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Spin dynamics for wave packets in Rashba systems
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We explore spin dynamics for localized wave packets in Rashba systems using spin quantum propagators.
We derive exact (one-dimensional) and approximate (two-dimensional) analytic expressions for the propaga-
tors and apply them to Gaussian wave packets to obtain localized solutions of systems manifesting Rashba
interactions. We observe and describe the evolution of the wave packets. We identify characteristic structures
in the wave-packet evolution and look for features with specific spintronics applications such as spin separation
and spin accumulation. We discuss the relative importance of those features as a function of the Rashba
coupling strength « and the width of the wave packet w. In particular, we find a trade off between spatial
oscillation and global separation of the spin when varying a and w.
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I. INTRODUCTION

Spintronics is a promising technology where the focus is
on manipulating the spin degree of freedom of electrons in
addition to their charge.'"* Efficient spin injection, spin
transport, and spin detection need to be achieved to insure
the functionality of spintronics devices. Among the many
areas of interest in spintronics, spin-orbit coupling (SOC) is
an important mechanism to control spin dynamics without
introducing an external magnetic field.> All spin-orbit
coupled systems that have been proposed share one common
characteristic: their Hamiltonians couple momentum and/or
position operators to spin operators. These systems have
been studied to exhibit various spin-dependent phenomena
including spin-Hall effect,% quantum spin-Hall effect,’
spin accumulation at the edge,'” persistent spin-helix,!"-1?
and Zitterbewegung-like motion for wave packets.!>!* The
presence of two or more incompatible (noncommuting) spin
operators in the Hamiltonian adds a layer of dynamical com-
plexity for electrons carrying specific spin components. Two
widely discussed SOC contributions are the Rashba and the
Dresselhaus effects.!>"!7 The Rashba effect is the signature
of structure inversion asymmetry present in quantum wells
while the Dresselhaus effect is the signature of bulk inver-
sion asymmetry present in zinc-blende structures lacking in-
version symmetry. The spin degree of freedom in the Rashba
system has also been proposed to construct a Rashba adder
and more general functions of a spin logic circuits, 8-

Several treatments have been applied to analyze the spin
dynamics inside Rashba systems: Heisenberg picture
method,'? linear-response theory,”! fixed energy Green
function,?>?* direct numerical integration,”>?® and density-
matrix approach.?’” In this contribution we develop the
quantum-mechanical spin propagator method from the
Schrodinger equation for Rashba SOC interaction in one-
dimensional (ID) and two-dimensional (2D) condensed-
matter systems. The advantage of calculating the propagator
separately is that it can be applied to any initial state. Rather
than dealing with plane waves we choose to study localized
solutions, in particular, spin-polarized Gaussian wave pack-
ets, which are interesting in their own right. For example,
phenomena such as Zitterbewegung are known to be tran-
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sient for wave packets’® including in condensed-matter
systems.??3 Results from Gaussian wave-packet dynamics
have been obtained previously'>?® and we mention how our
results obtained using the propagator in closed forms com-
pare with them. We also study the dependence of the results
on the Rashba coupling strength (in the Hamiltonian) and on
the localization (width of the wave packet). We display plots
of the polarization at specific times while controlling these
two parameters.

The paper is organized as follows: in Sec. II, we briefly
introduce two analytic propagator construction methods. We
give the exact analytic quantum propagators which we de-
rived for the 1D Rashba system with harmonic confining
potential. We also give approximate analytic quantum propa-
gators based on the Trotter formula for the 2D Rashba sys-
tem. In Sec. III, we first construct the spin densities in the 1D
Rashba system by applying the specific analytic propagator
to an initial Gaussian wave packet in space and polarized
along specific directions and we identify four characteristic
features. We then generate wave-packet evolutions numeri-
cally and highlight four new features of the spin densities in
the 2D Rashba system. In the 2D case, in addition to chang-
ing the overall width of the wave packet, we also consider
the effect of uneven widths in two dimensions on the result.
In Sec. IV we discuss our results and make a qualitative
comparison between different cases and by connecting to
current spintronics research.

II. PROPAGATOR CONSTRUCTION

The propagator K(x,x,;t—t") gives the conditional transi-
tion amplitude between two position eigenstate vectors |x)
and |x,) over a time interval t—t' such that K(x,xy;t—t")
=(x|U(t—1")|xo), where U(t—t') is the time-evolution
operator.’! Without loss of generality we set t'=0 in this
paper. Because the Hamiltonians we consider involve spin
operators, the propagators have a 2 X 2 matrix representation
for spin-1/2 particles. We now proceed to construct analytic
expressions of propagators using two different analytic meth-
ods applied to the 1D and 2D Rashba systems, respectively.

