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CHAPTER 1

INTRODUCTION

The electron was identified by Thomson almost one hundred years ago [1]. Since !
then the electron has been thoroughly studied and mathematically described. Even o
though it is a fundamental particle, a mathematical description of the electron’s S
motion contains a high level of complexity. It was found early on that when radi- !
ation effects are included in the theory, as they must be for a complete theoretical
description, the results are complicated and not favorable.

Radiation effects come into play for any charged particle. Classical electromag- RiE
netism predicts that when a charged particle accelerates, it radiates. The radiation o

thus produced carries away with it energy and momentum from the electron, and i
consequently alters the electron’s motion. The effect of the motion due to radiation b
is termed radiation reaction, or the reaction of the electron’s motion due to its own i
radiation. The equation of motion for the electron including radiation reaction was 3
first derived by Lorentz [2]. His theory of the electron yielded correct results within Lt
the domain of classical mechanics, but was not without principle problems. e

Kramers spent much of his career preoccupied by the problems of the Abraham- 1
Lorentz theory [3]. But even though he and many others attempted to resolve the
problems of the electron theory within the classical domain, they were unsuccessful.
With the birth of quantum mechanics, however, interest in the classical theory
waned. It was hoped that the problems inherent to the classical theory could be 1
resolved with the new quantum mechanics. But, it was found that a quantum ] I
mechanical treatment of radiation reaction was difficult to obtain, and seemed to o
involve even more elaborate problems than the classical theory.

Since the electron is a fundamental charged particle, a correct description of the
motion of electrons in an electromagnetic theory lies at the very foundation of the-
oretical physics. This was an important problem to solve, hence the vast attention
given to the understanding of a complete theory for the electron. The classical
study began again as a basis for the study of a quantum field theory for the elec-
tron. It was found that if one was clever enough, one could use Lorentz covariance
and gauge invariance to circumvent the problems associated with the theory in
quantum mechanics. The result was the advent of a highly succesful theory called
quantum elecirodynamics or QED. Because of the round about way QED handles
the problems of infinities, one is able to use it in calculating small radiative effects
in precise agreement with experiment. Despite the great success of QED, from a
fundamental standpoint, a completely satisfactory theoretical model still eludes us.
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This research involves the study of the equations of motion for the electron, in-
cluding radiation reaction effects, in both classical and nonrelativistic quantum
mechanics. Qur purpose is twofold. First, we wish to better understand the model
of a charged particle and its self-fields. In order to do this, we have looked at
the fundamental assumptions of the classical and quantum theories as they pertain
to charged particles. Second, we seek a better understanding of how quantum me-
chanics resolves the problems of a classical theory in the appropriate correspondence
limit. In doing so we will closely follow the work of Moniz and Sharp [4], in which
it is shown that a well behaved nonrelativistic quantum theory can be derived. We
wish to verify their results: namely, that the classical problems can be resolved by
taking the correspondence limit of the quantum theory.

In Chapter 2 we will derive the point electron theory, and discuss the associated
problems. Chapter 3 is devoted to an extended electron, in which different models
will be considered. For models with a radius greater than two-thirds the classical
radius (r, = 2.82 x 107'%m) it will be seen that the problems are resolved. However,
any attempt to take the point limit leads to the previous problems. In Chapter 4
we will derive the nonrelativistic quantum mechanical theory for the electron, and
show that well-behaved solutions for the classical point electron are obtained in the
appropriate limit.

In section 1.1, we will briefly discuss the history of radiation reaction. Because of
the importance of this subject, the literature is very extensive, some of which can
be found in the references. [t is our intent in this chapter to cover just enough to
bring the reader up to date on the important points of radiation reaction which deal
specifically with this research.

1.1 A Brief History of Radiation Reaction

James Clerk Maxwell (1831-1879)

An introduction to radiation reaction must necessarily include Maxwell, who built
on the foundation of electricity and magnetism left by his predecessors. Maxwell
was able to simplify the theory of electromagnetism into four equations which now
bear his name. In Gaussian units, the current density for a rigid charge distribution
in Maxwell’s equations is given by

I(r,t) = p(r,)R(2)

where R(t) is the velocity of the charged particle, R(t) being the position vector of
the center of charge, and p(r,t) is the charge density such that
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/drp(r,t) =e.

Notice that the time dependence in the charge density disappears after integration.
This is because we are integrating over all space, in which the total charge of the
distribution always adds up to e regardless of how the charge density is moving in
time.

Sir Joseph John Thomson (1856-1940)

Thomson had studied the works of Maxwell, and even heard some of Maxwell’s
lectures. In 1881, Thomson published a paper on the clectromagnetic mass of a
charged sphere [5]. He assumed a spherical charge distribution of radius L and
uniform velocity R. Thomson observed that the associated electromagnetic field of
a charge e would have kinetic energy

- 1 62 LJ 2
Hom =377

where f is a dimensionless constant of order 1, and depends on the type of spherical
charge chosen. For instance, f = 2/3 for a charged shell and f = 4/5 for a uniform
charge distribution. But if the above equation is the kinetic energy of the charge’s
electromagnetic field, we can compare it with the classical equation

m.v2

1
K==:
2

to identify the electromagnetic mass §m as

62
bm= 7. (1.1)

Notice that ém has the appropriate unit of mass. Using the above values for f, we
see that

2 2

dm = gf-c-i-, for a spherical shell, and
4 2 X

dm = ETa for uniform sphere.
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We will derive these expressions for electromagnetic mass in Chapter 3 using the
Abraham-Lorentz theory. Notice that if the radius L goes to zero, the electro-
magnetic mass goes to infinity. This electromagnetic mass or self-mass can be
interpreted as a self-energy which is therefore also infinite. That the self-mass is
infinite is one of the well-known problems of the classical point charge theory.

Thomson associated the electromagnetic mass (1.1) with the fact that the particle
has a charge. If the partical where neutral, ém would be zero, and its mass would
be entirely non-electromagnetic (or mechanical) in nature. Therefore, its kinetic
energy would be

I{mech = %maﬁzy

where myg is the mechanical mass of the charge. The total kinetic energy of a charged
particle could therefore be written as

1 .
K= ~2-(m0 + 5m)R2,

from which Thomson identified the experimental or observed mass m as

m =m, + dm, (1.2)

where dm is defined in (1.1). Thomson’s equation (1.2) suggested that a charged
particle of mass m is the sum of the mechanical mass m, and the electromagnetic
mass &m. In other words, Thomson suggested that the mass we experience the
electron to have is made up of the mass from “matter” itself plus the mass tied up
in the electromagnetic fields.

The name electron was first suggested in 1894 by G. Johnstone Stoney [1]. But, it
wasn’t until 1897 that Thomson actually identified the electron [1]. He did so by
verifying the corpuscular nature of cathode rays, and showing that these rays were
deflected by an electrostatic field. He was able to measure the velocity R(t) and
the ratio of charge to mass e/m of the corpuscles, or electrons.

Hendrik Antoon Lorentz (1853-1928) and Max Abraham

At the beginning of the twentieth century, it was thought that the electron was an
alom of electricity. Lorentz, working in Leiden, in the Netherlands, had a strong
influence on the world of physics at the time. He was the first to develop a theory
of charged particles interacting vig an electromagnetic field. Lorentz’s work was
the link between Maxwell’s generation of waves and the new physics of quanta
introduced by Planck and Einstein.




Lorentz tried to set the mechanial mass m, equal to zero in order to explain the mass
of the electron purely by electromagnetism. When this assumption was combined
with equations (1.1) and (1.2), he found a theoretical radius L for the electron:

e2

With f ~ 1, this equation can be written as

Te = — (1.4)

mc?
where L = r, is known as the classical electron radius, and is on the order of 10715
meters. At the time, there was no experimental evidence to verify the size of the
electron, and r, was accepted to be correct for the electron radius at least in order

of magnitude. (Modern experiments indicate that the electron has a point-like
structure down to distances of 107*%m.)

One of the well known theoretical achievements of Lorentz is the equation which
describes the force on a charged particle due to an electromagnetic field, namely

the Lorentz force equation:
S
¢

However, Lorentz did much more than this. His intent was to account for all the
macroscopic phenomena of electrodynamics and optics in terms of the microscopic
behavior of electrons and ions. In this pursuit, he developed a classical theory of
charged particles and fields.

Lorentz considered electrons as being elastically bound to atoms, and therefore act-
ing as charged harmonic oscillators. Larmor had previously derived an equation for
the rate at which such an oscillator emits radiation as a function of its acceleration.
By using Larmor’s power equation [6],

_262 .

= gg‘g(R)z,

Lorentz showed that the equation of motion for the oscillating electron including
the loss of energy due to its own radiation is [2]

.. 2 e? dR(1
mR(t) = Fext(t) + 3@ @ (1.5)
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Even though the general theory of Lorentz is quite successful in describing some
observations, such as the normal Zeeman effect, it is not without formal problems.
3’ First, for a point electron, the self-energy is infinite. Second, equation (1.5) admits
; runaway solutions, or solutions in which the velocity of the particle increases without
; bounds regardless of any external force acting on it. Third, there is a way to remove
the runaway solutions (called renormalization), but then preacceleration appears.
! This means that the particle begins to accelerate even before the external force
begins to act on it. We will derive equation (1.5) in Chapter 2, and discuss these
problems in more detail.

i Lorentz obtained a more accurate description of a charged particle by taking into
account its physical extension in space. For Lorentz, the electron was indeed a
finite charge distribution. In this way he was able to calculate the effects of the
fields created by the charge of the particle acting back on itself. He calculated this
self-force using the force density equation

R
Fsalf = fdrp (Eself + ? X Bself) 3

where Byes and Bgey ave the fields produced by the charge itself. Lorentz was the
first to obtain Fger as -

o0 Nt gnt2
Fari = g 3 GO SR [ [ dvde—rPlomet), (1)

nler dint?2

which we will rigorously derive in Chapter 3. We will also determine the behavior
of the solutions to the the equation of motion

moﬁ = Fext + Fsel[g (17)

where Fyoy is given by (1.6). We will show that the solutions to (1.7) do not suffer
from runaways and preacceleration as long as the radius L is on the order of the
classical electron radius, or m, is taken to be positive [4]. Only when one assumes
a negative mechanical mass do problems enter the extended charge theory.

