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ABSTRACT:
The nonlinear evolution of high-amplitude broadband noise is important to the psychoacoustic perception, usually

annoyance, of high-speed jet noise. One method to characterize the nonlinear evolution of such noise is to consider a

characteristic nonlinear waveform distortion length for the signal. A common length scale for this analysis is the

shock formation distance of an initially sinusoidal signal. However, application of this length scale to broadband

noise, even with the amplitude and source frequency replaced with characteristic values, may lead to underestimates

of the overall nonlinear waveform distortion of the noise as indicated by the skewness of the time derivative of the

acoustic pressure (or derivative skewness). This paper provides an alternative length scale derived directly from the

evolution of the derivative skewness of Gaussian noise that may be more appropriate when analyzing the nonlinear

evolution of broadband noise signals. This Gaussian-based length scale is shown to be a useful metric for its relative

consistency and its physical interpretation. Various analytical predictions of the evolution of the derivative skewness

for an ensemble of numerical simulations of noise propagation are used to highlight various aspects of this new

length scale definition. https://doi.org/10.1121/10.0017858

(Received 15 September 2022; revised 21 March 2023; accepted 31 March 2023; published online 13 April 2023)

[Editor: Lixi Huang] Pages: 2262–2270

I. INTRODUCTION

An important application of nonlinear acoustic noise

research is the radiation and propagation of high-amplitude

broadband noise from high-speed jets. Research related to

continuous random noise nonlinearities began in earnest in

the 1970s (Ffowcs Williams, 1974; Pernet and Payne, 1971;

Pestorius and Blackstock, 1974; Webster and Blackstock,

1978) and continued into the 1980s (Crighton and

Bashforth, 1980; Gallagher and McLaughlin, 1981;

McDaniel et al., 1980; Morfey and Howell, 1981; Sakagami

et al., 1982; Watanabe and Urabe, 1981). Early studies par-

ticularly connected to nonlinear jet noise propagation

include those by Blackstock, Ffowcs Williams et al.,
Gallagher and McLaughlin, Morfey and Howell, and

Crighton and Bashforth. Recent years have seen renewed

interest in understanding shock formation in noise radiated

from supersonic jets (Baars et al., 2014; Fi�evet et al., 2016;

Petitjean et al., 2006; Pineau and Bogey, 2021) with direct

application to both aircraft (Brouwer, 2008; Gee et al.,
2016; McInerny et al., 2007; Murray and Lyons, 2016) and

rockets (Gee et al., 2012; McInerny and €Olçmen, 2005).

Some studies (Baars and Tinney, 2014; Gee et al., 2016;

Murray and Lyons, 2016) have sought to connect shock

physical properties to the psychoacoustic phenomenon,

“crackle” (Ffowcs Williams et al., 1975).

Human perception of crackle in jet noise has been

strongly correlated to the skewness of the time derivative of

the acoustic pressure in a signal, or derivative skewness [see

Gee et al. (2018) and references therein]. Skewness is a sta-

tistical metric characterizing the asymmetry of a distribution

and may be written as

Sk X½ � ¼ hX3i
hX2i3=2

; (1)

where X is assumed to be a zero-mean variable (possibly ran-

dom), and h � i is the expected value of the argument.

Furthermore, an increasing derivative skewness is closely asso-

ciated with the wave distortion caused by the nonlinear propa-

gation of high-amplitude waves (Muhlestein and Gee, 2011;

Reichman et al., 2016a; Shepherd et al., 2011), thus, linking

the importance of nonlinearity in such propagation to crackle.

The importance of nonlinearity in a propagating signal

has traditionally been characterized by the ratio of two

length scales, an absorption length and a nonlinear distortion

length, often called the Gol’dberg number (Blackstock

et al., 2008). An ideal nonlinear distortion length would be

much larger than the absorption length, or the Gol’dberg

number would be much less than one, if the effects of non-

linearity on acoustic propagation are negligible. It then fol-

lows from the above paragraph that there should be a

connection between these length scales and the derivative

skewness. However, the standard definitions of these two

length scales were derived under the assumption of an ini-

tially sinusoidal signal (Blackstock et al., 2008), which

means that any connection to the derivative skewness is

only applicable to this non-stochastic signal. On the other

hand, the simplicity of the sinusoidal signal allows somea)Electronic mail: Michael.B.Muhlestein@erdc.dren.mil
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exact solutions to be obtained, which in turn enable physical

interpretations of the length scales.

