter-effect curvature describes the degree to which the coordinates are stretching and rotating on the manifold. With more than two
parameters, there is also a torsion parameter-effect curvature (twisting).

It should now be clear why these two measures of extrinsic
curvature (geodesic curvature and the shape operator) are
complimentary. The geodesic curvature is limited by having to
choose a direction tangent to the surface, but gives complete
information about how that direction is curving into the space
normal to the surface. In contrast, the shape operator gives
information about all the directions on the surface, but only
tells how those directions curve relative to a single normal
direction.

C. Parameter-effect curvature

We are now prepared to discuss parameter-effect curvature.
We repeat that parameter-effect curvature is not a curvature
of the manifold. Instead, it is a measure of the curvatures
of the coordinate mesh on the surface. In our experience,
parameter-effect curvature is typically the largest of the three
types we have discussed. By its very nature, this curvature
depends on the choice of the parametrization. By constructing
extended geodesic coordinates in Sec. VI, we were able to
remove the parameter-effect curvature from the model (at

a point). In this section, we will discuss how to measure
the parameter-effect curvature and compare it to the other
curvatures that we discussed above.

To understand the meaning of parameter-effect curvature,
let us begin by considering a linear model with no curvature
of any type. For simplicity, we consider the parametrization of
the xy plane given by

x = εθ1 + θ2, y = θ1 + εθ2.

This parametrization will produce a skewed grid as ε → 1,
characteristic of linear sloppy models, such as fitting poly-
nomials. This grid is illustrated in Fig. 17(a) for ε = 1/2. By
reparametrizing the linear model, we can introduce parameter-
effect curvature. For example, if we replace the parameters
with their squares (which may be useful if we wish to enforce
the positivity of the parameters’ effects),

x = εθ2
1 + θ2

2 , y = θ2
1 + εθ2

2 ,

036701-19

TRANSTRUM, MACHTA, AND SETHNA PHYSICAL REVIEW E 83, 036701 (2011)

then the corresponding coordinate mesh will become com-
pressed and stretched, as seen in Fig. 17(b). Alternatively, if
we reparametrize the model as

x = (εθ1 + θ2)2, y = (
θ2

1 + εθ2
2

)2
,

to limit the region of consideration to the upper-right quarter
plane, then the coordinate mesh will stretch and rotate
into itself, depicted in Fig. 17(c). With more than two
parameters, there is additionally a torsion parameter-effect
curvature in which the lines twist around one another. None
of these reparametrizations change the intrinsic or extrinsic
properties of the model manifold; they merely change how
the coordinates describe the manifold. The extent to which
coordinate mesh is nonlinear is measured by the parameter-
effect curvature.

We now consider how to quantify parameter-effect curva-
ture. We have discussed the normal and tangential projection
operators, P N and P T , and argued that the normal projection
operator would extract the extrinsic and intrinsic curvature
from the matrix of second derivatives. Looking back on our
expressions for curvature up to this point, we see that each
involves P N . The complimentary parameter-effect curvature
can be found by replacing P N with P T in each expression.
Thus, in analogy with Eq. (27), we can define the parameter-
effect geodesic curvature by

Kp(v) = |vμvνP T ∂μ∂ν�r|
vαvα

. (31)

Likewise, we can define a parameter-effect shape operator by
comparison with Eq. (29),

Sp
μν = −�rP T ∂μ∂ν�r

|P T �r| .

Recall that for an N -dimensional space embedded in an
M-dimensional space, there are M − N independent shape
operators. This is because the space normal to the tangent space
(into which we are projecting the nonlinearity) is of dimension
M − N . The parameter-effect analog must therefore have
N independent shape operators, since the projection space
(the tangent space) is N -dimensional. Therefore, we are
naturally led to define a parameter-effect shape-operator with
an additional index to distinguish among the N possible
tangent directions,

SP
mμν = P T

mn∂μ∂νrn.

If we resolve these shape operators into the natural basis on
the tangent space, SP

mμν = S
pα
μν ∂αrm, we find

SPα
μν = gαβ∂β�r · ∂μ∂ν�r =
α

μν.

Therefore, the parameter-effect curvature is correctly inter-
preted as the connection coefficients. With this understanding,
it is clear that geodesic coordinates remove parameter-effect
curvature, since they are the coordinates constructed to give

 = 0.

Finally, we note that from a complete knowledge of all
the curvatures (for all directions) one can determine the
matrix of second derivatives completely. Although we do not
demonstrate this here, we note it is a consequence of having a
flat embedding space.

D. Curvature in sloppy models

Based on our analysis thus far, we should have two
expectations regarding the curvature of sloppy models. First,
because of the large spread of eigenvalues of the metric tensor,
unit distances measured in parameter space correspond to large
ranges of distances in data space. Conversely, one has to
move the parameters by large amounts in a sloppy direction to
change the residuals by a significant amount. Because of this,
we expect that the anharmonicities in the sloppy directions will
become magnified when we consider the curvature in those
directions. We expect strong anisotropies in the curvatures of
sloppy models, with the largest curvatures corresponding to
the sloppiest directions.

Secondly, as we saw in Sec. VI, by changing coordinates
to extended geodesic coordinates, we discovered that the
manifold generated by our sloppy model was surprisingly flat,
that is, it had low intrinsic curvature. We have seen that if
the model happens to have an equal number of data points as
parameters, then the model will always be flat. Since many of
the data points in a typical sloppy model are just interpolation
points, we believe that in general sloppy models have lower
extrinsic curvature than one would have naively guessed just by
considering the magnitude of the nonlinearities. This explains
perhaps why we will find that the dominant curvature of sloppy
models is the parameter-effect one.

We can better understand the size of the various curvatures
by considering the interpretation presented in Sec. III that
sloppy models are a generalized interpolation scheme. If we
choose N independent data points as our parametrization, then
the interpolating polynomial, PN−1(t), in Eq. (13) is a linear
function of the parameters. As discussed below that equation,
the manifold in each additional direction will be constrained
to within ε = δfN+1 of PN−1(t). Presuming that this deviation
from flatness smoothly varies along the j th largest width
Wj ∼ δfj of the manifold (i.e., there is no complex or
sensitive dependence on parameters), the geodesic extrinsic
curvature is

K = ε/W 2
j , (32)

predicting a range of extrinsic curvatures comparable to the
range of inverse eigenvalues of the metric. Furthermore, the
ratio of the curvature to the inverse width should then be
ε/Wj ∼ δfN+1/δfj ∼ (δt/R)N+1−j , where δt is the spacing
of time points at which the model is sampled and R is the
time scale over which the model changes appreciably [see the
argument in Sec. III following Eq. (13)].

Since we estimate ε = δfN+1 to be the most narrow width if
the model had an additional parameter, we can find the overall
scale of the extrinsic curvature to be given by the narrowest
width

KN ≈ 1

WN

.

Additionally, we can find the scale set by the parameter-effect
curvature by recalling that the parameter-effect curvature
is the curvature of the coordinate mesh. If we ignore all
parameter combinations except the stiffest, then motion in this
direction traces out a one-dimensional model manifold. The
parameter-effect curvature of the full model manifold in the
stiffest direction now corresponds to the extrinsic curvature

036701-20

GEOMETRY OF NONLINEAR LEAST SQUARES WITH . . . PHYSICAL REVIEW E 83, 036701 (2011)

of this one-dimensional manifold,3 and as such is set by the
smallest width (which in this case is the only width), that
is, the longest width of the full model manifold. The similar
structure of parameter-effect curvature and extrinsic curvature,
Eqs. (27) and (31), suggests that the parameter-effect curvature
is also proportional to the inverse eigenvalues (squares of the
widths) along several cross sections. Combining these results,
we see that in general the ratio of extrinsic to parameter-effect
curvature is given by the ratio of the widest to the most narrow
width,

K

KP
≈ WN

W1
≈

√
λN

λ1
. (33)

In our experience, the ratio of extrinsic to parameter-effect
curvature in Eq. (33) is always very small. When Bates and
Watts introduced parameter-effect curvature, they considered
its magnitude on 24 models and found it to be universally
larger than the extrinsic curvature, often much larger [15].
We have offered an explanation of this effect here based on
the assumption that the deviation from flatness is given by
Eq. (32).

We explicitly check the assumption of Eq. (32) by calculat-
ing cross sections for a model of several exponentials and for
an artificial neural network. We have already seen in Sec. III
in Fig. 6 that these widths span several orders of magnitude, as
predicted by the singular values of the Jacobian. In Fig. 18, we
view the data space image of these widths (projected into the
plane spanned by the local velocity and acceleration vectors),
where we see explicitly that the deviation from flatness is
similar for all the cross sections. In Fig. 19, we see that the
extrinsic curvature is comparable to the narrowest cross section
and the parameter-effect curvature is comparable to the widest
cross section, as we argued above, both for fitting exponentials
and for the neural network model.

We further illustrate the above analysis by explicitly
calculating the curvatures for the sloppy model formed by
summing several exponential terms with amplitudes. Figure 20
is a log plot illustrating the eigenvalues of the inverse metric,
the geodesic curvatures in each of those eigendirections, as
well as the parameter-effect geodesic curvature in each of
those directions. We see the same picture whether we consider
the eigenvalues of the shape operator or the geodesic curvature.
Both measures of curvature are strongly anisotropic with both
extrinsic curvature and parameter-effect curvature covering as
many orders of magnitude as the eigenvalues of the (inverse)
metric. However, the extrinsic curvature is smaller by a factor
roughly given by Eq. (33). We will use this large discrepancy
between extrinsic and parameter-effect curvature when we
improve the standard algorithms in Sec. VIII.

3This is strictly only true if the parameter-effect curvature has no
compression component. Bates and Watts observe that, typically, the
compression is a large part of the parameter-effect curvature [15]. As
long as the compression is not significantly larger than the rotation
(i.e., is within an order of magnitude), the parameter-effect curvature
will be the same order of magnitude as the extrinsic curvature of the
one-dimensional model.

FIG. 18. (a) Cross sections of a summing exponential model
projected into the plane spanned by the two principal components
in data space. Notice the widths of successive cross sections are
progressively more narrow, while the deviations from flatness are
uniformly spread across the width. The magnitude of the deviation
from flatness is approximately the same for each width, giving rise
to the hierarchy of curvatures. (b) Cross sections of a feed-forward
neural network has many of the same properties as the exponential
model. In both cases, the curvature is much smaller than it appears due
to the relative scale of the two axes. In fact, the sloppiest directions
(narrowest widths) have an aspect ratio of about 1.

