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We discuss the inevitable dissipation of energy that must accompany the creation of a pulse-medium exci-
tation state in a passive dielectric. We show that there is a minimum amount of energy that an optical pulse
must deposit in the medium to create a given pulse-medium state and that energy deposited beyond this
minimum value must be dissipated in the medium. We compare this notion of dissipation to a related concept
found by determining the fraction of energy stored in a medium that is irrecoverable by future fields. These two
notions of dissipation are model-independent and form upper and lower bounds for real-time loss. Any model-
dependent notion of loss that falls outside these bounds has serious conceptual difficulties. We show that a
traditional notion of real-time loss based on a multiple-Lorentz oscillator model fails to give reasonable results
in classes of passive linear media near EIT, while the notions of loss we introduce give sensible results for all
passive media.
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I. INTRODUCTION

As an optical pulse propagates in a dielectric, energy from
the field is continuously transferred into the medium while
some of the previously deposited energy is returned to the
field. The dynamics of this energy exchange controls the
temporal reshaping of a pulse �1�. A delay between deposit-
ing energy and returning it to the field can result in “slow”
propagation of the field envelope through the medium �2�.
When there is very little energy returned to the field at later
times, the location of the field envelope can travel “fast” as
the early portions of the pulse deposit a smaller fraction of
the field energy in the medium than the later parts �1,3–7�.

The methods for choosing a pulse-medium combination
to display a certain pulse-reshaping behavior �slow light, fast
light, etc.� are well developed. Typically, it is most conve-
nient to use the group delay function to predict overall be-
havior. While this method focuses on the spectral represen-
tation of the pulse and medium, the analysis implicitly
contains information about the temporal energy shuffling that
occurs as they interact. In this paper, we study this temporal
energy exchange more directly.

To simplify our analysis, we focus on passive media
where the medium never supplies more energy to the field
than it has previously received from it. In this type of me-
dium, some of the energy transferred into the medium is
dissipated and cannot be returned to the field. This “stuck”
energy can no longer participate in the energy exchange pro-
cess. It is informative to consider pulse reshaping in a frame-
work where the energy in the medium is separated into dis-
sipated and undissipated portions at each time as the medium
experiences the pulse.

In a previous paper �8�, we detailed a formalism that de-
scribes the amount of previously deposited energy that is

irrecoverable from the medium by any future field. We de-
note this fraction of the energy density as the irrecoverable
energy. This irrecoverable energy includes energy that has
completed the absorption process as well as energy that
could be classified as kinetic or potential energy. Our previ-
ous analysis of the pulse-medium system is future looking in
the sense that the past history of a field is considered a given,
and one determines the fraction of the energy density stored
in the medium that could be extracted by an appropriately
chosen future field and the fraction that is irretrievably
lodged in the medium. It turns out that the fraction of energy
that remains recoverable is a function only of the current
pulse-medium state, irrespective of the field history.

In this paper we consider a complimentary question: what
is the most energy-efficient way to create a given pulse-
medium state? This notion is past looking in the sense that
the current state of the pulse-medium excitation is consid-
ered fixed, and one looks at various past fields that could
create that state and finds the field history that does so with
the least amount of energy density being deposited in the
medium. Any energy deposited in the medium beyond this
minimum value is “wasted” in creating the field-medium
state in a nonoptimal fashion and can be unambiguously
classified as loss. We designate this fraction as the waste
energy.

In general, it is not possible to unambiguously identify a
single value as the correct amount of dissipation up to a
given time, since many microscopic models give different
estimations of loss while describing the same macroscopic
behavior. Rather, the irrecoverable energy described in our
previous paper and the waste energy introduced in this paper
describe upper and lower bounds on dissipation up to a given
time �9–15�. This range is natural, since energy density does
not switch from a state of coherent interaction between a
pulse and a medium to random thermal energy of the me-
dium at a precise instant.

We show that any notion of real-time dissipation that does
not fall between the bounds provided by the waste energy*michael_ware@byu.edu
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and the irrecoverable energy leads to serious conceptual dif-
ficulties. As an example of a model-specific notion of dissi-
pation, we discuss a framework introduced by Barash and
Ginzburg �16� that is specific to a multiple-Lorentz-oscillator
model of a medium. While the Barash and Ginzburg notion
of loss often leads to reasonable results �within the bounds
provided by the irrecoverable and waste energies�, in Sec. V
we discuss a type of medium for which it falls outside these
bounds and fails to provide sensible results.

II. BACKGROUND

We restrict our analysis to passive, homogeneous, isotro-
pic linear dielectrics �nonmagnetic� without spatial disper-
sion and use the Lorentz-Heaviside system of units. In this
setting, the pulse-medium state at a time t and a given spatial
point is related to the scalar amplitudes of the electric field
and the medium polarization, given by E�t� and P�t�, respec-
tively. These fields are connected in the frequency domain by
the susceptibility ���� through

P�t� =
1

�2�
�

−�

�

����Ê���e−i�td� , �1�

where Ê��� is the Fourier transform of E�t�. �In our notation
hats distinguish Fourier transforms of quantities.� The polar-
ization P�t� at a time t depends on E�t� at other times, since

this information is required to compute the spectrum Ê���.
More precisely, causality requires that only current and past
values of E�t� influence the current value of P�t�.