A number of researchers have sought to extend the

initially-sinusoidal-signal analysis to broadband noise sig-

nals by defining a characteristic frequency and amplitude

for noise and substituting these values directly into the

expressions for the length and absorption scales defined

for sinusoidal signals (Baars et al., 2016; Gurbatov and

Rudenko, 2008; Muhlestein and Gee, 2011). The charac-

teristic amplitude is usually taken to be the standard devia-

tion of the pressure [also known as the root mean square

(rms) amplitude for a zero-mean signal]. The characteris-

tic frequency is more challenging to define and is usually

taken to be either some “peak” or “central” frequency with

little justification for the choice. However, these

approaches are problematic due to the fact that the charac-

ters of sinusoidal and broadband noise distributions are

fundamentally different. For example, the distributions for

a sinusoid and a Gaussian process are plotted together in

Fig. 1. Notice that the distribution for the sinusoid is

bimodal with diverging peaks and finite in extent, while

the distribution for the Gaussian process is unimodal and

is infinite in extent. Since the skewness emphasizes the

outliers of a distribution, it is reasonable to expect the evo-

lution of the derivative skewness to be fundamentally dif-

ferent for initially sinusoidal signals and broadband noise

signals.

In this paper, we take an alternative approach to defin-

ing the nonlinear distortion length (not the full Gol’dberg

number, as an appropriate definition of the absorption length

remains for future work). Rather than attempting to find a

sinusoid that is somehow representative of broadband noise,

we seek to derive a length scale directly from the statistics

of the signals, especially the derivative skewness. This deri-

vation is given in Sec. II. Section III then compares the stan-

dard and statistical length scales to an ensemble of

numerical simulations. Finally, Sec. IV presents a conclud-

ing discussion.

II. THEORETICAL DEVELOPMENT

The statistical skewness of the time derivative of the

acoustic pressure (hereafter just called pressure), or the

derivative skewness, may be obtained as a weighted integra-

tion of the pressure time-derivative probability density func-

tion measured at a distance x from the source, or “temporal

slope density,” and notated as qxð _pÞ, where p is the pressure

and the over-dot denotes the time derivative. Muhlestein

and Gee (2016) found that the evolution of the temporal

slope density may be found exactly for arbitrary signals in

the case of lossless and planar sound propagation before

shock formation using the Earnshaw solution to the Burgers

equation. Since their results are critical to the development

below, a brief summary of their results that are pertinent to

this work is provided. This summary is followed by a care-

ful analysis of the special case of initially Gaussian-

distributed noise before finally deriving the characteristic

nonlinear distortion length.

A. Summary of results from Muhlestein and Gee
(2016)

One way to interpret the Earnshaw solution to the

inviscid Burgers equation (Blackstock et al., 2008) is that

the retarded time of arrival of the individual amplitude

points varies as a function of the source amplitude and

measurement position but that the measured amplitude

remains the same as the source pressure. Thus, each point

of the propagated pressure waveform (retarded time of

arrival and pressure amplitude) depends only on a single

point of the source waveform. An important point is that

the new retarded time of arrival is simply the source time

of arrival plus a correction factor that does not depend on

the source time of arrival. Therefore, the change in the

time of arrival of every point with the same source pressure

amplitude will also be the same. Using these facts, Muhlestein

and Gee were able to calculate the evolution of the pressure

time derivatives and their infinitesimal durations as a function

of propagation distance and then obtain the propagated tempo-

ral slope density as a function of the source temporal slope

density and the propagation distance. The resulting expression,

adapted from Eq. (7) from Muhlestein and Gee (2016), may

be written as

qxð _pÞ ¼ q0

_p

1þ ðb=q0c3
0Þx _p

� �
1

1þ ðb=q0c3
0Þx _p

� �3 ; (2)

where b is the coefficient of nonlinearity, q0 (without

arguments) is the equilibrium mass density, and c0 is the

small-signal sound speed. The ratio b=q0c3
0 is so common

throughout this work, it will be given its own symbol, g,

such that we may write

qxð _pÞ ¼ q0

_p

1þ gx _p

� �
1

1þ gx _p½ �3
: (3)

Note that g has units of [m (Pa/s)]�1.
FIG. 1. (Color online) Probability density distributions for a sinusoid and a

Gaussian process (X) normalized by the standard deviation (rX).
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The skewness of a variable X may be expressed as

Sk X½ � ¼ lð3Þ

lð2Þ
� �3=2

; (4)

where lðnÞ is the nth central moment of the distribution of X.

Assuming X is a zero-mean process (usual for acoustical

phenomena), we may write

lðnÞ ¼
ð1
�1

fnqðfÞ df; (5)

where qðfÞ is the probability density function for X. Thus, in

principle, the derivative skewness may be calculated by

using _p for X and using qxð _pÞ from Eq. (3). The central

moments for qxð _pÞ may not be explicitly evaluated in gen-

eral. However, if qxð _pÞ is expanded in a power series about

x¼ 0, the central moments may be written as a linear combi-

nation of the central moments at the source as [Muhlestein

and Gee (2016), Eq. (10)]

lðnÞx ¼
X1
k¼0

ðn� 2þ kÞ!
ðn� 2Þ!k!

