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Fitting model parameters to experimental data is a common yet often challenging task, especially if the

model contains many parameters. Typically, algorithms get lost in regions of parameter space in which the

model is unresponsive to changes in parameters, and one is left to make adjustments by hand. We explain

this difficulty by interpreting the fitting process as a generalized interpolation procedure. By considering

the manifold of all model predictions in data space, we find that cross sections have a hierarchy of widths

and are typically very narrow. Algorithms become stuck as they move near the boundaries. We observe

that the model manifold, in addition to being tightly bounded, has low extrinsic curvature, leading to the

use of geodesics in the fitting process. We improve the convergence of the Levenberg-Marquardt

algorithm by adding geodesic acceleration to the usual step.
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The estimation of model parameters from experimental
data is astonishingly challenging. A nonlinear model with
tens of parameters, fit (say) by least squares to experimen-
tal data, often demands weeks of human guidance to find a
good starting point; even then, the parameters cannot usu-
ally be extracted from the data. Both general minimization
algorithms and algorithms like the Levenberg-Marquardt
algorithm that are designed for least-squares fits routinely
get lost in parameter space. This becomes a serious ob-
stacle to progress when one is unsure of the validity of the
model, e.g., in systems biology where one wants to auto-
matically generate and explore a variety of alternative
models.

Here we use differential geometry to explain why fits are
so hard. We first explore the structure of the model mani-
foldM, the manifold of predictions embedded in the space
of data D, and find that it is typically bounded, with cross
sections having a hierarchy of widths, so that the overall
structure is similar to that of a long, thin ribbon. We explain
this hierarchy by viewing the fitting process as a general-
ized interpolation procedure with few effective model de-
grees of freedom. We interpret the difficulty in fitting to be
due to algorithms getting stuck near the boundary of M,
where the model is unresponsive to variations in the pa-
rameters. We then discuss how geometry motivates algo-
rithms to alleviate this difficulty.

A typical nonlinear least-squares problem fits a model
Ymð�Þ with N parameters � to M experimental data points
ym. We define the model manifold M as the parametrized

N-dimensional surface ~Yð�Þ embedded in Euclidean data
space, D ¼ RM. The best fit to the experiment is given by
the point onMwith Euclidean distance closest to the data,

minimizing the cost C ¼ 1
2 ð ~Yð�Þ � ~yÞ2. The Euclidean

metric of data space [with distance between models given

by the change in residuals, ~r ¼ ~Yð�Þ � ~y] induces a metric

on the manifold, g�� ¼ @� ~Y � @� ~Y ¼ ðJTJÞ��, where

Jm� ¼ @
@��

Ym; g�� is known as the Fisher information

matrix. As an example, the model Yðt; �Þ ¼ f�ðtÞ ¼
e��1t þ e��2t sampled at three time points is given in
Fig. 1. The model manifold has been extensively studied
by the information geometry statistics community [1], but
they focus on the intrinsic curvature; as the cost is the
distance in data space, the embedding and its extrinsic
curvature are crucial to finding best fits [2,3].
As seen in Figs. 2 and 3, this model manifold can take

the form of a hyper-ribbon, with thinnest direction 4 orders
of magnitude smaller than the long axes. To understand this
observed hierarchy, consider the special case of analytic
models, fðt; �Þ, of a single independent variable (time)
where the data points are Ym ¼ fðtmÞ. Let R be the typical
time scale over which the model behavior changes, so that

the nth term of the Taylor series fðnÞðtÞ=n! & R�n (roughly
the radius of convergence). If the function is sampled at n
time point (t1; t2; . . . ; tn) within this time scale, the Taylor
series may be approximated by the unique polynomial of
degree n� 1, Pn�1ðtÞ passing through these points. At a
new point, t0, the discrepancy between the interpolation
and the function is given by

fðt0Þ � Pn�1ðt0Þ ¼ !nðt0ÞfðnÞð�Þ=n!; (1)

