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Spatiospectral lobes are features identified in the noise fields radiated from full-scale tactical 
aircraft that are unseen in lab-scale experiments. Prior studies have explored lobe frequency-
domain characteristics, but a joint time-frequency domain (JTFD) analysis has the potential 
to further explore these phenomena and connect them to source-related events. This paper 
applies an event-based beamforming technique to acoustical data collected at a 120-
microphone array near a T-7A-installed F404 engine. The algorithm correlates time domain 
events between pairs of adjacent microphones to find an event propagation direction and then 
ray traces to the jet centerline to identify an apparent source location. A wavelet transform is 
used to identify frequency triggers tied to the spatiospectral lobes to gain insights. It is shown 
that the source responsible for the spatiospectral lobes is composed of multiple, overlapping 
sources each with a different peak radiation angle. Events are also observed in the time-
frequency domain, and it is found that there is an underlying temporal structure reminiscent 
of mode switching seen with lab-scale jet screech. Using a Markov-style analysis, this temporal 
structure is characterized. It is found that spectral peaks related to the spatiospectral lobes 
are composed of discrete but randomly distributed temporospectral events, each with a 
frequency-dependent directivity. 

I. Nomenclature 
AB = Afterburner 
c = Sound speed 
Dj = Fully expanded jet diameter 
EBBF = Event-based beamforming 
MIL = Military power 
Sr = Strouhal number 
T = Markov transition matrix 
τ = Cross correlation time delay 
θ = Event propagation angle 
W୶ = Wavelet transform of signal x 
|𝑊௫|ଶ = Wavelet power spectrum 
𝑥 = event lipline location 

II. Introduction 
High-performance military jet aircraft are known to produce intense sound levels. Repeated exposure to these 

sound fields can lead to hearing loss [1]. Additionally, sound fields predicted by numerical simulations and lab-scale 
measurements do not completely agree with those of full-scale tactical aircraft in terms of phenomena produced. For 
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this reason, it is desirable to characterize the noise generated by full-scale aircraft to further inform noise reduction 
efforts. 

A key feature of full-scale high-performance military aircraft is the presence of multiple spatiospectral lobes. These 
lobes were formally identified by Wall et al. [2,3]. In their analysis of high-performance military jet aircraft noise, 
acoustical holography was used to create total-field reconstructions, and the lobes were characterized as distinct 
regions of high sound level that evolved through frequency. Before this work, the lobes were identified as a “dual-
peak” phenomenon at individual microphone locations [4–6], in part because of limited spatial resolution and one-
third octave band spectral analyses. The spatiospectral lobes can also be retroactively seen in other analyses. For 
example, Stout et al. [7] performed an intensity analysis in the near field of a high-performance aircraft. In their vector 
intensity plots and attached multimedia, multiple lobes can be seen to form with increasing frequency and evolve 
spatially. 

The methods used to study these lobes have taken many forms. Harker et al. [5] performed preliminary correlation 
and coherence analysis where they suggested that the dual-peaked spectra were created by multiple overlapping and 
incoherent sources in the jet. These conclusions were later expanded on by Swift et al. [8] who performed a similar 
analysis on a different aircraft. In their work, at least five individual spatiospectral lobes were identified. It was shown 
that coherence lengths increase within an individual lobe and decrease in regions of overlap between two or more 
lobes. Beyond these standard signal processing techniques on the field-acquired data, inverse methods such as 
beamforming and holography have recently been largely employed to explore the apparent origin of and other spatial 
behavior of the lobes. Wall et al. [3] used near-field acoustical holography (NAH) to recreate the sound field near a 
high-performance military aircraft. They then employed a partial field decomposition method to separate the lobes 
and showed that two of the lobes are the product of overlapping partial sources. Leete et al. [9] used multisource 
statistically optimized near-field acoustical holography (M-SONAH) to track the lobes through space and frequency 
for the F-35. They determined that as frequency increases the lobes shift aft and eventually decrease in level while the 
next lobe appears at a steeper angle. This behavior can also be seen in the vector intensity analysis of Stout et al. 
[7,10]. These results were also confirmed by Olaveson et al. [11] using the hybrid beamforming method [12] to 
generate total-field reconstructions from T-7A noise data. In their analysis, they used a ray tracing technique to 
determine the apparent source locations of each lobe. Using SONAH, Mathews et al. [13] created noise-field 
reconstructions at the nozzle lipline. In conjunction with LES and previous analysis, they suggested that lipline source 
locations corresponding to the spatiospectral lobes coincide with the potential and supersonic core tips. 