We have seen that manifolds of sloppy models possess
a number of universal characteristics. We saw in Sec. III
that they are bounded with a hierarchy of widths, which we
describe as a hyper-ribbon. In this section, we have seen that
the extrinsic and parameter-effect curvatures also possess a
universal structure summarized in Figs. 18–21. A remarkable
thing about the parameter-invariant, global structure of a
sloppy model manifold is that it is typically well-described by
the singular values of the parameter-dependent, local Jacobian
matrix. We saw in Sec. III that the singular values correspond
to the widths. We have now argued that the largest and
smallest singular values set the scale of the parameter-effect
and extrinsic curvature, respectively. This entire structure is
a consequence of the observation that most models are a
multidimensional interpolation scheme.

Let us summarize our conclusions about the geometry
of sloppy models. We argued in Sec. III using interpolation
theorems that multiparameter nonlinear least-squares models
should have model manifolds with a hierarchy of widths, form-
ing a hyper-ribbon with the nth width of order Wn ∼ W0�

n,
with � given by the spacing between data points divided by a
radius of convergence (in some multidimensional sense) and
W0 the widest cross section. We discovered in some cases that
the eigenvalues of the Hessian about the best fit agreed well
with the squares of these widths (so λn ∼ �2n, see Fig. 6). This

036701-21

TRANSTRUM, MACHTA, AND SETHNA PHYSICAL REVIEW E 83, 036701 (2011)

FIG. 19. (Color online) The extrinsic and parameter-effect curva-
ture on the model manifold are strongly anisotropic, with the largest
curvatures along the shortest widths (see Figs. 6 and 18). The slopes of
the (inverse) curvature vs eigenvalue lines are roughly twice that of the
singular values (which are equivalent to the widths). The magnitude
of the extrinsic curvature is set by the most narrow cross sections,
while the magnitude of the parameter-effect curvature is set by the
widest cross section. Consequently, the parameter-effect curvature is
much larger than the extrinsic curvature. Here we plot the widths and
curvatures for a model of four exponentials (above) from Ref. [22]
and a feed forward artificial neural network (below).

depends on the choice of parameters and the placement of the
best fit; we conjecture that this will usually occur if the “bare”
parameters are physically or biologically natural descriptions
of the model and have natural units (i.e., dimensionless), and
if the best fit is not near the boundary of the model manifold.
The parameter � will depend on the model and the data being
fit; it varies (for example) from 0.1 to 0.9 among 17 systems
biology models [6]. We argued using interpolation theory that
the extrinsic curvatures should scale as Kn ∼ ε/W 2

n , where
the total variation ε ∼ WN , implying Kn ∼ �N/(W0�

2n)
[Fig. 18(c)]. We find this hierarchy both measured along the
eigenvectors of the (parameter-independent) shape operator
(Fig. 20) or the geodesic curvatures measured along the
(parameter-dependent) eigenpredictions at the best fit. Finally,
we note that the parameter-effect curvature also scales as
1/�2n by inspecting the similarity in the two formulas,
Eqs. (27) and (31). We argue that the parameter-effect
curvature should be roughly given by the extrinsic curvature
of a one-dimensional model moving in a stiff direction, which
sets the scale of the parameter effects as KP

n ∼ W0/W 2
n ∼

1/(W0�
2n), again either measured along the eigendirections of

the parameter-effect shape operator or along eigenpredictions.
Thus the entire structure of the manifold can be summarized

FIG. 20. Curvature anisotropy. (a) Inverse metric eigenvalues.
The (inverse) metric has eigenvalues spread over several orders
of magnitude, producing a strong anisotropy in the way distances
are measured on the model manifold. (b) Geodesic curvature in
eigendirections of the metric. The geodesic curvatures also cover
many decades. The shortened distance measurements from the metric
eigenvalues magnify the anharmonicities in the sloppy directions.
(c) Parameter-effect geodesic curvature. The parameter-effect cur-
vature is much larger than the extrinsic curvature, but shares the
anisotropy. (d) The eigenvalues of the shape operator. The strong
curvature anisotropy described by the geodesic curvature is also
illustrated in the eigenvalue spectrum of the shape operator. (e)
Parameter-effect shape operator eigenvalues. Two measures (geodesic
and shape operator curvatures) span similar ranges, but in both cases
the parameter-effect curvature is a factor of about 105 larger than the
extrinsic curvature equivalent.

FIG. 21. (Color online) A caricature of the widths and curvatures
of a typical sloppy model. (a) The manifold deviates by an amount
�N from a linear model for each width. As each width is smaller than
the last by a factor of �, the curvature is largest along the narrow
widths. This summary agrees well with the two real models in Fig. 18.
(b) The scales of the extrinsic and parameter-effect curvature are set by
the narrowest and widest widths, respectively. The parameter-effect
curvature is, therefore, smaller than the extrinsic curvature by a factor
of �N . Both are strongly anisotropic. Compare this figure to the
corresponding result for the two real models in Fig. 19.

036701-22

GEOMETRY OF NONLINEAR LEAST SQUARES WITH . . . PHYSICAL REVIEW E 83, 036701 (2011)

by three numbers: W0, the stiffest width; �, the typical
spacing between widths; and N , the number of parameters.
We summarize our conclusions in Fig. 21.

E. Curvature on the model graph

Most of the nonlinearities of sloppy models appear as
parameter-effect curvature on the model manifold. On the
model graph, however, these nonlinearities become extrinsic
curvature because the model graph emphasizes the parameter
dependence. An extreme version of this effect can be seen
explicitly in Fig. 8, where the model manifold, which had
been folded in half, is unfolded in the model graph, producing
a region of high curvature around the fold line.

If the Levenberg-Marquardt parameter is sufficiently large,
the graph can be made arbitrarily flat (assuming the metric
chosen for parameter space is flat, such as for the Levenberg
metric). This effect is also visible in Fig. 8 in the regions that
stretch toward the boundaries. In these regions, the Levenberg-
Marquardt parameter is much larger than the eigenvalues of
the metric, making the parameter space metric the dominant
contribution, and creating an extrinsically flat region on the
model graph.

To illustrate how the curvature on the model graph is
affected by the Levenberg-Marquardt parameter, we consider
how the geodesic curvatures in the eigendirections of the
metric change as the parameter is increased for a model
involving several exponentials with amplitudes and rates. The
results are plotted in Fig. 22. As the Levenberg-Marquardt
parameter is raised, the widely ranging values of the geodesic
curvatures may either increase or decrease. The largest
curvature directions (the sloppy directions) tend to flatten, but
the directions with the lowest curvature (the stiff directions)
become more curved. The main effect of the Levenberg-
Marquardt parameter is to decrease the anisotropy in the
curvature.

The behavior of the extrinsic curvature as the Levenberg-
Marquardt parameter is varied can best be understood in
terms of the interplay between parameter-effect curvature and
extrinsic curvature. Curvatures decrease as more weight is

FIG. 22. Model graph curvature. As the Levenberg-Marquardt
parameter λ is increased, directions with highest curvature become
less curved. For stiff directions with less extrinsic curvature, the
parameter-effect curvature may be transformed into extrinsic curva-
ture. The damping term reduces the large anisotropy in the curvature.
For sufficiently large values of the Levenberg-Marquardt parameters,
all curvatures vanish.

given to the Euclidean, parameter-space metric. However, as
long as the parameter-space metric is not completely dominant,
the graph will inherit curvatures from the model manifold.
Since the graph considers model output versus the parameters,
curvature that had previously been parameter effect becomes
extrinsic curvature. Therefore, directions that had previously
been extrinsically flat will be more curved, while the directions
with the most curvature will become less curved.

The largest curvatures typically correspond to the sloppy
directions. Most algorithms will try to step in sloppy directions
to follow the canyon. The benefit of the model graph is that
it reduces the curvature in the sloppy directions, which allows
algorithms to take larger steps. The fact that previously flat
directions become extrinsically curved on the model graph
does not hinder an algorithm that does not step in these
extrinsically flat directions anyway. The role that curvatures
play in determining an algorithm’s maximal step size is looked
at more closely in the next section.

F. Optimization curvature

The distinction between extrinsic and parameter-effect
curvature is not particularly useful in understanding the
limitations of an algorithm. An iterative algorithm taking steps
based on a local linearization will ultimately be limited by all
nonlinearities, both extrinsic and parameter effects. We would
like a measure of nonlinearity, analogous to curvature, that
explains the limitations of stepping in a given direction.

Suppose an algorithm proposes a step in some direction,
vμ. Then the natural measure of nonlinearity should include
the directional second derivative, vμvν∂μ∂ν�r/vαvα , where we
included the normalization to remove the scale dependence of
v. This expression is very similar to the geodesic curvature
without the projection operator.

Simply using the magnitude of this expression is not
particularly useful because it does not indicate whether
curvature of the path is improving or hindering the convergence
of the algorithm. This crucial bit of information is given by
the (negative) dot product with the unit residual vector,

κ(v) = −vμvν∂μ∂ν�r
vαvα

· �r
|�r| , (34)

which we refer to as the optimization curvature. Since the
goal is to reduce the size of the current residual, the negative
sign is to produce the convention that for κ > 0 the curvature
is helping the algorithm, while when κ < 0 the curvature is
slowing the algorithm’s convergence.

This expression for κ has many of the properties of the
curvatures discussed in this section. It has the same units as the
curvatures we have discussed. It requires the specification of
both a direction on the manifold (the proposed step direction,
v) and a direction in data space (the desired destination, �r),
making it a combination of both the geodesic and shape
operator measures of curvature. Furthermore, without the
projection operators, it combines both extrinsic and parameter-
effect curvature into a single measure of nonlinearity, although
in practice it is dominated by the parameter-effect curvature.
We now consider how κ is related to the allowed step size of
an iterative algorithm.

