High accuracy dual lens transmittance measurements
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We show how to determine the transmittance of short focal length lenses (f = 19 mm and f = 25 mm, in
this case) with a combined uncertainty of 3 parts in 10* or better by measuring transmittances of lens
pairs of a set of three or more lenses with the same nominal focal length. Uncertainties are minimized
by optimizing the radiometric design of the setup and the measurement procedure. The technique is
particularly useful in systems where the detector acceptance angle limits the beam geometry to relatively
collimated beams. © 2007 Optical Society of America

OCIS codes: 120.7000, 120.3940, 220.3630.

1. Introduction

In metrology it is often necessary to measure the
transmittance of optical components to a high level of
accuracy and precision. A ‘simple’ transmittance
measurement consists of using a spectrophotometer
to measure the optical power of a beam with the
optical element both in and out of the beam. The
transmittance is then calculated as the ratio of these
two measurements. Anderson et al. [1] discussed and
Woolliams et al. [2] further developed a number of
factors that must be considered when high accuracy
transmittance measurements are required. Detector
uniformity is important, because an optical element
may displace the illuminated spot on the detector
relative to the straight-through beam. It is also im-
portant to consider how the optical element modifies
the beam geometry. For example, a lens alters the
beam size and its divergence angle. Strongly focusing
lenses cause the beam to diverge rapidly, so the ac-
ceptance angle limitations of the detector can become
an issue. Other factors, such as antireflection coat-
ings and their spectral variation may also need to be
considered when determining transmittance.
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Lenses, especially ones with short focal lengths,
present a particularly challenging case for transmit-
tance measurements because they significantly alter
beam geometry. An example of where high accuracy
transmittance measurements are required for short
focal length lenses occurs in the calibration of high
efficiency single-photon detectors used in quantum
cryptography systems [3]. Related to this application
is a recent high accuracy verification of a correlated-
photon-based detection efficiency calibration method
[4] that requires a high accuracy lens transmittance
measurement. The active area of the photon-counting
detectors used in this application is small (= 0.2 mm
in diameter), so that short focal length lenses are
required to collect the beam onto the device. Because
the lens is in the calibration beam path, its transmit-
tance must be accurately characterized so that the
detector calibration can be corrected for signal lost
due to less than unity transmittance.

Anderson et al. described a technique for measur-
ing lens transmittance that provides for equal beam
geometry at the detector with the lens in and out of
the beam. Their technique uses two lenses with the
same focal length f. The first measurement is made
with one of the lenses a distance 2f from a light source
and the detector distance 2f after the lens (position 1,
Fig. 1), so that the detector is presented with a 1:1
(inverted) image of the source. For the second mea-
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Fig. 1. Lens transmittance measurement technique developed at

National Physical Laboratory (NPL) [2].

surement, the lens under test is placed a distance 4f
from the first lens and the detector is moved 2f be-
yond the second lens (position 2), so that the detector
is again presented with a 1:1 image of source. The
detector is translated between positions 1 and 2 to
measure the signal with and without the lens under
test while maintaining the same beam geometry at
both positions.

The technique depicted in Fig. 1 cannot be used in
situations where the lens focal length becomes too
short however, as there may not be enough physical
space to implement the setup. In addition, the diver-
gence of the beam can exceed the angular acceptance
of the trap configuration detectors [5] that are often
required for high accuracy measurements of this
type. (Trap detectors are preferred over individual
silicon photodiodes because of their low reflectance,
excellent spatial uniformity, and low sensitivity to
incidence angle, although they do have a limited an-
gular acceptance range.) A different technique is
therefore required to address the challenges posed by
strongly focusing lenses.

In this article, we describe a ‘dual lens’ technique
developed at the National Institute of Standards and
Technology (NIST) to measure the transmittance of
short focal length lenses. We illustrate its use by
determining the transmittance of two different sets of
lenses to a relative uncertainty of 0.1% or less (cov-
erage factor £ = 1). The technique is also appropriate
for lenses with longer focal lengths.

2. Measurement Technique

This technique determines the transmittance of each
lens of a set of three or more lenses, all with the same
focal length. Pairs of lenses are mounted on a mov-
able stage (separated by =2f) so that the lens pair can
be moved in and out of the beam (see Fig. 2). The
source beam is collimated and the spacing of the lens
pair is adjusted so that the beam at the detector is the
same size with the lens pair in and out of the beam.
This ensures that the beam geometry at the detector
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Fig. 2. Schematics of dual lens transmittance measurement.

is nominally the same with the lenses in and out, and
that beam divergence is minimized at the detector.
By comparing the signal with the lens pair in and out
of the beam, the combined transmittance of the pair
is measured. The process is then repeated for each
possible pair combination of lenses in the set.