All the above methods, except correlation, operate in the frequency domain and the spectral averaging procedure 
inherent in these analyses removes any temporal features. However, to better understand the underlying mechanisms 
of the lobes, it is important to observe the waveform temporal features. One time domain analysis that is frequently 
used in jet noise analysis is Schlieren imaging. This method uses snapshots of density fluctuations to visualize acoustic 
radiation. This has seen repeated use in Mach wave analysis [14,15] where directivities can be identified from evenly 
spaced wavefronts. However, this methodology is largely confined to lab-scale jets due to the required imaging 
components. An alternative computational time-domain analysis has been developed in the form of event-based 
beamforming by Vaughn et al. [16–18]. In their crackle studies, they identified high amplitude and high derivative 
events in the time waveform and used a cross-correlation to beamform these events back to the jet lipline. The selected 
events and resultant distributions helped identify radiation and source characteristics of Mach waves and other known 
jet noise structures.  

While each domain provides its unique insights, a joint time-frequency domain (JTFD) analysis has the potential 
of connecting features from both domains. The wavelet transform is a method of extracting frequency information at 
every time step in a signal [19], and has proven useful in identifying frequency events that change rapidly through 
time. Wavelet-based JTFD analysis has been seen in geophysical applications [19], shock noise identification [20], 
screech mode identification [21], and Mach wave reconstruction in conjunction with Schlieren imaging [15]. 

In this paper, the near-field noise generated by a T-7A-installed F404 engine is analyzed. The event-based 
beamforming algorithm is used in conjunction with the wavelet transform to further characterize the spatiospectral 
lobes in terms of their time event properties. The time-frequency structure of the wavelet is then explored to identify 
any transient structures and evidence is provided for a temporal shifting that is potentially similar to that seen in jets 
with mode switching present. A Markov-style probability analysis is then used to characterize the underlying structure. 
It is found that events in the wavelet transform corresponding to different spectral peaks are more likely to occur at 
different times with relatively few instances of overlap.  

D
ow

nl
oa

de
d 

by
 K

en
t G

ee
 o

n 
Ju

ne
 9

, 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
3-

32
13

 



 

3 
 

III. Experiment 
On August 18th, 2019 at Holloman Air Force Base, data were collected from an F404 engine installed on a T-7A 

trainer aircraft [22]. The aircraft was tethered to the ground and performed six run-ups, each cycling through power 
settings ranging from idle to afterburner (AB) including military power (MIL). The endeavor featured multiple sets 
of near-field arrays and far-field arcs with a microphone array reference point (MARP) at 3.96 m downstream of the 
nozzle. Overall, there were over 200 microphones. For this paper, only the 120-microphone, near-field imaging array 
is used. This array was composed of GRAS 46BD and 46BG ¼” pressure mics sampling at 204.8 kHz. Figure 1 shows 
a schematic of the imaging array setup. The array ran approximately parallel to the jet centerline in the forward 
direction and then transitioned to follow the anticipated shear layer downstream of the nozzle. A variable microphone 
spacing was chosen to best capture the expected peak frequency behavior in each region. 

 

 

Figure 1. Schematic of the T-7A measurement. 

The spectra from the recorded data at MIL power were computed and compiled into a spatiospectral plot. Figure 
2 shows the top 6 dB of the plot with a 3 dB-down contour in white. The limited dynamic range has been selected to 
emphasize the spatiospectral lobe behavior. At least five spatiospectral lobes can be observed in this figure, with the 
first occurring just below a Strouhal number of 0.1 and above 24 Dj. The higher-ordered lobes (2+) appear as dark 
patches near Strouhal numbers of 0.15, 0.24, 0.31, and 0.39 respectively. This paper only analyses military power 
because the lobes are clearest at this engine condition. 
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Figure 2. Spatiospectral plot for the T-7A at MIL engine condition. The figure shows Strouhal number as a 
function of microphone position. Note that the series of dark patches are spatiospectral lobes. The white 
contour identifies the 3dB down point. 

IV. Methods 
This section provides an overview of the methods used in this paper. The event-based beamforming (EBBF) 

method used by Vaughn et al. [23] is reviewed followed by a description of the wavelet transform. 

A. Event-based beamforming 
The goal of the EBBF procedure is to identify apparent locations and propagation angles of specified time domain 

events. In their study on crackle, Vaughn et al. [18,23] investigated both high-amplitude and large derivative events, 
but ultimately chose the latter as the large derivatives had been previously correlated with perceived crackle [24,25]. 
However, whatever event trigger is chosen, the EBBF process is the same. 

For each pair of adjacent microphones, events are identified in the upstream microphone. For high amplitude or 
high derivative events, the event identification is as straightforward as locating local maxima in the pressure or 
derivative pressure waveform. More complicated events, such as a specific waveshape, can be identified using a cross-
correlation but these have not yet been explored. Once events have been identified, the top 500 most prominent events 
are selected with a minimum of 2.4 ms separation between each event. The separation is included to both prevent 
events from being double counted as well as to ensure a broader sampling of the waveform. 