But the extended model theory was not perfect either. For instance, the theory
yvielded an erroneous factor of 4/3, which was not completely made known until >
1960 by Frizt Rohrlich [7]. The classical theory determined the total momentum to L
be i

6
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instead of the expected

p = (m, + ém)R. (1.8)

Rohrlich showed that the 4/3 was inconsistent with the invarience property required
: by relativity. Therefore, the classical §m needed to be multiplied by the correction
i factor of 3/4. In this work we will not be interested in this aspect, and refer to [7]
for a complete discussion of this subject.

Another problem for the classical extended model theory of Abraham and Lorentz
was that some sort of cohesive forces were necessary to ensure stability. Otherwise,
the particle would push itself apart. For this reason, except for its divergent self-
energy, the point particle theory was more desirable. Again, for a discussion on
these Poincaré stresses, see [7], page 16.

i Also, one might perceive it as a problem to have an equation of motion involving
all orders of derivatives, rather than having an equation of motion that is a second
order differential equation as in Newtonian mechanics. If one uses the point charge
equation of motion (1.5), one still has a third order differential equation, for which
the initial position and velocity are not sufficient to determine the motion. Radiation
reaction seems to imply the need for a different brand of mechanics!

| After the Lorentz transformations were published in 1904, M. Abraham realized
that the model of a rigid charge distribution, which was purely electromagnetic in
nature, was not invariant under such transformations. In an attempt to correct this
problem, Abraham was succesful in deriving a four-vector form of radiation reaction

[8]. ,

In 1938, P. A. M. Dirac derived a relativistic differential equation that a classical
point charge must satisfy in which he used the Abraham four-vector of radiation
reaction [9]. From this equation he was able to derive the relativistic equation of
motion for the point electron. But Dirac’s theory still had the problem of a divergent . ;
electromagnetic mass in the point limit. Although this problematic aspect was :
swept under the rug by renormalization, it was not theoretically satisfying. There
were other physicists who devised extended models to solve the divergent self-mass
problem. But these theories are subject to criticism because of arbitrary relativistic
structure functions [10].

The relativistic treatment of radiation reaction is very complex, and to our knowl- : \'
edge, has not as yet been satisfactorily completed. In our work, and in the following |
chapters, we will discuss only nonrelativistic equations, and we will not discuss the
relativistic case in any further detail.
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1.2 Recent Developements in the Theory of Radiation Reaction

Before we discuss the nonrelativistic theory, we need to mention the latest devel-
opments. In 1965, Rohrlich published a new theory for a point charge [11]. This
theory developed by Rohrlich was not the limiting case of an extended model theory
as were previous theories. Rather, the equations of motion were obtained from a
suitable Lagrangian. This particular construction had the advantage of a vanishing
electromagnetic mass. In other words, the theory as developed by Rohrlich solved
one of the major problems of the Abraham-Lorentz theory for the point electron:
that of infinite self-energy.

As of 1965, there were basically three theories which gave conflicting results for the
self-mass 6m. First, there was the theory of Lorentz in which ém = co. Dirac’s
relativistic theory also suffered from the divergent self-mass problem in the point
limit. When others developed relativistic extended models to avoid this problem,
the result was that §m was finite, but arbitrary. And finally, Rohrlich’s theory
predicted that the self-mass should vanish [11].

Since the electron is a quantum particle, one needs to turn to quantum mechanics
in order to resolve the conflicting results previously obtained for a classical point
charge. Nine years after Rohrlich published his theory, Moniz and Sharp published
a paper [4] in which they claimed 4o have derived a nonrelativistic quantum me-
chanical theory of radiation reaction for an extended charged particle. They claimed
that if one takes the point limit (I — 0) of this theory, and then the corresponding
classical limit (h — 0), one obtains classical solutions for a point charge theory in

which ém = 0.

Rohrlich saw the results of Moniz and Sharp as a verification of his theory, Within
the same year, Rohlich published a paper {12] in which he quoted the results of Moniz
and Sharp as the deciding factor to show that his theory of radiation reaction was
the correct one.

In 1976, Moniz and Sharp published their results in more detail, and acknowledged
receiving valuable comments from Rohrlich and others. But the following month
brought with it questions and concerns. H. Grotch and E. Kazes published a paper
[13] in which they noted what they considered to be discrepancies in the calculation
procedures of Moniz and Sharp.

The questions raised by Grotch and Kayes remained unresolved for the next five
vears. However, in 1981, Grotch, Kazes, Rohrlich, and Sharp published a joint
paper [14] in which they determined that the calculations of Moniz and Sharp |
were not only legitimate, but very important. A theory reduction from quantum
mechanics not only solved the problem of a divergent self-mass, but also yielded a
clagsical theory with no runaway solutions or preacceleration. Therefore, according
to Rohrlich, the problems of the classical point electron theory including radiation




reaction have been solved, “Unfortunately,” Rohrlich pointed out in 1990, “this is
a little known fact” [15].

We will analyze the results of Moniz and Sharp in Chapter 4 by deriving the quan-
tum mechanical equation of motion for a charged particle, and using different charge
distributions not considered by them. We will discuss the solutions in general, as
well as take the corresponding limit in order to obtain the well-behaved classical
point charge theory.

Moniz and Sharp, as well as Rohrlich, are careful to point out that the above
considerations are nonrelativistic. It would be most desirable to obtain a relativistic
quantum mechanical equation of motion, and then take the corresponding limits to
obtain the nonquantum theory. In the words of Rohrlich, “No doubt, we would
learn a great deal from such a reduction” [15]. But to the present time, such a
theory has remained beyond our reach, partly because of our inability to obtain
exact relativistic solutions [15].
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CHAPTER 2

THE CLASSICAL POINT ELECTRON

From modern scattering experiments, the electron appears to be a point particle. In
modern physics, the electron is considered to be a point with no physical extension
in space. Therefore, it has been an important theoretical problem to accurately
describe the motion of a charged point particle. A complete description of the
motion must necessarily include radiation reaction effects.

In section 2.1 of this chapter, we will derive the classical equation of motion for the

pointed out in Chapter 1 that the equation of motion for a classical point electron,
including radiation reaction, suffers from theoretical problems. In section 2.2, we
will solve the equation of motion for a point electron, and discuss the behavior of
the solutions.

In section 2.3 we will discuss the solutions to the equation of motion when the
clectron experiences external forces. In doing so, we will review the results of
Gilbert N. Plass [17]. We will see that on the level of experimentation, the equation
of motion for the point electron yields correct results. It turns out that the problem
of preacceleration acts over too small of a time to be measurable. The problem of
finding a well behaved theory is still important, however, on the grounds that in
the process, greater understanding of the microworld may be obtained.

2.1 The Equation of Motion

Lorentz never considered the electron to be a point particle. However, his first
attempt of deriving an equation of motion turned out to be the point limit of the
more general theory which takes into account the extension of the electron. It will
be worth our while to derive the point theory before the extended theory, in order to
better understand the purpose of this research; namely, to show that the associated
problems can be resolved by taking the classical limit of the appropriate quantum
mechanical theory of radiation reaction.

We begin by considering an electron of experimental mass m and charge e. Accord-
ing to Newton’s equation of motion,

mI"{ = F;Xt1

where R is the position vector of the point electron. However, as the electron
accelerates, it radiates. We now consider the effects of the force acting back on the

10

point electron. This derivation closely parallels the one given by Jackson [16]. We




electron due to its own radiation. The radiation carries off some of the electron’s
momentum, which in turn applies a force back on the electron itself. Therefore, we
can modify Newton’s equation to read

mR = Fext + Fsel'f; (21)

where Fygy is the force the electron experiences as it radiates, With radiation
reaction included, one must find solutions of this modified equation of motion. In
order to do so, we must first find an expression for the self-force. Consider the
power lost in radiation, or the rate at which radiation is emitted by an accelerating
charge. This problem was worked out by Larmor in which he found that the power
radiated by an accelerating charged particle can be written as [6]

2e2
= 33(R) (2.2)
Notice that the power radiated, as given in (2.2), is proportional to 2. Therefore,
Fseit must be proportional to e2. We can also see this proportionality by observing
that the sign of the charge must not play a role in the theory (positive, as well
as negative charges radiate, and therefore experience the same radiation reaction
effects). '

In order to satisfy energy conservation, we require that the work done by the self-
force due to radiation reaction over some time interval from 0 to ¢, be equal to the
negative of the energy radiated in that time. The work done can be written as

i 13 dR. 4 .
W = / Fself +dR = f Fself c—dt! = / Fself - Rdt’
0 0 dt! 0

And since power is the rate at which energy is used, by implementing the Larmor
power formula (2.2), we have that the energy lost in radiation over the time interval
from zero to ¢ is

t t 2 62 " .
Ez/ Pd :/ =R - Rdt.
0 0 3 C3

Equating the work done to the negative of the rate at which power is radiated, we
have .

¢ . 22 [t .
/0 Foar  Rdt = —5-6—3/; R - Rdt. (2.3)
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If the right hand side were in the form of f[,t {something} - Rd#, then we could make
the identification of what Fser is. Notice that the right hand szde can be integrated
by parts. If we let » = R, and dv = Rdt', we obtain

¢ . 2 e? R dR
. ': —_——— . — —_ ! .
]0 Foo - Rat' = —= = {[R R| /0 — Rdt} (24)

Lorentz wanted to account for all the macroscopic behavior of electrodynamics by
considering what happens on the microscopic level of electrons and atoms. He
considered the electrons to be elastically bound to the atoms. The motion of the
electrons would therefore be periodic. When the time interval is taken over an
integral number of periods, the first term in curly brackets of (2.4) vanishes. We
then have

i tdR
/;Fself R,dfJr 303 | % Rdﬁ’

and we can make the identification first obtained by Lorentz; namely that

2 ¢2 dR
el = 3 d
which is the force the electron exerts back on itself as it radiates. Notice that Fsen
is proportional to the triple time derivative of the position vector R, or “jerk”. It
will be to our advantage to define 7 to be the following product of fundamental
constants

2
e 2 (2.5)

3med

Notice that  has the dimensions of time. When using the definition of the classical
electron radius, equation (1.4), we see that

27,

T = 36.

In other words, 7 is the time it takes for light to travel (2/3)r,. Equation (2.1), the
classical equation of motion for the point electron, can now be written as

mR Fext ‘l“ mTG;_? (26)

12 E




This modified equation of motion is not a typical equation found in classical me-
chanics. Equation (2.6) is a third order differential equation, which requires more
initial conditions to be given than the usual initial position and velocity.