FIG. 1 (color online). The model manifold for the two-
exponential problem, with yi evaluated at t ¼ 1=3, 1, and 3.
Boundaries exist when �� ¼ 0;1 and when �1 ¼ �2. (The

ribbonlike structure of Fig. 2 emerges only in higher dimen-
sions.)
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where � lies somewhere in the interval containing
t0; t1; . . . ; tn [4]. The polynomial !nðtÞ has roots at each
of the interpolating points!nðtÞ ¼ ðt� t1Þðt� t2Þ � � � ðt�
tnÞ. The possible error of the interpolation function bounds
the allowed range of behavior,�fn, of the model at t0 after
constraining the nearby n data points (i.e., cross sections).

Consider the ratio of successive cross sections, �fnþ1

�fn
¼

ðt� tnþ1Þðnþ 1Þ fnþ1ð�Þ
fnð�0Þ . If n is sufficiently large, then

ðnþ 1Þ fnþ1ð�Þ
fnð�0Þ � 1

R ; therefore, we find that �fnþ1

�fn
� t�tnþ1

R <

1 by the ratio test. Each cross section is thinner than the last

by a roughly constant factor, yielding the observed
hierarchy.
We argue that this hyper-ribbon structure will be shared

with a wide variety of nonlinear, multiparameter models.
Note that the eigenvalues of the metric tensor g�� in Fig. 3

also form a hierarchy, spanning 8 orders of magnitude—
this ‘‘sloppiness’’ has been documented in a number of
other models, including 17 in systems biology [5], insect
flight and variational quantum wave functions [6], inter-
atomic potentials [7], and a model of the next-generation
international linear collider [8]. (Multiparameter models
whose parameters are individually measured by the data,
and on the other extreme models with sensitive, chaotic
dependence on parameters, will likely not fall into this
family.) Most parameters in these models have bounded
effects—they can be set to limiting values (zero, infinity,
etc.) and still have finite model predictions—rates and
Michaelis-Menten coefficients in systems biology,
Jastrow and determinential factors in variational wave
functions, etc. Note that the widths of the model manifold
track nicely with these eigenvalues in Fig. 3 (taking the
square root to match units): moving parameter combina-
tions along eigendirections of the metric by an order of
magnitude (fixed shift in log parameters) exhausts the
range of behavior (width). This tracking suggests that the
ubiquity of sloppy eigenvalue spectra at best fits implies a
ubiquitous hyper-ribbon structure for the model manifold.
Our observation that many models are sloppy, presum-

ably sharing this hyper-ribbon model manifold structure, is
now explained: multiparameter models are a kind of high-
dimensional analytic interpolation scheme, and near de-
generate Hessians result whenever multiple data points
reside within some generalized radius of convergence.
When this is the case, the data points are highly correlated
and the model has few effective degrees of freedom.
Whenever there are many model parameters for each ef-
fective degree of freedom there will be a hierarchy of
widths and the model will be sloppy.
Our geometric interpretation explains a number of ob-

servations about nonlinear models. First, although parame-
ters cannot be reliably extracted by fitting degenerate
models, it is still possible to constrain the outcome of
new experiments [5,9]. Because the fitting process is an
interpolation scheme, only a few stiff parameter combina-
tions need to be tuned to fit most of the data, since only a
few data points constrain the predictions at other times.
The remaining unconstrained parameter combinations con-
trol the interpolated values, which are already restricted by
the analyticity of the model.
Figure 3 also shows that the parameter-effects curvature

[2,3,10] and the geodesic extrinsic curvatures vary over

twice as many decades as the widths and
ffiffiffiffi

�
p

; indeed, their
formulas include a factor of 1=� [11]. Why is the extrinsic
curvature so much smaller? The manifold has zero extrin-
sic curvature if there are equal numbers of parameters as
data points, N ¼ M (where the model manifold is a sub-

FIG. 3 (color online). Geodesic cross-sectional widths of an
eight-dimensional model manifold along the eigendirections of
the metric from some central point, together with the square root
of the eigenvalues (singular values of the Jacobian), the inverse
extrinsic (geodesic) curvature K [24], and the inverse geodesic
parameter-effects curvature KP [2,3,10]. Notice the hierarchy of
these data-space distances—the widths and singular values each
spanning around 4 orders of magnitude and the curvatures
covering 8 orders of magnitude. Note also that the extrinsic
curvatures are 3 orders of magnitude smaller than the parameter-
effects curvature.