For each event, a 20 ms Hann window is applied to the waveform, centered on the event. A similar window is also 
applied to the upstream microphone. This process isolates the event in each waveform. The cross correlation between 
the two waveforms is then calculated, from which a time delay is determined by taking the time lag, 𝜏, at the maximum 
correlation coefficient. Using this time delay, a sound speed of 𝑐 = 343 m/s, and the assumption that the event is 
locally planar in the region of the microphones, the apparent propagation angle and source location is reduced to a 
geometry problem. 

Figure 3 shows the geometry assumed in EBBF. The vector 𝑟ሬሬሬሬ⃗  points from the upstream to the downstream 
microphone and has a length equal to the distance between the two, though the length has been exaggerated. The 
vector 𝑟௦ሬሬ⃗  is points from the microphone midpoint to the jet lipline and represents the apparent event path. The path is 
assumed to bisect the microphones so that the locally planar assumption holds. Following the same formulation as 
Vaughn et al. [18], the event propagation angle is then determined as: 
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 𝜃 = 180° − (𝜙 + 𝛼), (1) 
 

where 𝛼 =  𝑡𝑎𝑛ିଵ ቀ
௬

௫
ቁ is the angle formed from the microphone geometry and 𝜙 =  𝑐𝑜𝑠ିଵ ቀ

த

ௗ
ቁ is the intersection 

angle between the microphone array and the event propagation path. Assuming a straight ray propagation path, the 
apparent event location is then extracted from the definition of the dot product: 
 

 𝑟ሬሬሬሬ⃗  ⋅ 𝑟௦ሬሬ⃗ = |𝑟ሬሬሬሬ⃗ ||𝑟௦ሬሬ⃗ |cos 𝜙. (2) 
 

 For purposes of this paper, the event is assumed to come from the lipline location ൻ𝑥 , 𝐷/2, ℎൿ where h is the 
height of the center of the nozzle. Thus, every component of 𝑟௦ሬሬ⃗  is known except for the x component which contains 
the information about the apparent event origin. Now Eq. 2 can be solved for the apparent event lipline location, 𝑥, 
by breaking each vector into components. This ray-tracing procedure is performed for each of the 500 events to allow 
for statistical analysis of the events. 

 

Figure 3. Geometry of the event-based beamforming approach. Microphones are represented by blue circles 
and other features of interest are indicated by arrows. The angle of incidence ϕ is calculated from the cross-
correlation and events are propagated back to the jet lipline along the vector 𝒓𝒔ሬሬሬ⃗ . The apparent lipline location 
is then calculated as xe. 

B. Wavelet Transform 
Whereas the prior EBBF procedure was developed purely for the time domain, examining the spatiospectral lobe 

behavior in detail also requires frequency information as a function of time. The short-time Fourier transform can 
provide this information, but the uncertainty principle dictates that increasing the time resolution by decreasing data 
block size also decreases the frequency resolution [26]. A balance between the two can be attempted, but the EBBF 
algorithm requires a very high time resolution. Even with time steps of 20 ms, the errors of propagation angle and 
lipline intercept surpass what is reasonable. Thus, a different method is required. 

The wavelet transform is a method of extracting frequency information at every instant in time [19]. The basic 
formulation involves repeatedly convolving a time signal, 𝑥, with a wavelet, Ψ, that is scaled to match a specific 
frequency of interest. In this paper, the Morlet wavelet is used, though other wavelet choices are being explored. The 
output of the transform is the complex function 𝑊௫ = 𝑊௫(𝑆𝑟, 𝑡). From here the magnitude and phase information can 
be analyzed individually [15]; it is also beneficial to define the wavelet power spectrum, |𝑊௫|ଶ [19]. When viewed in 
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this way the result is a scalogram that depicts frequency-dependent energy content through time. Figure 4 shows an 
example 50 ms waveform (top) and the corresponding wavelet power spectrum (bottom). The selected waveform 
contains crackle as evidenced by the shocks. These shocks appear in  |𝑊௫|ଶ as faint vertical stripes of high-Strouhal 
number content at the shock location [27]. In addition to the shock events, there are two large, high-amplitude islands 
or blobs at relatively low Strouhal numbers: 15 ms at Sr = 0.24 and 27 ms at Sr = 0.15. These Stouhal numbers 
represent prominent peaks seen in the time-averaged spectrum. The temporal structure of the events at these Strouhal 
numbers will be characterized further in Section V.B. 

By taking time slices of  |𝑊௫|ଶ, i.e., |𝑊௫(𝑆𝑟௧ , 𝑡)|ଶ the amplitude of a target Strouhal number, 𝑆𝑟௧, is tracked through 
time. These time slices are then individually passed into the EBBF algorithm where large amplitudes are used as the 
event trigger. This identifies spatial characteristics corresponding to portions of the initial waveform with a relatively 
large amount of energy at the target Strouhal numbers. 