The pair transmittances measured in this setup
are denoted as

my=tt;, (1=i<N, i<j=N), (D

where N is the number of lenses in the measurement
set, ¢; and ¢; are the individual lens transmittances,
m;; is their combined transmittance, and it is as-
sumed that the lens order does not affect the lens pair
transmittance. There are C = N(N — 1)/2 possible
combinations of two lenses. For example, for three
lenses (N = 3) there are three possible combinations

(C = 3) and the equations specified by Eq. (1) are

Myp =tile, M3 =11l3, Moy =lots3. (2)
This is a set of nonlinear equations, which can readily

be inverted to find the individual transmittances:

b= \M1aMy3/ Moy
ty = \M1aMg3/ M3

l3= \’Jm13m23/m12 . (3)

The values of m; are measured repeatedly so that
each measurement has a mean value m; and an as-
sociated standard deviation of the mean o,, . Hence-
forth we use m; to refer to this mean value. The
individual transmittances are calculated using the
mean values m; in Eq. (3), and the statistical uncer-
tainties are determined using standard uncertainty
propagation (assuming random noise dominates the
measurement):

g, 1 ‘J Oy )2 Oy 2 (o 2

— =5 + +(2).

t; 2\<m12> mq3 Mag @
To generalize this result to also include cases when

more than 3 lenses are used, we rewrite equation set
1 as

m = At, (5)

where
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Here t is a vector of dimension N, m is a vector of
dimension C (the number of possible lens combina-
tions), and A is a matrix of dimension C X N. The
matrix A has two nonzero elements per row and N
— 1 nonzero elements per column (all nonzero ele-
ments are equal to one). Because the measurements
m; have nonzero uncertainty Eq. (5) will generally
have no solution for N > 3 (i.e., the system is over-
determined for NV > 3), but in these cases we can find
a t, that minimizes the norm ||At, — m|*. The value of
t, is our best estimate of the true value of t given the
overdetermined data set. The best estimate t, always
exists and can be found from

tO = A+m, (7)

where A" is the Moore-Penrose generalized inverse
matrix. In most cases, A" can be constructed using
A"=(ATA)'A" where T indicates the conjugate
transpose. This method for finding the Moore—
Penrose generalized inverse always works for the ma-
trix A defined in Eq. (6) as it can be shown by direct
multiplication that ATA = 1 + IV — 2), where 1 is a
N X N matrix with all elements equal to 1 and Iis the
identity matrix. Thus the rank of ATA is N and its
inverse always exists. (In general, there are some
rather exotic matrices where the inverse (ATA)~! does
not exist, but that situation does not apply to the mea-
surement system here and is thus beyond the scope of
this paper [6,7].) For more details on the Moore—
Penrose inverse, see the Appendix. Minimizing the
norm ||At, — m|f* using Eq. (7), we obtain the following
expression for the individual components of t,:

Hmij

1/(N-1)
_ i=norj=n
b= H 1/(N-2) ’ (8)
(I
i#n and j#n

where n indicates the lens whose transmittance is
being calculated and the constraints on i and j in the
product limits are the same as in Eq. (1). The numer-
ator of Eq. (8) contains the product of all measure-
ments that include lens n, and the denominator
contains a product of all the measurements that do
not include lens n. Note that Eq. (8) reduces to Eq. (3)
when N = 3. The relative uncertainties of the indi-
vidual transmittances are calculated from

o 1 | s O, \2 s 1 o\ 2
= —y — Y + I _lJ

tn N - 1\i=n orj=n ( m; ) i#n and j#n ((N - 2) m; )

9

using the mean values, and the relative uncertainty
of the combined transmittances. (Again, random ef-
fects are assumed to dominate the measurement as in
Eq. 4).)

After the set of transmittances is calculated using
Eq. (8), and its uncertainty is estimated using Eq. (9),
it is important to independently verify that the sta-
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tistical variations of the components of the residual
vector At, — m are consistent with Eq. (9). This pro-
vides a check for possible systematic uncertainties
and cross-correlations between the measurements.
When the values of calculated lens transmittance t,
are all similar, and the uncertainties o, are likewise
comparable, we can approximate the uncertainty of a
given transmittance by

oy, - [Aty, — m]*

tn~<(;t>z\2(N_1)<m>2, (10)

where (- --) indicates a mean of all vector compo-
nents. In our experiment, we estimate the uncer-
tainty using both Eq. (9) and Eq. (10) and find that
the values are consistent.