ðgxÞklðnþkÞ
0 ; (6)

where lðnÞx is the nth central moment of the pressure time

derivative measured at position x. Thus, the derivative skew-

ness may be written as the ratio of two infinite power series

in terms of x, which may in turn be expressed as a single

power series in terms of x. The first two terms may be writ-

ten explicitly as [Muhlestein and Gee (2016), Eq. (11)]

Sk _p½ � ¼ lð3Þ0

lð2Þ0

h i3=2
þ

4lð2Þ0 lð4Þ0 � 3 lð3Þ0

h i2

2 lð2Þ0

h i5=2
gxþ Oðx2Þ: (7)

B. Definition of a statistical nonlinear distortion
length for initially Gaussian noise

A characteristic distortion length should represent the

rate of change of the quantity in question as a function of

position. We therefore define the statistical nonlinear distor-

tion length for an arbitrary signal to be the inverse of the gra-

dient of the derivative skewness as measured at the source.

Written mathematically, the statistical nonlinear distortion

length D of a pressure waveform p may be expressed as

D ¼ @Sk _p½ �
@x

����
x¼0

" #�1

¼
2 lð2Þ0

h i5=2

4lð2Þ0 lð4Þ0 � 3 lð3Þ0

h i2
g�1; (8)

where the second equality makes use of Eq. (7).

Using the results presented above, the derivative skew-

ness for an initially sinusoidal signal may be written as

Sk _pS½ � ¼
3ffiffiffi
2
p gxp0xþ 13

8
ffiffiffi
2
p gxp0xð Þ3

þ 165

128
ffiffiffi
2
p gxp0xð Þ5 þ O x7ð Þ; (9)

where the subscript S denotes a sinusoidal process, x is the

angular frequency of the source sinusoid, and p0 is the

source pressure amplitude. This expression is the same as

that found in Eq. (18) of Muhlestein and Gee (2016), except

that their expression included a minor numerical error: The

cubic coefficient was given as 13=32
ffiffiffi
2
p

, which is a factor of

4 too small. Written in terms of the shock formation distance

(SFD), or the distance a wave needs to propagate without

losses before an acoustic shock is formed, for an initially

sinusoidal signal,

xS ¼
1

gxp0

; (10)

Eq. (9) becomes

Sk _pS½ � ¼
3ffiffiffi
2
p x

�xS
þ 13

8
ffiffiffi
2
p x

�xS

� �3

þ 165

128
ffiffiffi
2
p x

�xS

� �5

þ O
x

�xS

� 	7
 !

: (11)

Muhlestein (2013) derived an exact expression for the deriv-

ative skewness of an initially sinusoidal signal, given by

Sk _pS½ � ¼
2ð1� r2Þ3=2 þ 3r2 � 2

ð1� r2Þ3=4
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p
 �3=2

; (12)

where r ¼ x=�xS. Expanding Eq. (12) about r ¼ 0 recovers

Eq. (11), so the derivative skewness may be expanded in a

power series of the normalized propagation distance.

Muhlestein and Gee (2016) also calculated the deriva-

tive skewness for a noise signal with Gaussian statistics for

the initial pressure time derivative, given by

Sk _pG½ � ¼ 6g std _p½ �xþ 33 g std _p½ �xð Þ3

þ 1305

4
g std _p½ �xð Þ5 þ Oðx7Þ; (13)

where the subscript G denotes a Gaussian process, and

std½ � � is the standard deviation of its argument. [Note there

is another minor numerical error in the expression given by

Muhlestein and Gee (2016) in Eq. (22), where the coeffi-

cient of the x5 term is 2115/4 rather than 1305/4 given here.]

In general, the nth term of Eq. (13) may be written as

cn

4n�2
g std _p½ �xð Þ2n�1; (14)

where the first six values of cn are, sequentially, 3/2, 33,

1305, 65 610, 3 872 745, and 259 326 846.

Since much of the physical intuition surrounding non-

linear distortion has been built around the case of an initially

sinusoidal signal, it becomes desirable to connect the analy-

sis of a noise signal to that case. We therefore define a char-

acteristic nonlinear distortion length �xG such that the

normalized slope of the derivative skewness predictions

match at x! 0, or

2264 J. Acoust. Soc. Am. 153 (4), April 2023 Michael B. Muhlestein and Kent L. Gee
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3ffiffiffi
2
p 1

�xG
¼ 6g std _p½ �; (15)

which then implies

�xG ¼
1

2
ffiffiffi
2
p

g std _p½ �
: (16)

It is worth noting that in the limit that the source signal

becomes sinusoidal, we find that �xG ! �xS=2 because

std½ _pS� ¼ xp0=
ffiffiffi
2
p

. The fact that �xG does not reduce to �xS

suggests that using other results derived from initially sinu-

soidal signals to interpret noise signals may be similarly

inaccurate.