036701-23

TRANSTRUM, MACHTA, AND SETHNA PHYSICAL REVIEW E 83, 036701 (2011)

FIG. 23. (Color online) (a) Curvature and step size for κ < 0. If κ < 0, then the nonlinearities in the proposed direction are diverting the
algorithm away from the desired path. Distances are limited by the size of the curvature. (b) Curvature and step size for κ > 0. The nonlinearities
may be helpful to an algorithm, allowing for larger than expected step sizes when κ > 0. (c) Curvature and step size for κ with alternating
sign. For small λ, κ < 0 and the nonlinearities are restricting the step size. However, if κ becomes positive (the cusp indicates the change of
sign), the possible step size suddenly increases. (d) Cost contours for positive and negative values of κ . One can understand the two different
signs of κ in terms of which side of the canyon the given point resides. The upper point has positive κ and can step much larger distances in
the Gauss-Newton direction than can the lower point with negative κ , which quickly runs up the canyon wall.

Consider the scaled Levenberg step given by

δθμ = −(g0 + λD)μν∂νC δτ.

Each λ specifies a direction for a proposed step. For a given
λ, we vary δτ to find how far an algorithm could step in the
proposed direction. We determine δτ by performing a line
search to minimize the cost in the given direction. While
minimizing the cost at each step may seem like a natural
stepping criterion, it is actually a poor choice, as we discuss
in Sec. VIII C; however, this simple criterion is useful for
illustrating the limitations of step size.

We measure the step size by the motion it causes in the
residuals, ‖δ�r‖. This is a convenient choice because each
direction also determines a value for the geodesic curvature
(K), the parameter-effect curvature (Kp), and an optimization
curvature (κ), each of which is measured in units of inverse
distance in data space. We compare the step size with the
inverse curvature in each direction in Fig. 23.

One might assume that the size of the nonlinearities always
limits the step size, since the direction was determined based
on a linearization of the residuals. This is clearly the case for
the summing exponentials model in Fig. 23(a), where κ < 0;
the step size closely follows the largest of the curvatures, the
parameter-effect curvature KP ≈ |κ|.

However, the nonlinearities on occasion may inadvertently
be helpful to an algorithm, as in Fig. 23(b) where κ > 0. If

the value of κ changes sign as we vary λ, then the distinction
becomes clear: steps can be several orders of magnitude larger
than expected if κ > 0, otherwise they are limited by the
magnitude of κ . The sign of the parameter κ is illustrating
something that can be easily understood by considering the
cost contours in parameter space, as in Fig. 23(d). If the
canyon is curving “into” the proposed step direction, then
the step runs up the canyon wall and must be shortened.
However, if the canyon is curving “away” from the proposed
step direction, then the step runs down the canyon and
eventually up the opposite wall, resulting in a much larger step
size.

G. Curvature and parameter evaporation

We have stressed the the boundaries of the model manifold
are the major obstacle to optimization algorithms. Because
a typical sloppy model has many very narrow widths, it is
reasonable to expect the best-fit parameters to have several
evaporated parameter values when fit to noisy data. To estimate
the expected number of evaporated parameters, however,
it is necessary to account for the extrinsic curvature of a
model.

In Fig. 24, we illustrate how the curvature effects which
regions of data space correspond to a best fit with either
evaporated or finite parameters. A first approximation is

036701-24

GEOMETRY OF NONLINEAR LEAST SQUARES WITH . . . PHYSICAL REVIEW E 83, 036701 (2011)

FIG. 24. The curvature along the width of a manifold effects if
the best fit lies on the boundary or on the interior. For a cross-sectional
width (thick black line), consider three possibilities: (a) extrinsically
flat, (b) constant curvature along width, and (c) curvature proportional
to distance from the boundary. Gray regions correspond to data points
with best fits on the interior of the manifold, while white regions
correspond to data with evaporated parameters. If the curvature is
larger near the boundaries, there is less data space available for
evaporated best-fit parameters.

a cross-sectional width with no extrinsic curvature, as in
Fig. 24(a). If the component of the data parallel to the cross
section does not lie outside the range of the width, the
parameter will not evaporate. If the cross section has curvature,
however, the situation is more complicated, with the best fit
depending on the component of the data perpendicular to the
cross section as well. Figures 24(b) and 24(c) highlight the
regions of data space for which the best fit will not evaporate
parameters (gray).

Knowing both the regions of data space corresponding to
nonevaporated parameters and the relative probabilities of the
possible data [Eq. (2)], we can estimate the expected number
of evaporated parameters for a given model at the best fit.
Using Gaussian data of width σ centered on the middle of a
cross section for a problem of fitting exponentials, we find the
best fit and count the number of zero eigenvalues of the metric,
corresponding to the number of nonevaporated parameters at
the fit.

We can derive analytic estimates for the number of
evaporated parameters using the approximation that the cross
section is either flat or has constant curvature, as in Figs. 24(a)
and 24(b). If the cross section is extrinsically flat, then the
probability of the corresponding parameter combination not
evaporating is given in terms of the error function

P flat
n = 2 erf

(
Wn

2σ

)
, (35)

where Wn is the nth width given by Wn = W0�
n.

A similar formula for the constant curvature approximation
is a little more complicated. It involves integrating the
Gaussian centered on the cross section in Fig. 24 over the gray
region. Since the apex of the gray cone is offset from the center
of the Gaussian, we evaluate the integral treating the offset as
a perturbation. We recognize that there are several cases to
be considered. If the noise is smaller than any of the widths,
then the probability is approximately 1. However, if the noise
is larger than the width but smaller than inverse curvature, the

probability is given by Wn/σ . Finally, if the noise is larger
than any of the widths, the probability is WnKn. Recall that we
characterize a sloppy model manifold by three numbers, W0,
�, and N , which are the largest width, the average spacing
between widths, and the number of parameters, respectively.
The final result in each of the three cases in terms of these
three numbers is given by

P curved
n =

⎧⎪⎨
⎪⎩

1 if σ < Wn,
W0�

n

σ
if Wn < σ < 1/Kn,

�N−n if 1/Kn < σ .

(36)

From our caricature of a typical sloppy model summarized
in Fig. 21, we estimate how many widths should belong in
each category for a given σ . Summing the probabilities for
the several widths in Eq. (36), we find the expected number of
nonevaporated parameters to be given by

〈Napprox〉 = 2

1 − �
+ log σ/W0

log �
− 1. (37)

In Table I, we compare the fraction of nonevaporated
parameters with the estimates from Eqs. (35) and (36).
We find a large discrepancy when the noise in the data is
very large. In this case, there is often a large fraction of
nonevaporated parameters even if the noise is much larger
than any cross-sectional width. We attribute this discrepancy
to larger curvatures near the corners of the manifold that
increase the fraction of data space that can be fit without
evaporating parameters. Since the metric is nearly singular
close to a boundary, we expect the extrinsic curvature to
become singular also by inspecting Eq. (27). We explicitly

TABLE I. The number of nonevaporated parameters 〈N〉 per
total number of parameters N at the best fit, for an eight-parameter
model of exponentials and amplitudes. As the noise of the data
ensemble grows, the number of nonevaporated parameters at the best
fit decreases (i.e., more parameters are evaporated by a good fit).
Even if the noise is much larger than any of the widths, there are still
several nonevaporated parameters, due to the curvature (see Fig. 24).
We estimate the expected number of nonevaporated parameters
from both a flat manifold approximation [Eq. (35)] and a constant
curvature approximation. For the constant curvature approximation,
we show the result of the exact integral of the Gaussian over the
gray region of Fig. 24(b) as well as our perturbative approximation,
Eq. (37), using the parameters W0 = 6.1, � = 0.11, and N = 8.
These approximations agree with the numerical results when the noise
is small, but for very noisy data there are still several nonevaporated
parameters even if the noise is much larger than any of the widths.
Therefore, although our general caricature of the model manifold as
a hypercylinder of constant curvatures and widths seems to describe
the geometry of the sloppy directions, it does not capture the features
of the stiff directions. This discrepancy could be due, for example, to
an increase in the curvature near the boundary, as in Fig. 24(c).

σ 〈N〉/N 〈Nflat〉/N 〈Nintegral〉/N 〈Napprox〉/N
10W0 0.61 0.0006 0.028 0.025
W0 0.73 0.05 0.076 0.16√

W0WN 0.87 0.50 0.52 0.60
WN 0.95 0.92 0.93 1.00
WN/10 0.98 1.00 1.00 1.00

036701-25

TRANSTRUM, MACHTA, AND SETHNA PHYSICAL REVIEW E 83, 036701 (2011)

calculate the curvature near the boundary and we find that this
is in fact the case.

The calculation in Table I can be interpreted in several
ways. If one is developing a model to describe some data
with known error bars, the calculation can be used to estimate
the number of parameters the model could reasonably have
without evaporating any at the best fit. Alternatively for a
fixed model, the calculation indicates what level of accuracy is
necessary in the data to confidently predict which parameters
are not infinite. Qualitatively, for a given model, the errors
must be smaller than the narrowest width for there to be no
evaporated parameters.

Similarly, for experimental data with noise less than any
of the (inverse) parameter-effect curvatures, the parameter
uncertainties estimated by the inverse Fisher information
matrix will be accurate since the parametrization is constant
over the range of uncertainty. It is important to note that
for models with large numbers of parameters, either of
these conditions requires extremely small, often unrealistically
small, error bars. In general, it is more practical to focus on
predictions made by ensembles of parameters with good fits
rather than parameter values at the best fit as the latter will
depend strongly on the noise in the data.

VIII. APPLICATIONS TO ALGORITHMS

We now consider how the results derived in previous
sections can be applied to algorithms. We have stressed that
fitting sloppy models to data consists of two difficult steps.
The first step is to explore the large, flat plateau to find the
canyon. The second step is to follow the canyon to the best fit.

TABLE II. The results of several algorithms applied to a test
problem of fitting a sum of four exponential terms (varying both rates
and amplitudes—eight parameters) in log-parameters (to enforce
positivity). Initial conditions are chosen near a manifold boundary
with a best fit of zero cost near the center of the manifold.
Among successful attempts, we further compare the average number
of Jacobian and function evaluations needed to arrive at the fit.
Success rate indicates an algorithm’s ability to avoid the manifold
boundaries (find the canyon from the plateau), while the number
of Jacobian and function evaluations indicates how efficiently it
can follow the canyon to the best fit. BFGS is a quasi-Newton
scalar minimizer of Broyden, Fletcher, Goldfarb, and Shanno [62,63].
The traditional [34,44] and trust region [45] implementations of
Levenberg-Marquardt consistently outperform this and other general
optimization routines on least-squares problems, such as Powell,
simplex, and conjugate gradient. Including the geodesic acceleration
on a standard variant of Levenberg-Marquardt dramatically increases
the success rate while decreasing the computation time.