The Hamiltonian for the confined 1D Rashba system is
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where « is the experimentally controlled Rashba coupling
strength, o, is the Pauli spin operator, and  is the confine-
ment strength. We have obtained exact analytic expressions
for the propagator for the confined (w# 0) and the uncon-
fined (w=0) case using an analytic method based on the
manipulation of noncommuting operators in
exponentials.3>33 After lengthy but straightforward calcula-
tions one obtains the 1D confined Rashba propagator
K(l‘ D(‘x » X055 13 )

mw im
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By setting @w=0 in the Hamiltonian in Eq. (1), we also derive

the 1D unconfined Rashba propagator K{p(x,xq;?)
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We note that the expression for K|, is also recovered in the
unconfined limit w— 0 in the propagator in Eq. (2). It can be
checked that the corresponding propagators for vanishing
Rashba term (a=0) K, in Eq. (2) and K}, in Eq. (3) reduce
to the 1D simple harmonic-oscillator propagator and the 1D
free-particle propagator, respectively.’!

The Hamiltonian for the 2D Rashba system with parabolic
confinement in x and unconfined in y is

2, 2
pyt+p, « 1
H= Z_L + %(pyo'x —Py0y) + Ema)2x2. (4)

The presence of two noncommuting Pauli matrices in the
Hamiltonian makes it more challenging to obtain the propa-
gator in closed form.?” Therefore we construct approximate
analytic expressions for the propagator in the confined (w
#0) and the unconfined (w=0) case using an analytic
method based on the Trotter formula generalized to spin
systems.>* The Trotter formula for two noncommuting opera-
tors a and b, exact to O(7), gives

e—'f(a+b) — e_Ta/2€_Tb€_Ta/2 + 0(7_3) (5)

By replacing a and b with the potential term V and the ki-
netic term 7, respectively, in the time-evolution operator
U(t)=e ™™/ and by setting 7=it/#, the propagator K is
obtained by projecting the time-evolution operator U() on
position eigenvectors

K= <X| U(t)|x0> ~ <x|e—izV/Zhe—itT/ﬁe—itV/Zh|xo>. (6)

A Trotter formula exact to O(7) can be used to give exact
analytical result for the free particle and the linear potential
problem. For the confined Rashba potential in Eq. (4), we
evaluate the propagator correctly to order 7. In Eq. (4), non-
commutativities appear both between position and momen-
tum operators and between Pauli matrices. Instead of setting
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a and b equal to the potential and kinetic terms, respectively,
we extract from Eq. (4) the parts for which the propagator
can be found analytically [in analogy to Eq. (2) in the x
direction and to Eq. (3) in the y direction] and set them equal
to b, such that b=;%+%(py—px)ox+ m“;xz and p2=pi+p§.
The Trotter formula can now be applied with the remaining
terms set equal to a, namely, a=3p,(o,—0,).

After some algebraic manipulations, the propagator
K5p(x,x0,Y,Y0;7) is obtained for the 2D (semi)confined
Rashba system

a2 imi( 2, 2 ﬁ)
Kop = in wr 2min P | 22 (x TR e
2.2 o2t
X w cot wt — <2xx0+?>w csc w+ 72

at
+ w(cot wt + csc wt)%(a'x - 0,)(x = xp)
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By setting w=0 in the Hamiltonian in Eq. (4), we derive the
2D unconfined Rashba propagator K5 (x,x;7)
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We can also recover the expression K3, in the unconfined
limit w— 0 of the propagator in Eq. (7). The corresponding
propagators for vanishing Rashba terms (a=0) can be
checked: K5, in Eq. (7) and K3y, in Eq. (8) reduce to the 2D
simple harmonic oscillator and 2D free-particle propagator,
respectively.’!

Once the propagator is obtained, we can obtain the wave-
packet evolution #(x,7) by applying it to an initial wave
packet i(x;,0)

x,t) = fm K(x,x038) x0,0)dx,. 9

—00

In this work we choose #(x,,0) to be a spinor with Gaussian
distribution in space centered at x,=0 and with width w, such
that ¢(x,,0)= \—;Wexp(—x(z)/sz)(ﬂ TY+€ 1)), where |T) and
|| ) are up-in-z and down-in-z spin states with constant coef-
ficients y and & chosen to satisfy |x|*+|yf>=1. Because of
the linearity of the Schrédinger equation and of the propaga-
tor, the method can be applied to spinors with different spa-
tial localizations for spin-up and spin-down particles. In par-
ticular, it can be applied repeatedly for arbitrary times in spin
separating dynamics without further modifications.

We choose the wave packets to have a zero net momen-
tum in x and in y. The effect of adding an initial momentum
to the wave packet adds an overall velocity to the individual
spin components. Since S|, is a constant of the motion in the
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FIG. 1. (Color online) (a) The 2D electronic eigenstates for a
Rashba SOC system in a momentum representation. The horizontal
and the vertical axes are p, and p,, respectively. We label the net
momentum with (radial) blue and red arrows and the eigenspinors
with (azimuthal) black arrows. (b) The dispersion relation in the
Rashba system. The colors of two parabola (blue and red) match the
ones of two concentric circle in (a).

1D case, the dynamics is otherwise unaffected when plotting
the y polarization. On the other hand, for the x and z polar-
izations, there will be additional features on top of a global
translation in x, as is to be expected for a Rashba interaction
defined in the rest frame of the material. These can be ob-
tained following exactly the same procedure and we do not
discuss them systematically in this paper. The absence of
position dependence in the unconfined Rashba system im-
plies that p, and p, are constants of the motion.