 

Figure 4. A 50 ms waveform sample and the corresponding wavelet power spectrum. The two bright islands at 
15 ms and 27 ms indicate spectral events in the original waveform at these times. The corresponding Strouhal 
numbers, 0.15 and 0.24, are related to the peaks seen in the time-averaged spectrum. 

V. Analysis 
This section applies the wavelet transform to EBBF to target Strouhal numbers corresponding to the spatiospectral 

lobes. Statistical results are discussed concerning the predicted lobe directivities and source location. The temporal 
structure of events in the wavelet transform is then characterized using a Markov chain. Finally, the time-averaged 
spectrum is decomposed based on events in the wavelet transform. 

A. Event-Based Beamforming with Wavelets 
Whereas EBBF has been used to characterize crackle-related events, the purpose of this paper is to explore 

temporal characteristics of the spatiospectral lobes. To do this, slices of constant Strouhal number are extracted from 
|𝑊௫|ଶ and used in EBBF using maximum-amplitude events. This translates to beamforming at locations where the 
signal has a relatively large amount of energy at the desired Strouhal number. Whereas Vaughn et al. [23] suggested 
using the top 1000 events, in this paper only 500 events are used. When the wavelet transform is used to extract the 
amplitude of a single frequency, many of the temporal peaks from the original waveform vanish; thus, there are often 
fewer than 1000 notable events in each frequency slice which may introduce non-physical results. 

Since only a subset of the imaging array shows evidence of the spatiospectral lobes, only the affected range of 
microphones will be used in the beamforming. Using Fig. 2 as a guide, the relative spatiospectral regions are presented 
in Table 1. While the spectral characteristics of the lobes shift with position, only a single Strouhal number is chosen 
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to characterize the lobes. This is because the wavelet-based EBBF can only target a single Strouhal number at a time. 
The ranges presented here are generous enough to capture the 3dB-down point around each. The propagation angles 
and apparent lipline source locations for each collection of events are compiled into normalized histograms to better 
visualize the data. 

 
Lobe Strouhal number Spatial range 

1 0.07 24𝐷 ≤ 𝑥 ≤ 39𝐷 
2 0.15 15𝐷 ≤ 𝑥 ≤ 26𝐷 
3 0.24 13𝐷 ≤ 𝑥 ≤ 21𝐷 
4 0.31 13𝐷 ≤ 𝑥 ≤ 17𝐷 
5 0.39 13𝐷 ≤ 𝑥 ≤ 17𝐷 

Table 1. Spatiospectral regions corresponding to each lobe seen in Fig. 2. 

Figure 5 shows the angle and intercept histograms as a function of microphone location for each of the 
spatiospectral lobes. The probability of each event is calculated as the number of events that fall into that bin, divided 
by the total number of events. These probabilities are indicated by color with values below 0.01 set to white to better 
see the relevant trends. Note that for the higher-ordered lobes, especially lobes 4 and 5, there are relatively few 
microphones within the lobe’s spatial extent, thus these figures appear slightly blurred. 

Initial observations of the propagation angle plots (top) indicate that the events responsible for each of the lobes 
have a relatively steady propagation angle albeit with a slight upward trend with increasing microphone position. 
These slight upward trends say that events must propagate at steeper angles to reach the farther microphones. This 
implies that the sources responsible for these events remain relatively constant. This is confirmed by inspection of the 
intercept plots (bottom). 

 

 
 
 

 

a) 

b) c) 
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Figure 5. Normalized histograms for each of the five lobes with (a) lobe 1, Sr = 0.07 (b) lobe 2, Sr = 0.15 (c) 
lobe 3, Sr = 0.24 (d) lobe 4, Sr = 0.31, and (e) lobe 5, Sr = 0.39. Calculated propagation angles are shown in the 
top part of each subfigure and the corresponding apparent lipline intercepts in the bottom. Color bars are 
included to indicate the relative probability of an event satisfying that propagation angle/intercept. 