We can see the requirements of causality more explicitly
in the temporal domain, where P�t� can be determined using
the impulse response function G�t�,

P�t� = �
−�

+�

G�t − ��E���d� = �
−�

t

G�t − ��E���d� , �2�

where G�t� is absolutely integrable and related to ���� via

���� = �
−�

+�

G�t��ei�t�dt� = �
0

+�

G�t��ei�t�dt�. �3�

Causality is enforced by requiring G�t�� to be zero for t�
�0, which results in the second forms of Eqs. �2� and �3�. A
straightforward analysis of Eq. �3� yields a number of prop-
erties for ���� that will be useful in our analysis �17�. First,
���� will be an analytic function of � in the upper half of the
complex plane. Second, for a passive medium �i.e., one for
which 0�� Im������� the reciprocal of ���� must also be
analytic in the upper half-plane. This requirement ensures
that E and P are mutually causal in the sense that oscillation
in P cannot precede oscillations of E and oscillations of E
cannot precede oscillations of P. Third, since G�t�� is real we
have

��− �� = ������ . �4�

The notions of energy that we use arise from Poynting’s
energy conservation theorem. Disregarding a factor of 4�,
this theorem is given by

� · S�t� +
�u�t�

�t
= 0, u�t� = ufield�t� + uint�t� , �5�

ufield�t� =
1

2
E2�t� +

1

2
H2�t� , �6�

uint�t� ª �
−�

t

E���Ṗ���d� . �7�

where H is the magnetic field and the Poynting vector S�t�
ªE�t��H�t� describes energy flow. The dot notation in Eq.
�7� indicates a time derivative. The total energy density u�t�
is composed of two parts, ufield�t� and uint�t�. The field energy
density ufield�t� describes energy density stored in the electric
and magnetic fields and the interaction energy density uint�t�
describes the accumulation of energy density transferred into
the medium �at the point of consideration� from the begin-
ning of the pulse-medium interaction until time t. When nec-
essary, we use the notation uint�E��t� to denote the depen-
dence of uint on both the field E and the time t. For example,
because only past fields can influence the current state, we
have uint�E��t�=uint�Et

−��t�, where Et
− represents the past field

up to time t �with the future set to zero�.
In our previous work �8�, we showed that uint�t� can be

divided as

uint�t� = urec�t� + uirrec�t� , �8�

where the recoverable energy density urec describes the por-
tion of uint�t� that could possibly be returned to the field
�given an appropriate future field� and the irrecoverable en-
ergy density uirrec refers to the portion of uint�t� that must
remain in the medium regardless of what future field is
chosen.

In this work, we divide uint�t� as

uint�t� = uopt�t� + uwaste�t� �9�

where uopt represents the portion of uint that an optimally
efficient pulse is required to deposit in the medium to arrive
at the current pulse-medium excitation state, and uwaste rep-
resents the portion of uint in excess of this minimum require-
ment that an actual field has deposited into the medium �due
to a “nonoptimal” choice of the past field�.

We will compare the two notions of dissipation repre-
sented by uirrec and uwaste to a third, model-specific notion
first derived by Barash and Ginzburg �16�. The Barash and
Ginzburg notion is specific to a Lorentz oscillator medium
where ���� is assumed to have the form

���� = �
n=1

N

�n��� = �
n=1

N fn�pn

2

�n
2 − i	n� − �2 . �10�

The parameters fn, �pn
, �n, and 	n are the oscillator strength,

plasma frequency, resonant frequency, and damping rate of
the nth Lorentz oscillator. When Eq. �10� is inserted into Eq.
�7� and expanded, one finds that uint can be divided as

uint�t� = ue�t� + u��t� , �11�

where
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ue�t� = �
n=1

N
1

2fn�pn

2 Ṗn
2�t� +

�n
2

2fn�pn

2 Pn
2�t� , �12�

u��t� = �
n=1

N �
−�

t 	n

fn�pn

2 Ṗn
2���d� , �13�

and

Pn�t� =
1

�2�
�

−�

�

�n���Ê���d� . �14�

The quantity ue contains the collected kinetic and potential
energy terms of each individual oscillator. The dissipation
term u� contains the usual viscous or frictional losses of each
oscillator. This model of loss is explicitly model dependent.
As shown by Barash and Ginzburg, a measured ���� does
not have a unique representation described by Eq. �10� and
two equally accurate representation of ���� can have differ-
ent values for dissipation depending on the parameters used.
While the framework that we develop in this paper is inde-
pendent of the model used for a medium, the Barash and
Ginzburg approach provides an instructive comparison for
the concepts we develop.

III. OPTIMUM CREATION AND WASTE ENERGY
DENSITIES

We consider pulse-medium interactions where the point
under consideration in the medium begins and ends in the
quiescent state �i.e., that P�t�=0 for t→ 
��. In this context,
any energy density present at the point arrives via the Poyn-
ting flux and any energy density lodged in the medium as t
→+� can be unambiguously identified as having been dis-
sipated. Mathematically, this is ensured by requiring E�t� to
be absolutely integrable.