3. Choosing the Number of Lenses

In many situations the goal is to measure the trans-
mittance of just a single lens. In this case, it is nec-
essary to determine whether it is best to measure the
transmittance with the minimum number of three
lenses or with a larger overdetermined set. For con-
venience in writing, we will refer to the IV = 3 case as
the “just-determined” approach and the N > 3 as the
“overdetermined” approach. To simplify our analysis
of this question, we assume that o, =~ 0,, t; = ¢, and
m;; = m for all values of i and j. This allows us to
omit the notation (- --) in Eq. (10). For a set of N
lenses, there are N(IN — 1)/2 possible lens combina-
tions, of which N — 1 will contain the lens whose
transmittance is of interest. If we assume that O
=~ ¢, then Eq. (9) reduces to

g, O 2N — 3
t T m\e(N-1)(N -2y

(11)

Thus, for a set of 4 lenses (the overdetermined ap-
proach), the uncertainty would be 150,,/6m, while
for a set of 3 lenses (the just-determined approach),
the uncertainty would be greater: \27¢,,/6m. How-
ever, there are twice as many lens-pairs in a set of
four lenses (six pairs) as there are in a set of three
lenses (three pairs). Thus, given a fixed total mea-
surement time, we could double the time spent on
each individual lens pair measurement for a set of
three compared to a set of four. Assuming that the
uncertainty is due to random processes, the measure-
ment uncertainties decrease with measurement time
as 1/\Tyeqs- Additional time spent measuring the com-
binations with the 4th lens could instead be used to
measure a smaller set of three lenses to a better
uncertainty. If for example we are interested in the
transmittance of lens 1, we see that o, with
i # 1 contributes to Eq. (9) with lower weights than
Ty, with 1 <j = N. Thus, we could optimize the total
measurement time by spending more time measuring
my;, rather than my, i,j # 1. We define A as the
uncertainty ratio:

ijs



A=—"=—"1 (12)

with o, S = O Eq. (12) gives us a parameter that can
be adjusted to minimize the final uncertainty with
respect to the total measurement time. This is
achieved by reducing the time spent measuring pairs
that do not contain the lens of interest to 7,,..,/A% As
before, we assume that all values of m and ¢ are
approximately equal. Equation (9) then becomes:

0. 2(N—2)+A?
“mlav-nv-g 13

Oy

overdetermined

The time of measurement of the entire lens set is

N-2
Tiot — (N— 1)(1 + 2A2)7meas> (14)
reflecting the fact that (N — 1) measurements on
lens-pairs containing the lens of interest take T,
time each, while the rest require reduced time. We
could have spent 1, differently, to measure the lens
pairs of a minimal lens set of three. This would im-
prove the uncertainty of the transmittance of the one
lens of interest:

[
Om | 9Tmeas

Oy
-t J .
m \ 47y,

t

(15)

just-determined

To compare the uncertainties of the overdetermined
and 3-lens (just-determined) methods, consider the

function
2 o, 2
F/eL )
overdetermined t 3 lens

If ®(A, N) < 1, the overdetermined method yields
lower uncertainty. Substituting Eqs. (13) and (15)
in Eq. (16) we see that ®(1,N) > 1 for N > 3,
showing that if time intervals are equal for all lens-
pairs the three-lens method is better. We explored
whether the overdetermined method could be im-
proved by establishing an optimal A, that minimized
0. We find the optimal A by differentiating Eq. (16):

Ot

O(A, N)=<t

5(N -2
Aoptimum = % >1. (17)

This yields O,pimum = 13/15, which somewhat sur-
prisingly does not depend on N. The fact that
Ouptimum < 1 shows that after optimization the un-
certainty improvement of the overdetermined lens
method is |13/15, (or ~7%) relative to the 3-lens
method. The optimal time to spend measuring
lens pairs containing the lens of interest should be

5(IN — 2)/4 larger then the time spent measuring the
other lens-pairs.