Qualitatively, these plots show the typical angular directivity of each lobe as well as the spread of the source 
region. These approximate results are summarized in Table 2. It should be noted that these values are visually taken 
from Fig. 5 to identify trends, i.e., there have been no rigorous calculations. Even so, these results compare favorably 
with those predicted by Olaveson et al. [11]. From their ray tracing analysis of steady-state lobe behavior reconstrued 
from hybrid beamforming, they predicted radiation angles of about 140° for lobe 1, 128° for lobe 2, 125° for lobe 3, 
and 120° for lobe 4. Note that due to the resolution of their ray tracing method, they were unable to make predictions 
for lobe 5. Likewise, their predictions for the source location for the lobes exhibited a decreasing behavior that is also 
seen here. The fact that both methods produce comparable results provides some measure of confidence in these 
results, particularly since each method works in a different domain. It is important to note that this method does predict 
the source location for the lobe much closer to the engine nozzle than the hybrid beamforming. The analysis from 
Olaveson et al. suggests a clear division between lobes 1 and 2, with lobe 1 occurring farther downstream than lobe 
1. While this disagreement is being investigated, it is possible that there is a limitation to the methods, or as Leete et 
al. [9] suggested, the mechanism responsible for lobe 1 may be different from the higher-order lobes. 

 
Lobe Estimated radiation angle (°) Estimated source location (Dj) 

1 125-150 6-12 
2 110-140 6-12 
3 100-140 5-10 
4 100-140 3-9 
5 100-140 3-9 

Table 2. Approximate radiation angles and source locations for each spatiospectral lobe as read from Fig. 5. 
These values are not rigorously calculated but serve as an identification of the general trends predicted by 
event-based beamforming. 

To better visualize the connection between propagation angle and lipline intercept, the results are now presented 
as a collection of ray-traced events. For each microphone pair, the mean of the corresponding propagation angle 
distribution is used to ray trace the average event back to the jet lipline. This gives the benefit of being able to visually 
identify trends connected between the two parameters as well as comparisons between different Strouhal numbers. 
Figure 6 shows this ray tracing applied to Strouhal numbers corresponding to the spatiospectral lobes. The ray-traced 
events are shown as different colored lines, one for each lobe, microphones are represented as blue circles and the jet 
lipline is shown as a dashed grey line. From this figure, it becomes more apparent that each Strouhal number (lobe) 
originates from near the same location but at a different radiation angle. The implication is then that multiple 
overlapping sources are producing different Strouhal numbers. Section V.B investigates the differences in event 
timing. 

Leete et al. [28] studied noise radiation properties from a large-eddy simulation (LES) of a highly heated, 
imperfectly expanded jet performed by Liu et al. [29–31] with parameters defined to mimic the T-7A afterburning 
conditions. In their analysis, they determined that the potential core tip extends out to roughly 7.2 Dj. Supposing that 
this value is similarly appropriate for MIL, these results suggest that the events corresponding to lobes 2 and 3 

d) e) 
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(St = 0.15 and 0.24) are occurring right around the potential core tip. Additionally, lobes 4 and 5 (St = 0.31 and 0.39) 
are occurring slightly upstream of the potential core tip. 

  

Figure 6. Ray tracing using the mean of the propagation angle distribution for five Strouhal numbers 
corresponding to the spatiospectral lobes. Included beneath the x-axis in each figure is a bar indicating the 
range of the traced intercept distribution with the mean intercept being represented with an X. Note that while 
each group has a different radiation angle, their apparent lipline source locations have notable overlap. 

B. Time-Frequency Event Characterization 
While the events in the previous section are determined uniquely for each frequency, it is also beneficial to consider 

the events in a time-frequency sense. In the previous section events from only a single frequency are used, but 
inspection of Fig. 4 suggests that the high amplitude events in |𝑊௫|ଶ extend across frequency and not only time. Thus, 
a single-frequency analysis will be unable to capture all the pertinent details.  

The waveform from Fig. 4 exhibits multilobed behavior. The left plot in Fig. 7 shows the autospectral density of 
the full 30-second waveform using a frequency bin size of 10 Hz (ΔSr ≈ 0.005). This spectrum has two notable peaks 
at Strouhal numbers of 0.14 and 0.24 and a prominent dip at 0.20. The peaks indicate that these are the most prominent 
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Strouhal numbers in the signal and correspond to the spatiospectral lobes appearing at that microphone location. Since 
the lobes change in frequency, this microphone has a peak at Sr = 0.14 instead of the 0.15 analyzed in the preceding 
analysis. The next step is to analyze this spectral content in the time domain. The right of Fig. 7 shows |𝑊௫|ଶ for a 30 
ms portion of the waveform. This segment was chosen due to the larger number of events, seen as local maxima. 
Included in the figure are three horizontal lines. The green lines highlight the autospectral peaks while the magenta 
line shows the location of the dip. A preliminary observation shows that many of the events coincide with one of these 
peak frequencies. It is also to be noted that there are many events above the 410 Hz line. These correspond to the other 
minor spectral peaks, and it is expected that a peak in the spectrum correlates to high amplitude events at that Strouhal 
number. Additionally, there are several events seen to appear at the spectral dip. This is not unexpected. While there 
is a local minimum at a Strouhal number of 0.20, this level is still higher than much of the spectrum and would imply 
the presence of an increased amplitude at this frequency. 