In order to compare (2.6) with the extended electron equation of motion, it will
be useful to rewrite it in a different form. To do so we use the mass equation
m = m, + ém as given in (1.2), as well as (2.5}, to rewrite (2.6) as

. 2e2dR
moR Fext. — émR + —EE—CE- (27)

In this form, we are able to observe the self-mass ém explicitly. Since the self-mass
is infinite for a point electron, this term is generally swept under the rug by leaving
it combined with the mechanical mass m, on the left hand side of the equation.
However, in the form of (2.7), we will be able to show that the last two terms on
the right hand side correspond to the first two terms in an infinite series of the
extended model theory.

2.2 Problems of the Point Theory

The problems associated with (2.7) were thoroughly studied, but remained unre-
solved for the better part of this century. There is a vast amount of literature on
this subject because of its fundamental importance in trying to describe the motion
of elementary charged particles. In this section, we will examine the origin of the
problems of (2.7), and discuss their implications.

The equation of motion (2.6) or (2.7) for the point electron suffers from three major
defects. First, for a point electron, the electrostatic mass dm is infinite. We will
show in section 3.2 of the next chapter that ém, which is the mass associated with
the electrostatic self-energy, is

m = f / clrdr’pl:zio(;')

where r and ' are two different positions in an extended charge distribution. In the
point charge limit, [r — '] — 0, the integrand goes to infinity, and for our choices
of p(r), dm — co.

The second problem appears in the solution to (2.6) or (2.7). To obtain a solution,
we divide both sides of (2.6) by m,

dae 1. 1
:?ER - ;R( ) = —%Fext(ﬂa (28)
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and consider the following expression

A=) = Letirips) 4 -t TR
dt g R(t)] = e TR+

et [%ﬁ@) _ %I"{(t)] .

Notice that the term in brackets on the right hand side is the same as the left hand
side of (2.8). Therefore we can rewrite (2.8) as

d —t/T R —tfr
- dt [e R] o _'rme Fox(8).
By integration, we obtain
I
. ) Lo
eTVTR(t) = ~—— [ e/ TFop(t)dt 4 C".
rm Jo

Ifwelet Foxt(0) =0at ¢t =10, the integration constant C is equal to R(0). Therefore
the solution for the equation of motion (2.6) is

R(t) = e'/" [ﬁ(o) L/ e‘*'/TF(t’)dt’] : (2.9)

T Jo

Notice that the right hand side of (2.9) is multiplied by e'/T, Therefore, as t — oo,
R(¢) — co. In other words, the acceleration of the particle increases exponentmlly
regardless of the external force F! Such a condition is obviously unphysical, and is
called having runaway solutions. It was found that the runaway solutions could be
suppressed by choosing the appropriate initial condition

E R(0) = — Jim dt’ —tITRM.
o

Tt t

By choosing this as our initial condition, the term in the brackets of (2.9) goes to
zero as t goes to infinity, Therefore the acceleratlon R.(t) goes to zero, and we have
-‘, managed to suppress the runaway behavior. However, this is not without a price:
a third problem arises. Notice that (2.9), with the previous condition inserted, |
becomes '
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If we introduce a change of variables, s = (t' — ¢}/, we obtain the solution

() = % /0 " IR o 78)ds. (2.10)

With the solution in this form, it is clear that the particle begins to accelerate in
the future at some time 73 before the actual force F is even applied! This is called
acausal behavior, or preacceleration. In other words the particle moves according
to a force that is going to be acting on it at a time 75 in the future. Obviously, this
is a physically unreasonable result, and undesirable. However, as we discussed in
Chapter 1, attempts to resolve this and the other problems have been unsuccesful
within classical physics. In Chapter 4 we will see whether these problems carry over
in one particular version of nonrelativistic quantum mechanics.

2.3 Solutions With External Forces

If equation (2.6) has the problems mentioned in section 2.2, why has it been so
succesful? Why has it been used so much to describe classical radiation reaction?
The answer lies in the ability of Lorentz’s theory of the electron accurately to
describe realistic experimental situations.

The validity of (2.6) in the classical domain was summed up by Gilbert N. Plass
about 60 years after it was derived [17]. Plass argued that (2.6) provides an exact
classical description of a radiating body. He considered a solution to be physical
when the charged particle does not acquire more energy than it obtains from the
physical forces which act upon it. Therefore, a nonphysical solution is one in which
the particle acquires more acceleration, or more energy, than is put into it by the
external forces.

The problem of preacceleration turned out to occur on such a small time scale
(~ 107235) that it was experimentally undetectable. Wheeler and Feynman showed
that the acausal behaviour does not violate any physical laws [18]. Such small times
were out of the classical domain anyway, and must be treated quantum mechanically.
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Plass considered a number of forces for which analytic solutions could be found (see
Table 1 and Table 2). He considered both the nonrelativistic and relativistic cases.
He obtained physical solutions for all of the forces listed.

Table 1

External Time-Dependent Forces

Force Type

f(t) = k6(t — to) pulse of radiation
f(t) = mk constant force

0, 0<t<t,
ft) = { mk, to<t<it constant force for specific time

0, t>1
fit) =mkt™, t>0 powerlike force
f(t) = mksinwt periodic force
f(t) = (2ﬂ§2r;1/2 exp [_(;;2")2] Gaussian force
f(t) = kme® ' exponential force
fit) = tf?:]ﬂ , inverse power force

Table 2

External Space-Dependent Forces

Force Type
flz) = —ama harmonic oscillator
_ ] 0, z <0 . .
flz) = { “mk, x>0 linear potential wall

0, z <0
flz) = { mk, 0<x <z, constantforce in bounded region
0, T > T,

flz) = { En;;k Z i 8 fleld of thin infinite charged plate

Plass concluded that equation (2.6), although it has theoretical problems should
be accepted as the equation of motion for the electron including radiation reaction.
His reasoning was that since physical solutions can be found for relevant forces, and
any preacceleration effects are not experimentally measurable, this equation was
legitimate.
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From the work of Plass, we see why equation (2.6) has been so successful. However,
the problems inherent in (2.6) are uncomfortable. Perhaps we could gain a greater
< understanding of particles and their fields by solving these problems. Perhaps by
4 so doing, new physics would be discovered.
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CHAPTER 3

THE CLASSICAL EXTENDED ELECTRON

In Chapter 2 we saw that the equation of motion for the classical point electron
has the problems of runaway solutions and preacceleration. We want to see if these
problems can be resolved by turning to a classical extended electron. It will also
be to our advantage to have the extended electron theory for comparison with the
quantum theory developed in Chapter 4.

Lorentz never considered the electron to be a point particle. To him, the electron
had a physical extension in space. He wanted to explain the mass of this extended
particle by electromagnetism. Abraham and Lorentz derived from classical electro-
magnetic theory the equation of motion for the extended electron including radi-
ation reaction effects [2], Although successful in deriving the appropriate classical
equation, Lorentz was unsuccessful in explaining the mass as he had wished.

We will begin this chapter by closely following Abraham and Lorentz’s derivation
of the equation of motion including radiation reaction as given in the textbook
] by Jackson [19]. This derivation is not straightforward. Jackson chooses to leave
a out many details. Because of the theoretical importance of the Abraham-Lorentz
'f equation, we will consider the details of its derivation in section 3.1.

After deriving the equation of motion, we will investigate its solutions in order to see
if the aforementioned problems of the point electron can be resolved by a classical
extended model theory. In order to do so, it will be necessary to use some specific
examples of charge distributions. In the equation of motion, there are coefficients
: +n which depend on the structure of the model chosen. These coeflicients will be
derived in section 3.2 for a spherical shell, for a uniform sphere, and for a Yukawa
charge distribution.

In section 3.3 we will derive and discuss the solutions for the spherical shell. In
section 3.4, we will derive the equation of motion for an arbitrary spherically sym-
metric charge distribution, and consider the uniform sphere charge distribution as
a specific example. It will be seen that the equation of motion for a finite spherical
charge distribution in general takes the form of a differential difference equation.
The intent in analyzing different models is not to argue that one model is better
than another, but to observe the generality of the theory.

Finally, in section 3.5, we will see that a well-behaved extended electron theory
cannot produce a well behaved point electron theory in the appropriate limit.
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3.1 The Equation of Motion

The electron is the simplest charged particle we know of. And yet, the equation
of motion, when radiation reaction effects are included, is intricate to derive and
relatively complicated in its final form. Since we are seeking a more satisfying
theory of radiation reaction, it will be worth our while to go through the details of
the classical derivation.

To derive the equation of motion for the extended electron including radiation
reaction, we follow the treatment of Jackson which is itself based on the original
calculations of Abraham and Lorentz. We start with the equation of motion for the
electron as

mR = Fext + Fself (31)

where R. is the position vector for the center of charge, Fsaq is the self-force back
on the electron due to its own field, and Fey is every other force acting on the
electron, such as an external electric field.

The self-force can be found by adding the contribution of the Lorentz force over the
extension of the charge distribution itself:

1
Fself = /(PESGH + EJ X Bsel‘[)dr- (32),

where Egeyr and By are the electric and magnetic fields created by the charge
itself, and J is the current density as defined in Chapter 2 above.

In order to evaluate (8.2), it is necessary to say something about the model of the
electron. We will make the assumptions that: (a) the particle is instantaneously
at rest, and (b) the charge distribution is rigid and spherically symmetric. These
assumptions are valid for our slow moving electron, and will greatly simplify the
calculations.

Assumption (a) allows us to neglect the self-magnetic terms. Assumption (b) re-
stricts the electron to nonrelativistic motion since it does not allow invariance under
Lorentz transfromations. Using these assumptions, and the fact that the electric
field can be related to the potentials as

190
E= —Vqﬁ(I‘, t) - Zb—tA(r’t)’

equation (3.2) becomes
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Foar = —-/p(r, t) {Vqﬁ(r,t) + %%A(r, t)| dr.

The self-potentials can be written in the 4-vector form A® = (¢, A), and related
back to the charge and current densities:

ar) = [ P20 b (3.3)

¢ e — 1|

Notice that the 4-current density components J = (cp,J) are, as is customary,
evaluated at the retarded time t'. This is because we are considering the action of
the field created by one point of the extended charge distribution acting on another
point in the same charge. Since electromagnetic fields travel at the finite speed of
light, we see that the retarded time is related to the time the field was actually
emitted by the relation

r —r'|
T

H=t—
c

where the second term on the right hand side is the time it takes the field to travel
from one part of the charge distribution located at r to another part located at r'.