This point may be further explored by substituting �xG

into Eq. (13) above. The derivative skewness for Gaussian

noise may be written as

Sk _pG½ � �
3ffiffiffi
2
p x

�xG
þ 33

16
ffiffiffi
2
p x

�xG

� �3

þ 1305

512
ffiffiffi
2
p x

�xG

� �5

: (17)

Notice that the term in Eq. (17) that is cubic in x does not

have the same form as the cubic term as the derivative skew-

ness for the sinusoidal source in Eq. (11). In fact, the coeffi-

cient for the cubic term for a noise source is about 1.27

times the coefficient for a sinusoidal source. Similar differ-

ences occur for higher order terms; see Fig. 2, which shows

the derivative skewness to 11th order in x as a function of

the scaled distance (by �xS for initially sinusoidal signals and

by �xG for noise signals). (The 11th-order approximation is

the most useful approximation for finite signals that do not

have amplitudes above 3.8 standard deviations; see

Appendix for details.) These differences provide quantifi-

able evidence that the evolution of the statistics for initially

Gaussian noise is fundamentally distinct from the evolution

of the statistics for an initially sinusoidal signal. This result

is similar to that found by Rudenko [as reported by

Gurbatov and Rudenko (2008)], where the evolution of the

second and third harmonics of narrowband noise was found

to be distinct from the same for pure tones. One must there-

fore use caution when using intuition developed from ana-

lyzing initially sinusoidal signals to interpret the statistics of

nonlinearly propagating broadband noise signals.

It is important to recall that other definitions for a char-

acteristic nonlinear distortion length for noise have already

been posited, and �xG should be compared with these earlier

definitions. Perhaps the most obvious choice is the true

SFD, which may be written exactly for lossless planar prop-

agation as

SFD ¼ q0c3
0

b _pmax

; (18)

where _pmax is the peak pressure time derivative. Another

definition was given by Gurbatov and Rudenko (2008) using

the SFD for a sine wave, �xS, as a guide,

�xC ¼
q0c3

0

bxcstd p½ �
; (19)

where xc is a characteristic or central frequency.

[Muhlestein and Gee (2011) notated this definition as �xG;

please note that �xG in this paper will be used exclusively to

refer to the definition given in Eq. (16).] The SFD relies on

the extremum of a particular distribution and, therefore, is

not likely to be either consistent for different stochastic sig-

nals or representative of the overall signal. The characteris-

tic definition �xC does not provide a specific definition for

what is meant by a xc, so ad hoc definitions are usually pro-

vided and may lead to widely disparate values for a given

signal. Furthermore, �xC notably does not rely on the statis-

tics of the pressure time derivative, but instead on the statis-

tics of the pressure magnitude. Since the statistics of the

pressure magnitude do not vary with lossless planar propa-

gation before shock formation (Rudenko and Chirkin, 1975;

Webster and Blackstock, 1979), �xC may not be sensitive to

pre-existing distortion in the source signal.

As a final comment in this section, the results derived

here for planar propagation may be easily extended to the

case of diverging waves using existing expressions

(Blackstock et al., 2008). The SFD for spherical and cylin-

drical sinusoidal waves may be written, respectively, as

SFDsph ¼ r0 exp
q0c3

0

bxp0r0

 !
; (20)

SFDcyl ¼ r0 1þ q0c3
0

2bxp0r0

 !2

; (21)

where r0 is the reference radius. These expressions are

obtained by taking the generalized Burgers equation for a

lossless fluid with one-dimensional spreading, making a

FIG. 2. (Color online) Approximate derivative skewness for initially

Gaussian and sinusoidal signals as a function of scaled distance using an

11th-order asymptotic series. The exact derivative skewness for an initially

sinusoidal signal [as given in Eq. (12)] is included as well for reference.

The scaling factor for the distance is �xS for the initially sinusoidal signal

and is �xG for the initially Gaussian signal.
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change of variables in the pressure and position, obtaining

the usual planar Burgers equation for planar propagation,

determining the SFD, and inverting to the original coordi-

nates. None of these steps involve modifications of the time

derivative, and the statistics of the reference signal (magni-

tude and time derivative) remain unchanged. Thus, the SFD

expressions may be readily changed to �xG expressions by

simply replacing xp0 with 2
ffiffiffi
2
p

std½ _p� (where std½ _p� is evalu-

ated at r ¼ r0),

�xG;sph ¼ r0 exp
q0c3

0

2
ffiffiffi
2
p

bstd _p½ �r0

 !
; (22)

�xG;cyl ¼ r0 1þ q0c3
0

4
ffiffiffi
2
p

bstd _p½ �r0

 !2

: (23)

Similar substitutions can be made for expressions of the

SFD for generally diverging waves in lossless media

(Hamilton, 2016).

III. FINITE-LENGTH SIGNALS: JET-LIKE NOISE

Section II focused on results assuming idealized statisti-

cal distributions and an infinitesimal sampling rate. It may

be helpful to analyze a more realistic example: a finite-

length numerically generated jet-like Gaussian noise signal

with a finite sampling rate. Military aircraft can create jets

with radiated noise that has a central frequency close to

150 Hz, a relatively broad spectrum, and overall sound pres-

sure levels on the order of 155 dB (Leete et al., 2021; Wall

et al., 2012). Using these metrics as a guide, 2.73 s of a

Gaussian-distributed noise sample was generated with a

sampling rate of 96 000 samples/s, using a fifth-order

Butterworth bandpass filter from 75 to 300 Hz, and the

resulting signal was normalized to have an overall sound

pressure level of 155 dB. Using xc ¼ 2p150 s� 1 for the

characteristic angular frequency, the signal then has �xC ¼
38:1 m by definition.