The formal definition of the energy density uopt can then
be written as

uopt�E��t� ª inf
Ft

−
�uint�Ft

−��t�	 . �15�

The infimum is found by considering a set of past fields
represented by Ft

− and finding the lower limit for the value of
uint at time t. Each hypothetical field history in Ft

− is required
to result in the same state as the actual field history Et

−. More
precisely, to be considered a valid Ft

−, all future behavior of
the medium polarization P after time t must be unaffected if
the actual pulse history Et

− is replaced by any of the hypo-
thetical field histories Ft

−. �Like Et
−, each Ft

− is zero after time
t.� We use an infimum rather than a minimum in Eq. �15�
because the lower bound cannot actually be reached, but
only approached in the sense of a limit. Once uopt is known,
uwaste can be found using Eq. �9� with Eq. �7�.

Definition �15� represents a well-defined quantity, but it is
not in a form that can be readily computed. In the remainder
of this section, we derive an algorithm to conveniently cal-
culate uopt for a given pulse-medium combination. In an ef-
fort to clearly show the main flow of the derivation, we
present a general outline of the derivation in this section and
defer many of the details to Sec. IV.

We first manipulate uint into a form that allows the infi-
mum to be carried out more conveniently. In Refs. �1,7� we
showed that uint can be written in the frequency domain as

uint�E��t� = �
−�

+�

� Im������
Êt
−���
2d� . �16�

Here the instantaneous spectrum Êt
−��� is the spectrum that a

point in the medium experiences up until the time t,

Êt
−��� ª

1

�2�
�

−�

+�

Et
−�t�ei�tdt =

1

�2�
�

−�

t

E�t�ei�tdt .

�17�

Through further manipulating, Eq. �16� can be written in the
form

uint�E��t� =
	�

�p
2�

−�

+�

�− i��̃eff���Êt
−����

��+ i��̃eff�− ��Et
−�− ���d� . �18�

where �p
2 is the plasma frequency, 	� is a constant related to

dissipation as �→�, and �̃eff��� is a function whose poles
are those of ���� but whose zeros are the zeros of
� Im������ that fall in the upper half-plane. The procedure
for constructing �̃eff��� from ���� is described more explic-
itly in the discussion surrounding Eqs. �28�–�32� in Sec. IV.

The two factors in the integral of Eq. �18� can be thought
of as the time derivatives of the Fourier transform of a func-

tion P̃eff, defined by

P̃eff�Et
−���� ª

1

�2�
�

−�

+�

�̃eff���Êt
−���e−i��dw . �19�

The mathematical form of Eq. �19� is reminiscent of the
constitutive relation �1� for P, and hence the notation �18�.
However, there are important differences in the behavior of

P and P̃eff because of the differences in ���� and �̃eff���.
Using definition �19� and Parseval’s theorem, we finish our
manipulation of uint by writing Eq. �18� in the time domain
as

uint�E��t� =
	�

�p
2�

−�

+�

Ṗ̃eff
2 �Et

−����d� , �20�

where the dot notation again indicates a time derivative.
We are now ready to find the infimum. Inserting Eq. �20�

into Eq. �15� and splitting the integral at the defining time t,
we have

uopt�E��t� = inf
Ft

−
�	�

�p
2�

−�

t

Ṗ̃eff�Ft
−�2���d�

+
	�

�p
2�

t

+�

Ṗ̃eff
2 �Ft

−����d�� �21�

As stated previously, the requirement for Ft
− to be an accept-

able past field is that the future behavior of the medium �i.e.,
the polarization P� is unchanged if the actual past field Et

− is
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interchanged with the hypothetical past field Ft
−. In Sec. IV

we show that this requirement ensures that the future behav-

ior of P̃eff is also unchanged when Ft
− is replaced by Et

−. As a
result, the second integral in Eq. �21� is invariant with re-
spect to Ft

− �since we can replace Ft
− with Et

−, which does not
vary� and can be removed from the infimum,

uopt�E��t� =
	�

�p
2�

t

+�

Ṗ̃eff�Et
−�2���d�

+ inf
Ft

−
�	�

�p
2�

−�

t

Ṗ̃eff�Ft
−�2���d�� �22�

We also show in Sec. IV that there exists a sequence of fields
Ft

− for which the infimum in Eq. �22� is zero. With this result,
we arrive at an expression for uopt,

uopt�E��t� =
	�

�p
2�

t

+�

Ṗ̃eff
2 �Et

−����d� . �23�

By comparing Eq. �23� with Eq. �20� in light of Eq. �9�, we
see that uwaste is given by

uwaste�E��t� =
	�

�p
2�

−�

t

Ṗ̃eff�Et
−�2���d� =

	�

�p
2�

−�

t

Ṗ̃eff�E�2���d� .