In summary, we can say that when one wants the
transmittance of only one lens, time should be spent
improving the measurement uncertainty on the lens-
pairs made from the minimal set of 3 lenses. When
the lens-pair measurement uncertainty for this min-
imal 3-lens set can no longer be improved with longer
measurement times, then more lenses should be
added to the measurement procedure to improve the
transmittance determination of the one lens of inter-
est, in accordance with Eq. (11). While an advantage
can be achieved by adjusting the time spent on lens
pairs containing the lens of interest versus the other
pairs, the 7% improvement may not be worth the
effort. The matrix method is designed to efficiently
determine the transmittances of all the lenses in the
overdetermined set by minimizing all the uncertain-
ties at once. Thus it is not surprising that it is not the
best way to determine the transmittance of a single
lens.

4. Experimental Details

We implemented the transmittance measurement
setup (Fig. 3) and measured two sets of lenses using
this technique. Both sets consisted of four achro-
matic doublet lenses that were antireflection (AR)
coated on both sides for the wavelength range 650 nm
to 1050 nm. One lens set had a focal length of f
= 19 mm, and the other lens set had f = 25 mm.
These lenses were to be used in a system for measur-
ing the detection efficiency of single-photon detectors
[8,91.

A. Laser Source

Our laser source was a power-stabilized cw Ti-
sapphire laser tuned to 702.2 nm. To improve the spa-
tial mode quality of the beam, we coupled the laser into
a single-mode fiber and then collimated the output
from the fiber into a beam ~4 mm in diameter. A por-
tion of the beam was split off with a wedged beam
splitter and sent to a monitor detector to allow for
correction of any residual fluctuations in laser power.
To minimize effects due to the variations of the beam
polarization out of the fiber, the beam splitter was
oriented near normal incidence to the input beam. The
monitor detector and the main-signal detector were
read simultaneously. By taking a ratio of the two mea-
surements, we were able to correct for residual fluctu-
ations in the laser power. Figure 4 shows the ratio of
the signal from both detectors measuring the laser

monitor

C

> lens under teslI moveable stage

oWLASER | POWER F/\/\ I (\é \\ ﬂ r\' A
| STABILIZER U ‘\)$ %\ u U “\ }

2F i
signal

calibrated iris beam splitter

Fig. 3. Setup of dual lens transmittance measurement.
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Fig. 4. Ratio of the signal and monitor trap detector outputs (with

readings taken simultaneously).

beam over a period of ~1.5 h. In addition to short
time noise, there are clearly some periodic variations
remaining in the ratio on time scales of 5 to 13 min.
The uncertainties resulting from these short- and long-
time variations are presented in the next section. The
overall relative standard deviation of the ratio data
over this period is 0.02% which is ~13 times more
stable than the signal from either individual trap
detector.

B. Trap Detectors

Reflectance trap detectors were used for both the sig-
nal and monitor detectors. These trap detectors are
constructed with three silicon photodiodes arranged
so reflectance loss from each silicon photodiode is
captured by subsequent photodiodes. This arrange-
ment provides the excellent detector spatial response
uniformity needed to achieve the high level of accu-
racy required for our particular application [5]. In
addition, the configuration of these traps is such that
polarization sensitivity is minimized. Typical net
reflectance from a trap detector was less than 0.5%
at the wavelength of interest (702.2 nm) compared
with 30% for a single photodiode element [5]. The
electronic signals from the trap detectors were
read using current-to-voltage converters and digital
multi-meters.

C. Beam Size

Transmittance measurements were carried out using
several different beam sizes for one pair of lenses to
test the sensitivity of the measurements to beam size.
A calibrated iris was used to adjust the beam diam-
eter. The lenses under test are small (12 mm diame-
ter) and have highly curved surfaces, so it was
expected that a small beam diameter would be more
sensitive to its positioning on each lens. This was
seen empirically by comparing measurements made
with 2 mm and 4 mm beam diameters. The 4 mm
beam yielded better reproducibility by a factor of 2
and was closer to the beam size used in the applica-
tion that created the need for these lens measure-
ments in the first place, so the 4 mm diameter was
used for our measurements here.
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Fig. 5. Typical transmittance data for one run with a lens pair
alternately in and out of the beam. Six such graphs are produced
for the 6 lens pair combinations constituting one set of data.

D. Lens Alignment

The lenses were mounted in a pair of XY positioning
lens holders attached to a single sliding translation
stage that allowed easy and reproducible positioning
of the lens-pair in and out of the beam. Beam pointing
uncertainties were minimized by placing an align-
ment iris in front of the signal detector and adjusting
the transverse positions of the two lenses so that the
beam was incident on the same spot of the detector
entrance with the lens system in and out. (Usually
only minimal adjustments were necessary since the
centers of the XY mounts were prealigned to the laser
beam before inserting the lenses.) The alignment iris
was opened for the measurement.