We want to write the current density in terms of ¢ rather than the retarded time ¢.
Since the time |r — r'|/c is on the order of 107235 or smaller (by assuming that our
extended model is on the order of the classical electron radius 3 x 10~°m and the
speed of light is on the order of 3 x 108m/s), we can use the Taylor series expansion
about some time ¢

o = | 72 (2= )]

»fir—r1| "o oyt gt
( c at;nJ (r?t)

[} |I'—I"| “an st
( c )8t"J (r',?)

Interchanging the integral and the convergent summation, equation (3.3) now be-
comes

=t

H

(~1
?;’(n!)
= (-1
;)(n!)

a o~ U e,
A%(r,t) = Z — g Btﬂj (r', t)dr’.

n=0
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Therefore we can write Fgeiy as

n—1
{v[p<r',t)1r—r'|”‘1] Pl Oy, t)} (3.4)

The first term in the brackets of (3.4) is the scalar potential part and can be written

as p(r',t)V|r — r'|* ! since p is independent of r. Looking at the scalar potential
term for n = 0, we obtain the electrostatic self-force

/ / drdr’ plx, )p(r, t)V(| I> (3.5)

which vanishes for spherically symmetric charge distributions. That (3.5) equals
zero can be seen by symmetry. This is an expression for a force, or a vector quantity.
However, equation (3.5) has no direction associated with it, because after integra-
tion, there is no quantity left to give the direction of the vector V(1/|r — r’|). This
is because both r and r' have been integrated out, leaving no preferred direction.
Therefore, (3.5) must be zero.

The n = 1 term of the scalar potential part is identically zero since V|r —r’' ]0 is
equal to V1 = 0. The sum for the first term in the brackets of equation (3.4) can
now be written as

ni;; f/drdrp atn { (', )V "] =

i nj_gl?:nﬂ //drdr p(r,t) 7:_22 [,ﬂ(r Ve —r' |"+1] (3.6)

We leave the second term in the brackets of (3.4) (the vector potential) unchanged
so that the powers of ¢ will be of the same power in both terms. Using (3.6),
equation (3.4) becomes
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Fself = Z n!cn+2 drdr,p(rﬂ t)W

=0

810(1'!:0 v|r'"r'|n+1 rr-1 '
x{ 5 (n+1)(n+2)+|r—-r| J(x',t) >,

or

- ( rn—1 gntl
Foaf = — Z n'c”+2 drdr’p(r, t)|e — r'| Fyoesy

L) Ve —r|oH
X {J(r 1)+ ot (n + U(n +2)fr — r'|“‘1 } . (3.7)

The idea is to find the simplest form possible for Fgey. To do so, we use the
continuity equation

39((;' t) + V. (IJ’ t) —Q.

Then, the term in brackets from equation (3.7) can be written as

Ve —v|**!
(n+1)(n +2)e — /"

{ }=306)-V' - I, 8

Now,

nr—1

e —x'|’

Vie—r|" = (n+ D)lr —v'[*V|r —r'| = (n + 1)jr — 1|

If we insert this result into the above expression for the curly brackets, we obtain

{ }=30"t)— (;;g)V'-J(r',t).

Then equation (3.7) takes the form
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Fself =

_— an-]—l
n'c“""z //drdr p(r,t) r'|" pvvs)

X {J(r’,t) - ((:;:r‘;))v’ -J(r’,t)} . (3.8)

In order to simplify this expression, we can perform “integration by parts” on the
second term in brackets above. If we take u = |r — r’|n_1(r —r'), and v = J(r', 1),
and use

[Ju(v-v)dv =/gu(v-ﬁ)da—- L(V-V)udv,

we obtain

/dr'lr—r'|n_1 (r +2)V' IJ(r f 1) =

(n+2) /S o — /" (r — ¢)[I(x', ) - i]da

oy [ @) (39)

Since we are integrating over all space, the boundary surface S is at infinity. There-
fore, the first term on the right hand side goes to zero since J(r',1) equals zero
at the boundary surface. The integrand in the second term can be rewritten in
component form as

(@)= 2" =] = (e = (- r))
= J2(3:|r —-Tr In 1)(1‘ - r’)j

+Jie — )"l - r');.

But 0;(r —r'); equals the Kronecker delta —é;;. Therefore we have
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—Jile =",

Now we can use i|r — r'| = —(r — x’),/|r — 1’| to write

@Y= =] = [—Jj (- i r');,-]

o — |

or, in vector form

(@l — 2" 1) = —fe = [ [T 4 (- 1)@&”’)] |

Inserting this result into equation ‘(3.9), and then into (3.8), we obtain

00 —1)* e an.|_1
Py == 30 GO [ [araroole—er= 250y a0
n=0

where,

oty L " _(n—l)J(r’,t)-(r—r’)r_r,
{ =300 = 253008 = oy P (r—r)
= E: i;; I(r',t) — EZ ; ;g I |’:)_ E'l"|2— ! )(r —r'). (3.11)

The current density and charge distribution are related by

3w = ol HR()
~ where R(t) is the velocity of the center of charge for a rigid, spherically symmetric

electron. Substituting this expression for current density into equation (3.11), we
have
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The expression in curly brackets is now written in terms of the charge density and
the velocity of the charge at a given time. We can further simplify the second term
in the brackets of equation (3.12) by remembering that for a spherically symmetric
charged particle, the only relevant direction after integration is that of the velocity
R(t) In other words, only the component of expression (3.12) which is along the
velocity axis will survive the spherical integration. To incorporate this direction
explicity into (3.12), one simply takes the dot product of the second term with
respect to the unit vector R(t)/R, where R is the magnitude of the velocity. With
this in mind, we can rewrite the second term in the square brackets of (3.12) in the
following way:

n—1\ R(®) - (r—r) n RO (RN (n-1)\[x-r) ROV ()
(n-I—Q) r — 2 (r—x)- R (R )_(n—l‘?) [r—r’|2R R

Now (3.12) becomes,

{ }=pr,)R{) (3.13)

n+1 n—1\ [(r—r")-R{)?
n+2 n+ 2 v~ r|* 32
Remember that we are looking for the simplest possible expression for Fgq. Equa—

tion (3.13) can be simplified further by noting that all directions of r and r’ are
equally probable. We define € to be the angle between (r — r') and R:

(r—')- R() = |r | R(D) cos .

Using this expression we identify

(e~ ) - R

- = cos’ §
|r — r'|” R?

which allows us to write (3.13) as

{ }=o(r',tR(2) Kn L 1) — (n — 1) cos® 9] . (3.14)

- 2 n42

25




In order to simplify even further, we can insert equation (3.14) back into (3.10).
Notice that the integral over r can be simplified by integrating a general function
Flr,t)cos?8 over r:

/ #(r,8, 6,1) cos? Bdr = / r2dr / dQf(r, 8, ¢, ) cos? 6.

Since our charge distribution is spherically symmetric, it does not depend on 8 and
$. Therefore, we will look at a function f(r,t), leaving us with

ridrf(r,t) | dQcos? § = 2x [ rPdrf(r,t) 1 wldu = il r2drf(r,t) (3.15)
-1 3

where we let v = cos§. Since ;= [d2 = 1, we can multiply the right hand side of
(3.15) by this factor to obtain

/‘c.i,'rf(r,i“)cos.2 6 = %fdrf(r,t).

Applying this result to what we have when we insert equation (3.14) into (3.10), we
see that equation (3.14) can be rewritten as

Oy =noie) |25 - 23]

n+2_n+2

But,

n4+1 n~1(1>_3n+3—~n+1_ 2n - 4 2

nt+2 n+2\3 3(n+t2)  3n+2) 3

So our final expression for Eq. (3.14) is

{ )= 26 DR()

The complicated expression we started with in curly brackets of equation (3.4) has
been reduced under the spherically symmetric integration to the simple expression
of 2/3 the charge density times its velocity, or 2/3 the current density. Therefore,
equation (3.10) for Fyar becomes
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We can simplify Fgey further by noticing that the time derivatives of the current
density can be written as

n+1

ot b ' 1 min (ntl-m
et ) = Y (") pmim (315)

m=0

Since we are dealing with low velocities at all times, higher powers of the velocity
and its derivatives will become negligible. Let us examine the nature of the n =0
term for one component of the expression on the right hand side of (3.15). We now
assume explicity rigidity and spherical symmetry for the density:

ot 1) = p(lr’ ~ R()).

The density depends on both space and time, but only as a function of the in-
stantaneous distance to the center of charge. Using the repeated index summation
convention, we get:

i 3 ap OR;
Fria Gl R()|)Bi(2)] = R +r
ap a c e
= B -R| 9B, " ~RIE; R+ pF;
dp 1

= "'RRR—I—R
O —R|F—R[ TP

Notice that the first term on the right hand side is bilinear in the velocity. Forn > 0
in (3.15) all of the terms will be proportional to the higher powers of the velocity
components except for the last term. For n = 0, the last term was proportional to
R;. For n =1 the last term will be proportional to the triple time derivative of R;.
In other words, all derivatives of p with respect to time are multiplied by nonlinear
terms in the velocity, and are therefore negligible. Equation (3.10) can therefore be
written in its final form as

2 n—1 dn—l—Q
Foar = “gc—z ) drdr’p(r, t)|r —v'["p(r', ) —om R(E)  (3.16)
n=

n'cn
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Equation (3.16) is the self-force back on the electron due to its own radiation. In
order to compare our results with those of reference [4], we will use the definition
for p(r) as

charge density

pr) =

€

Therefore, we will add an e? to the coefficient in front of the infinite series of
(3.16). Now Fyeyr can be calculated for a given spherical charge distribution p(r, ).
Returning to our starting point, namely

moﬁ'(t) = Fext(t) + Fself(t)

we see that the final form of the equation of motion for a nonrelativistic extended
electron including radiation reaction is

. 17 n+2
moR() = Fexe(t Z (n’c’)“ nd dtn]igt) + (nonlinear terms),  {3.17)

where

Yn = ]/drdr'p(r,tﬂr — ' |" (e’ ) o LT, (3.18)

where L is the effective charge radius to be discussed below. This is the equation
of motion for an extended electron as derived by Abraham and Lorentz. When
we include radiation reaction effects, we see that the equation of motion for the
electron is not a simple equation based on the Lorentz force (as is the case when
radiation reaction is neglected). Because of the self-force, it now involves an infinite
series, which includes time derivatives from second order, up to infinite order (not
to mention the non-linear terms).

L is an important parameter that comes into the equations for any spherically
symmetric model we choose. For the spherical shell model, L is the radius of the
shell. For the uniform spherical charge distribution, L is the radius of the sphere
beyond which the charge density is zero. It will turn out that the ratio of L to the
classical electron radius will be the critical parameter in order to determine whether
the solutions will be well behaved or not.