FIG. 2 (color online). Top: Two views of the cross section of
the model manifold for an infinite sum of exponentials FA;�ðtÞ ¼
P

nAn expð��ntÞ with An � 0, given by fixing Fð0Þ ¼ 1 and
Fð1Þ ¼ 1=e. Bottom: The range of allowed fits (gray) is strongly
reduced by fixing the output at t ¼ 1=2 to the midpoint of its
range (black).
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volume in the Euclidean data space). We have seen that
most of the data points are interpolations that supply little
new information; the extrinsic curvature will be small
when the effective dimensionality of the embedding space
is not larger than the number of parameters [12].

We use geodesics to construct new polar coordinates
�� ¼ ��ð�Þ on M that generalize Riemann normal coor-
dinates [13]. Since geodesics are nearly straight lines in
data space on M, we find that cost contours in these
coordinates are nearly quadratic and isotropic around the
best fit, as explicitly computed in Fig. 4. Nonlinear models
locally look like linear models with badly chosen parame-
ters, well beyond the harmonic approximation.

Can these nearly straight geodesics inspire algorithms
that lead efficiently to the best fit? Integrating the geodesic
equation with a single Euler step reproduces the Gauss-
Newton step (��� ¼ �g��r�C in our notation), ineffec-
tive due to the large eigenvalues in the inverse metric g��;
even geodesic motion hits the boundaries of M. The
ribbon is nearly flat, but very thin; the geodesics hit the
edges long before finding a good fit.

To improve convergence, we can modify the model
manifold to remove the boundaries. One method of doing
this is to introduce the model graph G, which is the
N-dimensional parametric surface drawn by the model
embedded in data space crossed with parameter space.
Since most boundaries occur at infinite parameter values,
the model graph G ‘‘stretches’’ these boundaries to infinity
in the parameter space portion of the embedding. The
metric for the model graph is an interpolation of the data
space and parameter space metrics, g�� ¼ g0�� þ ��I��,

where �� determines the weight of the two spaces. Notice
that the eigendirections of the metric are the same on both
M and G; however, the eigenvalues on the graph are given
by �G ¼ �M þ ��. Therefore, the degenerate eigendirec-

tions with �M � �� have eigenvalues �G � �� on the

model graph; �� cuts off the small eigenvalues of the
Hessian. The analogy of the Gauss-Newton step on the
model graph is the well-known Levenberg-Marquardt step,
�� ¼ �ðJTJ þ ��IÞ�1rC in our notation [14–16]. By
dynamically adjusting ��, the algorithm can shorten its
step, removing the danger of the degenerate Hessian, while
rotating from the Gauss-Newton direction into the steepest
descents direction. Geometrically we understand the supe-
riority of the Levenberg-Marquardt algorithm to be due to
the lack of boundaries of the model graph.
Inspired by the results in Fig. 4, we further improve the

standard Levenberg-Marquardt algorithm. Interpreting the
Levenberg-Marquardt step as a velocity, v� ¼ �g��r�C,
where g is the metric on the model graph, the geodesic
acceleration (giving the parameter-effects curvature) is
given by a� ¼ �g��@� ~y � @�@	 ~yv�v	, giving a step