�24�

Note that in Eq. �24� we have indicated that it is equivalent
to use either the past field Et

− or the entire field E in calcu-

lating Ṗ̃eff. This is a result of the facts that the integral only

goes to the current time t and that the past behavior of Ṗ̃eff is
unaffected by the future behavior of E �see the discussion of
causality following Eq. �32� in Sec. IV�. Since the integral in
Eq. �23� considers future times, it is necessary to use only the
past field Et

− when calculating uopt in Eq. �23�. For this rea-
son, it is usually more computationally efficient to calculate
uwaste using the second form in Eq. �24� and then calculate
uopt using Eqs. �9� and �7�.

Before justifying the assertions made in the derivation
above, we discuss some of the properties that are apparent
from these forms for uwaste and uopt. First, note that formula
�24� for uwaste is a running integral of the square of a real
function. This requires that uwaste always increase or stay the
same as time progresses �i.e., it is monotonically nondecreas-
ing�. This is consistent with the notion that the portion of the
energy density represented by uwaste is lost to the medium
permanently.

We can also see from this derivation that there is not a
unique value of uwaste associated with a given medium state.
This is a result of the fact that there are many ways to create
the same state in a medium �i.e., there are many admissible
hypothetical field histories Ft

− that create identical future be-
haviors�, and each field history can deposit different amounts
of waste energy density into the medium. In contrast, for any
given state of the medium there does exist a unique uopt that
specifies the minimum value of the pulse-medium interaction
energy uint that can be associated with that state of the me-
dium.

A similar situation occurs when we divide the interaction
energy density into recoverable and irrecoverable portions
using Eq. �8� as done in �8�. In that case, the recoverable
energy urec is unique to a given medium state, but any value
for the irrecoverable energy density uirrec can be obtained by
choosing different field histories that result in the same state.
The energy “inefficiency” of a medium state can be de-
scribed by the difference uopt�t�−urec�t�, which describes the
minimum amount of energy density that must be irretriev-
ably deposited in the medium in order to realize a given
medium excitation: uopt�t� is the minimum net energy input
required to create to a state and urec�t� is the maximum
amount that can be subsequently returned.

The two notions of dissipation represented by uwaste and
uirrec give bounds that limit the values that a model-specific
notion of real-time loss can take on. The most energy density
that can be said to be dissipated at a given time �i.e., the
upper bound on dissipation� is given by uirrec. Any fraction of
the energy density in the medium beyond uirrec could in prin-
ciple be returned to a future field. The minimum amount of
energy that must be considered dissipated �i.e., lower bound
on dissipation� is given by uwaste. No future behavior of the
pulse-medium interaction would change if the pulse-medium
excitation had been produced with a past field for which
uwaste=0. Thus, uwaste represents the minimum fraction of en-
ergy density that must be classified as no longer participating
in the pulse-medium interaction.

Within the bounds provided by uwaste and uirrec it is pos-
sible to consider other model-specific notions of loss that
satisfy various properties. For instance, the Barash and Gin-
zburg notion of loss comes from treating a medium as a
collection of mechanical oscillators with various resonance
frequencies. In this model, the “kinetic” and “potential” en-
ergies of the oscillators represent undissipated energy, and
the accumulated “frictional” losses of the oscillators are
summed to find u� in Eq. �11�. The Barash and Ginzburg
notion of dissipation obeys

uwaste � u� � uirrec, �25�

when fn�0 for all resonance. However, Eq. �25� can fail in
a medium where fn�0 for one or more of the resonances
even when the other oscillators in the medium combine with
the negative oscillator strengths to make the medium com-
pletely passive �see Sec. V�.

To illustrate the behavior of these quantities, we have cal-
culated the various notions of loss for a Gaussian pulse given
by

E�t� = E0e−t2/T2
cos��̄t� . �26�

propagating in a multiple-Lorentz oscillator medium, de-
scribed by Eq. �10� with N=2. For this example, we use the
parameters

	1 = 	2 = 	 ,

�1 = 49	 ,

�2 = 51	 ,
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f1�p1

2 = f2�p2

2 = 200	2,

�̄ = 50	 ,

T = 1/	 . �27�

This represents an optical pulse with its spectrum encom-
passing two closely spaced absorbing resonances �see Figs.
1�a� and 1�c��. This situation results in a large amount of
dissipation and apparent “superluminal” propagation to a
nearby point since the trailing portion of the pulse experi-
ences greater attenuation than the leading portion. Figure
1�d� shows the evolution of the three notions of loss: uirrec,
u�, and uwaste. Each notion of loss increases with time, al-
though uwaste and uirrec periodically flatten out �this is a sig-
nature of the fact that u� is not an extremal notion of loss,
while the other two are�. The inset in Fig. 1�d� shows that
inequality �25� holds even when the three notions of dissipa-
tion are very close as the two Lorentz oscillators come into
phase. Note that uint reaches its maximum value during the
main portion of the field oscillations in Fig. 1�b�, but a non-
negligible fraction of this energy remains undissipated for
some time after the field oscillations have essentially ceased.
Eventually, the dissipation of the energy is finalized, and all
notions of loss converge to the same value as t→+�.

