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On the low-frequency acoustic center

Samuel D. Bellowsa) and Timothy W. Leishman
Acoustics Research Group, Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA

ABSTRACT:
Acousticians typically consider the acoustic center of a source to be the point from which sound waves appear to

diverge spherically. Many applications require the center’s accurate determination, but its deeper significance and

means of assessment have often remained ambiguous. This work revisits the acoustic center and shows how a low-

frequency sound radiator with omnidirectional far-field directivity has a center defined by its dipole-to-monopole

moment ratio. This definition yields conclusive results for several theoretical sources and highlights the limitations

of characterizing the acoustic center only in terms of an equivalent point source.
VC 2023 Acoustical Society of America. https://doi.org/10.1121/10.0019750
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I. INTRODUCTION

The acoustic source center has been of considerable

interest to researchers and practitioners for decades.

Standards now describe it as “the position of the virtual

point source from which sound pressure varies inversely as

distance”1 and “the point from which … spherical wave-

fronts … appear to diverge.”2 These concepts apply to trans-

ducer calibrations,3–5 sound attenuation,6 assessments of

anechoic chamber properties,7,8 source placements for direc-

tivity measurements,9–12 and many other applications in

acoustics. The primary focus of the present work is the accu-

rate placement of the low-frequency acoustic center.

Some early treatments of the acoustic center considered

a source’s far-field directional characteristics.13–15 However,

Trott asserted that a more specific definition is the “locus of

the equivalent point source that yields the same far-field

pressure in magnitude and phase in a specified direction”

rather than “an arbitrary center of rotation for determining

the farfield directional response in terms of sound pressure

magnitude.”16 Jacobsen et al. later noted that most centering

definitions seem to be grounded in the “idea of replacing a

real, extended source by an equivalent point source.”17

Nevertheless, they argued that the positioning of this equiva-

lent point source is “deceptively simple” since different

approaches yield inconsistent results. For example, defini-

tions of the acoustic center based on matching 1=r
decays,18–20 phase shifts,16,21 group delays,3 or wavefronts4

produce different acoustic centers for a radially oscillating

sphere or a theoretical point source on a sphere—even when

the various methods apply to identical sources.17

Vanderkooy justified using an equivalent point source

by exploiting the location where one takes a multipole

expansion of the Kirchhoff–Helmholtz integral equation

(KHIE) to remove the dipole moment.22 If the higher-order

(e.g., quadrupole) terms are negligible, only the monopole

moment subsequently remains. This concept leads to a

global characterization of the sound field rather than an

attempted matching of the amplitude decay, phase, or simi-

lar properties in specified directions. While Vanderkooy’s

approach thus provided a unique acoustic center, it required

knowledge of the source boundary pressure and particle

velocity, which are generally unknown.

Noting that “theoretical results are difficult to work

out,” Vanderkooy assumed far-field omnidirectional radia-

tion to estimate the acoustic center based on the pressure

difference between two equally distant points from the coor-

dinate origin.22 He did not directly apply the KHIE to deter-

mine acoustic centers but showed, via simulations, good

agreement with the underlying centering concepts, including

constant contours of 1=r decay about the center and constant

wavefronts. His results also improved near-field agreement

with far-field polar patterns whenever a source appropriately

aligned with the acoustic center.23 Near-field measurements

of a small loudspeaker verified anticipated quasi-

omnidirectional behavior when it rotated about the esti-

mated acoustic center.22 Thus, contrary to Trott’s assertion,

Vanderkooy’s results suggested that the point of rotation is

not arbitrary; its optimal position coincides with the location

of the equivalent point source.

Later research improved upon the two-point estimation

method and applied the theory to microphones, a point

source on a rigid sphere, and measurements of a KEMAR

(Knowles Electronic Manikin for Acoustic Research) head-

and-torso simulator.24,25 These efforts showed that the con-

cepts are consequential but applicable only to sources whose

radiation patterns become omnidirectional in the far field.

They are not particularly beneficial for dipolar, cardioid-

like, or more complex patterns.22

Aarts and Janssen derived the low-frequency acoustic

centers of radially and axially oscillating caps on a rigid

sphere using Vanderkooy’s two-point estimation method.26a)Electronic mail: samuel.bellows11@gmail.com
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Their general formula is a closed-form solution based on

Legendre polynomial pressure expansion coefficients,

applying to axisymmetric spherical sources with far-field

omnidirectional radiation patterns. Their results provided

insights into the effects of loudspeaker driver sizes on the

acoustic center. However, more general radiation cases

remained unresolved.

Because of the importance of acoustic centers for direc-

tivity measurements, other authors have attempted to exploit

pressure field spherical harmonic expansions to determine

their locations.9–12 Such expansions allow sound field repre-

sentations of arbitrary sources instead of only axisymmetric

spherical sources.27 However, rather than developing

closed-form solutions similar to Aarts and Janssen’s solu-

tions, the authors minimized objective functions based on

changing spherical harmonic expansion origins to predict

the acoustic centers.9,11 Other efforts incorporated phase dif-

ferences.9,12 Because a close relationship exists between the

first few multipole terms and spherical harmonic expansions

at low frequencies,27–29 the approaches that minimize

higher-order expansion terms9,11 are somewhat analogous to

Vanderkooy’s approach of eliminating the dipole moment.

The advantage of these recent techniques is that they

deduce an acoustic center directly from data measured by a

surrounding spherical microphone array. Thus, the methods

apply to measured sources with general radiation patterns.

Even so, the approaches come at the cost of computationally

expensive optimization procedures that have difficulties center-

ing sources at higher frequencies when the far-field omnidirec-

tional radiation assumption breaks down.11 In some cases, the

phase-based approaches may extend the usable bandwidth.12

Despite the importance and applicability of past work

in acoustic centering, further conceptual development for

general source radiation remains necessary. This work

accordingly revisits and expands upon Vanderkooy’s discus-

sions and demonstrates that sound radiators with primarily

omnidirectional far-feld directivity patterns have low-

frequency acoustic centers defined by their dipole-to-mono-

pole moment ratios. Additional application of the KHIE to

the sphere reveals that these moments follow from the

spherical harmonic expansion coefficients of the surface

particle velocities. A proposed centering method yields

closed-form solutions for the low-frequency acoustic centers

of several theoretical sources. It also produces center-of-

mass–like formulas and provides bounds on acoustic center

locations relative to source geometries. The results are gen-

eral enough to handle axisymmetric and nonaxisymmetric

radiation.

After exploring the theoretical concept of the low-

frequency acoustic center and providing several clarifying

examples, the following sections generalize low-frequency

acoustic centering to arbitrarily shaped sources via spherical

harmonic expansion coefficients of radiated pressure fields

and multipole moments. The generalization yields the

acoustic center through a closed-form solution rather than

an optimization procedure. The approach is thus applicable

to measurements made by surrounding spherical

microphone arrays, which are becoming increasingly ubiq-

uitous for measuring sound radiation from arbitrarily-shaped

sources. Experimental results based on a KEMAR head and

torso simulator (HATS) validate the proposed technique and

show it to be in excellent agreement with the optimization

procedures developed in previous works. The results

enhance theoretical understanding and will improve the

practical applications of acoustic centering.