A portion of the waveform of the jet-like Gaussian

source noise is shown in Fig. 3 as a function of retarded

time at the source, the SFD, �xG, and �xC. The source noise

signal was propagated using the Earnshaw solution (distor-

tion of the time series leaving the pressure amplitudes the

same) and the equal-area rule to account for weak shocks

(Blackstock et al., 2008). Qualitatively, the waveform at the

SFD (7.3 m for this instance) has steepened significantly,

but no shocks are apparent in the portion that is shown (cho-

sen to be representative of the bulk of the signal). The lack

of shocks is expected, as the SFD occurs when the very first

shock forms, and it is unlikely that a random sample would

include that shock. The waveform at the SFD and at �xG

(10.0 m for this instance) are quite similar, but at this point,

more shocks have formed (3.7 shocks/s), although they still

do not appear in the small portion shown. On the other hand,

the waveform at �xC (38.1 m, the same for all instances) con-

tains many shocks in the portion shown, and the average

number of shocks/s is 187.5. Note that the “characteristic”

frequency of the signal is assumed to be 150 Hz, so the rate

of shocks is greater than the assumed signal frequency.

The temporal slope density of the noise sample

described above is shown in Fig. 4. On average, the source

temporal slope density resembles a Gaussian distribution to

about 3.8 standard deviations, so comparisons with analyti-

cal theory will be limited to the 11th-order asymptotic

approximation, as discussed in the Appendix. Similar to the

waveforms, the distributions at the SFD and at �xG are rather

similar to each other, with diminished numbers of very

large-magnitude negative slopes, an increase in low-

magnitude negative slopes, and a significant increase in

high-magnitude positive slopes (associated with shock for-

mation) compared to the Gaussian source distribution. The

FIG. 3. A portion of one instance of the randomly generated jet-like noise

at (sequentially from top to bottom) the source, SFD (7.3 m), �xG (10.0 m),

and �xC (30.5 m) as a function of the retarded time. The number of shocks/s

in the whole waveform at each location is also given in the respective plot.

FIG. 4. Slope density of an instance of the randomly generated jet-like

noise at the source, the SFD, �xG, and �xC, as defined in the main text.
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distribution at �xC exhibits the same overall trends, but to a

much larger degree than for the other two distorted signals.

In addition, the presence of excess attenuation at shock

fronts due to weak-shock theory has led to a change of the

overall content in general, such that the high-magnitude pos-

itive slopes are not as numerous as in the other cases. Thus,

the statistical character of the noise at �xC is markedly differ-

ent from the statistical character at the SFD and �xG.

A greater understanding of the use of finite signals with

finite sampling rates may be obtained by analyzing the sta-

tistics of an ensemble of samples. Thus, 1000 random sam-

ples were generated using the same method as described

above. Due to their random nature, each of the noise sam-

ples has a unique SFD. The minimum, 25th percentile,

median, 75th percentile, and maximum value of the SFD

are, respectively, 5.45, 7.06, 7.50, 7.92, and 9.40 m. The dis-

tribution of the values of �xG is comparatively much tighter,

with the minimum, 25th percentile, median, 75th percentile,

and maximum values being given by, respectively, 9.53,

9.80, 9.87, 9.95, and 10.18 m. These values are summarized

visually in Fig. 5. Note that the �xG values are all larger than

the SFD values; this feature highlights the fact that �xG char-

acterizes the importance of nonlinearity on the overall wave-

form rather than just on the most extreme points, as the SFD

does. For comparison, recall that �xC is equal to 38.1 m for

every case, which is much larger than any of the values of

the SFD or �xG.

This ensemble of jet-like noise samples may also be

used to show the connection between the different nonlinear

distortion lengths and the derivative skewness. Each of the

1000 samples was numerically propagated to 11 m, or just

beyond the largest value of �xG, and the derivative skewness

was calculated as a function of position. For comparison, an

initially sinusoidal source waveform was also generated and

propagated. The sinusoidal source has a frequency of

150 Hz and an amplitude such that the gradient of its deriva-

tive skewness at the source is equal to the gradient of the

median derivative skewness of the noise signals, or

4.34 kPa, and an overall sound pressure level of 163.7 dB.

This choice of the amplitude and frequency for the sinusoi-

dal source then leads to �xS being equal to the median of �xG.