III. RESULTS

In this section we apply the propagator to localized wave
packets in two situations: the 1D and the 2D Rashba systems.
In each situation we consider both unconfined and confined
cases. The eigenstates and eigenvalues for the Rashba system
are provided in Fig. 1. In Fig. 1(a) two concentric circles
correspond to two dispersion relations arising from the
Rashba SOC for a fixed energy. Eigenspinors and momen-
tum eigenvalues are given by azimuthal and radial arrows. In
all cases, we consider the effect on the spin dynamics of
changing two parameters: the Rashba coupling strength «
and the width w of the initial wave packet. We provide plots
with natural units =1, m=1. Note also that since we are
interested in the influence of the width on the dynamics, we
select an absolute length unit d such that the width w and the
positions x and y are all expressed in terms of d rather than
being correlated as a result of the choice of units. We also
provide the units for the following variables: « in units of
#2/md and t in units of md*/#. This allows us to recover
experimentally accessible values of the Rashba strength a by
substituting realistic value of # and m and by choosing an
appropriate length unit d. This also determines a unit width
and a unit time and therefore realistic orders of magnitude
for time and for wave packet width. In Sec. IV, we check this
explicitly for an absolute length unit of 200 nm in 1D and
verify that the corresponding Rashba strength is experimen-
tally accessible. We then give an explicit quantitative de-
scription of how to find an appropriate value for d to match
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minimum and maximum experimentally accessible values of
the Rashba strength in 2D.

We label spin states using the following convention: the
up-in-x (| T),) and down-in-x (|| ),) spin states correspond to
a balanced superpositions of up-in-z (1)) and down-in-z
(] 1)) spin states

ey DI )

\5 \5

and similarly for up-in-y (|1),) or down-in-y (||),) spin
states

D+l =i
|T>y - VE ’ |l>) - \6 . (11)

We plot the spin density (S)(x,y) corresponding to the local
expectation values of the spin operator.

A. One-dimensional Rashba system

Here we consider successively the unconfined and para-
bolically confined 1D Rashba system. For these 1D Rashba
systems we select the x direction, corresponding to a hori-
zontal line in Fig. 1(a), to make our analysis. The propaga-
tors used in this section are obtained in closed form as ex-
plained in Sec. II. An initial up-in-z spin state is chosen for
all cases in the 1D Rashba system. We have observed four
interesting features which we refer to as: spin separation
(SS), bamboo-shooting structure (BSS), persistent spin helix
structure (PSHS), and spin accumulation (SA). Note that SS,
BSS, and PSHS are observed in the unconfined case and SA
is observed in the confined case. We now discuss each of
these features separately.

1. Spin separation

The Hamiltonian in Eq. (1) in the unconfined limit w
— 0 leads directly to two eigenspinors of S, that travel with
opposite velocities. On Fig. 1(a) this would correspond to red
and blue arrows lying on the horizontal axis and pointing
away from the center. When we add the opposite but unequal
momentum contributions for a given spin in the inner and
outer circles we see that spin up dominates on the right and
spin down likewise on the left of the figure. This leads, for a
localized wave packet, to a separation in x of two distinct y
component of the spin as can be seen from the plot of (S)(x)
in Fig. 2. We checked numerically that we can increase the
rate of separation by increasing c.

Indeed, by increasing « we enlarge the difference between
the two eigenenergies (the difference in radius of the circles).
This in turn leads to a larger overall net momentum for each
spin component and thus to a more rapid separation between
the two spin components. The spreading of the wave packets
depends both on a and w. The effect of w on the spreading is
similar to that for the usual quantum spreading of free-
particle wave packets: a small w leads to faster spreading.
We notice that a smaller w also leads to faster spin separation
as a result of the faster spreading. However the price to be
paid is that the amplitude decreases as \1/(1+#*/w*). As for
a, we see slightly more spreading of the wave packet for
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FIG. 2. (Color online) Spin density (S,)(x) as a function of
position x (in units of d) at =2 (in units of md?/#) with different
sets of & (in units of #%/md) and w (in units of d).

larger . Related spin separation can be seen, for example, in
the total densities p in 1D wave-packet dynamics study (See
Ref. 26).

2. Bamboo-shooting structure

The BSS is observed in Fig. 3 for initial spins that are not
eigenspinors of the Hamiltonian in Eq. (1) with w—0, such
as the z component of the spin. Noneigenspinors can be ex-
pressed as superpositions of eigenspinors. Therefore an os-
cillation between the two eigenmodes arises. This has been
referred to as a Zitterbewegunglike motion, an oscillatory
motion between positive and negative energies as derived
from Dirac’s equation for relativistic electrons. Such intrinsic
oscillations have been related to the occurrence of intersub-
band mixings®’ in contrast to the extrinsic oscillation which
is caused by spin-dependent scattering.3® The packet is ex-
tending in both directions at a constant velocity and oscilla-
tions extend (without moving) further at the same time. In
this way a BSS, a successive “rise” of polarization at specific
locations, is formed as the packet evolves.