Once the lenses were aligned, a sequence of four
readings was taken with the lens-pair in and then
four readings with the lens-pair out. This was re-
peated 3 or 4 times for each lens-pair, constituting
one run (see Fig. 5). One of the lenses would then be
removed and replaced with another lens and the XY
position of the new lens adjusted to re-center the
beam on the detector. For four lenses, six pair com-
binations were possible-this constituted one data
set. The whole procedure was then repeated several
times.

E. Results

The ‘in’ and ‘out’ measurements were averaged and
then ratioed to get an overall transmittance for each
lens-pair and a relative standard deviation deter-
mined from the deviations of the ‘in’ and ‘out’ mea-
surements. The other 5 lens-pair combinations of
that data set were measured and analyzed similarly.
Equation (8) was used to extract the transmittance
for each individual lens. This procedure was repeated
for several distinct data sets and a mean and uncer-
tainty of the mean was determined for each lens.
These uncertainties were compared against the un-
certainties determined from the individual ‘in’ and
‘out’ measurements. Figure 6 shows the individual
and average transmittance values for each lens and
for each data set for the just-determined and overde-
termined analyses. In the just-determined case, each
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Fig. 6. (Color online) Transmittances (points) of four lenses with
f= 19 mm (top) and four lenses with f = 25 mm (bottom) obtained
using the overdetermined method (left) and the just-determined
method (right). The averages (lines) over 5 sets are shown for each
lens with uncertainties determined from the standard deviations
of the 5 data sets for each lens type.

transmittance is calculated with Eq. (3) (using the
three lens-pairs that include a given lens), and the
uncertainties are calculated with Eq. (4). In the over-
determined case, the transmittances are calculated
with Eq. (7) (which uses all six lens-pair measure-
ments together), and the uncertainties are calculated
with Eq. (9). The average over the data sets for each
lens is also shown along with the uncertainties of
those averages. Figure 7 shows that the results of
the two analyses agree to within the uncertainties
of the comparison. Both sets of lenses show transmit-
tances values distributed with a standard deviation
of =~0.25%, although one of the eight lenses, the ¢,
19 mm lens had a spread higher than the others and
the measurements of the lens pair combinations con-
taining this lens had a standard deviation more than
4 times the standard deviation of those not contain-
ing this lens. We note that although the nominal focal
length of this one lens matched the 19 mm of the
other lenses, its construction was different with a
different thickness and surface curvatures. These dif-
ferences may have contributed to the larger spread

/=19 mm f=25mm

0.1 0.1

Rel. difference of methods (%)
Rel. difference of methods (%)

-0.1 . . -0.1 L
1 2 3 4 1 2 3 4

lens # lens #
Fig. 7. Comparison of the transmittance results for the 19 mm
and 25 mm lenses obtained using the just- and overdetermined
methods.

perhaps due to additional alignment uncertainties
(the lens pair separation was kept constant for all the
measurements, so the resulting beam size would vary
slightly at the detector), or the drift may have been
due to changes in the lens itself. This situation sug-
gests the importance of uniformity of construction in
the lens set to be measured. Overall however, we do
see that the two analysis methods agree on the trans-
mittance result for each measurement set and this
one lens does not appear to impact the other lens
transmittances through increased drift or uncertain-
ties.

The uncertainties given in Fig. 7 are the combined
uncertainties taking into account all the measured
uncertainties. The transmittances of both the f =
25 mm and f = 19 mm lenses were determined with
uncertainties of 0.02% to 0.03% (¢ = 1) as shown
in Table 1 for the just-determined and overdeter-
mined analyses respectively. The Type A uncertain-
ties (random), were obtained empirically from the
repeatability between lens data sets. This variation is
due to optical alignment of the lenses in combination
with the trap responsivity nonuniformity, laser sta-
bility, and reflectance variation of the lens coating as
its alignment changes slightly as the lens is reposi-
tioned between measurements. We use the empirical
values because they were repeatable, but we also
include simple estimates for the individual compo-
nents in Table 1 for comparison and completeness
(even though these estimates are much less well-
determined). The Type A uncertainties clearly dom-
inate the Type B uncertainties (systematic) that were
estimated at an overall level of ~2% of the Type A
uncertainties. The laser/monitor stability is broken
up into a short-term component obtained from the

Table 1. Average Uncertainty Budget (k = 1) Showing the Effect of
Each Uncertainty Component on the Lens Transmittance

Uncertainty (%)