II. THEORY OF THE LOW-FREQUENCY ACOUSTIC
CENTER

Consider an arbitrary acoustic source radiating into free

space as suggested by Fig. 1. The KHIE with no volume sour-

ces present yields the complex pressure amplitude on the exte-

rior domain as a function of the normal particle velocity unðrsÞ
and surface pressure pðrsÞ on the boundary S:30

pðrÞ ¼
ð ð

S

iz0kunðrsÞGðr; rsÞ þ
@

@ns
Gðr; rsÞpðrsÞ

� �
dS; (1)

where

Gðr; rsÞ ¼
e�ikjr�rsj

4pjr� rsj
(2)

is the free space Green’s function, z0 ¼ q0c is the character-

istic specific acoustic impedance of the medium, and k is the

wavenumber. This convention assumes the normal direction

is into the domain and assumes eixt time dependence.

If the source falls within a notional observation sphere

of radius a, indicated by the dashed circle in Fig. 1, a

Taylor’s series expansion of the free-space Green’s function

about the point r00 sets up a convergent series of multipole

moments when ka� 1.30 Considering only the first two

terms of the expansion, the monopole and dipole terms, the

pressure becomes

pðrÞ �MGðr;r00Þ þ ikGðr;r00Þ 1� i

kR

� �
Dðr00Þ � R̂; (3)

FIG. 1. (Color online) Diagram of a radiating source with position and

translation vectors.
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where M is the monopole moment

M ¼ iz0k

ð ð
S

unðrsÞdS; (4)

D is the dipole moment

Dðr00Þ ¼
ð ð

S

iz0kðrs � r00ÞunðrsÞ þ n̂spðrsÞ
� �

dS; (5)

R ¼ r� r00, and R̂ is the unit vector in the direction of R.

While the monopole moment is invariant to the point about

which one takes the Taylor’s series expansion, the dipole

and higher-order moments are not.

To replace an extended source by a single point source,

Vanderkooy allowed the expansion origin to vary.22 He

defined the acoustic center rc as the expansion origin (O0 in

Fig. 1) about which the dipole moment vanishes, i.e.,

DðrcÞ ¼ 0: (6)

When r00 ¼ rc, Eq. (3) then reduces to the simple form

pðrÞ � MGðr; rcÞ: (7)

This equation describes the field of a point source located at

the acoustic center rc whose strength is proportional to

the volume velocity of the original source; it is analogous to

Eq. (1) of Jacobsen et al.17 Thus, at low frequencies, it is

possible to replace a “real, extended source by an equivalent

point source,”17 simply by exploiting the point of KHIE

multipole expansion.

With some deviations to Vandkerooy’s solution for rc,

one may express the acoustic center in terms of the mono-

pole and dipole moments. First, note that Eq. (5) may be

expressed as

Dðr00Þ ¼
ð ð

S

iz0krsunðrsÞ þ n̂spðrsÞ½ �dS

� r00iz0k

ð ð
S

unðrsÞ ¼ Dð0Þ � r00M; (8)

where

Dð0Þ ¼
ð ð

S

iz0krsunðrsÞ þ n̂spðrsÞ½ �dS (9)

is the dipole moment with the origin as the expansion point.

This equation describes the relationship between the dipole

moment expanded at the origin and the dipole moment

expanded at r00. Moving the expansion origin to r00 decreases

the dipole moment by r00M. Consequently, a poor expansion

origin choice can artificially inflate the magnitude of the

dipole moment. In contrast, choosing the expansion origin

as the acoustic center minimizes higher-order contributions

and yields the simplest representation of the pressure field.

Substituting Eq. (6) into Eq. (8) and solving for the acoustic

center yields

rc ¼
Dð0Þ

M
: (10)

Thus, one may define the low-frequency acoustic center

simply as the dipole-to-monopole moment ratio.

This formula is effective for sources whose far-field radia-

tion patterns are approximately omnidirectional, i.e., such that

Eq. (7) yields an adequate representation of the far-field pres-

sure. However, it does not restrict near-field directional pat-

terns. Because the derivation requires DðrcÞ ¼ 0, it cannot

apply to sources that produce dipole, cardioid, or more complex

far-field patterns. Nevertheless, far-field omnidirectional radia-

tion is common to many sources at low frequencies, including

loudspeakers,31–33 speech,34–36 and some musical instru-

ments.37–40 Reciprocity extends the approach to sound receivers

with low-frequency omnidirectional reception, including certain

microphones31,41,42 and the human head.25,43–45

While one typically considers an acoustic center to be a

real-valued quantity, Eq. (10) allows the possibility of a

complex value in some cases. The following sections touch

on this characteristic, which previous studies overlooked,

but a complete understanding of its significance and ramifi-

cations requires additional research beyond the scope of the

present work.

III. APPLICATION TO SPHERICAL SOURCE
CONFIGURATIONS

Although Eq. (10) provides a straightforward method to

determine the acoustic center, calculating Dð0Þ and M
requires surface integrals involving the normal particle

velocity and pressure, which are often unknown. This diffi-

culty led Vanderkooy to adopt his fitting procedure for mea-

sured pressure values rather than evaluating the integrals. In

their work on spheres with oscillating caps, Aarts and

Janssen did not directly evaluate the surface integrals either.

However, this section shows that sources with spherical

geometries have spherical harmonic expansion coefficients

for their normal surface velocity and matched particle veloc-

ity distributions that relate closely to the monopole and

dipole moments. They consequently allow low-frequency

acoustic centering via closed-form solutions.

If the surface S is that of a sphere of radius a, Eq. (4)

becomes

M ¼ iz0ka2

ð2p

0

ðp

0

unðh;/Þ sin hdhd/ (11)

and Eq. (9) becomes

Dð0Þ ¼ a2

ð2p

0

ðp

0

r̂s iz0kaunðh;/Þ þ pðh;/Þ½ �sinhdhd/; (12)

where r̂s ¼ rs=a is the outward-pointing unit normal vector.

Spherical harmonic expansions applied to the normal parti-

cle velocity and pressure further simplify these integrals.

The normalized spherical harmonics
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Ym
n ðh;/Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

4p
ðn� mÞ!
ðnþ mÞ!

s
Pm

n ðcos hÞeim/ (13)

of degree n and order m constitute an orthogonal basis on

the sphere.46 Here, Pm
n are the associated Legendre func-

tions, which include the Condon–Shortley phase. Because

the following derivation and subsequent applications

employ spherical harmonics of degrees n¼ 0 and n¼ 1

extensively, Table I includes their definitions for

convenience.