As we increase «, we see fewer intrinsic oscillations: they
occur only close to the original location of the wave packet.
Indeed, a large « significantly decreases the overall ampli-
tude of the oscillation. These oscillations can be related to
the eigenspinors of the Hamiltonian traveling with opposite
velocities. By measuring the noneigenspinors which are su-
perpositions of eigenspinors, we find out that these eigens-
pinors tend to travel with opposite velocities. For relatively
small «, the eigenspinors travel slower. Interference effects
are more prominent for noneigenspinors due to the decreased

0.15

= a=1,w=1

>

01(; - a=2,w=1

-0.15

FIG. 3. (Color online) Spin density (S,)(x) as a function of
position x (in units of d) at =2 (in units of md?/#) with different
sets of a (in units of #%/md) and w (in units of d).
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FIG. 4. (Color online) Spin densities (S,)(x) and (S_)(x) as a
function of position x (in units of d) at r=2 (in units of md?*/#),
w=0.5 (in units of d), and @=1 (in units of A%/md).

propagation speed in opposite directions. As for the effect of
w on intrinsic oscillations, we observe more intense oscilla-
tions for more localized packets.

We also observe an attenuation in time of the BSS feature.
To quantify the transient nature of the feature that we ob-
serve, we calculate the exponential decay of the center of the
wave packet (x=0) and find

m*t*a*w? )
m*w*h? + ht)”

(5)(0) = —
T™W

(12)

The contribution of the Rashba interaction (i.e., a-dependent
factor) can be separated from the ordinary free-particle
spreading. At short times we get a Rashba exponential at-
tenuation proportional to exp(-I"*#?), where I'=:%. The
value of the attenuation time I'"! is on the order of the pico-
second, which is similar to the value found in the literature.?°
The attenuation times in Rashba systems are significantly
longer than the Zitterbewegung decay times found in
graphene and carbon nanotube work, as expected from the
characteristic length scales involved.>°

3. Persistent spin helix structure

By representing (S,)(x) and (S.)(x) on the same plot in
Fig. 4, we see that the spin polarization correlates with the x
position in what constitutes a spin helix. Since the packet is
extending with a constant velocity in the x direction, its spin
takes on the value given by (S,)(x) and (S)(x) and therefore
performs helicoidal motion as the packet spreads out. It is
interesting to note that (S,)(x) and (S_)(x) are shifted in space
with respect to each other. S, corresponds to a conserved
quantity leading to persistent behavior of the spin. This phe-
nomenon has been predicted by Bernevig et al.'' and has
been recently observed by Koralek et al.>” The period of the
helix can be controlled by «: for bigger « the spatial period
decreases. As in the case of the BSS, the PSHS disappears as
a result of vanishing oscillations for increasing a. The per-
sistent helix structure can be seen in other cases, such as the
systems with combined Rashba and Dresselhaus effects bal-
anced in strength. It has been shown that the combined sys-
tem corresponds to a global spin rotation of a one-
dimensional Rashba system.!! We notice that having started
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FIG. 5. (Color online) Spin densities (S,)(x), {S,)(x), and (S )(x)
as a function of position x (in units of d) with @=1 (in units of
#2/md), w=0.5 (in units of d), and w=1 (in units of #/md?) evalu-
ated at three different times (in units of md?/#).

from a localized Gaussian wave packet with finite width, the
packet spreads as it moves and accordingly (S,)(x) and
(S.)(x) decrease away from x=0. This feature is not to be
attributed to a lack of persistence of the correlation between
the spin orientation and the x position but to a decrease in the
wave packet for larger distances. The spin helix is effectively
transformed into a double Gaussian-shaped conical surface.
In order to enhance the PSHS arising from the noneigens-
pinors, we have to reduce the spin-separation feature from
the eigenspinors. This means that we can choose either a
smaller a or a more localized wave packet, i.e., a smaller
width w, to achieve the desired effect. The shift between the
x and z polarizations has also been observed in time evolu-
tion of spin expectation values (See Ref. 13).

4. Spin accumulation

Confinement can cause specific spin components to accu-
mulate at edges with either a hard wall potential or a
harmonic-oscillator potential.' When we apply the confined
propagator K|, on the wave packet, we observe accumula-
tions of specific spin components at the boundary in addition
to the three features discussed above. Accumulation means
that a given spin component appears at the boundary without
oscillating from left to right.

We find two kinds of spin accumulation mechanisms:
same spin components and opposite spin components at the
boundary. Figure 5 exhibits the spin dynamics under the in-
fluence of a confining potential with an initial up-in-z spin
state. We observe that for the eigenspinors, (S,)(x) oscillates
from left to right like a simple harmonic oscillator. For the
noneigenspinors, we see that the z component oscillates with
a reflection symmetry (even symmetry) around the x=0 and
the same z component accumulating at the edge. In contrast,
the x component oscillates without a reflection symmetry
(odd symmetry) along the center line, leading to opposite
spin components accumulating at the boundary. Note that the
spin accumulation is only obtained for relatively small w. A
possible reason is found in the faster spreading that follows
from higher localization for fixed confining strength. The
effect is also enhanced for small « due to the increase in the
oscillations.
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B. Two-dimensional Rashba system

We now proceed to analyze the wave-packet dynamics in
the two-dimensional Rashba system. We consider both con-
fined and unconfined systems. We use Trotter’s formula from
Sec. II to find the propagators. We obtain the evolution using
Monte Carlo integration in Eq. (9).