Both uirrec and uwaste are independent of the model used
for ����. However, u� given by Eq. �13� is explicitly model
dependent and it is possible to represent the same ���� with
more than one set of model parameters in Eq. �10�. Different
sets of parameters representing the same ���� can have dif-
ferent evolutions for u�, but these evolutions will always fall
within the bounds set by uirrec and uwaste as long as all the
individual oscillator strengths satisfy fn�0. This behavior
indicates that there is not a unique quantity that unambigu-

ously represents the evolved dissipation up to a given time,
but that the dissipation depends on microscopic details of the
medium. Nevertheless, uirrec and uwaste always define a range
of energy densities that can be said to meaningfully represent
dissipation.

IV. DERIVATION DETAILS AND THE OPTIMAL
PAST FIELD

We now return to the derivation and justify the several
assertions made above. We begin by writing ���� in an ex-
plicit form where the zeros and poles are evident. For a gen-
eral passive dielectric, ���� can be written as a rational func-
tion of the form

���� = −
�p

2�� − �1��� + �1
�� . . . �� − �N��� + �N

� �
�� − �1��� + �1

�� . . . �� − �N+1��� + �N+1
� �

�28�

where the plasma frequency �p is given by

�p
2 = − lim

�→�
�2���� �29�

and the complex frequencies � j and � j represent the poles
and zeros of ����, respectively. Each subscript appears twice
in Eq. �28� because the symmetry �4� requires poles and
zeros that are not on the imaginary axis to come in pairs,
arranged symmetrically across the imaginary axis �e.g., �1
and its negative complex conjugate −�1

� are both poles�.
Note that there are 2N zeros while there are 2N+2 poles.
�This difference in number is associated with the fact that the
charge carriers in a medium have inertia �17�.� As discussed
in the introduction, all of the poles of Eq. �28� must be in the
lower half-plane because of causality, and the zeros must

FIG. 1. �Color online� Quantities related to the parameters in Eq. �27�. �a� The normalized spectrum 
Ê���
2 of the pulse field. �b� The
time evolution of the electric field. �c� Im������. �d� Energy densities in the medium at the point experiencing the pulse in �a�.
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also be in the lower half-plane because the medium is pas-
sive �17�.

We can use this representation of ���� to find the quantity

�̃eff��� introduced in Eq. �18�. If the form �28� is inserted
into the integrand of Eq. �16�, some straightforward analysis
shows that the integrand can be written in the form

� Im������ =
− i����� + i���− ��

2

=
	�

�p
2
− i�

− �p
2�� + 
1��� − 
1

�� ¯ �� + 
N��� − 
N
� �

�� − �1��� + �1
�� ¯ �� − �N+1��� + �N+1

� �
�
i�

− �p
2�− � + 
1��− � − 
1

�� ¯ �− � + 
N��− � − 
N
� �

�− � − �1��− � + �1
�� ¯ �− � − �N+1��− � + �N+1

� �
�

�30�

where the high frequency dissipation 	� is given by

	� = lim
�→�

�3

�p
2 Im������ �31�

and the frequencies 
n in Eq. �30� identify the complex zeros
of � Im������ that are in the lower half-plane. With the defi-
nition

�̃eff��� ª
− �p

2�� + 
1��� − 
1
�� . . . �� + 
N��� − 
N

� �
�� − �1��� + �1

�� . . . �� − �N+1��� + �N+1
� �

�32�

in Eq. �30� we arrive at the form of the integrand presented
in Eq. �18�.

The quantity �̃eff��� plays the same role for P̃eff in Eq.
�19� as ���� plays for P in Eq. �1�. The differences in be-

havior between P and P̃eff arise due to the construction of
�̃eff���. Note that the poles of �̃eff are the same as the poles
of ����. These poles are in the lower half-plane, which en-

sures that P̃eff defined by Eqs. �19� and �32� is causal in the

sense that there can be no oscillations of P̃eff before E begins
to oscillate. However, the zeros of �̃eff are in the upper half-
plane so that the inverse of �̃eff is not analytic in the upper

half-plane. This indicates that E and P̃eff are not mutually
causal. Specifically, we can have oscillations of E without

causing oscillations in P̃eff. This is an important point, since
we wish to show that

inf
Ft

−
�	�

�p
2�

−�

t

Ṗ̃eff
2 �Ft

−����d�� = 0. �33�

This can only be true if there exists a nontrivial past field Ft
−

that oscillates before t but does not cause P̃eff to oscillate.
In preparation for showing that Eq. �33� holds, we also

need to prove the claim used to move from Eqs. �21� and
�22�, specifically that for each Ft

−

�
t

+�

Ṗ̃eff�Ft
−�2���d� = �

t

+�

Ṗ̃eff�Et
−�2���d� . �34�

In essence, Eq. �34� claims that any acceptable Ft
− produces

the very same “ringing” of P̃eff after the field ceases at time

t as the actual past field Et
−. If we were to replace P̃eff with P

in Eq. �34�, the statement would be true by definition of what
constitutes a valid Ft

−, namely, that the future behavior of the
medium is the same for Et

− and Ft
−, i.e.,

P�Et
−���� = P�Ft

−���� �� � t� �35�

must be satisfied for all future times ��� t�. Requirement
�35�, combined with the fact that we are considering a linear
medium, effectively defines the state of the medium.