The normal particle velocity at the spherical surface has

the expansion

unðh;/Þ ¼
X1
n¼0

Xn

m¼�n

Um
n Ym

n ðh;/Þ; (14)

where

Um
n ¼

ð2p

0

ðp

0

unðh;/Þ Ym
n ðh;/Þ

� ��
sin hdhd/ (15)

and � denotes complex conjugation. To find the monopole

moment, one may substitute Eq. (14) into Eq. (11) to pro-

duce the result

M ¼ iz0ka2
X1
n¼0

Xn

m¼�n

Um
n

ð2p

0

ðp

0

Ym
n ðh;/Þ sin hdhd/: (16)

With the integrand factor 1 ¼
ffiffiffiffiffiffi
4p
p
½Y0

0ðh;/Þ�
�

(see Table I),

orthogonality conditions yieldð2p

0

ðp

0

Ym
n ðh;/Þ sin hdhd/ ¼

ffiffiffiffiffiffi
4p
p

dm;0
n;0 ; (17)

where dm;m0

n;n0 is the Kronecker delta, such that

M ¼ iz0ka2
ffiffiffiffiffiffi
4p
p

U0
0: (18)

The dipole moment requires the surface pressure distri-

bution in addition to the velocity distribution. Applying

Euler’s equation to the exterior solution of the Helmholtz

equation (Ref. 27) yields

pðh;/Þ ¼ �iz0

X1
n¼0

Xn

m¼�n

Um
n

hð2Þn ðkaÞ
h
ð2Þ0
n ðkaÞ

Ym
n ðh;/Þ; (19)

where hð2Þn ðkaÞ are the spherical Hankel functions of the sec-

ond kind. Substituting Eqs. (19) and (14) into Eq. (12) then

produces the dipole moment

Dð0Þ ¼ iz0a2
X1
n¼0

Xn

m¼�n

Um
n ka� hð2Þn ðkaÞ

h
ð2Þ0
n ðkaÞ

" #

�
ð2p

0

ðp

0

r̂sY
m
n ðh;/Þ sin hdhd/: (20)

From Table I,

r̂s¼

xs=a

ys=a

zs=a

2
664

3
775¼

sinhcos/

sinhsin/

cosh

2
664

3
775

¼
ffiffiffiffiffiffi
2p
3

r Y�1
1 ðh;/Þ�Y1

1ðh;/Þ

iðY�1
1 ðh;/ÞþY1

1ðh;/ÞÞffiffiffi
2
p

Y0
1ðh;/Þ

2
664

3
775
�

: (21)

Consequently, the orthogonalities of the respective spherical

harmonics simplify the integral to

ð2p

0

ðp

0

r̂sY
m
n ðh;/Þ sinhdhd/¼

ffiffiffiffiffiffi
2p
3

r dm;�1
n;1 � dm;1

n;1

�iðdm;�1
n;1 þ dm;1

n;1 Þffiffiffi
2
p

dm;0
n;1

2
6664

3
7775:

(22)

Substituting this result into Eq. (20) then gives the result

Dð0Þ ¼ iz0a2

ffiffiffiffiffiffi
2p
3

r
ka� h

ð2Þ
1 ðkaÞ

h
ð2Þ0
1 ðkaÞ

" # U�1
1 � U1

1

�iðU�1
1 þ U1

1Þffiffiffi
2
p

U0
1

2
64

3
75:
(23)

While Eq. (23) is valid for all frequencies, the small-

argument approximations46

hð2Þn ðkaÞ � i
ð2nÞ!
2nn!

1

ðkaÞnþ1
; ka� 1 (24)

and

hð2Þ0n ðkaÞ � �iðnþ 1Þ ð2nÞ!
2nn!

1

ðkaÞnþ2
; ka� 1 (25)

provide further simplification at low frequencies. The ratio

of the spherical Hankel function and its derivative simplifies

to

hð2Þn ðkaÞ
h
ð2Þ0
n ðkaÞ

� � ka

ðnþ 1Þ ; ka� 1; (26)

such that the dipole moment becomes

TABLE I. Definitions of four normalized spherical harmonics commonly

used in this work.

Y0
0ðh;/Þ

ffiffiffiffiffiffi
1

4p

r
Y�1

1 ðh;/Þ
ffiffiffiffiffiffi
3

8p

r
sin he�i/

Y0
1ðh;/Þ

ffiffiffiffiffiffi
3

4p

r
cos h

Y1
1ðh;/Þ �

ffiffiffiffiffiffi
3

8p

r
sin hei/
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Dð0Þ ¼ iz0

3

2
ka3

ffiffiffiffiffiffi
2p
3

r U�1
1 � U1

1

�iðU�1
1 þ U1

1Þffiffiffi
2
p

U0
1

2
64

3
75: (27)

Finally, the substitution of Eqs. (18) and (27) into Eq.

(10) yields the acoustic center

rc ¼
a

2U0
0

ffiffiffi
3

2

r U�1
1 � U1

1

�iðU�1
1 þ U1

1Þffiffiffi
2
p

U0
1

2
64

3
75: (28)

This result is significant because it presents a closed-form

solution for the low-frequency acoustic center of a generally

vibrating spherical source, and it is straightforwardly depen-

dent on only a few particle velocity expansion coefficients.

For axisymmetric spherical sources, Um
n ¼ 0 when

m 6¼ 0, so it is common to express the normal surface veloc-

ities in terms of Legendre polynomials for the m¼ 0 terms:

unðhÞ ¼
X1
n¼0

VnPnðcos hÞ: (29)

The expansion coefficients Vn relate to the spherical har-

monics expansion coefficients via the addition46

Um
n ¼ Vn

4p
ð2nþ 1Þ Ym

n ðh0;/0Þ
� ��

; (30)

where ðh0;/0Þ is the configuration rotation angle. With no

rotation, the source remains axisymmetric about ẑ, such that

ðh0;/0Þ ¼ ð0; 0Þ; U0
0 ¼

ffiffiffiffiffiffi
4p
p

V0, and U0
1 ¼

ffiffiffiffiffiffiffiffiffiffi
4p=3

p
V1 (see

Table I). The expression for the acoustic center then simpli-

fies to

rc ¼ a
V1

2V0

ẑ; (31)

which concurs with Eq. (40) of Ref. 26.

IV. EXAMPLES OF SPHERICAL SOURCE
CONFIGURATIONS

A radially oscillating sphere,30 a point source on a

sphere,28 a radially vibrating cap on a sphere,28,31 and an

axially vibrating cap on a sphere31,47 all represent sources

with known expansion coefficients. This section explores

the low-frequency acoustic centers of these sources and

those of other interesting configurations involving more

than one point source on a rigid sphere.

A. Radially oscillating sphere

A radially oscillating sphere of radius a is a prototypi-

cal omnidirectional radiator with simple symmetry and

uniform normal surface velocity unðh;/Þ ¼ u0. Its velocity

expansion coefficients are all zero except U0
0 ¼ u0

ffiffiffiffiffiffi
4p
p

.