Note that none of the three operators S,, S,, and S, have
global eigenspinors in momentum space in the 2D Rashba
system. It is straightforward to show that the eigenspinors
are momentum dependent, a fact which can also be seen in
Fig. 1(a). In 1D Rashba systems, we confined the momentum
distribution to be on either the x or the y axis leading to
specific joint global eigenspinors of either the Hamiltonian
and S, or the Hamiltonian and S,. In two-dimensional cases,
such global eigenspinors do not exist. If the initial spin
comes with a fixed momentum corresponding to a plane
wave in a free-particle approximation, the eigenspinors can
be identified from Fig. 1. Our task is to provide the Rashba
dynamics of a Gaussian wave packet in coordinate space.
The coordinate wave packet covers different sets of
momentum-dependent eigenspinors as seen in Fig. 1(a) and
therefore, the 2D oscillation originating from the superposi-
tions in 2D Rashba systems has a more intricate structure.
We observe four interesting features for four sets of initial
spin states and measurements of the specific spin densities:
ripple formation structure (RFS), triangular oscillations
(TO), asymmetric spin rotations (ASR), and diagonal sym-
metry structure (DSS). We consider successively the effect of
varying the Rashba coupling strength «, and the widths w,
and w, of the initial Gaussian wave packet as we discuss
these features.

1. Ripple formation structure

RFS is observed when the initial spin state is up-in z and
the spin density (S.)(x,y) is measured after a time 7. As can
be seen in Fig. 6, the wave packet exhibits peaks and troughs
corresponding to regions of up-in-z and down-in-z spins.

We observe the effect of increasing the Rashba strength
by comparing Figs. 6(a) and 6(b). The density of ripples
increases with « and the up-in-z spin travels radially out. By
increasing the width equally in two dimensions, we see
fewer ripples for a fixed region of space when comparing
Figs. 6(a) and 6(e). This is similar to the 1D case where
multiple oscillations occur for highly localized wave packets.
By changing the ratio of w, and w, we see that we can make
the ripples less prominent in one direction or the other, as
seen in Figs. 6(c) and 6(d).

We observe symmetry patterns in Fig. 6 which we now
proceed to discuss. Within our numerical accuracy, we obtain
azimuthal symmetry for the symmetric initial wave packets
in Figs. 6(a) and 6(b). For unequal initial wave-packet local-
ization in Figs. 6(c) and 6(d), we observe that the two figures
are connected by a 7r/2 rotation relating the direction of
enhanced fringes.

We notice that the direction along which the successive
fringes appear are not purely horizontal [Fig. 6(c)] or vertical
[Fig. 6(d)]. This effect can be understood from a semiclassi-
cal argument which indicates that a spin and momentum-
dependent force induces a distortion. By working out the
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FIG. 6. (Color online) Spin-density (S.)(x,y) contour plots for an initial up-in-z spin state evaluated at r=3 (in units of md?/#) with

different o (in units of #%/md), w,, and w, (in units of d). (a) @=0.5, w,=w,=1.0, (b) =10, w,=w,=1.0, (c) @=0.5, w,=1.0, w

y

=20, (d) =0.5, w,=2.0, w,=10, (¢) a=0.5, w,=2.0, w,=2.0, and (f) @=1.0, w,=2.0, w,=1.0.

Heisenberg equations of motion for the unconfined Rashba
Hamiltonian, we obtain

. . . px ao—\' . pV a(TX
=0, =0, X=—7-—", ==+ ,
Px Py m f Y m h
5= 2ap,0, 5= 2ap,o;
X h2 ’ y ﬁ2 ’
2ap.o, 2ap,o.
b, = 2% | 2P0y (13)

= hZ + ﬁ2

By considering the semiclassical force in the x direction, one
shows that

) 7, _2ma’p,o,
F.=mx=- =

h #

(14)

and thus the force is both p, and o, dependent, correspond-
ing to the result of Fig. 6(d). This resembles a spin-
dependent Coriolis force. As we observe from the figure, the
upper and the lower half planes feel equal and opposite
forces which leads to the distortion (since the wave packet
itself is dispersing in two opposite y direction). A similar
argument can be made using the vertical force F, for Fig.
6(c). We note that the spin o, in Eq. (14) can be found for
initial ~ spin  polarization along z to be o0.(¢)
=0'Z(O)cos(2atvp)zc+p§/ #2) so that the a dependence of the
Coriolis force is not simply proportional to the strength of
the Rashba coupling strength.

By comparing Figs. 6(d) and 6(f), we see again that a
larger « causes the number of fringes to increase. The larger
a value leads to the up-in-z spin traveling further from its
initial central location in analogy to what we described in
Fig. 6(b).