Success Mean Mean
Algorithm rate NJEV NFEV

Trust region LM 12% 1517 1649
Traditional LM 33% 2002 4003
Traditional LM + accel. 65% 258 1494
Delayed gratification 26% 1998 8625
Delayed gratification + accel. 65% 163 1913
BFGS 8% 5363 5365

We begin by deriving two common algorithms, the modified
Gauss-Newton method and the Levenberg-Marquardt algo-
rithm from the geometric picture in Secs. VIII A and VIII B.
We then suggest how they may be improved by applying
what we call delayed gratification and an acceleration term
in Secs. VIII C and VIII D.

We demonstrate that the suggested modifications can offer
improvements to the algorithms by applying them to a few
test problems in Sec. VIII E. In comparing the effectiveness
of the algorithms, we make an important observation that
the majority of the computer time for most problems with
many parameters is occupied by Jacobian evaluations. As
the number of parameters grows, this becomes increasingly
the case. Models with many parameters are more likely to
be sloppy, so this assumption does not greatly reduce the
applicability of the algorithms discussed.

If an algorithm estimates the Jacobian from finite differ-
ences of the residuals, then most of the function (residual)
evaluations will be spent estimating the Jacobian. (Our
function evaluation counts in Table II do not include function
evaluations used to estimate Jacobians.) If this is the case,
then for any given problem, comparing function evaluations
automatically integrates the relative expense of calculating
residuals and Jacobians. However, many of the problems we
use for comparison are designed to have only a few parameters
for quick evaluation, while capturing the essence of larger
problems. We then extrapolate results from small problems
to similar, but larger, problems. Our primary objective is
to reduce the number of Jacobian evaluations necessary for
an algorithm to converge. We do not ignore the number of
function evaluations, but we but consider reducing the number
of function calls to be a lower priority. As we consider possible
improvements to algorithms, we will usually be willing to
accept a few more function calls if it can significantly reduce
the number of Jacobian evaluations that an algorithm requires.

In the next few sections, we discuss the geometric
meaning of the Gauss-Newton method (Sec. VIII A) and
other similar algorithms, such as the Levenberg-Marquardt
algorithm (Sec. VIII B). We then discuss how ideas from
differential geometry can lead to ways of improving con-
vergence rates. First, we suggest a method of updating
the Levenberg-Marquardt parameter, which we call delayed
gratification, in Sec. VIII C. Second, we suggest the inclusion
of a geodesic acceleration term in Sec. VIII D. We end the
discussion by comparing the efficiency of standard versions
of algorithms to those with the suggested improvements in
Sec. VIII E.

A. Modified Gauss-Newton method

The result presented in this paper that appears to be the
most likely to lead to a useful algorithm is that cost contours
are nearly perfect circles in extended geodesic coordinates as
described in Sec. VI. The coordinates illustrated in Fig. 11
transformed a long, narrow, curved valley into concentric
circles. Searching for the best fit in these coordinates would
be a straightforward task. This suggests that an algorithm that
begins at an unoptimized point need only follow a geodesic to
the best fit. We have thus transformed an optimization problem
into a differential equation integration problem.

036701-26

GEOMETRY OF NONLINEAR LEAST SQUARES WITH . . . PHYSICAL REVIEW E 83, 036701 (2011)

The initial direction of the geodesic tangent vector (velocity
vector) should be the Gauss-Newton direction

dθμ

dτ
(τ = 0) = −gμν∂νC. (38)

If we assume that the manifold is extrinsically flat (the
necessary and sufficient condition to produce concentric
circles in extended geodesic coordinates), then Eq. (26) tells
us that the cost will be purely quadratic,

d2C

dτ 2
= gμν dθμ

dτ

dθν

dτ
= const, (39)

which implies that the first derivative of the cost will be linear
in τ :

dC

dτ
=

(
gμν dθμ

dτ

dθν

dτ

)
τ + Ċ(τ = 0). (40)

A knowledge of Ċ(τ = 0) will then tell us how far the geodesic
needs to be integrated:

τmax = − Ċ(τ = 0)

gμν dθμ

dτ
dθν

dτ

. (41)

We can calculate the missing piece of Eq. (41) from the chain
rule and Eq. (38),

Ċ = dθμ

dτ
∂μC = −gμν∂νC ∂μC,

which gives us

τmax = 1.

The simplest method one could apply to solve the geodesic
equation would be to apply a single Euler step, which moves
the initial parameter guess by

δθμ = θ̇μδτ = −gμν∂νC, (42)

since δτ = 1. Iteratively updating the parameters according
to Eq. (42) is known as the Gauss-Newton method. It can be
derived without geometric considerations by simply assuming
a linear approximation to the residuals. Unless the initial
guess is very good, however, the appearance of the inverse
Hessian in Eq. (42) (with its enormous eigenvalues along
sloppy directions) will result in large, unreliable steps and
prevent the algorithm from converging.

The Gauss-Newton method needs some way to shorten
its steps. Motivated by the idea of integrating a differential
equation, one could imagine taking several Euler steps instead
of one. If one chooses a time step to minimize the cost
along the line given by the local Gauss-Newton direction,
then the algorithm is known as the modified Gauss-Newton
method, which is a much more stable algorithm than the simple
Gauss-Newton method [53].

One could also imagine performing some more sophisti-
cated method, such as a Runge-Kutta method. The problem
with these approaches is that the sloppy eigenvalues of the
inverse metric require the Euler or Runge-Kutta steps to be
far too small to be competitive with other algorithms. In
practice, these techniques are not as effective as the Levenberg-
Marquardt algorithm, discussed in the next section.

B. Levenberg-Marquardt algorithm

The algorithm that steps according to Eq. (42) using the
metric of the model graph, Eq. (17), is known as the Levenberg-
Marquardt step:

δθμ = −(g0 + λD)μν∂νC.

If D is chosen to be the identity, then the algorithm is the
Levenberg algorithm [43]. The Levenberg algorithm is simply
the Gauss-Newton method on the model graph instead of the
model manifold.

If D is chosen to be a diagonal matrix with entries
equal to the diagonal elements of g0, then the algorithm is
the Levenberg-Marquardt algorithm [44]. As we mentioned
in Sec. IV, the Levenberg-Marquardt algorithm, using the
Marquardt metric, is invariant to rescaling the parameters.
We find this property to often be counterproductive to the
optimization process since it prevents the modeler from
imposing the proper scale for the parameter values. In addition,
we observe that the resulting algorithm is more prone to
parameter evaporation. The purpose for adding D to the
metric is to introduce parameter dependence to the step
direction.

The Levenberg-Marquardt algorithm adjusts λ at each step.
Typically, when the algorithm has just begun, the Levenberg-
Marquardt term will be very large, which will force the
algorithm to take small steps in the gradient direction. Later,
once the algorithm has descended into a canyon, λ will
be lowered, allowing the algorithm to step in the Gauss-
Newton direction and follow the length of the canyon. The
Levenberg-Marquardt parameter, therefore, serves the dual
function of rotating the step direction from the Gauss-Newton
direction to the gradient direction, as well as shortening the
step.

As we mentioned in Sec. IV, when using the Levenberg
metric, λ will essentially wash out all the sloppy eigenvalues
of the original metric and leave the large ones unaffected. The
relatively large multiplicative factor separating eigenvalues
means that λ does not need to be finely tuned to achieve
convergence. Nevertheless, an efficient method for choosing
λ is the primary way that the Levenberg-Marquardt algorithm
can be optimized. We discuss two common updating schemes
here.

A typical method of choosing λ at each step is described in
Ref. [34]. One picks an initial value, say λ = 0.001, and tries
the proposed step. If the step moves to a point of larger cost, by
default, the step is rejected and λ is increased by some factor,
10. If the step has decreased the cost, the step is accepted and
λ is decreased by a factor of 10. This method is guaranteed
to eventually produce an acceptable step, since for extremely
large values of λ, the method will take an arbitrarily small
step in the gradient direction. We refer to this as the traditional
scheme for updating λ.

A more complicated method of choosing λ is based
on a trust region approach and is described in [45]. As in
the previous updating scheme, at each step λ is increased
until the step goes downhill (all uphill steps are rejected).
However, after an accepted step, the algorithm compares
the decrease in cost at the new position with the decrease

036701-27

TRANSTRUM, MACHTA, AND SETHNA PHYSICAL REVIEW E 83, 036701 (2011)

predicted by the linear approximation of the residuals,

‖�r(θold)‖ − ‖�r(θnew)‖
‖�r(θold)‖ − ‖�r(θold) + �Jμδθμ‖ .

If this value is very far from unity, then the algorithm has
stepped beyond the region for which it trusts the linear
approximation and will increase λ by some factor even though
the cost has decreased; otherwise, λ is decreased. This method
tunes λ so that most steps are accepted, reducing the number
of extra function evaluations. As a result, it often needs a few
more steps, and therefore a few more Jacobian evaluations.
This algorithm works well for small problems where the
computational complexity of the function and the Jacobian
are comparable. It is not as competitive using the number of
Jacobian evaluations as a measure of success.

These are certainly not the only update schemes available.
Both of these criteria reject any move that increases the cost,
which is a natural method to ensure that the algorithm does not
drift to large costs and never converges. One could imagine
devising an update scheme that allows some uphill steps in a
controlled way such that the algorithm remains well-behaved.
We consider such a scheme elsewhere [54] and note that it was
a key inspiration for the delayed gratification update scheme
that we describe below in Sec. VIII C.

As we observed in Sec. V, the metric formed by the model
graph acts similarly to the effect of adding linear Bayesian
priors as residuals. The Levenberg-Marquardt algorithm,
therefore, chooses a Gauss-Newton step as though there were
such a prior, but then ignores the prior in calculating the cost
at the new point. A similar algorithm, known as the iteratively
updated Gauss-Newton algorithm, includes the contribution
from the prior when calculating the new cost, although the
strength of the prior may be updated at each step [55].