- Since v, is proportional to L™, we can consider the point charge limit by letting
L approach zero. For n = 2 and greater, all of the terms in the infinite series would
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approach zero. The first term (n = 0) is proportional to 1/L, and this is the reason
for the infinite self-mass as we will see shortly. If we keep only the first two terms
in the infinite series of (3.17), we obtain

22 . %22 d .
3.2 YR + o5 R(E). (3.19)

moR(t) = Foyi(t) —
Comparing with the point electron equation (2.7), we see that the electromagnetic
mass §m is given by the interaction of the charge density with itself:

p(r,t)p(r', 1) p(r',1)
3c2/fdd |r——r"| '

This is the expression for the self-mass that we mentioned in Chapter 2. As we
already pointed out, dm ~ 1/|r -~ r'|. In the point Limit, r and r' become equal,
and ém — co. However, ém remains finite for any finite extension of the electron.
As in the point electron case, we can add the electromagnetic mass, or the mass
coming from the self-energy, to the mechanical mass m, to obtain the physical mass
m. In other words, we have found that radiation reaction adds to, or accounts for
some of the mass of the electron, and thus for some of the electron’s inertia.

Notice that the =, in {3.17) are coefficients in the infinite series and are structure
dependent as can be seen by equation (3.18). It is through these coeflicients only
that our choice of an extended model plays a role. Notice also that they are pro-
portional to L?~! independent of the particular model used. This can be seen by
looking at the integral (3.18) for v,. In order for 4, to converge, our model must
either have a finite extension, or at least drop off to zero as r — co. We also see
that r and r’ are integrated out. Now, by looking at the dimensions, we are left
with a length to the power n — 1. Since we are integrating over the extension of the
model, it is obvious that 7, is proportional to L*~1

We will confine ourselves to spherically symmetric charge distributions. In other
words, the charge density will be angular independent. With this in mind, we can
rewrite (3.18):

Yn = //drdr’p(r)|r — ¢ |" (e, (3.20)

where

|r —r'| = /P2 + 172 — 2rr! cos.
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The cos~ under the radical is the angle between r and r/, and can be written as
a function of the spherical coordinates of r and r/ with respect to an arbitrary
orientation:

cosy = sin#sin &' cos ¢ cos ¢’ + sindsin 8’ sin ¢ sin ¢’ + cos f cos §'
= sin # sin 6’ (cos ¢ cos ¢’ + sin ¢ sin ¢') + cos 8 cos &'
= sin#sind’ cos(¢ — ¢') + cosfcos §'.

Therefore

v —'|* 7t = {r? + ¢ — 2rr' {cos(¢ — ¢')sinfsin 8’ 4 cosf cos 9']}(71“1”2 :

We have written the expression {r — r'| in terms of r, 8, and ¢ in order to calculate
the integrals over the angles in equation (3.20). Now (3.20) can be written as

[o] T 2w co T 27
’)’n=f rzdrp(r)/ sin@dé‘/ dgb/ T'er’p(r’)/ sinﬁ'dﬁ'/ d¢’
0 0 0 0 0 0

x [r? 4+ 72 — 2rr’ (cos(p — ¢')sinfsin @’ + cosf cos 6')) (n-1)/2 (3.21)

Since we are dealing with a spherically symmetric charge distribution, we can sim-
plify (3.21) by letting 8’ = 0 and ¢’ = 0, and multiplying by a factor of 4x. This
is because we are integrating over the two arbitrary directions r and r', both over
the spherically symmetric charge distribution. We are essentially averaging over the
angles of the vector r', obtaining the factor of 47. We also get a factor of 2r from
the integral over ¢. Therefore, equation (3.21) becomes

Y = 81r2/ rzdr,o(r)/ sin Gd{?/ r2dr' p(r') [r? + 12 — 271’ cos O] (n=1)/2
0 0 0
(3.22)

Performing the integration over f first (called I for convenience) we have
i (n—1)/2
I :f sinf [r® + 1" — 2 cos ] " /2 4.
0

Now defining a = r? + " and b = 2rr',
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I:/ sinfa — beos )" 1/24p
0

= ( 2 ) L [(a 4 )02 _ (g b)(n+1)/2]

n+1/b
= (n-zl—l) % [( 24 —I—2T'?"')(n+1)/2 _ (Tz +r2 27"7")(n+1)/2] .

We must be very careful with the second term in brackets of the last line. We can
factor it as

(rz 42— 2rr!)(n+l)/2 - [(r _ T!)Z] (nt+1)/2 _ Ir— Tf|n+1-

The last equality follows because the middle term is always positive since (r — r')?
is always positive. If the last term had been written as (r — r')"*!) it could be
positive or negative. Therefore, the absolute value signs are necessary, and our
expression for I becomes

I [(r+ )T —|r = "]

- (n -+ 1)rr

Notice that in equation (3.17) the sum over n goes from 0 to co. Therefore n is
never negative, and there are no points in which the integrand blows up. With the
integration I over § inserted, equation (3.22) becomes

872
(n+1)

o= s [ o) [ [ by = ] (329

In order to obtain the coefficients 7,, we will need to choose specific charge distri-
butions. In the next section we will derive the coefficients «, for different types of
charge distributions. Then, in section 3.3, we will examine the equations of motion
for the spherical shell model, and determine the behavior of its solutions.

3.2 Coeflicients 7, for Specific Models
3.2.1 Coeflicients «y, for the Spherical Shell
We now want to turn our attention to a specific model. The spherical shell turns
out to be a simple model to consider for the electron. The spherical shell is the

model chosen by Moniz and Sharp [4] for their work with the classical theory.
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We take the radius to be L of the spherical shell on which all of the charge is
evenly distributed. Since the spherical shell model is rigid, the charge density p is
independent of time. Because of the spherical symmetry, p is also independent of 8
and ¢. All of the charge resides on the spherical shell, and the charge density takes
the form .

p(r) = p(r,0,¢) = p(r) o< 6(r — L),

We require the charge distribution to be normalized so that the charge distribution
corresponds to exactly one electron. Therefore

[ ptwyar =1,

where we use p(r) to be

charge density

pr) = .

Therefore, our normalized spherical charge density takes the form

which. is graphed in Figure 3.1,
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Figure 3.1: Spherical Shell Charge Distributiown.

Ouwr goal is to find the cquation of motion, mcluding radiation reaction effects, for
the spherical shell model of the electron. Once bhis equation has been found, we
can investigate its solutions to sec if the problems inherent to the point electron
theory can be resolved by using an extended model theory. The coeflicients 4, can
be found by inserting the charge density for the spherical shell into (3.23), which
becoines

871"2 00 . 5(7, _L) 00 [ !6(7" ""L) sl tn41
'y.,,—_mjo rdr S /ﬂ r'dy T (GRS S T L

The delta functions make the integrals over r and ' trivial, leaving
24 ) &

_ 2(2L)n-1

n = 24
-+ 1 (3 )

Notice that this result is proportional to L®™! as we previously anticipated. Also,
sinee the first term in the series of (3.17) is émR, where §m is the mass coming
from the electrostatic self-energy, we sce that

22

St (3.25)

dm =
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as was mentioned in Chapter 1. Once again, we note that dm is finite except in the
point limit I — 0. The experimental mass m is

2¢?

m=met 3T

(3.26)

where m, is the mechanical mass, or the mass whose origin is not electromagnetic.
This expression for the experimental mass derived by Abraham and Lorentz is
exactly the same as (1.2) derived by Thomson, where f = 2/3 for the spherical
shell.

Since v, = 1/L and 4, = 1, we see that equation (3.19) is indeed the point charge
equation of motion. Qur extended classical theory reduces to the classical point
theory in the limit as L goes to zero as it should.

In section 3.4, we will insert the v, (3.24) into (3.17), sum the series, and determine
the behavior of the solutions for the extended model equation of motion. But now,
let us consider the ¥, for some other charge distributions, and compare them with
the +, for the spherical shell.

3.2.2 Coefficients v, for the Uniform Sphere

Let us choose a uniform spherical charge distribution, and perform calculations
similar to those in the last section., The reason for doing this is not necessarily
to find a better model of the electron per se, but to check the generality of the
considerations for the spherical shell. Since the charge distribution is spherically
symmetric, p(r) = p(r, 8, ¢) = p(r). And for a uniform charge

0, ifr>L;

p(r) < 8(L —r), where B(L—r)z{l £0<r <L

We want to normalize the total charge to one, where we again use the definition

charge density

p(r) = .

With NV as our normalization constant we have
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o) drd§) = Ar N (L — r)r*dr
! 0

L ¥
=4z N 12y
0
_ drNL? B
= a3 =

1.

Therefore N = 3/4rw L?, which means that p(r}) for the uniform sphere is

30(L —r
p(r) = mg—),

which is graphed in Figure 3.2.

(r)

Figure 3.2: Uniform Sphere Charge Distribution

Substituting this charge distribution into equation (3.23), we have

o Se(Lr) [P, L) |
o= p* Pl S Lelr - ntl |, _ ity 3.9
Tn /(; rdi Ar L3 o L [(7 +7) =" (3.2T)

We can split the integrations over r into the two separate integrals

L L(L + 7,!):1-!—2 (L 4 7.f)n+3 ?.In+.'].
Syl Iy = . _ R
fu AURRE (n+2) (n - 2)(n+3) I (n +2)(n + 3)

35




and

L — L|L . ,r.']n+2 |L _ T,.f|n+3 | _ T,rln+3
rlr — 7' |"Tdr = — ,
0 (n+2) (n+2)n+3)  (n+2)(n+3)

where we have used the step functions to change the limits of integration. Using
these results, equation {3.27) becomes

9 1 L , (L 4 7_J)n—|—3 ,r.m+3
= dr' |L(L +¢")"7% —
n zLS(n+1>(n+2)fo " ”[( tr) 43 (nt3)
L_T.r|n+3 I _T.rln+3
L -2 g | - : 3.28
| | (n+3) (n+3) (3:28)
Since r' is always positive, | — r'| = ', and the third and sixth terms in the brackets

of (3.28) cancel. The other four integrals over r' can be done separately, yielding

LI a+2 3t Tt 2n+3(n+2) 1
D[ Py = o (n+3>(n+4)+(n+3)(n+4)]’
1 g ' N3 70 Lnts 2%+ 4(n + 8) 1
g ), e =~ ey FTOETE)
L ’ _Ln+5
. T"' —T"' n+2 T":
L/; (L )" (n+3)n+4)’
and
1 L.r t\nd3 7.0 Ln+5
Frg, T = e

Substituting all of these values into (3.28), we obtain

B QL+ [2”"'3(?1 +92) 1 9nH(n43)
T S+ D42 13| (n+4) | (ntd)  (mtd)(ni5)

_ 1 B 1 1
(D5 (D) (et An )]
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All of the terms in brackets cancel each other except for the first and third. There-

fore, the terms in brackets become

2n+3(n + 2) B 2n+4(n + 3) :| B 2n+3 |:n +2 2(n + 3) B 2n+3
(n+4) (n+4)n+5)] (n+4) (n+5)] (n+5)
And our final expression for the coeflicients is
gLn—12n+2
n = . 3.29
= 2)(n + 3)(n + 5) (3.29)

This result was first obtained by Herglotz in 1903 [20], and later reaffirmed by
Wildermuth [21].