Recall that in the 1D Rashba system, the superposition of
the two eigenstates represents an oscillation in space. Simi-
larly in the 2D case, S, does not have a global eigenspinor of
the system, therefore it exhibits BSS in two dimensions with
equal weights from x and y leading to circular ripple forma-
tion. The ripples appear for both large and small «, however,
the crest of the ripple changes. For small «, the crest of the
(S,)(x,y) stays at the center with the wave propagating out
similar to the BSS structure in 1D. As for large «, similarly
to the case in 1D where noneigenspinors travel in opposite
directions, (S.)(x,y) travels out as a circular wave with a
decreased amplitude. This can also be seen in the 1D BSS
where smaller oscillations occur for larger a. Both eigens-
pinors of S, travel with two larger group velocities. It should
also be noted that more ripples appear in a fixed region of
space for a larger . This is consistent with the BSS dis-
cussed in Sec. III A 2. Circular ripples in 2D have been pre-
dicted for Gaussian wave-packet evolution.?®

2. Triangular oscillations

Starting with an initial up-in-x spin state and measuring
the spin density (S,)(x,y), we observe TO from the contour
plots in Fig. 7. By analogy with our discussion in 1D we
know that the up-in-x spin state has a downward momentum
when a y-localized wave packet is considered. The inclusion
of x localization complicates the dynamics. There are two
effects governing the dynamics: fringe formation in the x
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direction and uniform downward (toward negative y) motion
of the up-in-x wave packet.

In Fig. 7(a), it is clear that the spin is flipped on the
horizontal axis on either side of the original location. This is
a result of fringe formation as in the BSS in the 1D Rashba
system. In Fig. 7(b), we see more fringes forming when we
enlarge a. A larger « also leads to more downward momen-
tum for the up-in-x spin. It is interesting to note that it is the
part of the wave packet localized closest to the y axis that is
moving downward. We observe the effect of even widths in
Fig. 7(c), where we have a wave packet highly localized in x.
By comparing Fig. 7(a) with Fig. 7(c) (« fixed), we see more
fringes forming in the x direction. Figure 7(d) illustrates the
fact that when we have a larger a and overall less-localized
wave packets, again we see fewer fringes than in Fig. 7(b). In
Fig. 7(d) the wave packet has moved further downward than
in Fig. 7(c) due to a larger « which is consistent with previ-
ous observations and a faster downward momentum for the
up-in-x component, which is consistent with all the observa-
tions in this feature.

The interplay between fringe formation and uniform
downward motion leads to various dynamics. The larger « is,
the more fringes (shorter wavelength) will form in the x di-
rection, which is consistent with 1D BSS. At the same time,
a larger a will lead to more momentum for the eigenspinors,
which allows up-in x to move faster downward along the y
axis. With a fixed «, the fringes can be enhanced (or sup-
pressed) by selecting appropriate widths for the wave packet.
In the case considered, where the fringes are formed only in
the x direction, we need more (less) localization in x (y). The
same applies in the y direction. This feature can also be
observed if starting with a down-in-x spin. This choice leads
to the vertical flipping of the result shown in Fig. 7. It should
also be noted that this feature can be extended to the case
where we have an initial spin state up-in y and we measure
the (Sy)(x, y). The result would correspond to a 7r/2 rotation
of the graphs shown in Fig. 7.

3. Asymmetric spin rotation

Starting with an initial up-in-z spin state and measuring
the in-plane spin density (S,)(x,y) or (S,)(x,y), we observe
an ASR in the contour plots of Fig. 8. Since an up-in-z spin
state can be written as a superposition of either in x or y in
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FIG. 7. (Color online) Spin-density (S,)(x,y) contour plots for a initial up-in-x spin state evaluated at =3 (in units of md*/#) with

wy=1.0, (¢) @=0.5, w,=0.5, wy

spin space, measuring the dynamics of either x or y creates
an interesting phenomenon. ASR is a rotation that should not
be associated with the usual rotation in the x-y plane. By
measuring the x component, we first immediately observe the
two components separating in y. This separation is similar to
the 1D localization case. The presence of the other dimen-
sion pulls the spin toward the other direction. As a result, the
two opposite spin components start to perform ASR. ASR is
a manifestation of the existence of a spin torque.’®

It is straightforward to show that the rotation operator L,
is not a conserved quantity in the 2D unconfined Rashba
system described by the Hamiltonian in Eq. (4) with 0=0.
Instead L,+S, is a conserved quantity in the system. It is also
interesting to note that by providing an initial up-in-z spin
state, we see a counterclockwise ASR while a clockwise
ASR is observed for an initial down-in-z spin state. Again,
there are two competing dynamical effects in this case: one is
the fringe formation and the other is the motion of the eigen-
spinors. The fringe formation for the eigenspinors of S, ap-
pears on the horizontal axis. The motion of the two eigens-
pinors is upward and downward, respectively, as can be seen
in Fig. 1(a).