Equation (28) thus requires that rc ¼ 0, meaning the low-

frequency acoustic center falls at the sphere’s center, as

suggested by its symmetry. When ka� 1, the sphere

behaves as a simple source at the geometric origin.30

B. One point source on a rigid sphere

The radiation from a point source on a rigid sphere is an

important case because it yields the Green’s function for the

associated geometry.27 It also illustrates basic diffraction

effects48 and has applications in areas such as the simple

modeling of head-related transfer functions.24,25,49

The velocity expansion coefficients for a point source

of strength Qs and position ðhs;/sÞ on the sphere are27

Um
n ¼

Qs

a2
Ym

n ðhs;/sÞ
� ��

: (32)

The monopole moment [Eq. (18)] is then

M ¼ iz0kQs (33)

and the dipole moment [see Eqs. (21) and (27)] is

Dð0Þ ¼ iz0

3

2
kaQsr̂s; (34)

where r̂s is the unit vector in the direction of ðhs;/sÞ (compare

Ref. 27, p. 216). The acoustic center follows from Eq. (10) as

rc ¼
3

2
ar̂s: (35)

Vanderkooy used a numerical example of his method to

estimate the low-frequency acoustic center of a point source

on the surface of a 170 mm diameter rigid sphere. The calcu-

lated center fell at 42.4 mm,25 which has an implicit value of

rc ¼ 1:50a, consistent with Eq. (35).

Figure 2 shows the concurrence of this center with

results presented by Jacobsen et al.17 Their work evaluated

three methods for determining the acoustic center of a point

source on a rigid sphere. The solid black curve represents

the acoustic center based on matching the amplitude of an

equivalent point source [Eq. (18) of Ref. 17], the dashed red

curve represents the acoustic center based on a reciprocal

1=r decay fit [Eq. (19) of Ref. 17], and the dot-dash blue

curve represents the acoustic center based on a phase

approach [Eq. (21) of Ref. 17]. In all cases, the far-field

observation distance is r¼ 1 km.

In the low-frequency limit, amplitude matching

approaches converge to the center given by Eq. (35), repre-

sented by the dotted green line. Additionally, both methods

converge to the same value at all frequencies for the far-

field observation distance. As discussed in Jacobsen et al.,17

the phase method places the acoustic center behind the

source. However, modifying the phase method by multiply-

ing the numerator and denominator in Jacobsen et al.17 [Eq.

(21)] by a factor of –1 restricted the inverse tangent to only

positive phase values. The resultant acoustic center appears

as the purple curve with diamond markers; it does converge

to the low-frequency limit. Additionally, this modified result
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more closely follows the trends of the other two methods

compared to the unmodified version. Because the formula-

tions of the present work apply only to low-frequency radia-

tion, deviations in the acoustic center’s position occur for

larger ka. However, the phase-based method does not con-

cur with the two amplitude-matching methods in this range,

highlighting the ambiguity in replacing a distributed source

with an equivalent point source at higher frequencies.17

Figure 3(a) depicts the pressure field surrounding a

point source on a rigid sphere for ka¼ 0.01. The figure

includes contours in 3 dB increments to illustrate the con-

stant 1=r decay. The green dot represents the acoustic cen-

ter, and the green dashed circle represents a sphere of radius

5a. The latter aligns well with the contours of constant 1=r
decay, which is a necessary validation of the acoustic cen-

ter’s location. For this example, the near-field pattern is

directional, and the acoustic center lies away from the

sphere. However, with sufficient distance, the directivity

converges to an omnidirectional far-field pattern. Figure

3(b) depicts the pressure field produced by an equivalent

point source in free space. The far-field agreement between

both fields highlights the method’s effectiveness for low

frequencies.

C. Radially oscillating cap on a rigid sphere

The radially oscillating cap on a rigid sphere28 has

helped researchers better understand the radiation of speech,

loudspeakers, horns, and other sources.31,32,36,50,51 It also

bridges the two examples in Secs. IV A and IV B. In the limit-

ing case that the cap angle approaches 0 (hc to 0), the arrange-

ment behaves as a point source on the sphere. However,

when hc ! p, it behaves as a radially oscillating sphere.

For a cap oriented toward the zenith, unðh;/Þ ¼ u0

for 0 < h < hc and zero otherwise. The first two Legendre

polynomial series expansion coefficients are then28,31

V0 ¼ u0ð1� cos hcÞ=2 and V1 ¼ 3u0ð1� cos2hcÞ=4, which

yield the acoustic center rcðhcÞ ¼ 3að1þ cos hcÞẑ=4 via Eq.

(31), in agreement with the result of Aarts and Janssen.26

This function appropriately interpolates the acoustic center

between rc ¼ 3a=2 and rc¼ 0, the limiting hc ! 0 and

hc ! p cases, respectively.

Figure 4(a) depicts the acoustic pressure field around the

source configuration for ka¼ 0.01 and hc ¼ arccosð1=3Þ, so

that the acoustic center lies at rc¼ a. Figure 4(b) shows the

pressure field produced by an equivalent point source in free

space. Although there is significant diffraction around the

sphere, the pressure produced by the equivalent point source at

the acoustic center shows good far-field agreement.

D. Axially oscillating cap on a rigid sphere

An axially oscillating cap on a rigid sphere is another

instructive example. A very small cap angle again produces

the pressure field of a point source on a sphere, but a large

cap angle hc ! p forms a transversely oscillating sphere

with a significant dipole moment.30 Attempting to replace a

dipole field with a monopole field is equivocal, so one may

anticipate that Eq. (28) diverges as hc ! p and M! 0. This

condition highlights a potential weakness of defining the

acoustic center only in terms of the locus of an equivalent

point source.

The normal surface velocity of an axially vibrating cap is

unðh;/Þ ¼ u0 cos h for 0 < h < hc and zero otherwise. The

first two Legendre polynomial series expansion coefficients

are31,47 V0 ¼ u0ð1� cos2hcÞ=4 and V1 ¼ u0ð1� cos3hcÞ=2,

which give the acoustic center rcðhcÞ ¼ að1þ cos hc þ
cos h2

cÞẑ=ð1þ cos hcÞ via Eq. (35), in agreement with the

result of Aarts and Janssen.26

Figure 5 plots the acoustic center as a function of the cap

angle from the zenith for the radially and axially vibrating

caps. The acoustic center of the radially vibrating cap, shown

as the blue dashed line, interpolates between the two limiting

FIG. 2. (Color online) The acoustic center of a point source on a sphere

over dimensionless ka, where a is the sphere’s radius.

FIG. 3. (Color online) Sound pressure field for ka¼ 0.01 around (a) a point

source on a rigid sphere and (b) its equivalent point source.
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values, shown as horizontal black dashed lines, of rc ¼ 3a=2

and rc¼ 0. As for the radially vibrating cap, when hc ! 0,

the acoustic center of the axially vibrating cap, shown as a

solid green line, becomes that of a point source on the sphere.

However, as hc ! p; M! 0 [see Eqs. (4) and (11)], and

rc !1 [see Eq. (10)]. The vertical dotted red line marks the

threshold up to which unðh;/Þ 	 0; in the range p=2 < h 

hc; unðh;/Þ takes on a 180� phase shift. Consequently, as hc

increases beyond p=2, the monopole moment progressively

diminishes and the acoustic center moves significantly farther

from the sphere’s geometric center.