We can rewrite the left-hand side of Eq. �35� in a useful
form by calculating

P�Et
−���� =

1
�2�

�
−�

+�

����Êt
−���e−i��d�

= �2��
j=1

N+1

�ajÊt
−�� j�e−i�j� + aj

�Êt
−�− � j

��ei�j
��� ,

�36�

where the aj and aj
� coefficients are the residues connected to

the poles of ���� at � j and −� j
�. Since the frequencies �1 ,

−�1
� , . . . ,�N+1 ,−�N+1

� are distinct, requirement �35� holds if,
and only if

Êt
−�� j� = F̂t

−�� j�, Êt
−�− � j

�� = F̂t
−�− � j

��, �j = 1, . . . ,N + 1� .

�37�

If we perform the analogous integral to Eq. �36� for P̃eff, we
obtain
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P̃eff�Et
−���� =

1
�2�

�
−�

+�

�̃eff���Êt
−���e−i��d�

= �2��
j=1

N+1

�ãjÊt
−�� j�e−i�j� + ãj

�Êt
−�− � j

��ei�j
���

�38�

The residues ã and ã� are different from those in Eq. �36�,
but since �̃eff��� has the same poles as ���� the complex
frequencies � j are the same in Eqs. �36� and �38�. If a past
field Ft

− that satisfies the conditions �37� is used in Eq. �38�
instead of Et

−, we find

P̃eff�Ft
−���� = P̃eff�Et

−���� �� � t� , �39�

from which assertion Eq. �34� directly follows.
Now we are in a position to verify our claim that the

infimum in Eq. �33� is zero. We seek the existence of �the
limit of� an optimum past field Ft,opt

− that produces

Ṗ̃eff�Ft,opt
− ���� = 0 �� � t� �40�

so that the integrand in Eq. �33� is zero. From basic complex
analysis �17�, it is known that Eq. �40� is satisfied if the

Fourier transform of Ṗ̃eff�Ft,opt
− ���− t�, given by

−i��̃eff���F̂t,opt
− ���, is analytic and rapidly vanishing in the

upper half-plane. Since �̃eff��� is analytic in the upper half-

plane, only singularities in the spectrum F̂t,opt
− ��� �which are

necessarily located in the upper half-plane� could ruin the

analyticity of −i��̃eff���F̂t,opt
− ���. Thus, the requirement on

analyticity can only be met by a past field whose spectrum

F̂t,opt
− ��� is of the form

F̂t,opt
− ��� = D� +

D0

i�� − i��
+

D1

i�� + 
1�
+

D1
�

i�� − 
1
��

+ . . .

+
DN

i�� + 
N�
+

DN
�

i�� − 
N
� �

. �41�

Note that the form in Eq. �41� has simple poles located at
precisely the same places in the complex plane as the zeros
of �̃eff��� in Eq. �32�, so that the combination

−i��̃eff���F̂t,opt
− ��� is analytic in the upper half-plane.

The parameters D� ,D0 ,D1 ,D1
� , . . . ,DN ,DN

� represent the
strength of each frequency component in the field. D� is the
strength of the components as �→� �a delta impulse in
time� and D0 is the strength of the component as �→0 �a dc
field�. The parameter � in Eq. �41� is a small positive number
that represents a very slow “ramp up” of the field that ap-
proximates dc forward tail as �→0. This limit is required
because an optical pulse with a dc forward tail is not abso-
lutely integrable and does not correspond to the medium
originating from the quiescent state as t→−�. �This limit is
part of the reason we needed to take an infimum rather than
a minimum.� The rest of the parameters �D1, D2, etc.� repre-
sent the strength of the complex frequency components �−
1,
−
2, etc.� that describe exponentially growing oscillations for
the past field.

The values for the 2N+2 parameters Dj in Eq. �41� are
not arbitrary, but must be chosen so that the 2N+2 con-
straints in Eq. �37� are satisfied. This ensures that Ft,opt

− pro-
duces the same state as Et

− by time t. The linear indepen-
dence of the functions indicated in Eq. �41� shows that the

Eqs. �37� will have a unique solution for F̂t,opt
− ��� �for each

value of ��. All other past fields will give rise to an oscilla-

tion in P̃eff�Ft
−���� since �̃eff���F̂t

−��� will not be analytic in

the upper half-plane if F̂t
−��� has poles at places other than

the zeroes of �̃eff��� �or has other types of singularities�.
To illustrate the behavior of the optimal creation field, we

consider a second numerical example. We use the same
Gaussian pulse as in Fig. 1, but change the medium param-
eters to

	1 = 	2 = 	 ,

�1 = 40	 ,

�2 = 60	 ,

f1�p1

2 = f2�p2

2 = 100	2. �42�

This represents an optical pulse with its spectrum centered
in a low-absorption region between two absorbing reso-
nances �see Fig. 2�a��. The pulse deposits energy in the me-
dium during the leading portion of the pulse and the medium
returns a part of this energy to the latter portion of the pulse,
resulting in modestly subluminal propagation to nearby spa-
tial points. Note that the energy densities have the same or-
dering as specified by Eq. �25� since f1 and f2 are positive.