C. Delayed gratification

We have seen that parameter-effect curvatures are typically
several orders of magnitude larger than extrinsic curvatures for
sloppy models, which means that the model manifold is much
more flat than the nonlinearities alone suggest and produce the
concentric circles in Fig. 11. When considering only a single
step on even a highly curved manifold, if the parameter-effect
curvature dominates, the step size will be less than the (inverse)
extrinsic curvature, and approximating the manifold by a flat
surface is a good approximation. Furthermore, we have seen
that when the manifold is flat, geodesics are the paths that we
hope to follow.

The Rosenbrock function is a well known test function for
which the extended geodesic coordinates can be expressed
analytically. It has a long, parabolic-shaped canyon and is
given by

r1 = 1 − θ1, r2 = A
(
θ2 − θ2

1

)
,

where A is a parameter that controls the narrowness of the
canyon. The Rosenbrock function has a single minimum
at (θ1,θ2) = (1,1). Since there are two residuals and two
parameters, the model manifold is flat and the extended

FIG. 25. Extended geodesic coordinates for the Rosenbrock func-
tion. The residuals are one choice of extended geodesic coordinates
if the number of parameters equals the number of data points, as
is the case for the Rosenbrock function. Because the Rosenbrock
function is a simple quadratic, the coordinate transformation can be
expressed analytically. Lines of constant ρ are equicost lines, while
lines of constant φ are the paths a geodesic algorithm should follow
to the best fit. Because the geodesics follow the path of the narrow
canyon, the radial geodesics are nearly parallel to the equicost lines
in parameter space. This effect is actually much more extreme than it
appears in this figure because of the relative scales of the two axes.

geodesic coordinates are the residuals. It is straightforward
to solve

θ1 = 1 − r1, θ2 = r2

A
+ (1 − r1)2.

If we change to polar coordinates,

r1 = ρ sin φ, r2 = ρ cos φ,

then lines of constant φ are the geodesic paths that we would
like an algorithm to follow toward the best fit, and lines of
constant ρ are cost contours. We plot both sets of curves in
Fig. 25.

Inspecting the geodesic paths that lead to the best fit in
Fig. 25 reveals that most of the path is spent following
the canyon while decreasing the cost only slightly. This
behavior is common to all geodesics in canyons such as
this. We would like to devise an update scheme for λ in the
Levenberg-Marquardt algorithm that will imitate this behavior.
The results of Sec. VII F suggest that we will often be able to
step further than a trust region would allow, so we start from
the traditional update scheme.

The primary feature of the geodesic path that we wish
to imitate is that radial geodesics are nearly parallel to cost
contours. In the usual update scheme, if a proposed step moves
uphill, then λ is increased. In the spirit of following a cost
contour, one could slowly increase the Levenberg-Marquardt
parameter just until the cost no longer increases. If λ is
fine-tuned until the cost is the same, we call this the equicost
update scheme. Such a scheme would naturally require many
function evaluations for each step, but as we said before, we are
primarily interested in problems for which function calls are
cheap compared to Jacobian evaluations. Even so, determining
λ to this precision is usually overkill, and the desired effect
can be had by a much simpler method.

036701-28

GEOMETRY OF NONLINEAR LEAST SQUARES WITH . . . PHYSICAL REVIEW E 83, 036701 (2011)

Instead of precisely tuning λ, we modify the traditional
scheme to raise and lower the parameter by different amounts.
Increasing λ by very small amounts when a proposed step is
uphill and then decreasing it by a large amount when a downhill
step is finally found will mimic the desired behavior. We have
found that increasing by a factor of 2 and decreasing by a factor
of 10 works well, consistent with Lampton’s results [56]. We
call this method, the delayed gratification update scheme.

The reason that this update scheme is effective is due to
the restriction that we do not allow uphill steps. If we move
downhill as much as possible in the first few steps, we greatly
restrict the steps that will be allowed at successive iterations,
slowing down the convergence rate, as illustrated in Fig. 26.

By using the delayed gratification update scheme, we are
using the smallest value of λ that does not produce an uphill
step. If we choose a trust-region method instead, each step
will choose a much larger value of λ. The problem with using
larger values of λ at each step is that they drive the algorithm
downhill prematurely. Even if the trust region only cuts each
possible step in half compared to the delayed gratification
scheme, the cumulative effect will be much more damaging
because of how this strategy reduces the possibility of future
steps.

D. Geodesic acceleration

We have seen that a geodesic is a natural path that an
algorithm should follow in its search for the best fit. The
application of geodesics to optimization algorithms is not new.
It has been applied, for example, to the problem of nonlinear
programming with constraints [57,58], to neural network
training [59], and to the general problem of optimization

FIG. 26. (Color online) Greedy step and delayed gratification step
criterion. In optimization problems for which there is a long narrow
canyon, such as for the Rosenbrock function, choosing a delayed
gratification step is important to optimize convergence. By varying
the damping term, the algorithm may choose from several possible
steps. A greedy step will lower the cost as much as possible, but
by doing so it will limit the size of future steps. An algorithm that
takes the largest allowable step size (without moving uphill) will
not decrease the cost much initially, but will arrive at the best fit in
fewer steps and more closely approximate the true geodesic path.
What constitutes the largest tolerable step size should be optimized
for specific problems so as to guarantee convergence.

on manifolds [33,60]. Here we apply it as a second-order
correction to the Levenberg-Marquardt step.

The geodesic equation is a second-order differential equa-
tion, whose solution we have attempted to mimic by only
calculating first derivatives of the residuals (Jacobians) and
following a delayed gratification stepping scheme. From a
single residual and Jacobian evaluation, an algorithm can
calculate the gradient of the cost as well as the metric, which
determines a direction. We would like to add a second-order
correction to the step, but one would expect its evaluation
to require knowledge of the second derivative matrix, which
would be even more expensive to calculate than the Jacobian.
We have already noted that most of the computer time is spent
on Jacobian evaluations, so second-order steps would have
even more overhead. Fortunately, the second-order correction
to the geodesic path can be calculated relatively cheaply in
comparison to a Jacobian evaluation.

The second-order correction, or acceleration, to the
geodesic path is given by

aμ = −

μ
αβvαvβ, (43)

as one can see by inspecting Eq. (24). In the expression for the
acceleration, the velocity contracts with the two lower indices
of the connection. Recall from the definition,

μ
αβ = gμν∂νrm∂α∂βrm,

that the lowered indices correspond to the second derivatives
of the residuals. This means that the acceleration only requires
a directional second derivative in the direction of the velocity.
This directional derivative can be estimated with two residual
evaluations in addition to the Jacobian evaluation. Since each
step will always call at least one residual evaluation, we can
estimate the acceleration with only one additional residuals
call, which is very cheap computationally compared to a
Jacobian evaluation.

With an easily evaluated approximation for the acceleration,
we can then consider the trajectory given by

δθμ = θ̇μδτ + 1
2 θ̈μδτ 2. (44)

By following the winding canyon with a parabolic path instead
of a linear path, we expect to require fewer steps to arrive at
the best fit. The parabola can more naturally curve around
the corners of the canyon than the straight line path. This is
illustrated for the Rosenbrock function in Fig. 27. Because
the canyon of the Rosenbrock function is parabolic, it can be
traversed exactly to the best fit by the acceleration in a single
step.

The relationship between the velocity and the acceleration
depicted in Fig. 27 for the Rosenbrock function is overly
idealized. In general, the velocity and the acceleration will
not be perpendicular; in fact, it is much more common for
them to be nearly parallel or antiparallel. Notice that the
expression for the connection coefficient involves a factor of
the inverse metric, which will tend to bias the acceleration to
align parallel to the sloppy directions, just as it does for the
velocity. It is much more common for the acceleration to point
in the direction opposite to the velocity, as for the summing
exponentials model in Fig. 28(a).

036701-29

TRANSTRUM, MACHTA, AND SETHNA PHYSICAL REVIEW E 83, 036701 (2011)

FIG. 27. (Color online) Geodesic acceleration in the Rosenbrock
Valley. The Gauss-Newton direction, or velocity vector, gives the
correct direction that one should move to approach the best fit
while navigating a canyon. However, that direction quickly rotates,
requiring an algorithm to take very small steps to avoid uphill moves.
The geodesic acceleration indicates the direction in which the velocity
rotates. The geodesic acceleration determines a parabolic trajectory
that can efficiently navigate the valley without running up the wall.
The linear trajectory quickly runs up the side of the canyon wall.

Although an acceleration that is antiparallel to the velocity
may seem worthless, it is actually telling us something useful:
our proposed step was too large. As we regulate the velocity
by increasing the Levenberg-Marquardt parameter, we also
regulate the acceleration. Once our velocity term is comparable
to the distance over which the canyon begins to curve, the
acceleration indicates into which direction the canyon is
curving, as in Fig. 28(b).

If the damping term is too small, the acceleration points in
the opposite direction to, and is much larger than, the velo-
city. This scenario is dangerous because it may cause the
algorithm to move in precisely the opposite direction to the
Gauss-Newton direction, causing parameter evaporation. To

fix this problem, we add another criterion for an acceptable
step. We want the contribution from the acceleration to be
smaller than the contribution from the velocity; therefore,
we typically reject proposed steps, increasing the Levenberg-
Marquardt parameter until√∑

(aμ)2√∑
(vμ)2

< α, (45)

where α is a chosen parameter, typically unity, although for
some problems a smaller value is required.

The acceleration is likely to be most useful when the canyon
is very narrow. As the canyon narrows, the allowed steps
become smaller. In essence, the narrowness of the canyon
is determining to what accuracy we are solving the geodesic
equation. If the canyon requires a very high accuracy, then
a second-order algorithm is likely to converge much more
quickly than a first-order algorithm. We will see this explicitly
in the next section when we compare algorithms.

We have argued repeatedly that for sloppy models whose
parameter-effect curvature is dominant, a geodesic is the path
that an algorithm should follow. One could object to this
assertion on the grounds that, apart from choosing the initial
direction of the geodesic to be the Gauss-Newton direction,
there is no reference to the cost gradient in the geodesic
equation. If a manifold is curved, then the geodesic will not
lead directly to the best fit. In particular, the acceleration is
independent of the data.