Comparing (3.29) with (3.24), we see that the coefficients v, have become a little
more cormplicated for the uniform sphere than for the spherical shell. Again we
see that v, is proportional to L*!. Also, setting n = 0, we see that v, = 6/5L.
We can find ém by inserting this value into the first term of the series of equation
(3.17), since the first term is equal to dmR. Doing so yields

62

Le?

dm =

SIS

(3.30)

for the uniform sphere. This is the value we stated in Chapter 1. As for the spherical
shell, 41 = 1. Therefore, in the point charge limit, we again obtain (2.7) from (3.19).
For the uniform sphere, the experimental mass m is

4e?
5Lc¢?’

m=m, + (3.31)

Notice that even though the spherical shell and the uniform sphere models of the
clectron have the same charge e, the mass coming from the electrostatic self-energy
is not the same. The uniform sphere has the larger self-mass, because the charge
is uniformly distributed throughout the sphere. This allows one piece of the charge
to interact more intensely with another piece of the same charge because they are
closer together in general than if all of the charge were on the surface. The more
compact the charge is, the greater ém will be. And as we have already pointed out,
in the extreme case when all of the charge is concentrated at a single point, §m is
infinite., This is not to say that the observed mass is different for the two different
models. As the self-mass gets larger, the mechanical mass gets smaller, maintaining
a constant value for the experimental mass.
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3.2.3 Coeflicients «, for a Yukawa Distribution

So far, we have considered the v, for two finite charge distributions. In this section,
we will consider a charge distribution which is not finite, but which tapers off to
zero rapidly enough so that the integrals in (8.23) converge. This particular model
is called a Yukawa distribution. When working with quantum mechanics in Chapter
4, we will use a Yukawa distribution as an example to show that ém = 0 in the point
charge limit. The particular distribution we will use, as written in k-space, is

k) = (1 + K2L%)7L,

In order to see what results can be obtained in the classical theory for this charge
distribution, it will be necessary to transform it into r-space. We will use the Fourier
transform as

_ 1 ~ eik-r
Ple) = e | P00

The integrals can easily be evaluated by using the computer program “Mathemat-
ica,” from which we obtain

1 e—r/L
pr) = dxL?

(3.32)

We have graphed this charge distribution in Figure 3.3.
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p(r)

Figure 3.3 Yukawa Charge Distribution

Notice that our size parameter L is no longer the radius, but is used to maintain the
correct dimensions. In order to obtain the 7y, for the Yukawa model, we substitute
(3.32) into (3.23), whick becomes

1 !
—r/Ld_ 2RI a1 . gl )
= ST 1) i 1)/{] e :r‘/; e dr'f(r + ") — | =" ]

Or, rewriting without the absolute value signs, we have

1 * . T -~ N
TR ) Sy /L"’"{ / e e [(r 4! = (0 )]

b [T e ey 07 - (3.39)

We will do cach of the integrals over »' in (3.33) separately, beginuing with the
integral

I = / e—ri'/Ldi"r(r - ?J)n-i-l.
Q
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This integral can be evaluated by using the u substitution v = r + r’ and du = dr’,
in which case we have

2r
I = e1"/L/‘ un-{-le_u/LdU_
r

With the integral in this form, we see that it can be evaluated using integration by
parts n + 1 times, which yields the result

2r
I, = e/l | omu/L % (—I)R(n +- 1)!un+1—R _l R+1
! — (n+1-R) L

r

Notice that (—1)%/(—1)%+! = —1. Therefore,

ntl Rtlpn+1-R
n 4+ 1)L e
I___E:( n)+1“R)l [1_2—]-1 Re rfL]_

Again using u substitutions, we see that the next two integrals are

L = —/ e"'"’/L(?“ — "yt gy
0

r
__e—-r/L f un—l—leu/Ldu
\]

R [u,ﬂf( DF(n 4+ Dlunt1-R
=t R+1
rR=o (n+1~R)! (L) 0

ntl . R lpntl-Rr R+1
= — =r/L(_1yn trrt2 ( ]-) (n + 1)?"
e (=1 (n + 1IL RZ=0 TR ,

and

oo i
I3 :/ A R L

o0
oy I:e_“/L ’f (n + 1)lurti-RLE+
— 1
= (n+1—R)} .
In the limit as u — co, the exponential term e~*/L — 0. This is multiplied by
?
u=R _, oo in the limit, but is killed by the exponential term going to zero.
Hence,
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+1 b1
Iy = e "/L nz: (n + DILFHI(2r)nti—R

= (n+1-R)!

The last integral over r' is

I = —/ e"’"I/Ldr'(r’ — )l
r

o0
"_e—r/L / un+le—u/Ldu
0

n+tl (n + 1)1LR+1un+1—R *

= e "/L ’e_“/L 3 e e o

R=0 0
e~ L(n + 1)L,

When the results [; through I are inserted back into (3.33), v, becomes

oo n41 {7 R=1,.n+1—R
Yo = 1 f e_T/LdT Z (TL -+ l)L r
2L4(n + 1) J,y (n+1—-R)!

R=0

— e "I (—1)*(n 4+ 1L

n+1 n
e 7 (e DL @y

v (n+1—- R)!

fir:l (— 1)R(n + Dlpoti= RLR+1 - nfjl (n+1) LR+1(27.)n+1 -R
(n+1~-R) n—I—l—R)

—e~ " (n 4 1)!L”+2}.

The second and fifth terms in brackets cancel each other, Notice that the first and
fourth terms cancel each other if R is even, and add to two times the first if R is

odd. Also, the third and sixth terms cancel for n odd, and add to two times the
third for n even. Thus,
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oo n41 (n4A)l L H =R
Yn = "——-}-———f e_r/Ld'r{ R=0 = ()n+1—R)! , fodd }
L{n+1) Jy 0, R even
1 ® e [ e B+ DILY2) 5 even
—_—— . .34
Iin + 1) fo ¢ {0, noda | 3%

We now have two integrations over r to perform. They boil down to

o0

ntl—R (n+1- R)!LK+1Tﬂ+1_R_I{

e e-—T‘/LTn—Fl-—-RdT — __e-r/L
fu KZ=:0 (n+1—-R— K)

=(n+1—RILEI-E

o

and

/ 6_2T/Ld’l“ — __"Ee—%'/L £
0 2 2

0

Substituting these results back into (3.34), we obtain

Yr = { gﬁ) nlL®™'  Rodd } N { —”!L;—l, n even}.
" 0, R even 0, n odd

Notice the summation over R in the first set of curly brackets, All of the R depen-
dence has canceled out. Therefore,

=1 nh for n odd.

1
ri . { 2 for n even;
2

Eodd

With this result, (3.34) becomes

_Iﬁﬁ 1 n—1
Yrn = {niL:—lﬁi’ n even} _ { _anz -, N even}.
n!L >, n odd 0, n odd

Equation (3.34) can be simplified one step further by considering the terms for n
even and n odd seperately.
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n even

aei+2  nlL??
nlLr—1
5 (n+2-1)
_(n+ Ll
=

n+1
2

_{n+1)L7

=

T = nlL™™

‘We obtain the same result for n even and odd. Thus we have the final expression
for v, in the form

_{n4 1)L

. (3.35)

Fn

These coefficients for the Yukawsa distribution were harder to obtain than the pre-
vious charge distributions considered. However, in the end, the expression for the
Yn turned out to be fairly simple. It is interesting to compare (3.35) with (3.24)
and (3.29).

The coefficient v, = 1/{2L) can be inserted into the sum of equation (3.17) forn = 0
to obtain

62

- 3Lc?

Sm (3.36)

which is the self-mass of the Yukawa distribution. Notice that v; = 1, and we again
obtain equation (2.7) from (3.19), which is the point limit. The experimental mass
for the Yukawa model of the electron is

(3.37)

m=Met gra
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We would expect the self-energy of the Yukawa to be less than that for the uniform
sphere because the Yukawa is more spread out as can be seen in Figure 3.3. In
comparing (3.36) with (3.30), we see that the self-mass, and therefore the self-
energy, for the Yukawa is smaller than that for the uniform sphere. In comparing
with (3.25), notice that the Yukawa self-mass is exactly one-half the spherical shell
self-mass. The results for the three charge distributions considered are summarized

in Table 3.

Table 3.
Distribution p(r) Tr &m
Spherical Shell 6&:‘;};) % %f—jz
Uniform Sphere 3%&;’") o f;i?;_lg;:: 5 %LL;'
Yukawa ﬁa # (ji‘l‘;LL_l % f_z-'*

3.3 The Equation of Motion and Behavior of the Solutions for the Spher-
ical Shell

We now return to the spherical shell model of the electron in order to determine if
a well behaved theory can be obtained. To do so, we will need to find the solutions
to the equation of motion, and determine the behavior of these solutions.