Figure 6(a) depicts the pressure field around the sphere

for ka¼ 0.01 and hc ¼ 0:7p ¼ 126�. The plot shows

considerable near-field interference, diffraction, and the

acoustic center at rc ¼ 1:84a. Figure 6(b) shows the pressure

field produced by an equivalent point source in free space.

Despite the very directional near-field pattern in Fig. 6(a), as

the observation distance increases to the far field, the radi-

ated fields agree and are omnidirectional.

E. Two point sources on a rigid sphere

The concept of substituting a point source for a real

source is only valid in the far field when the directivity pat-

tern is omnidirectional. The radiation from two point sour-

ces at opposing poles of a rigid sphere helps clarify the

difficulty introduced by a dipole moment. As in Sec. IV B,

the first source at ðhs;/sÞ ¼ ð0; 0Þ has strength Qs. The sec-

ond source at ðhs;/sÞ ¼ ðp; 0Þ has strength cQs, where c
may vary as a real number. Through superposition, the

velocity expansion coefficients become

Um
n ¼

Qs

a2
ð Ym

n ð0; 0Þ
� �� þ c Ym

n ðp; 0Þ
� ��Þ: (36)

However, because the source is axisymmetric, all m 6¼ 0

terms vanish. Equation (13) and the relation P0
nð�1Þ

¼ ð�1Þn then lead to the result

U0
n ¼

Qs

a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

4p

r
1þ cð�1Þn
� �

; (37)

such that

U0
0 ¼

Qs

a2

ffiffiffiffiffiffi
1

4p

r
ð1þ cÞ (38)

FIG. 4. (Color online) Sound pressure field for ka¼ 0.01 around (a) a radi-

ally oscillating cap with cap angle hc ¼ arccosð1=3Þ on a rigid sphere and

(b) its equivalent point source.

FIG. 5. (Color online) Low-frequency acoustic centers of a radially and axi-

ally oscillating cap on a sphere as a function of cap angle hc.

FIG. 6. (Color online) Sound pressure field for ka¼ 0.01 around (a) an axi-

ally oscillating cap with cap angle hc ¼ 0:7p on a rigid sphere and (b) its

equivalent point source.
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and

U0
1 ¼

Qs

a2

ffiffiffiffiffiffi
3

4p

r
ð1� cÞ: (39)

The acoustic center follows from Eqs. (30) and (31) as

rc ¼
3

2
a

1� c
1þ c

� �
ẑ: (40)

This expression also follows from Eqs. (33) and (34),

since by superposition, the net monopole moment is

M ¼ iz0kQsð1þ cÞ and the net dipole moment is

D ¼ iz0kQs3=2að1� cÞẑ.

Figure 7 plots the acoustic center as a function of the

source strength ratio c and shows several significant trends.

First, when the second source’s strength is much larger than the

first (jcj � 1), the acoustic center converges to a single point at

ðh0;/0Þ ¼ ðp; 0Þ, such that rc ¼ �3a=2ẑ. Second, when the

second source’s strength is zero (c¼ 0), the acoustic center is

that of a single point source located at ðh0;/0Þ ¼ ð0; 0Þ, such

that rc ¼ 3a=2ẑ. Third, the acoustic center falls at the center of

the sphere when the second source’s strength equals the first

(c¼ 1), as one might anticipate from symmetry. Fourth, when

the two amplitudes are equal but the polarities are opposite

(c ¼ �1), the acoustic center has an infinite discontinuity to

�1 as c!�1� andþ1 as c!�1þ.

The potentially large acoustic center radii for c! 1 in

Fig. 7 do not necessarily suggest a nonphysical situation,

provided that the source remains nearly omnidirectional in

the far field. Figure 8 depicts the pressure field produced by

the two point sources for ka¼ 0.01 and c ¼ �0:8. The plot

ranges over 240a in both the x- and y-directions. As in Fig.

3, the contours of equal 1=r decay appear in 3 dB incre-

ments; however, near the source configuration, which

appears as a small black dot, the contours are missing for

better visualization.

The cardioid-like equal-level contours in the near field

suggest a strong dipole component, which moves the acous-

tic center to rc ¼ 13:5a, a significant distance from the

sphere. Nevertheless, as suggested by the circular contours

in the far field, this position coincides with the origin of

spherical wavefronts of constant amplitude. The pattern evo-

lution from the near field to the far field apparently requires

about 50a of propagation. In fact, because ka¼ 0.01, the

acoustic far field lies beyond 100a.

F. Multiple point sources on a rigid sphere and related
extensions

Equations (33) and (34) further generalize the result in Eq.

(40) to N point sources at arbitrary locations on a sphere. From

M ¼ iz0ka2
XN

i¼1

Qi

 !
(41)

and

Dð0Þ ¼ iz0ka2 3

2
a
XN

i¼1

Qir̂i

 !
; (42)

the acoustic center becomes

rc ¼
3

2
a

XN

i¼1

Qir̂i

XN

i¼1

Qi

0
BBBBB@

1
CCCCCA: (43)

If the relative source strength ratios of all point sources are

real valued, i.e., either in phase or 180� out of phase, the

acoustic center likewise remains real valued as in Sec. IV E.

Other source strength configurations could lead to a

FIG. 7. (Color online) Low-frequency acoustic center predicted by Eq. (28)

for two point sources at the opposing poles of a sphere as a function of the

second source’s relative strength.

FIG. 8. (Color online) Sound pressure field for ka¼ 0.01 produced by two

point sources at the opposing poles of a rigid sphere with a source strength

ratio of c ¼ � 0.8.
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complex-valued acoustic center (see Sec. VII). A striking

feature of this equation is that it simplifies the challenge of

determining Dð0Þ from required surface pressure and veloc-

ity distributions. Spherical harmonics and spherical Hankel

functions recast the dipole moment only in terms of source

strengths and associated local surface velocities.

To better understand why a knowledge of the surface

pressure pi for the ith source is unnecessary, one may work

backwards from Eq. (42) to show that

Dð0Þ ¼ a3
XN

i¼1

iz0k
3

2
Qir̂i

� �
(44)

¼ a3
XN

i¼1

iz0kQir̂i þ
1

2
iz0kQir̂i

� �
: (45)

For the ith point source, the sifting property yieldsð2p

0

ðp

0

Qir̂sdðcos h� cos hiÞdð/� /iÞ sin hdhd/ ¼ Qir̂i;

(46)

so it is also true, by definition [see Eq. (12)], that

Dð0Þ ¼ a3
XN

i¼1

iz0kQir̂i þ
ð2p

0

ðp

0

r̂spiðh;/Þ sin hdhd/

" #
:

(47)

Consequently,

ð2p

0

ðp

0

r̂spiðh;/Þ sin hdhd/ ¼ 1

2
iz0kQir̂i: (48)

This development shows that diffraction about the rigid

sphere increases the dipole moment by 50%, moving the

acoustic center farther from the surface. Equation (48) is

thus a theoretical proof of Vanderkooy’s qualitative asser-

tion that the KHIE pressure term moves the acoustic center

away from the origin.22

Treating a quasi-arbitrary, continuous surface velocity

distribution unðh;/Þ as a distribution of point sources allows

further generalization of Eq. (43) to

rc ¼
3

2
a

ð2p

0

ðp

0

unðh;/Þr̂s sin hdhd/ð2p

0

ðp

0

unðh;/Þ sin hdhd/

2
6664

3
7775

¼ 3

2

ð2p

0

ðp

0

unðh;/Þrs sin hdhd/ð2p

0

ðp

0

unðh;/Þ sin hdhd/

2
6664

3
7775: (49)

This key result provides an upper bound to the acoustic cen-

ter’s radial distance given that unðh;/Þ has the same phase.