Instead of a geodesic, one could argue that the path that one
should follow is given by the first-order differential equation

vμ = −gμν∇νC√
gαβ∇αC ∇βC

, (46)

where we have introduced the denominator to preserve the
norm of the tangent vector. Each Levenberg-Marquardt step
chooses a direction in the Gauss-Newton direction on the
model graph, which seems to be better described by Eq. (46)

FIG. 28. (Color online) (a) Deacceleration when overstepping. Typically the velocity vector greatly overestimates the proper step size. (We
have rescaled both velocity and acceleration to fit in the figure.) Algebraically, this is due to the factor of the inverse metric in the velocity, which
has very large eigenvalues. The acceleration compensates for this by pointing antiparallel to the velocity. However, the acceleration vector is also
very large, as it is multiplied twice by the velocity vector and once by the inverse metric. To make effective use of the acceleration, it is necessary
to regularize the metric by including a damping term. (b) Acceleration indicating the direction of the canyon. As the Levenberg-Marquardt
parameter is raised, the velocity vector shortens and rotates from the natural gradient into the downhill direction. The acceleration vector
also shortens, although much more rapidly, and also rotates. In this two-dimensional cross section, although the two velocity vectors rotate in
opposite directions, the accelerations both rotate to indicate the direction that the canyon is turning. By considering the path that one would
optimally like to take (along the canyon), it is clear that the acceleration vector is properly indicating the correction to the desired trajectory.

036701-30

GEOMETRY OF NONLINEAR LEAST SQUARES WITH . . . PHYSICAL REVIEW E 83, 036701 (2011)

than by the geodesic equation, Eq. (24). In fact, Eq. (46) has
been proposed as a neural network training algorithm by Amari
et al. [42].

The second-order differential equation corresponding to
Eq. (46), which can be found by taking the second derivative
of the parameters, is a very complicated expression. However,
if one then applies the approximation that all nonlinearities are
parameter-effect curvature, the resulting differential equation
is exactly the geodesic equation. By comparing step sizes with
inverse curvatures in Fig. 23, we can see that over a distance
of several steps, the approximation that all nonlinearities are
parameter-effect curvature should be very good. In such a case,
the deviation of Eq. (46) from Eq. (24) will not be significant
over a few steps.

While the tensor analysis behind this result is long and
tedious, the geometric meaning is simple and intuitive: if steps
are much smaller than the extrinsic curvature on the surface,
then the vector (in data space) corresponding to the Gauss-
Newton direction can parallel-transport itself to find the Gauss-
Newton direction at the next point. That is to say, the direction
of the tangent vector of a geodesic does not change if the
manifold is extrinsically flat.

Including second derivative information in an algorithm
is not new. Newton’s method, for example, replaces the
approximate Hessian of the Gauss-Newton method in Eq. (5)
with the full Hessian in Eq. (4). Many standard algorithms
seek to efficiently find the actual Hessian, either by calculating
it directly or by estimation [34,61]. One such algorithm,
which we use for comparison in the next section, is a quasi-
Newton method of Broyden, Fletcher, Goldfarb, and Shannon
(BFGS) [62], which estimates the second derivative from an
accumulation of Jacobian evaluations at each step.

In contrast to these Newton-like algorithms, the geodesic
acceleration is not an attempt to better approximate the
Hessian. The results of Sec. VI suggest that the approxi-
mate Hessian is very good. Instead of correcting the error in the
size and direction of the ellipses around the best fit, it is more
productive to account for how they are bent by nonlinearities,
which is the role of the geodesic acceleration. The geodesic
acceleration is a cubic correction to the Levenberg-Marquardt
step.

There are certainly problems for which a quasi-Newton
algorithm will make important corrections to the approximate
Hessian. However, we have argued that sloppy models repre-
sent a large class of problems for which the Newton correction
is negligible compared to that of the geodesic acceleration.
We demonstrate this numerically with several examples in the
next section.

E. Algorithm comparisons

To demonstrate the effectiveness of an algorithm that uses
delayed gratification and the geodesic acceleration, we apply
it to a few test problems that highlight the typical difficulties
associated with fitting by least squares.

First, consider a generalized Rosenbrock function,

C = 1

2

[
θ2

1 + A2

(
θ2 − θn

1

n

)2]
,

FIG. 29. Generalized Rosenbrock results for Levenberg-
Marquardt variants. If the canyon that an algorithm must follow is very
narrow (measured by the condition number of the metric at the best
fit) or turns sharply, the algorithm will require more steps to arrive at
the best fit. Those that use the geodesic acceleration term converge
more quickly as the canyon narrows. As the parameter-effect curva-
ture increases, the canyon becomes more curved and the problem is
more difficult. Notice that changing the canyon’s path from a cubic
function in (a) to a quartic function in (b) slowed the convergence rate
by a factor of 5. We have omitted the quadratic path since including
the acceleration allows the algorithm to find the best fit in one step,
regardless of how narrow the canyon becomes.

where A and n are not optimizable parameters but set to
control the difficulty of the problem. This problem has a global
minimum of zero cost at the origin, with a canyon following
the polynomial path θn

1 /n whose width is determined by A. To
compare algorithms, we draw initial points from a Gaussian
distribution centered at (1,1/n) with standard deviation of
unity, and compare the average number of Jacobian evaluations
that an algorithm requires to decrease the cost to 10−4. The
results for the cubic and quartic versions of the problem
are given in Fig. 29 for several versions of the Levenberg-
Marquardt algorithm.

We next consider a summing exponential problem; a
summary of these results can be found in [22]. Here we expand
it to include the delayed gratification algorithm outlined above
in Sec. VIII C.

A surprising result from Table II is that including the
geodesic acceleration not only improves the speed of con-
vergence, but improves the likelihood of convergence, that is,
the algorithm is less likely to evaporate parameters. This is a
consequence of the modified acceptance criterion in Eq. (45).
As an algorithm evaporates parameters, it approaches a
singular point of the metric on the model manifold, causing the
velocity vector in parameter space to diverge. The acceleration,
however, also diverges, but much more rapidly than the

036701-31

TRANSTRUM, MACHTA, AND SETHNA PHYSICAL REVIEW E 83, 036701 (2011)

velocity. By requiring the acceleration term to be smaller than
the velocity, the algorithm is much more adept at avoiding
boundaries. Geodesic acceleration, therefore, helps to improve
both the initial search for the canyon from the plateau as well
as the subsequent race along the canyon to the best fit.

Finally, we emphasize that the purpose of this section
was to demonstrate that delayed gratification and geodesic
acceleration are potentially helpful modifications to existing
algorithms. The results presented in this section do not
constitute a rigorous comparison, as such a study would
require a much broader sampling of test problems. Instead,
we have argued that ideas from differential geometry can be
helpful to speed up the fitting process if existing algorithms are
sluggish. We are in the process of performing a more extensive
comparison, the results of which will appear shortly [54].

IX. CONCLUSIONS

A goal of this paper has been to use a geometric perspective
to study nonlinear least-squares models, deriving the relevant
metric, connection, and measures of curvature, and to show
that geometry provides useful insights into the difficulties
associated with optimization.

We have presented the model manifold and noted that
it typically has boundaries, which explain the phenomenon
of parameter evaporation in the optimization process. As
algorithms run into the manifold’s boundaries, parameters are
pushed to infinite or otherwise unphysical values. For sloppy
models, the manifold is bounded by a hierarchy of progres-
sively narrow boundaries, corresponding to the less responsive
direction of parameter space. The model behavior spans a
hyper-ribbon in data space. This phenomenon of geometric
sloppiness is one of the key reasons that sloppy models are
difficult to optimize. We provide a theoretical caricature of
the model manifold characterizing their geometric series of
widths, extrinsic curvatures, and parameter-effect curvatures.
Using this caricature, we estimate the number of evaporated
parameters one might expect to find at the best fit for a given
uncertainty in the data.

The model graph removes the boundaries and helps to
keep the parameters at reasonable levels. This is not always
sufficient, however, and we suggest that in many cases, the
addition of thoughtful priors to the cost function can be a
significant help to algorithms.

The second difficulty in optimizing sloppy models is that the
model parameters are far removed from the model behavior.
Because most sloppy models are dominated by parameter-
effect curvature, if one could reparametrize the model with
extended geodesic coordinates, the long narrow canyons would
be transformed to one isotropic quadratic basin. Optimizing a
problem in extended geodesic coordinates would be a trivial
task.

Inspired by the motion of geodesics in the curved valleys,
we developed the delayed gratification update scheme for
the traditional Levenberg-Marquardt algorithm and further
suggest the addition of a geodesic acceleration term. We
have seen that when algorithms must follow long narrow
canyons, these can give significant improvement to the
optimization algorithm. We believe that the relative cheap
computational cost of adding the geodesic acceleration to

the Levenberg-Marquardt step gives it the potential to be a
robust, general-purpose optimization algorithm, particularly
for high-dimensional problems. It is necessary to explore the
behavior of geodesic acceleration on a larger problem set to
justify this conjecture [54].

ACKNOWLEDGMENTS

We would like to thank Saul Teukolsky, Eric Siggia, John
Guckenheimer, Cyrus Umrigar, Peter Nightingale, Stefanos
Papanikolou, Bryan Daniels, and Yoav Kallus for helpful dis-
cussions. We thank Dave Schneider for suggesting information
geometry to us, and we acknowledge support from NSF Grants
No. DMR-0705167 and No. DMR-1005479.

APPENDIX A: INFORMATION GEOMETRY

The Fisher information matrix, or simply Fisher infor-
mation, I , is a measure of the information contained in a
probability distribution, p. Let ξ be the random variable whose
distribution is described by p, and further assume that p

depends on other parameters θ that are not random. This leads
us to write

p = p(ξ ; θ),

with the log likelihood function denoted by l:

l = log p.

The information matrix is defined to be the expectation value
of the second derivatives of l,

Iμν =
〈
− ∂2l

∂θμ∂θν

〉
= −

∫
dξ p(ξ,θ)

∂2l

∂θμ∂θν
. (A1)

It can be shown that the Fisher information can be written
entirely in terms of first derivatives:

Iμν =
〈

∂l

∂θμ

∂l

∂θν

〉
=

∫
dξ p(ξ,θ)

∂l

∂θμ

∂l

∂θν
. (A2)

Equation (A2) makes it clear that the Fisher information
is a symmetric, positive-definite matrix that transforms like a
covariant rank-2 tensor. This means that it has all the properties
of a metric in differential geometry. Information geometry
considers the manifolds whose metric is the Fisher information
matrix corresponding to various probability distributions.
Under such an interpretation, the Fisher information matrix
is known as the Fisher information metric.