In Figs. 8(a) and 8(b), we see the effect of increasing «
for a highly localized wave packet. Again, a larger « leads to
a larger momentum for the two eigenspinors of S,. A larger «
also leads to more fringes as discussed in the previous two
features. Therefore with the combination of these two effects
for a larger a, we see a “banana cluster” forming up and
down in Fig. 8(b). We show the effect of uneven widths in
Fig. 8(c), where the high localization in x leads to more
fringes in the x direction. By comparing Figs. 8(c) and 8(d),
we see that the effect of increasing « leads to even higher
fringe concentration. In Fig. 8(e), the fringes become less
prominent as the wave packet is less localized. By compar-
ing Figs. 8(e) and 8(f) we see that stronger upward and
downward motion inhibits ASR. Finally we note that this
feature of the spin density (S,)(x,y) can also be observed for
the spin density (S,)(x,y) as a result of the symmetry of the
Hamiltonian in Eq. (4) when w=0.

4. Diagonal symmetry structure

DSS is observed with an initial (x or y) in-plane spin state
and a measurement of the other (y or x) in-plane compo-
nents.
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FIG. 8. (Color online) Spin-density (S,)(x,y) contour plot for an initial up-in-z spin state evaluated at t=3 (in units of md>/#) with
different o (in units of #%/md), w,, and w, (in units of d). (a) @=0.5, w,=w,=1.0, (b) @=15, w,=w,=1.0, (c) @=0.5, w,=0.5, w,
=10, (d) a=1.0, w,=0.5, w,=1.0, (¢) @=0.5, w,=w,=2.0, and (f) a=1.0, w,=w,=2.0.

For small «, we see two opposite y components of the
spin moving downward and separating in the x direction. In
the upper half of Fig. 9(a) the spin projection is reversed but
less pronounced. This resembles a “four-leaf clover” struc-
ture. The up-in-y domain is along the main diagonal (x=
—y) and the down-in-y domain is along the other diagonal
(x=y). Although not perfect, the symmetry in Fig. 9 is based
on the diagonals. The reflection symmetry does not exist
about the x axis but about the two diagonal x=y and x=-y
axes instead, corresponding to the traveling direction of two
opposite spin components for larger « in Fig. 9(d).

As for the effect of localization, we see fewer fringes
along the two diagonal lines for larger overall width of the
wave packet. When changing the ratio of the horizontal and
vertical widths, the effect is less significant than what we
observed in other cases. This follows from the fact that the

(@ (o)
5 004 5
0 002
0 90
00 o
0,04
6 4 2 0 2 4 6

width does not correspond to the orientation of the fringes.
By comparing Figs. 9(c) and 9(d), we see that the up-in-y
and down-in-y components travel on the diagonal axes due
to the combined effects of downward motion contributed
from initial spin (up-in x) and of horizontal motion contrib-
uted from the measurement for the eigenspinors of S, as can
be checked in Fig. 1(a). '

Lastly, we consider a 2D Rashba system with inclusion of
a confining harmonic-oscillator potential in the x direction,
as an illustration of the use of propagators in 2D confined
systems. We see that the x confinement distorts the initially
symmetric wave packets in Fig. 10(a) compared to the un-
confined packet in Fig. 6(a). The unequal width in x and y
still leads to additional ripples in Fig. 10(b) in analogy to
Fig. 6(d) but now the confinement limits the spread of the
wave packet in the x direction.

0 ]
5 5
02 09
0 . . 00 0
.02 '02
-5L -L
4 4 2 0 2 4 6 $ 4 2 0 2 4 8

FIG. 9. (Color online) Spin-density (S,)(x,y) contour plot for an initial up-in-x spin state evaluated at =3 (in units of md*/h) with

different o (in units of #%/md), w,, and w, (in units of d). (a) @=0.5, w,=w,=1.0, (b) =10, w,=w,=1.0, (c) @=0.5, w,=2.0, w

=20, and (d) a=1.0, w,=2.0, w,=2.0.

y
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FIG. 10. (Color online) Spin-density {(S_)(x,y) contour plot for a
initial up-in-z spin state evaluated at r=3.0. (a) @=0.5, ©=0.5,
w,=w,=1.0 and (b) @=0.5, 0=0.5, w,=2.0, wy=1.0.

IV. DISCUSSION

We have plotted the spin densities (S,), (S,), and (S,) for
evolved Gaussian wave packets with different widths and
initial spin states using the Rashba propagators with or with-
out harmonic confinement and with different values of
Rashba coupling strength «. In general, the plots show local-
ized wave packets which have undergone spin-dependent
separation, deformation, and spreading. They indicate where
in space specific values of the spin operator components can
be expected. The plots thus give a direct picture of polariza-
tion density.

All figures in this work are presented in scaled units
which can be converted to realistic values that can be used to
compare with experimental data. This can be achieved either
by selecting an appropriate unit length d in the 1D case or by
fitting d to recover specific values of « in the 2D case, with
particular interest in recovering experimentally accessible
values.