Just- Over-
Uncertainty Type Determined Determined
Type A (random)
Trap nonuniformity 0.009 0.006
Laser/monitor stability
Noise (short term) 0.004 0.003
Drift (long term) 0.006 0.005
Lens angular reflectance 0.004 0.003
Total 0.01 0.01
Total (empirical) 0.02 0.03
Type B (systematic)
Wavelength uncertainty 0.00029 0.00021
(0.01 nm)
Digital voltmeter 0.00022 0.00016
Reflected beam 0.00008 0.00006
collection
Total 0.0004 0.0003
Total uncertainty 0.02 0.03
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short-term noise seen in Fig. 4 and a long-term com-
ponent drift also evident in the figure. Because the
time between a lens-pair in and out measurement
was only ~30 s and a series of several such measure-
ments contributed to a each transmittance deter-
mination, the net effect of the drift on the final
transmittance is only slight larger than that due to
the short-term effect. The largest Type B uncertainty
is the laser wavelength uncertainty (0.01 nm), which
has a sensitivity of =10 %/nm on the uncertainty of
the final result. Uncertainty due to the linearity and
accuracy of the digital voltmeter is also shown. An
uncertainty due to interreflections between the
lenses resulting in additional light entering the trap
detector is extremely small due to the high curvature
of the lenses and the small solid angle subtended by
the trap detector. (Note: The dominance of Type A
uncertainties in our measurements is consistent with
the fact that the uncertainties given by Eq. (9) are
comparable to the residuals given by Eq. (10) for
overdetermined data sets and consistent with the to-
tal uncertainties given in Table 1.)

5. Conclusions

We have discussed a dual sample technique that has
been demonstrated to measure transmittance of
short focal length lenses with a combined uncertainty
of 3 parts in 10* or better. The technique provides a
collimated beam geometry thereby reducing prob-
lems associated with limited acceptance angles of the
detector system. This in turn allows the use of trap
detectors [5], which typically have an acceptance an-
gle of 4° and much better spatial uniformity than
standard individual silicon photodiodes. The proce-
dure uses measurements of pairs of nominally iden-
tical lenses in different combinations and extracts the
transmittance of each individual lens by applying a
generalized inverse matrix.

We also presented guidelines on when to spend
additional time measuring a minimal set of three
lenses or to add more lenses to the procedure to min-
imize measurement uncertainties. When one is inter-
ested in determining the transmittance of only one
lens, it is usually best to use the lens-pairs made from
the minimal set of 3 lenses. If the desired uncertainty
in the transmittance cannot be achieved with the set
of 3 lenses (i.e., the lens-pair measurement uncer-
tainties cannot be improved with longer measure-
ment times), then the uncertainty of the single lens of
interest can be improved by adding additional lenses.
However, the gains in uncertainty are increasingly
small and the increase in measurement time is in-
creasingly large with each additional lens.

Appendix: Minimal Property of Moore-Penrose
Generalized Inverse

For the convenience of the reader we have summa-
rized the well known basic properties of the general-
ized matrix inverse [6,7]. The pseudoinverse matrix
A" is defined so as to satisfy
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AAT = PR(A); ATA= PR(Aﬂ, (18)

where Py, is an orthogonal projector on range of A
(i.e., the linear span of columns of A). The orthogonal
projector is defined as Py, u = u if u € R(A), and
Prau = 0 if u € R(A)* where R(A)" is the range
orthogonal to R(A). Using this we can write

At-m=At—-AA'm+AA"m-m
= (At — AA+m) + [_(I — PR(A))m]’ (19)

where I is an identity matrix. Because At € R(A),
AA+m - PR(A)m ER(A) and (I - PR(A))m -
m € R(A)", the expression in the first parentheses is
orthogonal to the one in the second parentheses, so
the norm of Eq. (19) can be written simply as

PR(A)i

At — m|? = |At — AA*m[? + [AA'm —m|?.  (20)

Note, that only the expression in the first parentheses
of Eq. (20) depends on t. We require At — AA™"m
=0, so t = A"m makes the first term in Eq. (20) zero
and hence minimizes the norm.

The most common way to build a generalized in-
verse matrix is to start with the equation m = At
and multiply it by a conjugate from the left A"m
= ATAt. Now, if the inverse of ATA exists, one can
write t = (ATA) 'A™m = A"m, so A" = (ATA) 'A". To
cross-check if this form of the matrix satisfies the
definition given by Eq. (18), we can use a simple
property of projectors, that PraA = A. Indeed,
PraA = AA'A = A(ATA) 'ATA = A
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