The maximum distance rc ¼ 3a=2 occurs when all volume

velocity concentrates at a single point.

V. GENERALIZATION TO NONSPHERICAL SOURCE
CONFIGURATIONS

While the surface velocity and pressure in the KHIE

provided the bases for the preceding spherical-source acous-

tic centering developments, one may generalize the

approach using a notional observation sphere of minimal

radius a that entirely envelops an acoustic source of arbi-

trary shape. Because of the uniqueness of the exterior solu-

tion in spherical coordinates, the pressure or particle

velocity on the sphere will infer the monopole and dipole

moments (for ka� 1) directly from its expansion coeffi-

cients.27,29 If a monopole and dipole field uniquely deter-

mine the pressure produced by the source, the pressure or

particle velocity on the sphere will provide the unique solu-

tion for r 	 a.27 Consequently, a multipole expansion

applied to the observed quantity must converge to the same

monopole and dipole moments of the isolated source.

Researchers have applied similar concepts in other

works;42,52,53 however, the nonuniqueness of the field inside

the sphere requires additional consideration.54

Because multipole expansions and pressure-field expan-

sions involving spherical harmonics and spherical Bessel

functions have similar terms,27–29 an equating of terms

allows one to establish the relationships between the multi-

pole moments and the pressure expansion coefficients. This

approach is valid for constructing the exterior field, as Secs.

V A and V B demonstrate, but the calculated monopole and

dipole moments only have the physical meanings defined by

Eqs. (4) and (5) in the limit of ka� 1. The surface integrals

and spherical harmonic expansion coefficients do not have

guaranteed relationships for higher frequencies, but this fact

presents little problem for the following developments

because the formulation of Eq. (10) is already in the limit of

ka� 1.

A. General formulation

The Helmholtz equation solution in spherical coordi-

nates is27

pðr; h;/; kÞ ¼
X1
n¼0

Xn

m¼�n

Cm
n hð2Þn ðkrÞYm

n ðh;/Þ; r 	 a; (50)

where

Cm
n ¼

1

h
ð2Þ
n ðkaÞ

ð2p

0

ðp

0

pða; h;/Þ Ym
n ðh;/Þ

� ��
sin hdhd/: (51)

In practice, the expansion coefficients follow from discrete

measurements of the pressure field around the source and

numerical integration or a least squares fit.55,56 Significantly,

because the present work’s formulation requires only expan-

sion degrees up to n¼ 1, the low-frequency acoustic center

could follow from only four sampled positions.55
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Comparing Eqs. (50) and (19) reveals that

Um
n ¼ �

1

iz0

Cm
n hð2Þ0n ðkaÞ: (52)

Substitution of this result into Eqs. (14) and (11) yields the

monopole moment

M ¼ �ka2h
ð2Þ0
0 ðkaÞ

ffiffiffiffiffiffi
4p
p

C0
0: (53)

However, since ka� 1,

h
ð2Þ0
0 ðkaÞ � � i

ðkaÞ2
(54)

and the monopole term simplifies to

M � i

ffiffiffiffiffiffi
4p
p

k
C0

0 (55)

(compare Ref. 27, p. 198).

For the dipole moment,

Dð0Þ ¼ � 3

2
ka3h

ð2Þ0
1 ðkaÞ

ffiffiffiffiffiffi
2p
3

r C�1
1 � C1

1

�iðC�1
1 þ C1

1Þffiffiffi
2
p

C0
1

2
664

3
775: (56)

Using the ka� 1 approximation

h
ð2Þ0
1 ðkaÞ � � 2i

ðkaÞ3
; (57)

the dipole term simplifies to

Dð0Þ ¼ i
ffiffiffiffiffiffi
6p
p

k2

C�1
1 � C1

1

�iðC�1
1 þ C1

1Þffiffiffi
2
p

C0
1

2
664

3
775: (58)

The acoustic center then follows from Eq. (10) as

rc ¼
1

kC0
0

ffiffiffi
3

2

r C�1
1 � C1

1

�iðC�1
1 þ C1

1Þffiffiffi
2
p

C0
1

2
664

3
775; (59)

but it is now in terms of the pressure-field expansion coefficients.

B. Point source distribution

An arbitrary point source distribution with quasi-

arbitrary, real-number–related source strengths provides a

simple nonspherical evaluation case because one can infer

the exact value of rc from the standard monopole and dipole

moment definitions for point sources in free space.22,30 For

N point sources, the monopole moment is

M ¼ iz0k
XN

i¼1

Qi; (60)

the dipole moment is

Dð0Þ ¼ iz0k
XN

i¼1

Qiri; (61)

and the acoustic center is

rc ¼

XN

i¼1

Qiri

XN

i¼1

Qi

0
BBBBB@

1
CCCCCA: (62)

This center-of-mass–like formula57 is similar to Eqs. (43)

and (49) but without the 3a=2 scaling factor. Previously, the

factor arose from the dipole moment formed from the dif-

fraction around the spherical rigid body, as shown by Eq.

(48) (also compare Ref. 58). However, center-of-mass–like

formulas for nonspherical rigid boundaries and their veloc-

ity distributions will likely differ. Also, similar to Eq. (43), a

real-vaued acoustic center follows when the relative source

strength ratios of all point sources are real valued.

Suppose a spherical array of radius R¼ 1.0 m and 5�

equiangular spacing in the polar and azimuthal angles sam-

ples the pressure field produced by five point sources with

the amplitudes and positions listed in Table II at kR¼ 0.01.

The spherical harmonic expansion coefficients follow from

Chebyshev numerical integration,56 such that Eq. (59)

yields the acoustic center rc ¼ ð0:92;�1:58;�0:20Þ m.

This calculated value from the expansion coefficients agrees

with that produced by Eq. (62) to less than a thousandth of

a percent. As kR! 0, the error decreases to machine

precision.

Figure 9 depicts the resultant field produced by the

point sources. The solid black circle denotes the sampling

sphere in which all contours are missing to allow better visu-

alization for r < R. The specific source amplitudes and posi-

tions create a strong dipole moment, causing the acoustic

center to fall outside the sampling sphere. However, its loca-

tion does not impact the validity of the spherical harmonic

expansion in Eq. (50). The only requirement is that all non-

homogeneous terms, i.e., the point sources, fall within the

sphere so that the region r 	 R satisfies the homogeneous

Helmholtz equation.