��� ¼ v� þ 1
2 a

�. The geodesic acceleration is very cheap

to calculate, requiring only a directional second derivative,
which can be estimated from three (cheap) function evalu-
ations (one or two additional function evaluations) at each
step with no extra (expensive) Jacobians. The geodesic
acceleration serves two purposes. First, it provides an
estimate for the trust region in which the linearization
approximation (from which the Levenberg-Marquardt al-
gorithm is traditionally derived) is valid. At each step, we
adjust � until the acceleration is smaller than the velocity,
which we find is more effective at avoiding model bounda-
ries than either tuning until a downhill step is found [14,16]
or considering the reduction ratio [15]. The second benefit

FIG. 4 (color online). Geodesics can be used to construct polar
coordinates on M (top). In these new geodesic coordinates, the
cost contours are nearly perfect, isotropic circles (bottom).

TABLE I. The results of several algorithms applied to a test
problem of fitting a sum of four exponential terms (varying both
rates and amplitudes) in log parameters (to enforce positivity).
Initial conditions are chosen near a manifold boundary with a
best fit of zero cost near the center of the manifold. Among
successful attempts, we further compare the average number of
Jacobian and function evaluations needed to arrive at the fit.
Success rate indicates an algorithm’s ability to avoid the mani-
fold boundaries (find the canyon from the plateau), while the
number of Jacobian evaluations (NJEV) and number of function
evaluations (NFEV) indicate how efficiently it can follow the
canyon to the best fit. BFGS is a quasi-Newton scalar minimizer
of Broyden, Fletcher, Goldfarb, and Shanno [17,18]. The tradi-
tional [14,16] and trust region [15] implementations of the
Levenberg-Marquardt (LM) algorithm consistently outperform
this and other general optimization routines on least-squares
problems, such as Powell, simplex, and conjugate gradient.
Including the geodesic acceleration on a standard variant of
the Levenberg-Marquardt algorithm dramatically increases the
success rate while decreasing the computation time.

Algorithm Success rate Mean NJEV Mean NFEV

Traditional LMþ accel 65% 258 1494

Traditional LM 33% 2002 4003

Trust region LM 12% 1517 1649

BFGS 8% 5363 5365
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of the acceleration occurs when the algorithm must follow
a long narrow canyon to the best fit. In these scenarios
convergence may be sped up by approximating the path
with a parabola instead of a line. The utility of the geodesic
acceleration is seen in Table I, where the performance of
several algorithms on a test problem is summarized. More
extensive comparisons and further refined algorithms are in
preparation [19].

Just as the special sum of squares form of the cost
function gives an approximate Hessian using only first
derivatives of the residuals, H � JTJ, it has (together
with the low extrinsic curvature) allowed us to approximate
the cubic correction using only a directional second de-
rivative. All other algorithms that seek to improve the
Levenberg-Marquardt algorithm use second derivative in-
formation only to calculate the correction �H�� ¼
~r � @�@� ~r to the Hessian [20–23]. This correction is negli-

gible if the nonlinearities are primarily parameter-effects
curvature; since the unfit data are nearly perpendicular to
the surface of the model manifold while the nonlinearities
are tangent to the model manifold, the dot product van-
ishes. Qualitatively, this means that the approximate
Hessian is very accurate and that the bending of the local
ellipses (due to the third order terms in the cost that we
consider) is the most important correction.

By interpreting the fitting process as a generalized in-
terpolation scheme, we have seen that the difficulties in
fitting are due to the narrow boundaries on the model
manifoldM. These boundaries form a hierarchy of widths
dual to the hierarchy of Hessian eigenvalues characteristic
of nonlinear model fits. Additionally, we both observe and
argue that the model manifold is remarkably flat (low
extrinsic curvature), which leads us to the use of geodesics
in the fitting process. The modified Gauss-Newton and
Levenberg-Marquardt algorithms are understood to be
Euler approximations to the geodesic equation on the
model manifold and model graph, respectively. The geo-
desic acceleration improves convergence of the
Levenberg-Marquardt algorithm by providing a more ac-
curate trust region while reducing computation time. Data
fits are both practically important and theoretically elegant.
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