A feature of interest in Fig. 7 is the relation between the events at each Strouhal number of interest. Between Fig. 7 
and observations in other time snapshots, events appear to oscillate between the spectral peaks. This behavior is most 
notable around 1.95 s where four events bounce back and forth between the two green lines and then a fifth on the 
magenta line. It is observed that this oscillatory behavior is not periodic, and neither is the spacing between these 
groups of events. It is also noted that whenever there is an event at one of the peak frequencies, there tends to be a 
relative minimum at the other peak. This behavior suggests that the events are not generated simultaneously in time. 
This pattern has some semblance to the modal switching observed by Heeb et al. [21] who used wavelets to study 
modal switching in screech tones of a lab-scale jet. 

 

Figure 7. Autospectral density (left) of the full 30-sec waveform from Fig. 4 demonstrating a double peak and 
the wavelet transform (right) of a 20 ms windows centered at 1.95 s. Horizontal lines identify extrema locations, 
with green representing peaks Strouhal numbers of 0.14 and 0.24 and magenta at the central dip at 0.20. 

It is critical to verify that this temporal frequency-switching behavior is physical. To do this, wavelet power 
spectrum frequency slices for the spectral peaks are compared. First, the top 500 high-amplitude events are defined in 
|𝑊௫(0.14, 𝑡)|ଶ using the same method as in EBBF. Each event is then divided by the corresponding time location in 
|𝑊௫(0.24, 𝑡)|ଶ and then converted to a decibel quantity to amplify the low-value behavior. Mathematically this is 
calculated as 

 
 

𝑅ଵ = 10 𝑙𝑜𝑔ଵ ቆ
|𝑊௫(0.14, 𝑡ଵ)|ଶ

|𝑊௫(0.24, 𝑡ଵ)|ଶቇ (3) 
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where 𝑡ଵ is the time location of the 500 events in |𝑊௫(0.14, 𝑡)|ଶ. The process is then repeated for the Sr = 0.24 slice, 
compared to the Sr = 0.14 slice, and is shown as 
 

 
𝑅ଶ = 10 𝑙𝑜𝑔ଵ ቆ

|𝑊௫(0.24, 𝑡ଶ)|ଶ

|𝑊௫(0.14, 𝑡ଶ)|ଶቇ (4) 

 
where 𝑡ଶ is the time location of the 500 events in |𝑊௫(0.24, 𝑡)|ଶ. These two functions are then plotted as a histogram 
to show the general distribution. 

Figure 8 shows the two histograms over a 20 dB range with the mean value included in the title. The left plot 
shows 𝑅ଵ  and 𝑅ଶ on the right. The mean of 𝑅ଵ is 5.6 dB and the mean of 𝑅ଶ is 9.0 dB. This means that for each 
identified event at Sr = 0.14, the corresponding value at Sr = 0.24 is on average 5.6 dB lower. If it were coincidental 
that an observed maximum at one peak coincided with a null at the other peak, there would be cases where an event 
at one Strouhal number corresponds with an event at the other. Since these two signals have relatively equal time-
averaged amplitude, this would cause the distribution to trend towards a Gaussian with a mean of 0 dB. The nonzero 
means imply some sort of switching phenomenon occurring. 

Statistically, it is possible that these distributions have a mean of zero and the events selected here represent a 
skewed sampling. To test this possibility, a t-test can be used. In brief, the t-test compares two sample distributions 
and determines how likely it is that they come from the same parent distribution. When performed on a single 
distribution, such as 𝑅ଵ, the test shows how likely it is that the true mean is zero and provides a confidence interval 
for the location of the true mean. If the mean confidence interval overlaps with zero, it is not statistically different 
from a distribution with a mean of zero. The results from the t-test provide a 95% confidence interval of 5.1- 6.1 dB 
for 𝑅ଵ and 8.5-9.4 dB for 𝑅ଶ. The t-test reports the probability that the actual mean is zero is on the order of 10ି଼, 
which is so small as to be impossible. Thus, statistically, these distributions provide evidence that events are not 
occurring at the same instant in time. Between visual observations and this statistical analysis, the phenomenon 
qualitatively resembles the mode switching seen in jet screech. The next section investigates this possibility further. 

 

Figure 8. Histograms comparing the wavelet magnitude at 500 events along the Sr = 0.14 and 0.24 wavelet 
power spectrum slices. A value of zero indicates that the two slices have the same magnitude at the event 
location. 