VI. EXPERIMENTAL EXAMPLE

The results of a pertinent acoustic centering experiment

and comparisons with the results of other centering methods

provide further validation of the preceding developments.

The authors employed a rotating semicircular microphone

array to sweep out a sphere of sampled pressure data and

evaluate the directivities of a KEMAR HATS with and with-

out an attached torso and with varying head orientations.59

The measurement and signal-processing techniques were

similar to those used earlier for live speech.36 The process-

ing employed complex-valued frequency response functions

(FRFs) and numerical integration56 to produce the pressure

expansion coefficients Cm
n described in Eq. (51). An N¼ 10
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expansion ensured that the area-weighted directivity factor

function deviation (AWDFFD) level LQ between the mea-

sured and expanded pressure59 remained less than 0.1 dB for

the frequencies of interest.56

As shown in Fig. 10, this HATS experiment extended

the earlier work to consider the effects of attached manikin

legs and a chair. The minimum sphere encompassing the

entire arrangement had a radius a � 0:75 m with a center

offset from the array’s geometric center. However, if one

considers the low-frequency scattering of selected manikin

and chair parts to be neglible, a could become considerably

smaller. To accommodate the configuration, the microphone

radius increased from R ¼ 0:97 m, used in Ref. 59, to

R¼ 1.17 m. However, the enlarged radius still prohibited

the exact alignment of the HATS mouth, the geometric cen-

ter of the manikin’s radiating region, at the array’s geomet-

ric center. Consequently, post-processed acoustic centering

became particularly important for correcting the measured

directivity patterns (see Sec. VI B).

A. Centering results

In addition to calculating the source low-frequency

acoustic center via Eq. (59), the authors considered four pre-

viously proposed acoustic centering algorithms to predict

the acoustic center at various frequencies. The latter work

involved minimizing the objective functions Jss [Eq. (7.1) of

Ref. 9], based on the coherent summation of the complex

pressure; Jlo [Eq. (7.3) of Ref. 9 and Eq. (34) of Ref. 11],

which penalizes energy in higher degree expansion terms;

Jzo [Eq. (30) of Ref. 11], which favors energy in the C0
0 coef-

ficient; and Jph [Eq. (58) of Ref. 12], which considers phase

symmetries. Technically, one should evalulate Jph for phase

symmetries in three orthogonal planes; however, radiation

symmetry allowed optimization over the median (x-z) plane

to suffice for the present example.

Figure 11 plots the objective functions in the median

plane at 100 Hz (ka � 1:4). The manikin faces the positive

x-direction and the array origin falls roughly at the mani-

kin’s chest. The solid black circle represents the measure-

ment sphere circumference, whereas the surface colors and

contours indicate the relative levels of the objective func-

tions. Normalization between 0 and 1 for all objective func-

tions facilitates simpler comparisons. The red � at

rc ¼ ðx; zÞ ¼ ð0:00; 0:27Þ m indicates the low-frequency

acoustic center in this plane calculated from Eq. (59). As

mentioned in Sec. II, this equation may sometimes produce

a complex-valued acoustic center (also see Sec. VII). At this

frequency, the imaginary part from the measured data were

smaller by more than an order of magnitude than the real

part and was consequently considered negligible. The calcu-

lated acoustic center aligns well with all objective function

minima, producing excellent agreement with the outcomes

of the previous works. The root-mean-square (RMS) devia-

tions between the global objective function minima and

low-frequency acoustic center were all less than 1 cm even

though the localized acoustic center from Eq. (59) resulted

from a simple closed-form solution rather than a computa-

tionally expensive optimization routine.

Figure 12 plots the four objective functions at 300 Hz

(ka � 4:1) and the calculated low-frequency center appear-

ing at rc ¼ ð0:00; 0:25Þ m. Although this frequency exag-

gerates the low-frequency assumption, it is still instructive

to consider the robustness of the calculated acoustic center.

Because the radiation is slightly more directional at this fre-

quency, local minima appear in some of the objective

functions, although their global minima remain clear. The

low-frequency acoustic center generally aligns well with the

TABLE II. Tabulated amplitudes and locations for five point sources inside

a measurement sphere of radius R¼ 1 m.

Qi (m3/s) x (m) y (m) z (m)

1.0 0.3 �0.1 �0.2

�0.6 0.3 0.3 0

0.7 0.2 �0.3 0

�0.8 �0.3 0.3 �0.1

0.2 �0.2 �0.3 0.1

FIG. 9. (Color online) Pressure produced by a point source distribution and

the associated acoustic center marked as a green dot.

FIG. 10. (Color online) KEMAR HATS seated within a directivity mea-

surement system.
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global minima but the agreement is not as exact at this

frequency. Additionally, while the imaginary part of the cal-

culated acoustic center is still relatively small, it has risen to

within an order of magnitude of the real part, which further

suggests that the low-frequency approximation has begun to

break down. The RMS deviations between the global min-

ima of the objective functions and the calculated acoustic

center are less than 2 cm for Jss and Jzo and 1 cm for Jlo and

Jph. For higher frequencies, the low-frequency acoustic cen-

ter could serve as a viable initialization position to help the

centering optimization routines achieve faster convergences.

B. Directivity correction

Figure 13 presents the normalized directivity balloons

for the seated HATS at 100 and 300 Hz and illustrates the

effectiveness of acoustic centering to correct near-field

directivity pattern anomalies. The balloons employ colors

and radii to depict relative levels on a 40 dB scale.

The vantage point is from the right-hand side of the mani-

kin, which faces the 0� azimuthal marker.

Figure 13(a) shows the measured 100 Hz directivity pat-

tern at the array surface, expanded via spherical harmonics

to degree N¼ 10. Although one would anticipate omnidirec-

tional radiation at this frequency,36 the source placement

within the array causes the directivity to appear directional.

As discussed by the authors in Ref. 60, far-field projection

of the measured results allows the correction of such near-

field anomalies. Figure 13(b) shows the 100 Hz far-field

directivity balloon, projected via the N¼ 10 degree

expansion. The far-field directivity is essentially omnidirec-

tional, although the levels below the talker are minimally

reduced, perhaps due to diffraction about the manikin’s

body and chair. Figure 13(c) plots the directivity evaluated

at r¼ 1.5 m (kr � 2:7 and r=2a � 1:0) but recentered about

the low-frequency acoustic center presented in Fig. 11.

Despite not being at a far-field evaluation distance, the

directivity pattern appears nearly identical to the projected

far-field pattern. The AWDFFD LQ
59 is only 0.1 dB between

the far-field and r¼ 1.5 m centered patterns but 1.6 dB

between the far-field and r ¼ R ¼ 1:17 m measured

patterns.

Figure 13(d) shows the measured 300 Hz directivity pat-

tern at the array surface, again expanded to degree N¼ 10.

At this higher frequency, diffraction led to reduced levels

behind and below the manikin and chair.36,48 The axis of

maximum radiation appears upward in elevation from the

mouth axis, which is not characteristic for this particular fre-

quency.36 Figure 13(e) shows the projected far-field direc-

tivity, determined using the N¼ 10 expansion, with the axis

of maximum radiation falling directly in front of the mani-

kin’s mouth. Finally, Fig. 13(f) shows the centered directiv-

ity pattern evaluated at r¼ 1.5 m (kr � 8:2 and r=2a � 1:0).