In Fig. 3 we have replaced the portion of the field before
t=0 with the optimal field Ft,opt

− calculated at t=0. Note that
the optimal creation field shown in Fig. 3�a� has the three
general features discussed above: a dc portion, a delta spike

FIG. 2. �Color online� Quantities related to the parameters in
Eq. �42�. �a� Im������. �b� Energy densities associated with the field
shown in Fig. 1�b� for this medium.

REAL-TIME DISSIPATION OF OPTICAL PULSES IN … PHYSICAL REVIEW A 80, 043817 �2009�

043817-7



at t=0 �represented by the downward arrow in the figure�,
and an exponentially growing oscillations before our defin-
ing time t=0. This field creates the same behavior of P�t� for
t�0 as the original field shown in Fig. 1�b� �to within the
numerical accuracy of our calculations�. In Fig. 3�b�, we
have plotted the various dissipation energy densities. Note in
the inset of Fig. 3�b� that uwaste�t�=0 for all t�0 as required.
The other notions of loss �i.e., uirrec and u�� are nonzero
before t=0, but uint is the lowest possible for this pulse-
medium state at t=0.

V. FAILURE OF A MODEL-SPECIFIC NOTION
OF LOSS AND EIT

While the model-specific loss u� serves as an interesting
comparison to uwaste and uirrec, it has some features that make
it problematic for general use. In this section we detail these
issues. First, as Barash and Ginzburg pointed out, it is pos-
sible to use many different sets of parameters in Eq. �10� to
obtain the exact same ����, and each parameterization can
result in a different evolution of u�. The macroscopic Max-
well equations �which involve the medium polarization P�
respond only to ����, not to any microscopic details that
give rise to ����. Thus, analysis based on the macroscopic
Maxwell equations cannot classify one parameterization of a
multiple-Lorentz oscillator representation of a medium as the
“correct” one.

In contrast, the notions of loss given by uwaste and uirrec are
independent of the representation of the medium and
uniquely defined within the macroscopic Maxwell descrip-
tion. These two concepts provide bounds for the dissipation
up to a given time rather than an exact value. However, the
authors find it unlikely that definitions of loss based on mac-
roscopic quantities �such as ���� or evolved heat in the me-

dium� can provide a more precise picture of real-time loss
than is given by the limits of uwaste and uirrec. There is a
fundamental “fuzziness” involved in describing the time
when energy transitions from the ordered interaction of light
and matter to the disordered thermal energy described by
temperature.

Models of dissipation that give precise values of “loss”
are derived by making assumption about the microscopic
details of a medium �e.g., u��. While these microscopic mod-
els fall outside of the scope of the macroscopic Maxwell
equations, we can still use the analysis from this paper to
check if the values of loss predicted by the microscopic
model are reasonable. The fraction of energy density repre-
sented by uwaste provides the lower limit of what energy den-
sity must be considered lost at a given time. This can be
understood by noting that any pulse-medium state can be
created with an optimal past field such that uwaste=0, and all
future behavior of the pulse-medium interaction is unaffected
if the optimum past field is used rather than a nonoptimal
past field. Thus, any nonzero value for uwaste represents en-
ergy density that cannot participate in future pulse-medium
interactions. If one invents a notion of loss that is less than
uwaste, that notion has not classified a fraction of energy as
“lost” even though that energy density can never influence
the future pulse-medium interaction. Clearly such a notion
underestimates what has been lost. Conversely, uirrec provides
the upper bound for real-time loss. Any notion of loss that
exceeds uirrec is flawed because by definition the energy den-
sity in excess of uirrec could be restored to a future field �and
thus cannot be considered “lost”�.

FIG. 4. �Color online� �a� Im������ for the material specified by

the parameters in Eq. �43�. �b� Ê��� for the parameters in Eq. �44�.
�c� Group delay function for the material specified by the param-
eters in Eq. �43�.

FIG. 3. �Color online� �a� The electric field composed of the
optimum creation field before t=0 and the same Gaussian field as
Fig. 1�b� after t=0. �b� Energy densities associated with the field
shown in �a�.
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In our previous examples, the model-specific loss u�

stayed within the bounds provided by uwaste and uirrec. This
may leave the impression that one can always create a Lor-
entz model for a medium and get a general sense for the
energy loss dynamics using u�. However, this approach can
give nonsensical results in cases where a Lorentz medium
has one or more oscillators with fn�0. �Barash and Gin-
zburg derived the notion of loss for the specific case of fn
�0.� Note that if an fn is negative in the representation �13�,
u� is not necessarily monotonically increasing. This is an
immediate conceptual problem, since energy cannot be said
to be truly dissipated at a given time if it can later be reclas-
sified as undissipated.