As we saw in Sec. I, least-squares problems arise by
assuming a Gaussian distribution for the deviations from the
model. Under this assumption, the cost function is the negative
of the log likelihood (ignoring an irrelevant constant). Using
these facts, it is straightforward to apply Eq. (A1) or Eq. (A2)
to calculate the information metric for least-squares problems.
From Eq. (A1), we get

gμν =
〈

∂2C

∂θμ∂θν

〉
=

∑
m

〈∂μrm∂νrm + rm∂μ∂νrm〉, (A3)

where we have replaced I by g to indicate that we are now
interpreting it as a metric.

Equation (A3), being an expectation value, is really an
integral over the random variable (i.e., the residuals) weighted

036701-32

GEOMETRY OF NONLINEAR LEAST SQUARES WITH . . . PHYSICAL REVIEW E 83, 036701 (2011)

by the probability. However, since the integral is Gaussian, it
can be evaluated easily using Wick’s theorem (remembering
that the residuals have unit variance). The only subtlety is how
to handle the derivatives of the residuals. Inspecting Eq. (1)
reveals that the derivatives of the residuals have no random
element, and can therefore be treated as constant. The net
result is

gμν =
∑
m

∂μrm∂νrm = (J T J)μν, (A4)

since 〈rm〉 = 0. Note that we have used the Jacobian matrix,
Jmμ = ∂μrm, in the final expression.

We arrive at the same result using Eq. (A2), albeit using
different properties of the distribution:

gμν =
∑
m,n

〈rm∂μrmrn∂μrn〉.

Now we note that the residuals are independently distributed,
〈rmrn〉 = δmn, which immediately gives Eq. (A4), the same
metric found in Sec. I.

There is a class of connections consistent with the
Fisher metric, known as the α connections because they are
parametrized by a real number, α [12]. They are given by the
formula

(α)
μν,ε =

〈
∂εl∂μ∂νl +

(
1 − α

2

)
∂εl∂μl∂νl

〉
.

This expression is straightforward to evaluate. The result is
independent of α,

ε
μν = gεκ

∑
m

∂κrm∂μ∂νrm.

It has been shown elsewhere that the connection corresponding
to α = 0 is in fact the Riemann connection. It is interesting to
note that all the α connections, for the case of the nonlinear
least-squares problem, are the Riemann connection.

These results are of course valid only for a cost function that
is a sum of squares. For example, one might wish to minimize

C =
∑
m

|rm|p, (A5)

which is naturally interpreted as the pth power of the Lp norm
in data space. The case of p = 1 is used in “robust estimation,”
while “minimax” fits correspond to the case of p = ∞ [34].
Note that under a general Lp norm, data space does not have a
metric tensor as it has no natural inner product consistent with
the norm.

Consider a cost function that is a differentiable function of
the residuals, but is otherwise arbitrary. In this case, the metric
becomes

gμν = 〈∂μC∂νC〉,
where

∂μC = Jmμ

∂C

∂rm

.

As we argue above, the Jacobian matrix has no stochastic
element and may be factored from the expectation value, giving

gμν = JmμGmnJnν,

where we have introduced

Gmn ∝ �d�r e−C ∂C

∂rm

∂C

∂rn

as the metric of the space in which the model manifold is
now embedded. The proportionality constant is determined
by normalizing the distribution of the residuals. Although the
metric of the embedding space is not necessarily the identity
matrix, it is constant, which implies that the embedding space
is generally flat. In a practical sense, the transition from least
squares to an arbitrary cost function merely requires replacing
the metric J T J → J T GJ ; however, the distinction that the
embedding space does not have the same norm as data space
is important.

For the case of the cost function in Eq. (A5), corresponding
to the Lp norm, Gmn ∝ δmn, so the metric of the model
manifold is the same as for least squares, g = J T J . However,
unless p = 2, the distance between nearby points on the
model manifold is proportional to the Euclidean distance, not
the Lp norm distance natural to data space. For the cases
p = 1 and p = ∞, the cost contours in geodesic coordinates
(circular for p = 2) become squares. A Newton-like method,
such as Levenberg-Marquardt, would no longer take the most
direct path to the best fit in geodesic coordinates and would
additionally have no sense of how far away the best fit would
lie. As a consequence, many of the results of this work are
specific to quadratic costs and it is unclear how well the
methods would generalize to more arbitrary functions.

The field of information geometry is summarized nicely in
several books [12,13].

APPENDIX B: ALGORITHMS

Since we are optimizing functions with the form of sums
of squares, we are primarily interested in algorithms that
specialize in this form, specifically variants of the Levenberg-
Marquardt algorithm. The standard implementation of the
Levenberg-Marquardt algorithm involves a trust region formu-
lation. A FORTRAN implementation, which we use, is provided
by MINPACK [64].

Algorithm 1 Traditional Levenberg-Marquardt algorithm as
described in [34,43,44]

1. Initialize values for the parameters, x, the Levenberg-Marquardt
parameter λ, as well as λup and λdown to be used to adjust the
damping term. Evaluate the residuals r and the Jacobian J at the
initial parameter guess.
2. Calculate the metric, g = J T J + λI , and the cost gradient,
∇C = J T r , C = 1

2 r2.
3. Evaluate the new residuals rnew at the point given by
xnew = x − g−1∇C, and calculate the cost at the new point,
Cnew = 1

2 r2
new.

4. If Cnew < C, accept the step, x = xnew, and set r = rnew and
λ = λ/λdown. Otherwise, reject the step, keep the old parameter
guess x and the old residuals r , and adjust λ = λ × λup.
5. Check for convergence. If the method has converged, return x as
the best-fit parameters. If the method has not yet converged but the
step was accepted, evaluate the Jacobian J at the new parameter
values. Go to step 2.

036701-33

TRANSTRUM, MACHTA, AND SETHNA PHYSICAL REVIEW E 83, 036701 (2011)

Algorithm 2 Geodesic acceleration in the traditional
Levenberg-Marquardt algorithm

1. Initialize values for the parameters, x, the Levenberg-Marquardt
parameter λ, as well as λup and λdown to be used to adjust the
damping term, and α to control the acceleration:velocity ratio.
Evaluate the residuals r and the Jacobian J at the initial parameter
guess.
2. Calculate the metric, g = J T J + λI , and the cost gradient,
∇C = J T r , C = 1

2 r2.
3. Calculate the velocity, v = −g−1∇C, and the geodesic
acceleration of the residuals in the direction of the velocity,
a = −g−1J T (vμvν∂μ∂νr).
4. Evaluate the new residuals rnew at the point given by
xnew = x + v + 1

2 a, and calculate the cost at the new point,
Cnew = 1

2 r2
new.

5. If Cnew < C and |a|/|v| < α, accept the step, x = xnew, and set
r = rnew and λ = λ/λdown. Otherwise, reject the step, keep the old
parameter guess x and the old residuals r , and adjust λ = λ × λup.
6. Check for convergence. If the method has converged, return x as
the best-fit parameters. If the method has not yet converged but the
step was accepted, evaluate the Jacobian J at the new parameter
values. Go to step 2.

The traditional formulation of Levenberg-Marquardt, how-
ever, does not employ a trust region, but adjusts the Levenberg-
Marquardt term based on whether the cost has increased
or decreased after a given step. An implementation of this
algorithm is described in Ref. [34] and summarized in
Algorithm 1. Typical values of λup and λdown are 10. We use
this formulation as the basis for our modifications.

The delayed gratification version of Levenberg-Marquardt
that we describe in Sec. VIII C modifies the traditional
Levenberg-Marquardt algorithm to raise and lower the
Levenberg-Marquardt term by differing amounts. The goal

is to accept a step with the smallest value of the damping
term that will produce a downhill step. This can typically be
accomplished by choosing λup = 2 and λdown = 10.

The geodesic acceleration algorithm can be added to any
variant of Levenberg-Marquardt. We explicitly add it to the
traditional version and the delayed gratification version, as
described in Algorithm 2. We do this by calculating the
geodesic acceleration on the model graph at each iteration. If
the step raises the cost or if the acceleration is larger than the
velocity, then we reduce the Levenberg-Marquardt term and
reject the step by default. If the step moves downhill and the
velocity is larger than the acceleration, then we accept the step.
For accepted steps, we raise the Levenberg-Marquardt term;
otherwise, we decrease the Levenberg-Marquardt term. In our
experience, the algorithm described in Algorithm 2 is robust
enough for most applications; however, we do not consider
it to be a polished algorithm. We will present elsewhere
an algorithm utilizing geodesic acceleration that is further
optimized and that we will make available as a FORTRAN

routine [54].
In addition to the variations of the Levenberg-Marquardt

algorithm, we also compare algorithms for minimization of
arbitrary functions not necessarily of the least-squares form.
We take several such algorithms from the SCIPY optimization
package [63]. These fall into two categories: those that
make use of gradient information and those that do not.
Algorithms utilizing gradient information include a quasi-
Newton of BFGS, described in [62]. We also employ a
limited memory variation (L-BFGS-B) described in [65] and a
conjugate gradient (CG) method of Polak and Ribiere, also
described in [62]. We also explored the downhill simplex
algorithm of Nelder and Mead and a modification of Pow-
ells’ method [63], neither of which make use of gradient
information directly, and were not competitive with other
algorithms.

[1] K. S. Brown and J. P. Sethna, Phys. Rev. E 68, 021904
(2003).

[2] K. Brown, C. Hill, G. Calero, C. Myers, K. Lee, J. Sethna, and
R. Cerione, Phys. Biol. 1, 184 (2004).

[3] F. Casey, D. Baird, Q. Feng, R. Gutenkunst, J. Waterfall,
C. Myers, K. Brown, R. Cerione, and J. Sethna, Syst. Biol.
IET 1, 190 (2007).

[4] B. Daniels, Y. Chen, J. Sethna, R. Gutenkunst, and C. Myers,
Curr. Opin. Biotechnol. 19, 389 (2008).