The full range (gray patch, labeled “Num. Noise

Range”), the inter-quartile range (yellow patch, labeled

“Num. Noise IQR”), and median (thick black line, labeled

“Num. Noise Med.”) of the derivative skewness of the

numerically propagated noise as a function of the propaga-

tion distance are plotted in Fig. 6, as well as the derivative

skewness of the numerically propagated initial sinusoid

(thick dashed line). The noise signals did not have perfectly

zero derivative skewness at the source (although the ensem-

ble median converges on zero), but the rate of increase for

the derivative skewness as a function of position was nearly

identical for all cases. Thus, a tight distribution of derivative

skewness values appears close to the source. As each sample

approaches its own SFD, the derivative skewness value

starts to diverge, but since each sample has a unique SFD,

the distribution of derivative skewness values broadens rap-

idly with increasing propagation distance. For distances

beyond the analytical SFD, the derivative skewness goes, in

principle, to infinity, although in practice, the finite sam-

pling rate leads to a finite maximum derivative skewness

(Reichman et al., 2016b). To avoid numerical errors and sin-

gularities, the plot of the derivative skewness is limited to

skewness values between 0 and 10. Thus, the statistical mea-

sures shown in Fig. 6 are only strictly valid prior to the first

SFD, which is noted in the figure. The median and maxi-

mum SFD values are also shown for reference.

The 11th-order predictions for the derivative skewness

for initially Gaussian noise [see Eq. (17)] and for initially

sinusoidal signals [see Eq. (11)] are also plotted in Fig. 6.

For these plots, the median value of �xG was used as the char-

acteristic nonlinear distortion length for both initially

Gaussian noise and sinusoidal signals, such that the gra-

dients of the derivative skewness predictions close to the

source would be identical. Both of the analytical expansions

agree with the median noise derivative skewness near the

source, but the sinusoidal prediction eventually diverges,

followed later by the noise prediction. The prediction

assuming an initially sinusoidal signal first has relative error

compared to the median greater than 1% at 2.6 m from the

source. The prediction assuming an initial Gaussian distribu-

tion varies slightly around the median and first has a relative

error greater than 1% at 4.9 m. On the other hand, the first

FIG. 5. (Color online) Box and whisker plots for the distributions of the

individual SFD and �xG for the source Gaussian noise signals.

FIG. 6. (Color online) Derivative skewness of the numerically generated

signals as a function of propagation distance. See the main text for a full

explanation of the figure.
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point at which the sinusoidal expansion has a relative error

greater than 1% compared to the initially sinusoidal numeri-

cal prediction (and the exact solution, also shown) occurs at

8.3 m, while assuming an initially Gaussian distribution first

has a relative error greater than 1% at 1.6 m. It is interesting

that the analytical predictions for the initially Gaussian noise

and the initially sinusoidal signal both begin to diverge from

their respective numerical examples at roughly the same

derivative skewness value, around 2. Thus, the divergence

of the analytical from the numerical values may be associ-

ated with the fact that the analytical values are limited to

11th-order rather than some inaccuracy of the analytical

method.

This numerical example helps elucidate a number of

relevant points. First, the SFD is a poor nonlinear distortion

length, as it has a relatively broad distribution of values and

does not correlate well with the overall distortion of a propa-

gating noise waveform. On the other hand, �xG has a rela-

tively tight distribution, even when defining a noise

waveform using pressure statistics such as overall sound

pressure level and spectrum rather than using pressure time-

derivative statistics. The overall magnitude of �xG is larger

than the SFD magnitudes, which correlates better with over-

all nonlinear distortion of a noise waveform. Another impor-

tant point is that the classic distortion length for noise

defined by Gurbatov and Rudenko (2008), �xC, is consistently

much larger than either the SFD or �xG and seems to be cor-

related more with a regime with well-established shocks and

is, therefore, not appropriate to represent the initial distor-

tion of a noise waveform.

IV. CONCLUDING DISCUSSION

This paper has shown that the nonlinear evolution of

initially sinusoidal signals is similar but fundamentally dis-

tinct from the nonlinear evolution of initially Gaussian-

distributed noise signals. This distinction was demonstrated

by comparing the evolution of the skewness of the time

derivative of the acoustic pressure, or derivative skewness,

using both analytical and numerical means. To properly

account for the source waveform statistics, a new nonlinear

length scale, �xG, defined in Eq. (16), was derived. The

choice of �xG enables a consistent length scale that character-

izes the overall nonlinear waveform distortion of broadband

noise signals.

While this paper has focused on lossless propagation, it

is likely that the broadband nature of noise will lead to addi-

tional complications with the definition of a characteristic

absorption length and, in turn, a characteristic Gol’dberg

number. The results in this paper alone would suggest a

decreased Gol’dberg number, but the nonlinear frequency

dependence of linear absorptive processes introduces com-

plications that require additional study. It may be important

to develop a Gol’dberg number-like spectrum to accurately

describe the importance of nonlinearity for broadband sig-

nals. This development could be then used to build upon the

work of, e.g., Baars et al. (2016) to provide greater

understanding of the relative importance of nonlinearity to

linear absorption in jet noise.
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APPENDIX: MATHEMATICAL AND PRACTICAL
NOTES ON USING THE GAUSSIAN DISTRIBUTION