To see an example where this occurs, consider a Lorentz
medium defined by Eq. �10� with

	2 = 0.1	1,

�1 = �2 = 10	1,

f1�p1

2 = 10	1
2,

f2�p1

2 = − 0.99	1
2. �43�

This medium is passive �i.e., � Im�������0�, but the nega-
tive f2 creates a narrow spectral window at the resonance
frequency with very little absorption �see Fig. 4�a��. This
resonance feature is similar to an absorption line with an
electromagnetically induced transparency �EIT� window in
the center. A standard method for creating ultraslow propa-

gation is to propagate a narrowband pulse with its spectrum
centered on such a resonance so that the entire spectrum of
the pulse experiences a large group delay �see Fig. 4�c�� and
little loss. For our example, we consider the case of a rela-
tively broadband pulse with its spectrum centered on the
resonance. We choose our pulse defined by Eq. �26� with

�̄ = 10	1,

T = 2.5/	1, �44�

�see Fig. 4�b��. Note in Figs. 4�b� and 4�c� that the pulse
contains frequencies with both “superluminal” group delays
as well as the highly subluminal delays.

Figure 5 shows the temporal reshaping of this pulse that
occurs as it propagates into the medium. The top left panel
shows the temporal evolution of the field energy ufield at a
point z=0 where the field is described by Eq. �44� and the
corresponding energy stored in the medium uint is shown in
the top right panel. The three notions of loss u�, uirrec, and
uwaste are also plotted on the right. The panels in the second
row show the temporal evolution after the pulse has propa-
gated a distance z=2c /	1 into the medium, and the bottom
panels show the evolution at a propagation distance of z
=4c /	1.

Notice that the Barash and Ginzburg notion of loss u� is
not monotonically increasing for this pulse-medium combi-
nation. At all three points, it initially increases and later de-
creases. As pointed out previously, this behavior is inconsis-
tent with the notion that dissipation describes energy that is
permanently transferred into the medium. In addition to de-

FIG. 5. �Color online� Energy densities associated with the pulse and medium specified by Eqs. �44� and �43�. The left column shows
field energy density and the right column shows energy densities in the medium. The top row is for no propagation �z=0�. The middle row
is after propagating a distance z=2c /	1 and the bottom row is after propagating a distance z=4c /	1.
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creasing at times, u� exceeds uirrec for periods of time, which
means there exists possible future fields that could recover a
portion of u�. Perhaps most striking is that u� even exceeds
uint so that this notion of loss seems to indicate that more
energy has been dissipated by a given time than has even
been transferred to the medium before that time. This behav-
ior emphasizes the need to use such model-dependent no-
tions of loss with care. The dissipation concepts represented
by uwaste and uirrec remain well defined for all overall passive
media, including the one in this example. In principle, one
could create a different microscopic model of loss for this
system that does not have the same issues as u� �for example,
using quantum dissipation theory and perturbation theory on
a three-level atom�. However, the dissipation given by the
model must fall within the bounds of uwaste and uirrec to be
considered reasonable in the context of the macroscopic
Maxwell’s equations.

This example can also be used to study pulse reshaping.
We first discuss this reshaping using group delay methods,
and then using the energy methods developed in this paper.
In the group delay context, each spectral components in the
pulse is delayed according to its group delay �19�. Since
there are frequency components with both “superluminal”
and highly subluminal delays, this pulse breaks into two
pieces as it propagates �see Fig. 5�. The superluminal spec-
tral components experience a large amount of absorption
�compare Figs. 4�a� and 4�c��, so the peak of energy that
arrives at early times is absorbed before reaching large
propagation distances. At propagation distances longer than
those shown in Fig. 5, the slow components dominate the
behavior.

The notions of loss that we have introduced can be used
to enhance our understanding of the temporal reshaping of
this pulse. At all propagation depths shown uwaste and uirrec
both track closely with uint during the early portion of the
pulse. Thus, the energy transferred into the medium during
the early portion of the pulse is largely “stuck” in the me-

dium at that point. The absorption at z=0 happens asym-
metrically around the peak of the pulse �at t=0�, indicating
that more energy is absorbed from the trailing edge of the
pulse than the leading edge. This explains the superluminal
delays predicted by the group delay method at very small
propagation depths. At greater propagations depths the fre-
quency components that experience superluminal delays
have been absorbed, and the overall behavior of the pulse is
dominated by the frequency components with highly sublu-
minal delays. The energy exchange behavior for these fre-
quency components is well illustrated by the frames for z
=2c /	1 and z=4c /	1. Note that a large fraction of the energy
transferred from the early portion of the “slow” part of the
pulse into the medium remains undissipated at these spatial
positions. The long temporal delay between the transfer of
energy into the medium and returning the energy to the field
results in the highly subluminal behavior.

VI. CONCLUSION

In this paper, we introduced the waste energy density
uwaste and defined it in relation to the minimum energy re-
quired to create a pulse-medium excitation. We derived ex-
pressions that allow the waste energy density to be easily
calculated, and compared its behavior to the irrecoverable
energy density uirrec, which was introduced in a previous
work. Because of the way in which uwaste is defined, it de-
scribes the portion of the energy at a given time that cannot
participate in future pulse-medium interactions that shape the
trailing portion of the pulse. The waste energy density and
the irrecoverable energy density are model-independent and
comprise bounds on the amount of dissipation that a medium
has experienced up to a given time. We showed that there
exist relevant example media in which model-specific no-
tions of real-time dissipation do not fall within these bounds
and demonstrated that these notions of loss have serious
conceptual problems.
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