In order to obtain the equation of motion, we need to insert (3.24) into (3.17). The
series can be summed by the following steps:

(-1 e o (=1)" 2(2L)"—1 g2
Z nlcn dt”+2 Z n‘c“ (n+1) dtn+2R(t)
_ 20 & 2 & 2(2L) d*
1 gz ) o g B + i g R+
¢ [(2L)d (20)* &*  (2L)® &° .
@[ e & 22 a2+ gies ap T R (3.38)
—c (2L) d  (2L)* &2 (2L)3 d3 )
- 217 [1 T Te @ T 2 4 sl g T RO

where we have added and subtracted 1 in the last line. The term in brackets of the
last line, excluding the —1, sums to e~(CE/NE/4)  Gq we have

(~=1)"2(2L)" "t drt? c—L/oa/an _ 1| §
Z nle® n+ 1) dint2 R’(t) 2L2 ]R(t) (3'39)
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The equation of motion (3.17) can therefore be written as

moR(t) = Forslt) + (57 ) (32;1) [ GEIOE _ 1] R(p) (3.40)

The term e~(2E/e)4/48) ig 5 time-delay operator, which we will write in the form

¢~ QLA R(1) = R(t — 2L /). (3.41)

The validity of equation (3.41) can be seen by taking the Taylor series expansion of
both sides and comparing term by term. Using 7 = 2¢?/3mc® and equation (3.41)
in (3.40), and dividing both sides by the experimental mass m, we have

™00 = Fe:;(t) +(55) (5) Rt - 22/0) — Re2))

Using the result for ém found in expression (3.25), and the expression for 7 above,
we can write

P 2e? _ meT
=3 T L
from which we obtain
Mo _ M — ém 1 cr
m m B L

Therefore, the final form for the equation of motion becomes

Fext(t)

RO = i o)

+ER(t - 20/) ~ RB), (3.42)
where we have used the parameter

- (¢/2L)(er/L) 1 (er/L)?

~ (l—cr/L) 27 (1 —er/LY)
The parameter ¢ has dimensions of frequency. Notice that for 0 < L < er, € is
negative, whereas for L > cr, € is positive. Also, for L = c¢r, £ is infinite. £ also

goes to infinity if we take the point limit (L — 0). But if we let the radius L go to

43




infinity, £ goes to zero. We will see that it is the sign of £ that is important in the
construction of a well behaved theory for the extended electron.

The equation (3.42) is called a differential-difference equation. Such an equation
involves the difference between two differentials of the same function, but one is
evaluated at a different time than the other. With the equation of motion in this
form, we are ready to determine the behavior of its solutions. In order to simplify
the calculations, we want to examine solutions when there are no external forces
present. But first we show the point limit.

In section 3.1 we showed the point limit of equation (3.17) to be equation (3.19).
We can check (3.42) by taking the point limit. To be consistent, it should reduce
to equation (2.7). In order to take the point limit, we can write (3.42) as

m(1 — cr/L)R = Fox + m(c/2L)(er/L)R(t — &) — R(t)].
Expanding the term R(t — 2LY in a Taylor series, we have

2 2 . .
TR = Fogt + == L[R - ?__I.’_R+ ﬂ_d_R+..._R],

mR - =7 217 c 212 di

which reduces to

2 2¢? d
= Fex P T
mR t + 353 dtR

And since m = m, + dm, this is indeed equation (2.7) derived for the point electron.

The electron is in its own field. It feels a force back on itself due to its own
radiation. In section 2.2 we found that from this self-force for the point electron
came the problems of runaway solutions, and preacceleration. Now we want to see
if the solutions are well behaved in the case of an extended model, and if so, under
what conditions.

When there are no external forces involved, the equation of motion (3.42) becomes

R(t) = £[R(t — 2L/c) — R(t)]. (3.43)

Comnsider solutions of the form

R(t) = AefT
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where A is a constant, nonzero vector, and f is an arbitrary constant. We can now
write the acceleration as

. d . d Jé)
Bt/r gtfr
R(t) = —dtR = g Ae =A (—'r) ePHT,

Inserting these expressions for velocity and acceleration into equation (3.43), and
canceling the term Aef*T, we obtain a transcendental equation for 3 as

g - (e—(EL/C)(ﬁ/'r) _ 1) , (3.44)
For every solution f of (3.44), there is a corresponding solution to the homogeneous
equation (3.43). In order to obtain a general solution, we must take a linear su-
perposition of these solutions with arbitrary coefficients. Since the velocity R is
proportional to exp{Jt/7), if any of the roots § have a positive real part, we will
obtain undesirable runaway solutions rather than oscillatory solutions coming from
imaginary parts.

Consider the three cases: L > ¢r, L = ¢7, and L < er.

1. L>er

In order to discover the behavior of the solutions, we use the dimensionless variables
n=2LAJcr and g = 1/(L/er — 1). Since L, ¢ and 7 are real, n and § will have real
and imaginary parts simultaneously. Therefore, 5 = p +- iv where g and v are real.
Now equation (3.44) can be written as

D= —t—e = - (;2;;) i ir/L)(l —e)
Therefore
n= E(T:—%ﬁﬁ(l —e™")
= —g(l~e") (3.45)
= g 4 ge—(wFiv)

= —¢ + ge *(cosy —isginv)

= ~g(l —~ e Hcosv) —ige *sinv.
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Using the definition for n above, we have the results

p=—g(l—e*cosw), (3.46a)

and

v=—ge Fsinuv. (3.460)
L > cr implies that g will always be positive. If we look at (3.46a), which is the
real part of i, we see that it will always be negative for L > ¢r. This is because
equation (3.46a) can only be satisfied when p is negative. Therefore, if the real part

of n is always negative, # will only have a negative real part. But if the real part of
3 is always negative, the velocity

R(t) = AT
will go to zero as t — oo, which implies that there will be no runaway solutions. In
other words, for L > ¢7, only well-behaved solutions exist. BExact solutions could
be found by solving (3.46) graphically (see reference [4]). But what happens when

L = c7, or when L is less than ¢r? How small can the model become, and still make
sense?

2. L=e¢r

Again, we start with equation (3.43), but this time we divide both sides by ¢:

me (1—ecr/L)

E CRIeTD = [R(t — 2L/¢) — R(2)].

Since I = e7 we have

R(t —2L/c) — R(t) = 0. (3.47)

Consider solutions of the form R(#) = Aef!/7 ag before, and insert them into equa-
tion (3.47), which yields

e=2LBler _1 =0, (3.48)
Equation (3.48) is satisfied for
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g =2min, n=012.. (3.49)

This can easily be shown by inserting (3.49) into equation (3.48):

- —i drln . . 4wLn
2LBfer _, e dmrlnfer _ o3 —isin
cr cT

e = 1.

Since L = cr, we see that the sine term is always zero, whereas the cosine term is
always one. Therefore, we find (3.49) to be the correct solution of equation (3.48).
In this case 8 is purely imaginary, which implies no runaway solutions. we have
found that as long as L is greater than, or equal to cr, a well behaved theory exists.

3. L<er

In this case ¢ is negative. Using the same definition of p and v, (3.45) becomes

n=|gl(1—e7")
= |g| — |gle=t+) (3.50)

= |g| (1 — e #cosv) +i|gle*sinv.

This time, the equation

p=|g| (1—e*ecosv).

is satisfied for y positive. Therefore, 8 always has a positive real part, Thus, for
0 < L < er, equation (3.43) has runaway solutions.

In summary, one finds that for L > er (£ > 0), equation (3.29) has no runaway,
and therefore no preaccelerating solutions. However, for L < er (£ < 0) runaway
and acausal solutions return. Notice what these results imply. If we begin with the
equation m = m, + 2e2/3Lc? = m, + mer /L, we see that m(1 —¢r/L) = m,. For
L < cr, this equation implies that m, is negative. In other words, the aforemen-
tioned problems creep into the theory only when one assumes a negative mechanical
mass. Taking the mechanical mass to be positive, one obtains a consistent (well-
behaved) theory.

The fact that L must be greater than ¢7 is interesting because it shows that the
problems associated with the classical point electron (except for infinite self-energy)
also apply to the extended charge model. Unless the model’s extension is greater
than ¢ = (2/3)r,, where r, = e /mc? is the classical eleciron radius, the inherent
problems remain. So the problems are not confined to the point electron theory.
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Before quantum theory, Lorentz and others were looking for an actual model of
the electron. Since the birth of quantum mechanics, such efforts have almost been
relinquished [22]. However, if we were searching for such a “real” model for the
electron, the spherical shell model would fall short. The classical electron radius
is of the order of 107**m. Therefore, L must be greater than (2/3)r, ~ 107 m.
But the electron, by scattering experiments, seems to be smaller than 107'"m [23].
Thus, this particular model requires a size beyond the experimental upperbound of
the electron.

3.4 The Equation of Motion and Solutions for a Spherical Charge Distri-
bution in General

The spherical shell turns out to be a simple model to consider. For the other two
charge distributions we have considered, the approach followed in the last section
is much more difficult. We have not been able to derive the differential-difference
equation for the other charge distributions using this approach. However, by using
a coordinate transformation, the equation of motion for a general spherically sym-
metric charge distribution can be found. We will derive this general equation, and
then look again at the spherical shell charge distribution in 3.4.1 to show the valid-
ity and simplifications obtained by using it. Then, in 3.4.2, these general equations
will be used for the uniform sphere in order to obtain the accompanying equa-
tion of motion, and discuss the behavior of its solutions. We will not consider the
Yukawa distribution, however, since the results in this section are for finite charge
distributions only.

The differential-difference equations can be derived in general for any spherically
symmetric charge distribution. We use equation (3.23), and assume that the charge
density is zero beyond some radius L. In this case (3.23) becomes

872
n41

Tn =

L L
/ rd?"/ r'de’ [(r+ 1) = r =" p(r)p(r). (3.51)
0 0
We first want to simplify this equation by using the transformation

r=(y+y)L, and r =y —y'|L,

The charge distribution in r and ', and the transformation, are shown in Figure
3.4.
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Figure 3.4: Transformation of r and ¢! to y and y'.

In vrder to rewrite (3.51) in the (y,y") basis, we will begin by transforming the

volume element drdr! by using the Jacobian {24]

r B
d Jy By
drdr’ = || 40 5y
ay oy

Because of the absolute value signs in the transformation equation for r', we have

the two possibilities
(v =¥ )L,

r'=ly-y|L=
(y' — )L,

Therefore, we have

dydy'.

for y > v';

fory < y'.
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drdr' = ijj = H dydy' = 20 dydy,

or

v | L
arar' = %, al

dydy' = 2L dydy’.