It is important to caveat the above analysis with the

note that there is no guarantee that either of the two series in

the derivative-skewness ratio of Eq. (6) converge. Indeed,

for an initially Gaussian distribution,

qG0ð _pÞ ¼
1

std0ð _pÞ2
ffiffiffiffiffiffi
2p
p exp � _p2

2std0ð _pÞ2

 !
; (A1)

neither of the two series converge. To show this, consider

the moment integrals for x 6¼ 0 written as

lðnÞx ¼
ð1
�1=gx

fn df

1þ gxf½ �3
1

std0ð _pÞ
ffiffiffiffiffiffi
2p
p exp

�f2= 1þ gxf½ �2

2std0ð _pÞ2

" #
;

(A2)

where the lower bound to the integral is explained by

Muhlestein and Gee (2016) and is immaterial to the present

discussion. As f!1, the integrand approaches

fn�3=ðgxÞ2

gx std0ð _pÞ
ffiffiffiffiffiffi
2p
p exp � 1

2 gx std0ð _pÞ½ �2

" #
: (A3)

For n¼ 2 the integrand tends toward a f�1 dependence, which

diverges. For any integer n> 2, the integrand approaches

either a non-zero constant or grows and is always positive,

leading to divergent integrals. Thus, both lð2Þx and lð3Þx for the

initially Gaussian distribution diverge for any x> 0.

Another way to think about the divergence of the ini-

tially Gaussian-distributed noise moments is that a Gaussian

distribution has support over all the real numbers. Thus, an

infinitely long signal would exhibit arbitrarily large pressure

time derivatives, and a shock must already appear some-

where in the signal at the start. For any x> 0, the require-

ment that the signal does not pass the shock formation

distance is, therefore, not fulfilled. However, physical noise

signals are not truly Gaussian and have support over a finite

domain of the real numbers. On the other hand, the

Gaussian distribution is a good approximation for the tem-

poral slope density function of real signals for slopes close

to zero. The lowest statistical moments of both the Gaussian

distribution and a physical unimodal signal, such as jet

noise, will be dominated by the influence of the main peak

of the distribution, while the higher moments will be domi-

nated by the tails. Therefore, for sufficiently low-order
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moments, the Gaussian distribution is a good substitute for a

physical unimodal signal. Furthermore, one may conclude

from Eq. (10) of Muhlestein and Gee (2016) that the largest

moment in the coefficient of rn (and so xn) in the derivative

skewness of an arbitrary distribution (so n is not limited to

being odd) is the moment of order nþ 3.

Taken together, these facts suggest that there is some

odd integer k such that neglecting the terms OðxkÞ in Eq.

(13) and keeping all other terms will provide the best esti-

mate of the derivative skewness of real noise using a

Gaussian distribution. The closer the slope density function

of the noise resembles a Gaussian distribution, the better the

approximation will be. The exact value of k depends on the

noise signal in question, but a full analysis is tangential to

the purpose of this paper; consequently, one will not be

explored here. However, one may estimate a value of k by

looking at the error of using the full Gaussian distribution

compared to a truncated one (see Fig. 7) when calculating

statistical moments. The truncated Gaussian distribution

used here is defined as

qGTðX;XmaxÞ ¼
Ne�X2=2; jXj � Xmax;

0; jXj > Xmax;

(
(A4)

where N is the normalization constant necessary to make the

integral of the distribution equal to one, X is the random var-

iable divided by the Gaussian standard deviation, and Xmax

is the truncation standard deviation. In the limit Xmax !1,

the normalization constant is N ! 1=
ffiffiffiffiffiffi
2p
p

, and the truncated

Gaussian distribution approaches the full Gaussian distribu-

tion. The normalized error of using the full Gaussian distri-

bution to estimate the nth moment instead of the truncated

Gaussian distribution with a truncation standard deviation of

Xmax may then be written as

En ¼ 1� lðnÞG

lðnÞGT

¼ 1� 1

N
ffiffiffiffiffiffi
2p
p

ð1
�1

Xne�X2=2

ðXmax

�Xmax

Xne�X2=2

: (A5)

The normalized error En is shown in the top plot of Fig. 8 as

a function of Xmax for several values of n. As the value of n
increases, the error increases at a fixed value of Xmax. For all

values of n, the error approaches 100% at Xmax ! 0 and

approaches 0% as Xmax !1 and varies smoothly and

monotonically between these two limits. Thus, for any

finite error limit, there is some integer m such that the error

associated with the moment lðnÞ is above this error limit

for all n>m. The bottom plot of Fig. 8 shows the smallest

value of m as a function of Xmax for several error limits.

For the special case of Xmax ¼ 3:8, which is relevant below,

we find that m¼ 14. Since the skewness relies on the third

central moment, the ability to approximate moments up to

the 14th source moment allows us to use the full Gaussian

to describe the derivative skewness up to 11th order in x
[i.e., using Eq. (13)].

Baars, W. J., and Tinney, C. E. (2014). “Shock-structures in the acoustic

field of a Mach 3 jet with crackle,” J. Sound Vib. 333(12), 2539–2553.