The centering improved LQ from 1.4 to 0.7 dB relative to

the projected far-field pattern.

VII. DISCUSSION

The low-frequency acoustic center provides a valuable

and straightforward means to treat a distributed source as a

single point source. However, its validity depends upon the

FIG. 11. (Color online) Objective functions in the median plane at 100 Hz:

(a) Jss, (b) Jzo, (c) Jlo, and (d) Jph. The red � is the low-frequency acoustic

center from Eq. (59).

FIG. 12. (Color online) Objective functions in the median plane at 300 Hz:

(a) Jss, (b) Jzo, (c) Jlo, and (d) Jph. The red � is the low-frequency acoustic

center from Eq. (59).

J. Acoust. Soc. Am. 153 (6), June 2023 Samuel D. Bellows and Timothy W. Leishman 3415

https://doi.org/10.1121/10.0019750

 27 June 2023 16:26:18

https://doi.org/10.1121/10.0019750


nature of the source and the observation distance. For exam-

ple, a radially oscillating sphere whose acoustic center falls

at the origin has an equivalent point source representation

valid in the near and far fields. On the other hand, two point

sources at opposing poles on a sphere with a strength ratio

c ¼ �0:8 (see Sec. IV E) have an equivalent point source

representation that is not valid until the observation distance

is many times the sphere’s radius. Thus, while the low-

frequency acoustic center is generally valid at a sufficient

distance for sources producing omnidirectional far-field

directivities, it is judicious to consider the minimum dis-

tance at which the equivalent representation becomes

acceptable for practical applications.

The low-frequency centering method discussed in this

work permits the direct use of spherical harmonic expansion

coefficients from the acoustic pressure or particle velocity

over an observation sphere. This resource is advantageous

because it supports the direct determination of an acoustic

center without requiring computationally expensive

centering algorithms. Although it is not valid at higher fre-

quencies, the low-frequency acoustic center may be a good

starting point to improve the performance of higher-

frequency, spherical harmonic-based optimization techni-

ques. While this work employed spherical harmonic

expansions to determine the dipole and monopole moments,

these moments could instead follow from numerically inte-

grating Eqs. (4) and (9). As boundary element methods

(BEM) yield the surface pressure and normal particle veloc-

ity for a given source configuration, computing the low-

frequency acoustic center would be a simple post-

processing step in numerical simulations. Additionally,

numerically evaluated higher-order multipole moments

could serve as a basis for generalizing this work to higher

frequencies.

While the results of this work support the efficacy of

defining the acoustic center in terms of the location of an

equivalent point source, this definition can become problem-

atic in some situations. Replacing an extended source with

an equivalent point source requires first that ka� 1 and sec-

ond that the far-field source radiation is omnidirectional.22

These conditions highlight certain definitional weaknesses.

To begin with, because many sources produce compli-

cated directional patterns at higher frequencies, replacing

their entire respective pressure fields with a single equiva-

lent point source is equivocal for broad bandwidths. Simple

omnidirectional far-field radiation allowed good agreement

between the distributed sources and their equivalent point

source representations shown in Figs. 3, 4, and 6. However,

complex directional patterns appearing at higher frequencies

would require higher-order moments for an accurate

representation.

Furthermore, even at low frequencies, some sources do

not radiate omnidirectionally in the far field. For example,

Weinreich’s “sound hole sum rule,” developed during his

violin directivity studies, showed that sources with sound

holes or ports connecting an interior cavity to the exterior

domain may develop intense dipole moments and vanishing

monopole moments.61 These and other directional low-

frequency source configurations30 further limit the centering

approach. For Eq. (7) to remain valid, one must ostensibly

define what type of radiation is sufficiently omnidirectional.

Instead of a global representation of the entire sound

field at higher frequencies, one could attempt to match the

pressure field only in a specified direction and position, as in

Trott’s redefinition.16 This approach may be beneficial for

some practical broadband applications, such as transducer

calibrations.4,5,17,19 Nonetheless, Jacobsen et al.17 showed

that this concept leads to an acoustic center that varies with

the observation position r. Only in the far field do some of

these centering approaches converge to the unique solution

of Eq. (10), as seen in Fig. 2. Variations in the acoustic cen-

ter dependent on observation position limit the application

of the approach to centering directivity patterns, which

require a unique acoustic center. Additionally, the different

methods based on this concept do not give a consistent loca-

tion at higher frequencies, even at a far-field observation

FIG. 13. (Color online) KEMAR HATS directivity. (a) r ¼ R ¼ 1:17 m

measured, (b) far-field projected, and (c) r¼ 1.5 m centered at 100 Hz. (d)

r ¼ R ¼ 1:17 m measured, (e) far-field projected, and (f) r¼ 1.5 m centered

at 300 Hz.
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distance. More recent centerings of higher-frequency musi-

cal instrument directivities have likewise given inconsistent

results for the same sources when employing different

objective functions.9,11,12

Finally, the center-of-mass–like formulas of Secs. IV F

and V B reveal that some source distributions with complex-

valued source strengths or surface velocities may lead to

complex-valued acoustic centers with ambiguous meanings.

A simple example of such a configuration is a loudspeaker

with two drivers driven 90� out of phase. Accordingly, the

low-frequency acoustic centering developments of this work

require careful implementation. Using quasi-arbitrary, real-

number–related source strengths and surface velocities kept

the acoustic centers real. The experimental results in Sec.

VI A yielded acoustic centers that were also nearly real.

However, based on Eq. (10), some sources may have unde-

fined low-frequency acoustic centers or centers that are con-

siderably distant from the source body.

Hence, defining the acoustic center as the position of an

equivalent point source perhaps best applies as a limiting

case for low-frequency radiation from primarily far-field

omnidirectional sources. The need remains for a more con-

sistent definition of the acoustic center, applying to all sour-

ces and generalizing to all frequencies. In principle, it

should reduce to Trott’s redefinition16 and the acoustic cen-

ter discussed in this work for low frequencies and far-field

omnidirectional sources.

VIII. CONCLUSIONS

This work has revisited the concept of a low-frequency

acoustic source center and set forth a straightforward center-

ing formula based on monopole and dipole moments.

Application to the sphere produced a simple closed-form

solution for the acoustic center of a quasi-generally vibrat-

ing spherical source. Spherical harmonic expansions of pres-

sure fields from quasi-arbitrary source distributions also

allow the determination of their acoustic centers, and center-

of-mass–like formulas yield insights into the center loca-

tions for many source configurations.

The concept of an acoustic center corresponding to a

single point source limits the method for some distributed

sources because it precludes application to higher frequen-

cies or sources with vanishing monopole moments. Future

research could address this problem and clarify the meaning

of the acoustic center for all sources and frequencies. It

could also apply centering techniques to other theoretical or

measured sources to produce additional insights. The

authors encourage further work in these areas.
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