C. Markov Chains 
Markov chains can be used to describe a system that randomly switches between multiple states under the condition 

that the next state only depends on the current one. These types of Markov models were first applied to the analysis 
of letter content in poetry [32]. Other applications have been in communication and information theory [33], the 
response time of shared computational resources [34], gene identification on DNA strands [35], and speech recognition 
[36].  
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A Markov chain describes a sequence of time-evolving states under the condition that the next state only depends 

on the current value of the chain. A simple computational example is Euler’s method: 𝑦(𝑡ାଵ) = 𝑦(𝑡) + Δ𝑡
ௗ௬

ௗ௧
|௧ୀ௧

 

assuming that 
ௗ௬

ௗ௧
 is provided externally as is the case with an initial value problem. In this scheme, the 𝑡ାଵ term is 

calculated only using the information at 𝑡. Thus, the sequence will evolve according to the derivative and the current 
time step. Other schemes, like Runge-Kutta, may use previous time steps for better convergence or derivative 
calculations. These methods are distinctly not Markovian. Most applications of the Markov chain occur outside of 
computational methods. 

The basic Markov analysis is best suited for a system with a finite number of states, such as those in probability 
analysis. One such example is a taxi driver that works between three cities: A, B, and C. Suppose that as the driver 
collects and deposits passengers, they record the letter of the city where they drop off passengers. Perhaps most people 
have local destinations and only a few are traveling outside of their current city. In these cases, the driver is more 
likely to remain in one place for a longer time and their city ‘state sequence’ will be characterized by long strings of 
repeated letters. Now suppose that the only nearby airport is in city A. This will cause more people to travel to city A. 
Now, whenever the driver finds themselves in city B or C, they will be more likely to transition to city A. These 
underlying structures can frequently be conveyed by a probability transition matrix T composed of matrix elements 
𝑇  that indicate the probability of transitioning from state i to j. It is important to note that the transition matrix is row 
normalized, if not the system would not be closed or physical. In the example of the taxi driver, when most people 
stay local, the diagonal elements will become larger. When the only airport is in city A, the elements 𝑇 and 𝑇 will 
also increase. It is important to note that for a truely random process, each matrix element will be identical. 

The remainder of this section details the process of applying the Markov chain to the frequency-switching 
phenomenon observed in section V.B. To generate a transition matrix that models the frequency-switching behavior, 
the first step is to procure a state sequence. Since the events in the wavelet transform appear at the important locations 
of the corresponding spectrum, only these two Strouhal numbers will be considered. The state sequence is then 
generated from the wavelet transform as follows. 

First, the |𝑊௫(0.14, 𝑡)|ଶ Strouhal number slice is extracted from the wavelet transform and divided into six 
thousand 5 ms blocks. This block size was chosen to match the observation that many events have a duration on the 
order of about 15 ms. The Markov chain should have a step size on the order of the modeled events. If the step size is 
too large, the chain will not be able to accurately capture individual events. If the step size is too small, the diagonal 
terms of the transition matrix become large relative to the off-diagonals and the resultant matrix approaches the 
identity. Thus, a step size on the order of the events will capture the underlying event structure while also producing 
a more readable transition matrix. It is to be noted that a smaller step size does produce the same results and is used 
later in this section, but it is difficult to interpret a matrix whose off diagonals are vanishingly small. Once the signal 
has been divided into blocks, the average value of each block is compared to the rms value of the wavelet slice. If the 
block mean is larger than the rms value, then that sample is marked as having an event at Sr = 0.14. This same 
procedure is then repeated for Sr = 0.24. Once both sequences have been created, each sample is compared and a final 
state sequence is created. States are defined as: 𝑆ଵ for an event only at Sr = 0.14, 𝑆ଵ for an event only at Sr = 0.24, 
𝑆 when no events are present and 𝑆ଵଵ when an event is present at both frequencies. The inclusion of 𝑆ଵଵ is to allow 
for those cases when there is an overlap between events as well. 

Once the state sequence is defined, MATLAB’s hmmestimate function is used to fill out the transition matrix. 
These values are presented in Table 3 with labels included for simpler interpretation. The table can be read by starting 
at any of the four states in the left-hand column. Then, the probability of transitioning to any of the other states is 
identified by finding the column corresponding to the desired state. From this matrix, there are a few observations to 
be made. Firstly, the relative duration of a state is related to the probability of a state transitioning to itself. This 
indicates that events at Sr = 0.14 are generally longer than those at Sr = 0.24 which in turn are larger than the overlap 
between the two. Additionally, it is observed that gaps between states tend to be larger than each state individually.  