[5] R. Gutenkunst, F. Casey, J. Waterfall, C. Myers, and J. Sethna,
Ann. N.Y. Acad. Sci. 1115, 203 (2007).

[6] R. Gutenkunst, J. Waterfall, F. Casey, K. Brown, C. Myers, and
J. Sethna, PLoS Comput. Biol. 3, e189 (2007).

[7] R. Gutenkunst, Ph.D. thesis, Cornell University, 2008.
[8] J. J. Waterfall, F. P. Casey, R. N. Gutenkunst, K. S. Brown,

C. R. Myers, P. W. Brouwer, V. Elser, and J. P. Sethna, Phys.
Rev. Lett. 97, 150601 (2006).

[9] H. Jeffreys, Theory of Probability (Oxford University Press,
New York, NY, 1998).

[10] C. Rao, Bull. Calcutta Math. Soc. 37, 81 (1945).

[11] C. Rao, Sankhya 9, 246 (1949).
[12] S. Amari and H. Nagaoka, Methods of Information Geometry

(American Mathematical Society, Providence, Rhode Island,
2007).

[13] M. Murray and J. Rice, Differential Geometry and Statistics
(Chapman & Hall, New York, 1993).

[14] E. Beale, J. R. Stat. Soc. 22, 41 (1960).
[15] D. Bates and D. Watts, J. R. Stat. Soc. 42, 1 (1980).
[16] D. Bates and D. Watts, Ann. Stat. 9, 1152 (1981).
[17] D. Bates, D. Hamilton, and D. Watts, Commun. Statist.-Simul.

Comput. 12, 469 (1983).
[18] D. Bates and D. Watts, Nonlinear Regression Analysis and Its

Applications (Wiley, New York, NY, 1988).
[19] R. Cook and J. Witmer, Am. Stat. Assoc. 80, 872 (1985).
[20] R. Cook and M. Goldberg, Ann. Stat. 14, 1399 (1986).
[21] G. Clarke, J. Am. Stat. Assoc. 82, 844 (1987).
[22] M. K. Transtrum, B. B. Machta, and J. P. Sethna, Phys. Rev.

Lett. 104, 060201 (2010).
[23] See supplemental material at [http://link.aps.org/supplemental/

10.1103/PhysRevE.83.036701] for an animation of this figure.

036701-34

http://dx.doi.org/10.1103/PhysRevE.68.021904
http://dx.doi.org/10.1103/PhysRevE.68.021904
http://dx.doi.org/10.1088/1478-3967/1/3/006
http://dx.doi.org/10.1049/iet-syb:20060065
http://dx.doi.org/10.1049/iet-syb:20060065
http://dx.doi.org/10.1016/j.copbio.2008.06.008
http://dx.doi.org/10.1196/annals.1407.003
http://dx.doi.org/10.1371/journal.pcbi.0030189
http://dx.doi.org/10.1103/PhysRevLett.97.150601
http://dx.doi.org/10.1103/PhysRevLett.97.150601
http://dx.doi.org/10.1214/aos/1176345633
http://dx.doi.org/10.1080/03610918308812333
http://dx.doi.org/10.1080/03610918308812333
http://dx.doi.org/10.2307/2288546
http://dx.doi.org/10.1214/aos/1176350166
http://dx.doi.org/10.2307/2288795
http://dx.doi.org/10.1103/PhysRevLett.104.060201
http://dx.doi.org/10.1103/PhysRevLett.104.060201
http://link.aps.org/supplemental/10.1103/PhysRevE.83.036701
http://link.aps.org/supplemental/10.1103/PhysRevE.83.036701

GEOMETRY OF NONLINEAR LEAST SQUARES WITH . . . PHYSICAL REVIEW E 83, 036701 (2011)

[24] O. Barndorff-Nielsen, D. Cox, and N. Reid, Int. Stat. Rev. 54,
83 (1986).

[25] D. Gabay, J. Optim. Theory Appl. 37, 177 (1982).
[26] R. Mahony, Ph.D. thesis, Australian National University, 1994.
[27] R. Mahony and J. Manton, J. Global Optim. 23, 309 (2002).
[28] R. Peeters, On a riemannian version of the levenberg-marquardt

algorithm: Serie Research Memoranda 0011, VU University
Amsterdam, Faculty of Economics, Business Administration
and Econometrics (1993).

[29] S. Smith, Ph.D. thesis, Harvard University, Cambridge, MA,
1993.

[30] S. Smith, Hamiltonian Gradient Flows: Algorithms Control 3,
113 (1994).

[31] C. Udriste, Convex Functions and Optimization Methods on
Riemannian Manifolds (Kluwer, Dordrecht, 1994).

[32] Y. Yang, J. Optim. Theory Appl. 132, 245 (2007).
[33] P. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms

on Matrix Manifolds (Princeton University Press, Princeton, NJ,
2008).

[34] W. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes: The Art of Scientific Computing (Cambridge
University Press, New York, NY, 2007).

[35] C. Misner, K. Thorne, and J. Wheeler, Gravitation (Freeman,
San Francisco, 1973).

[36] M. Spivak, Differential Geometry (Publish or Perish, Berkeley,
CA, 1979).

[37] L. Eisenhart, Riemannian Geometry (Princeton University Press,
Princeton, NJ, 1997).

[38] T. Ivancevic, Applied Differential Geometry: A Modern Intro-
duction (World Scientific, Singapore, 2007).

[39] J. Stoer, R. Bulirsch, W. Gautschi, and C. Witzgall, Introduction
to Numerical Analysis (Springer Verlag, Berlin, 2002).

[40] J. Hertz, A. Krogh, and R. Palmer, Introduction to the Theory
of Neural Computation (Westview, Redwood City, California,
1991).

[41] S. L. Frederiksen, K. W. Jacobsen, K. S. Brown, and J. P. Sethna,
Phys. Rev. Lett. 93, 165501 (2004).

[42] S. Amari, H. Park, and T. Ozeki, Neural Comput. 18, 1007
(2006).

[43] K. Levenberg, Q. Appl. Math. 2, 164 (1944).
[44] D. Marquardt, J. Soc. Ind. Appl. Math. 11, 431 (1963).
[45] J. More, Lect. Notes Math. 630, 105 (1977).
[46] R. Kass, J. R. Stat. Soc. Ser. B (Methodol.) 46, 86 (1984).
[47] D. Hamilton, D. Watts, and D. Bates, Ann. Stat. 10, 393

(1982).
[48] J. Donaldson and R. Schnabel, Technometrics 29, 67 (1987).
[49] B. Wei, Aust. New Zeal. J. Stat. 36, 327 (1994).
[50] L. Haines, T. O. Brien, and G. Clarke, Stat. Sin. 14, 547 (2004).
[51] E. Demidenko, Comput. Stat. Data Anal. 51, 1739 (2006).
[52] D. Hilbert and S. Cohn-Vossen, Geometry and the Imagination

(American Mathematical Society, New York, NY, 1999).
[53] H. Hartley, Technometrics 3, 269 (1961).
[54] M. K. Transtrum, B. B. Machta, C. Umrigar, P. Nightingale, and

J. P. Sethna (unpublished).
[55] A. Bakushinskii, Comput. Math. Math. Phys. 32, 1353 (1992).
[56] M. Lampton, Comput. Phys. 11, 110 (1997).
[57] D. Luenberger, Manag. Sci. 18, 620 (1972).
[58] A. Pázman, J. Stat. Planning Infer. 103, 401 (2002).
[59] C. Igel, M. Toussaint, and W. Weishui, Trends and Applications

in Constructive Approximation, International Series of Numer-
ical Mathematics, Vol. 151 (Birkhauser, Basel, Switzerland,
2005).

[60] Y. Nishimori and S. Akaho, Neurocomputing 67, 106(2005).
[61] P. Gill and W. Murray, SIAM J. Numer. Anal. 15 977 (1978).
[62] J. Nocedal and S. Wright, Numerical Optimization (Springer,

New York, NY, 1999).
[63] E. Jones, T. Oliphant, and P. Peterson et al., [http://www.scipy.

org] (2001).
[64] J. Moré, B. Garbow, and K. Hillstrom, User Guide for

MINPACK-1 (Argonne National Laboratory, Argonne, Illinois,
1980).

[65] R. Byrd, P. Lu, J. Nocedal, and C. Zhu, SIAM J. Sci. Comput.
16, 1190 (1995).

[66] K. S. Brown, Ph.D. thesis, Cornell University, 2003.
[67] G. Golub and V. Pereyra, SIAM J. Numer. Anal. 10, 413

(1973).
[68] L. Kaufman, BIT Numer. Math. 15, 49 (1975).
[69] G. Golub and V. Pereyra, Inverse Probl. 19, R1 (2003).

036701-35

http://dx.doi.org/10.2307/1403260
http://dx.doi.org/10.2307/1403260
http://dx.doi.org/10.1007/BF00934767
http://dx.doi.org/10.1023/A:1016586831090
http://dx.doi.org/10.1007/s10957-006-9081-0
http://dx.doi.org/10.1103/PhysRevLett.93.165501
http://dx.doi.org/10.1162/neco.2006.18.5.1007
http://dx.doi.org/10.1162/neco.2006.18.5.1007
http://dx.doi.org/10.1137/0111030
http://dx.doi.org/10.1007/BFb0067700
http://dx.doi.org/10.1214/aos/1176345780
http://dx.doi.org/10.1214/aos/1176345780
http://dx.doi.org/10.2307/1269884
http://dx.doi.org/10.1111/j.1467-842X.1994.tb00885.x
http://dx.doi.org/10.1016/j.csda.2006.06.015
http://dx.doi.org/10.2307/1266117
http://dx.doi.org/10.1063/1.168600
http://dx.doi.org/10.1287/mnsc.18.11.620
http://dx.doi.org/10.1016/S0378-3758(01)00234-8
http://dx.doi.org/10.1016/j.neucom.2004.11.035
http://dx.doi.org/10.1137/0715063
http://www.scipy.org
http://www.scipy.org
http://dx.doi.org/10.1137/0916069
http://dx.doi.org/10.1137/0916069
http://dx.doi.org/10.1137/0710036
http://dx.doi.org/10.1137/0710036
http://dx.doi.org/10.1007/BF01932995
http://dx.doi.org/10.1088/0266-5611/19/2/201