For example, in the 1D case, if we take the effective mass
m=0.05m, (Ref. 26) and an absolute length unit d
=200 nm, we can obtain a unit value of «a=7.645
X 107'2 eV m (bold and dotted lines in Figs. 2-5) two units
of @, 1.529%107!! eV m (thin line in Figs. 2 and 3) and a
unit of time equal to r=17.2 ps. These values of « lie in the
range of experimentally accessible Rashba strengths.! This
choice also corresponds to wave packet widths w=200 nm
(bold and thin lines in Figs. 2 and 3) or w=100 nm (dotted
lines in Figs. 2-5), which are also in agreement with values
found in the literature.”® Using these values we obtain iden-
tical plots to those presented in Figs. 2—5 but now with real-
istic position values and expectation values on the axes.

The scaling in the 2D figures proceeds as follows. For
example, in order to fit the minimum experimentally acces-
sible @ which is currently about 6X 10712 eV m to the
scaled choice of a@=0.5 (low end), one selects the absolute
length unit d=127.43 nm and the unit time =7 ps. Simi-
larly, one can fit =1 (high end) to the maximum experimen-
tally accessible @ which is currently about 4 X 107! eV m
and again one can calculate the absolute unit length d
=38.23 nm and the time unit =0.63 ps.

All these results illustrate how the propagator allows us to
track wave packets analytically, numerically, and pictorially
for the study of Rashba systems. As might be expected, the
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Rashba interaction causes a spatial separation of the spin
states: the twofold separation achieved in Fig. 2 is reminis-
cent of the Stern-Gerlach separation in an inhomogeneous
magnetic field. More complex spatial patterns of polarization
develop as a result of spreading, precession, geometry (2D),
and confinement. As the wave packet spreads from its initial
location as a result of the Rashba effect and as the electron
precesses, the polarization will display an oscillation in
space. Because the rates of spreading and precession are de-
termined by the parameters, the maxima and the minima of
the oscillation are fixed in space as in the PSHS seen in Fig.
4. When « increases, the velocity of separation increases
also. However, if « is too large, the BSS feature is sup-
pressed. On the other hand when « is too small, the Rashba
effect is negligible and we recover free-particle behavior.
Therefore, a should be carefully chosen depending on the
specific purpose. For example, in the 1D case, for fixed
width, spin separation will be enhanced by increasing the
Rashba strength to a=1.529 X 10~!'! eV m, or beyond, using
the maximum experimentally accessible value of a=4
X107 eV m.

When we increase the overall width w of the initial wave
packet and therefore decrease localization, the wave packet
spreads more slowly in analogy to free-particle spreading
and we observe fewer fringes from the oscillations. Simi-
larly, faster spreading occurs for smaller w. For example, for
the experimentally accessible values of «, spin separation in
Fig. 2 will be maximized by choosing a minimal width such
as 100 nm in the 1D case and likewise for the 2D case. We
also observe that the effect of the relative widths w,/w, on
the fringe pattern depends on the particular spin components
considered. For cases where initial polarization and measure-
ment axis are given by, respectively (z and z), (x and x), and
(z and x) in Figs. 6-8, the relative width plays an important
role in the formation of fringes. This effect is suppressed
when the initial and measured axes refer to orthogonal in-
plane components (x and y) or (y and x). Again the optimal
value of w, and w, should be selected for maximal effect.

We observe spatial separation and oscillations of the spin
states in the 1D and 2D Rashba systems. The spatial separa-
tion of the spin states generates a spin current. This mecha-
nism is enhanced by selecting a larger «, a smaller w, or
both. On the other hand, the oscillations of the spin states is
enhanced by selecting a smaller «, a smaller w, or preferably
both. The system we considered is sufficiently complex that
several of the features we identify occur simultaneously and
are thus not necessarily mutually exclusive. Also the features
we discuss arise in plots of different physical quantities. For
example, the spin separation in Sec. IIl A 1 is observed in
the y component in spin space whereas the BSS in Sec.
IIT A 2 is observed at the same time and with comparable
parameters but in the z component in spin space. The spin
field-effect transistor proposed by Datta and Das? is an ex-
ample of the use of an oscillation mechanism to control the
spin. Some of the features described in this paper do appear
in other work, although descriptions may vary. In particular
SS, the components of BSS, the geometry of RFS, and
the shifted components in PSH have previously been
identified.'326

235309-9



BAILEY C. HSU AND JEAN-FRANCOIS S. VAN HUELE

We have presented a straightforward and flexible method
to evaluate the spin dynamics in Rashba systems that can be
extended to other SOC systems, such as Dresselhaus systems
or a combination of the Rashba and Dresselhaus interactions.
We have focused on the study of initial wave packets local-
ized in position in 1D and 2D, unconfined and confined
Rashba systems. The plots presented here are just a few se-
lected examples of wave-packet evolution from which the
main features were identified. These features do occur for

PHYSICAL REVIEW B 80, 235309 (2009)

values of the Rashba strength, wave-packet widths, and
times which lie within the range of currently accessible val-
ues. The strength of the method can be shown effectively
with the use of real-time animations. In conclusion this non-
exhaustive study of wave-packet spin dynamics illustrates
how propagator methods make it possible to retrieve com-
plex information in SOC systems involving incompatible ob-
servables.
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