Baars, W. J., Tinney, C. E., and Hamilton, M. F. (2016). “Piecewise-spread-

ing regime model for calculating effective Gol’dberg numbers for super-

sonic jet noise,” AIAA J. 54(9), 2833–2842.

Baars, W. J., Tinney, C. E., Wochner, M. S., and Hamilton, M. F. (2014).

“On cumulative nonlinear acoustic waveform distortions from high-speed

jets,” J. Fluid Mech. 749, 331–366.

Blackstock, D. T., Hamilton, M. F., and Pierce, A. D. (2008). “Progressive

waves in lossless and lossy fluids,” in Nonlinear Acoustics, edited by M.

F. Hamilton and D. T. Blackstock (Acoustical Society of America, New

York), pp. 65–150.

FIG. 7. Probability density functions for truncated Gaussian distributions.

The truncation standard deviation is denoted by Xmax.

FIG. 8. (Top) Error for using a full Gaussian distribution for estimating the

nth moment relative to using a truncated Gaussian distribution as a function

of the truncation standard deviation for several values of n. (Bottom)

Largest moment for which the error of using the full Gaussian distribution

instead of the truncated distribution is less than a particular value for several

of these limiting error values.

J. Acoust. Soc. Am. 153 (4), April 2023 Michael B. Muhlestein and Kent L. Gee 2269

https://doi.org/10.1121/10.0017858

https://doi.org/10.1016/j.jsv.2014.01.008
https://doi.org/10.2514/1.J054790
https://doi.org/10.1017/jfm.2014.228
https://doi.org/10.1121/10.0017858


Brouwer, H. H. (2008). “On the effect of nonlinear propagation on per-

ceived jet noise levels,” Aerosp. Sci. Technol. 12(1), 74–79.

Crighton, D., and Bashforth, S. (1980). “Nonlinear propagation of broad-

band jet noise,” in Proceedings of the 6th Aeroacoustics Conference, June

4–6, Hartford, CT.

Ffowcs Williams, J. E. (1974). “Nonlinear generation of secondary waves

in fluids,” in Finite-Amplitude Wave Effects in Fluids: Proceedings of the
1973 Symposium, Copenhagen (IPC Science and Technology, Guildford,

UK), pp. 9–18.

Ffowcs Williams, J. E., Simson, J., and Virchis, V. J. (1975). “ ‘Crackle’:

An annoying component of jet noise,” J. Fluid Mech. 71(2), 251–271.

Fi�evet, R., Tinney, C. E., Baars, W. J., and Hamilton, M. F. (2016).

“Coalescence in the sound field of a laboratory-scale supersonic jet,”

AIAA J. 54(1), 254–265.

Gallagher, J., and McLaughlin, D. (1981). “Experiments on the nonlinear

characteristics of noise propagation from low and moderate Reynolds

number supersonic jets,” in Proceedings of the 7th Aeroacoustics
Conference, Aeroacoustics Conferences, October 5–7, Palo Alto, CA.

Gee, K. L., Kenny, R. J., Neilsen, T. B., Jerome, T. W., Hobbs, C. M., and

James, M. M. (2012). “Spectral and statistical analysis of noise from reus-

able solid rocket motors,” Proc. Mtgs. Acoust. 18(1), 040002.

Gee, K. L., Neilsen, T. B., Wall, A. T., Downing, J. M., James, M. M., and

McKinley, R. L. (2016). “Propagation of crackle-containing jet noise

from high-performance engines,” Noise Control Eng. J. 64(1), 1–12.

Gee, K. L., Russavage, P. B., Neilsen, T. B., Hales Swift, S., and Vaughn,

A. B. (2018). “Subjective rating of the jet noise crackle percept,”

J. Acoust. Soc. Am. 144(1), EL40–EL45.

Gurbatov, A. N., and Rudenko, O. V. (2008). “Statistical phenomena,” in

Nonlinear Acoustics, edited by M. F. Hamilton and D. T. Blackstock

(Acoustical Society of America, Melville, NY).

Hamilton, M. F. (2016). “Effective Gol’dberg number for diverging

waves,” J. Acoust. Soc. Am. 140(6), 4419–4427.

Leete, K. M., Vaughn, A. B., Bassett, M. S., Rasband, R. D., Novakovich,

D. J., Gee, K. L., Campbell, S. C., Mobley, F. S., and Wall, A. T. (2021).

“Jet noise measurements of an installed GE F404 engine,” in Proceedings
of the AIAA Scitech 2021 Forum, January 11–15 and 19–21.

McDaniel, O. H., Roth, S. D., and Welz, J. P. (1980). “Free-field propaga-

tion of high intensity noise,” in Proceedings of the Shock Noise
Workshop, December 5, Cleveland, OH.

McInerny, S. A., Gee, K., Downing, M., and James, M. (2007). “Acoustical

nonlinearities in aircraft flyover data,” in Proceedings of the 13th AIAA/
CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference),
May 21–23, Rome, Italy.
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