It is also beneficial to consider the long-term, or steady-state solution predicted by the transition matrix. This is 
calculated as lim

→ஶ
𝑇. In words, it is the probability of transitioning from one state to another after n time steps. As n 

goes to infinity, each row becomes identical and the result is a description of the overall state content of the system 
[37]. From the bottom row of Table 3, it is observed that a majority of the signal is dominated by an absence of events 
at these Strouhal numbers. More important though is the result that events are six times more likely to occur at either 
of the peak Strouhal numbers than at both simultaneously. This confirms the statistical analysis presented in Fig. 8 
that it is more likely for events to occur at different instances in time. Combining this with the observation from Fig. 6 
that high-amplitude spectral events have different directivities, the result is a rapid directivity switching occurring on 
the time scale of the average gap duration between events. This seems then to suggest that the turbulent events 
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corresponding to the spatiospectral lobes are occurring at different times and that their superposition is an effect of 
the usual statistically averaged methods such as holography and beamforming. 

It is important to point out that this same process has been applied to Gaussian white noise shaped to have the 
same spectral shape as in Fig. 7. The results are similar to those seen in Table 3. This suggests that the distributions 
of events along either wavelet slice are independent of each other and follow a random Gaussian distribution. 

 
From\To 𝑺𝟎𝟎: Neither 𝑺𝟎𝟏: 0.24 𝑺𝟏𝟎: 0.14 𝑺𝟏𝟏: Both 

𝑺𝟎𝟎: Neither 0.720 0.148 0.105 0.027 
𝑺𝟎𝟏: 0.24 0.490 0.341 0.101 0.069 
𝑺𝟏𝟎: 0.14 0.393 0.080 0.422 0.105 
𝑺𝟏𝟏: Both 0.257 0.174 0.363 0.206 

Steady State 0.597 0.170 0.175 0.058 

Table 3. Transition matrix corresponding to the event state sequence extracted from the wavelet transform 
presented in Fig. 7. Each element represents the probability of making a transition from the row state to the 
column state at each time step. In addition to the matrix elements, the steady-state solution is also included 
which represents the long-term state content of the system. 

In addition to the transition matrix discussed above, the Markov state sequence is now used to perform an event-
based spectral decomposition. To begin, a new state sequence is generated using the same procedure outlined above 
with the exception that instead of dividing the signal into blocks, each sample of the waveform is used. Using this new 
state sequence as a guide, the spectrum for each event is extracted from |𝑊௫|ଶ. The average spectrum corresponding 
to a specific state is then calculated as: 

 
𝐺௫௫ =

1

𝑁
|𝑊௫(𝑆𝑟, 𝑡)|ଶ

ே

ୀଵ

 (5) 

 
where N is the number of times the state appears in the sequence and subscript i indicates the time location 
corresponding to that state. In addition to each event spectrum, the average spectrum is included. These curves are 
plotted in Fig. 9 along with the time-averaged autospectral density as shown in Fig. 7. It is first seen that the mean 
wavelet spectrum closely matches the Fourier spectrum. There is, however, some notable smoothing caused by the 
wavelet transform. This is to be expected since the Morlet wavelet has a broader spectral response than the complex 
exponential used in the Fourier transform. It would be expected that using a different wavelet would similarly impact 
the shape of the averaged spectrum. From Fig. 9 it is observed that when events occur at only a single frequency, there 
is a reduction of energy at the other frequency. This again supports the statistical analysis from Fig. 8: events at one 
Strouhal number are occurring at nulls relative to the other. This has the effect of showing that individual peaks in the 
spectrum are caused by localized events at the corresponding Strouhal number. 
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Figure 9. Event-based spectral decomposition using events from the wavelet transform and state assignment 
from the Markov chain. 

VI. Conclusion 
This paper investigated the temporal characteristics of the spatiospectral lobes using a joint time-frequency domain 

approach. The event-based beamforming algorithm developed in a previous crackle study was implemented for the T-
7A. The wavelet transform was then used to extract spectral information as a function of time. By using the wavelet 
transform in conjunction with the event-based beamforming, spectral events corresponding to the spatiospectral lobe 
Strouhal numbers were ray traced from the microphone array to the jet lipline. It was found that individual lobes 
appear to the radiating from similar source locations but at different directivities. Using the wavelet transform, the 
spatiotemporal structure was characterized for a single microphone signal. This signal exhibits a dual-peaked 
spectrum. Visual and statistical analysis suggested a spectral switching behavior between the two prominent Strouhal 
numbers similar to the mode switching of lab-scale jet screech. A Markov-style analysis was then used to model the 
distribution of events along the two Strouhal numbers. It was found that while events at one spectral peak do not 
exclude events at the other, the distributions favor spectral events separated in time. Since the event-based 
beamforming predicts different directivities for different Strouhal numbers, it appears that the sound radiated from the 
jet has rapid and discrete directivity changes. 

Future investigation will include exploring the benefits of using different wavelets in the analysis. The Markov-
style analysis will also be applied to the entire microphone array to further characterize the temporal behavior of the 
other spatiospectral lobes. From these results, the event-based spectral decomposition will be applied to the 
spatiospectral plots to determine the broader behavior of the individual lobes. 
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