Performing the transformation, equation {3.51) becomes

151:?‘[{2 / f dydy'(y +y")Lly — ' | Lely + ¥ ) Llplly — ¢'IZ]

Tn =
x{y+y)L+ly = y1E" =y + o)L -y - yILMT) . (352)

We will first con51der the case y > y'. Notice that for this case, y is always greater
than, or equal to y', and the charge distribution corresponds to triangles 1 through
4 in Figure 3.4. Therefore, i

=ly—v|L=(—-v)L,

Introducing the shorthand notation py. = p[(y +y')L], and p_. = [y — ¥'|L], equa-
tion (3.52) becomes

2L)4 f f dydy' (v* —y'?) [(2Ly)™™" — [2Ly' "] pp-

2(ZL)”J“E’ n n
—ri //dydy (2 -y (™ =) oy

The integration over the charge distribution consists of integrating over the four
triangles in Figure 3.4. Therefore
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71.2(2L)n+5
n+1

n:

1 4]
/1/ dydy'(y* ~ ) ("™ = W'1") pyp-

1—y
/ / dydy'(y* —y™) ("' — 1"+ pro-
—2- 0
+ /0 / dydy'(y* —y™) (y™* = ') py o
-y
% Y teo 2 2 -1 -1
+/ dydy'(y* ~y™) ("' = ' 1"*) pro-
G 0

If we let ' — —y' in the first and third integrals, we obtain

72(2L )5 -y N N
Tn = (n+)1 U / dydy'(y* =) (y" ™ = [/ I" ") pp-

1-y
n / / dydy'(W* — ) (5™ — ly'1™*) pepe
% y ‘ 2 1
+_/ / dydy'(y* —y*) (v = ' 1"*) pep-
/ / dydy'(y* —y*) (y" = l'1"TT) prp- |- (3.53)

The first two integrals are equivalent, as are the second two. We are now integrating
twice over triangles 2 and 4. In other words, the charge distribution is symmetric
about the y-axis, which allows the simplification,

= 2L n+5 f /1 ydydy (y )( i1 |y'|"’+1)
E ¥
+/ /0 dydy'(y* — ™) (v = ") pao- | (3.54)
0

The limits for the y' integration are only over positive y', so we will drop the
absolute value signs (except in p_). We can simplify equation (5.54) further by
noticing the symmetry of the integrals with respect to the line y = y'. Notice that
y and 3 can be switched without changing the value of the integrals. This means
that integrating over triangles 4 and 2 in Figure 3.4 is equivalent to integrating over
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triangles 5 and 6 respectively. To simplify (3.54), we will add the integration over

triangles 5 and 6:

=

J

to the integrations in brackets of equation (3.54) and divide by 2. Notice that (3.55)
can be combined with the second integral expression in (3.54) so that the limits over
y gofrom 0to1l—y:

r2(2L)mH5 [ 1 i
g = T2 l ﬁ f dydy'(y* —y*)y™* — Y™ )pap-
= v0

1—y
/ dydy'(y2 _ yIZ)(y'n.+1 _ ym+1)P+P—-, (3.55)
Y

n+1

/ [ } " dyay (b2 =y )" =y s

Since the integrands of these two integrals are the same, they can be combined with
the limits over y going from 0 to 1:-

2L s 12 n--1 a1
Yo = n+1 dydy — ) y" =y ) pp-. (3.56)

We again call upon the symmetry of ¥ and 3 to make one last simplification. First,
we expand the integrand in (3.56):

1 1—y
N / / dydy'(y* -y )" =" oo
0 Jo

1 pley _
— / / dydy!(yn—i-li . yZym—f—l . yn-{—lyfz 4 y'”+3)p+pm

1-y -y
/ / dydy'y" P pip_ — / / dydy'y®y"p.p-
1—y 1-y
/ / dyd‘y’ n+1 !2p o _J[_/ f dydy' m+3P+P-—-

Interchanging y and 3’ in the second and fourth integrals of the last line , we obtain
an equivalent expression for I as
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1 1—y 1 1—y
I=2 / /0 dydy'y"**prp- ~2 fo /0 dydy'y™ 'y o4 p-
0

1 1—y
=2 f f dydy' (y* — v W pro-.
0 0

Inserting this simplification back into equation (3.56) yields the final result for v,
as

or2(2L)te [t 1y
Yo = ——;(;—JF)T— /0 dyy™™ fo dy'(y* — y)pl(y +y')Llplly —v'IL]- (3.57)

We derived this equation for the case y > y'. What happens for the case y < y'?
Notice in Figure 3.4 that this case corresponds to integration over the triangles 5
through 8. However, because of the symmetry about the line y = y', integrating
over the triangles 7 and 8 yields the same result as integrating over the triangles 3
and 1 respectively. But as was previously shown, integrating over triangles 1 and 3
is equivalent to integrating over triangles 2 and 4 respectively, and we are back to
integrating over triangles 2, 4, 5, and 6, which brings us back to equation (3.57).
Therefore, (3.57) is the complete equation for the coefficients v, in the new basis y
and y'.

Now that we have found a general equation for the coefficients yn, we can continue
further and find a general expression for obtaining the differential-difference equa-
tion for any finite spherical charge distribution. To do so, we need the Taylor series
expansion

. ® (0 n
R(t - 2Ly) =Y R™() (—m’) . (3.58)

n! c
n=0

Then, by using the equation of motion (3.17), we can make the association

)

|

(=]

P (D g i : 21
Z nlen R (t) = m/o dy f(y)R(t — L2y), (3.59)
n=0 '

e
3¢
and identify what f(y) needs to be by using equations (3.57) and (3.58) in (3.59):
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2W2(2L)n+5 1 +1 1—y .
n du' 2 _ .12y ._R(n+1) —
362 E n,cn /0 dyy fﬂ Y (y" =y )orp (t)

n+1

o [ i 3200 (22

C

In order to get R™+1)(2) on the right hand side, as well as to have the powers of L
and y to match, we write the right hand side as

Lo B2

Equating like powers on right and left sides, we obtain the two equations

2%2%22( ci iL-l)-n:; / dyy™* / l_yd.@f’(y2 —y)prp-RI(t) =
m/ dyf(y)z n:f iL) ;)!y”“f{(”“)(t), (3.60)
and
/ dyf(y) =0, (3.61)

Now, from equation (3.60), f(y) can be identified as

2%, , v e, 2 2
fly) = g—2r*(2L)* i dy'(y* — " )p+p-,

or,

fly) = i;c ( )(4 53)2/ - dy' (y* — v )pl(y + ") Lp(ly —¥'1L).  (3.62)

We can check (3.61) and (3.62) by inserting f(y) from (3.62) back into (3.61), and
see if we get an equality. The integral becomes
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/0 dy /0 ” dy' (* — y®)plly +v')Elp(ly — ¥'1L). (8.63)

We showed earlier that there is a symmetry about y = y'. If we interchange y and
y' in the above integral, we get

/ dy' / N dy(y'? —y®)plly +y)Llp(ly —'|L) =
) 0
—fu dy/o - dy' (y? — y"™pl(y + ") L]p(ly — v'|L).

Since the integral becomes negative upon interchanging y and y', the integral must
necessarily be equal to zero. This shows us that f(y) acts like a weighting factor,
and has just as much negative “weight” as positive.

We can now write the equation of motion (3.17) for a spherically symmetric charge
distribution as

mofd(t) = Foxlt) + 0 [ duf()R(t — 2Lv), (3.64)

where f(y) is defined in equation (3.62). Equation (3.64) is the general form of the
equation of motion for a finite, spherically symmetric charge distribution in the form
of a differential-difference equation. Notice that (3.64) is a continuous differential-
difference equation because we are integrating over y from 0 to 1. Therefore, R is
evaluated from R(t) to R(t — 25-‘-) Tn the case of the spherical shell, there is a delta
function which gives the differential-difference between two values only:

R(t - ECL) - R(t)a

as we obtained earlier in (3.42) by summing the series in (3.17). We will find this
difference again in section 3.4.1 by using (3.62) and (3.64). But for now, let us
follow the same steps we took for the spherical shell to discuss the behavior of the
solutions in general. It will turn out that we will still have to turn to specific charge
distributions in order to obtain conditions for a well behaved theory.

By using (3.59), it is immediate that (3.64) is just the equation of motion (3.17) for
an extended charge. But now we are dealing with an integral instead of an infinite
sum. With Feg = 0, equation (3.64) becomes
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it = 7 [ dufiie - ). (3.65)

As we did in the case of the spherical shell, we again assume solutions of the form

R{t) = Aef™. (3.66)

Remember that if 4 has a positive real part, one obtains the undesirable runaway
solutions. OQur purpose here is not to obtain the solutions themselves, but to show

under what conditions the runaway solutions can be avoided. To begin, we insert
(3.66) into (3.65) to obtain

. L !
Aéep? = Tg/ dyf(y)Aeﬁt/Te"%yg.
0

T ot
As in the last section, we define

2L
)= 2L

T

Using this definition, and canceling the term Aeft/" we have

212

y = fo dyf(y)e ™. (3.67)

As before, n is a complex constant. Therefore, (3.67) can be written as

2r? ! .
_ —{utv)y
n= - /0 dy f(y)e~(#Hinly

1
= — f dy f(y)e™"¥(cos py — isinwvy).
0

Writing the real and imaginary parts separate, we have

2L2 1
p=—5= / dyf(y)e *¥ cos vy (3.68a),
27 fy
2L2 1
V= f dy f(y)e™*¥ sinvy. (3.686)
0
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These equations are the general form of the equations (3.46a) and (3.46b) we found
for the spherical shell. In order for 8 to have a positive real part (which implies
runaway solutions}, n would need to have a positive real part. In other words, if u
is positive, (3.63) will have runaway solutions. However, we cannot determine the
conditions for which i is positive without having a specific charge distribution in
mind. We will verify the results of this section by re-examining the spherical shell.
Then, we will use the results of this section to obtain results for the uniform sphere.

3.4.1 The Spherical Shell Revisited

In this section, we simply want to try out the results of the last section, and see how
it compares with the first method we used in sections 3.2 and 3.3 for the spherical
shell. We start by transforming the charge density product from section 3.2.1,

oryptry = Lo D)

The delta functions can be transformed according to the equation [29]

(r — Lys(r' — Iy = 29 = y")?'(y’ —%), (3.69)

where J is the Jacobian of the transformation, and is equal to 2L? for the spherical
shell as was shown earlier in section 3.4. We need to determine what gy and yj

are. Notice that for a nonzero value, r = r' = L. For this case, the transformation
equations can be written

y+y =1, and |y—9¢|=1,

which implies

or,

y =0, and y' =1,

Therefore, we must add the two possibilities, and divide by 2 to obtain the desired
result under the transformation. The transformation (3.69) becomes

8(r — D)o — L) = 53[50y — D6(y' —0) + 6y — 0)3(s/ ~ 1)
Therefore,
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ply +y")L]plly - ' I L] = W;L)E[‘“y —1)é(y" — 0y + 8(y — 0)5(y' — 1)), (3.70)

and equation (3.57) for the spherical shell becomes

9(2L)n1

L n+1

1 1—y
{ f dyy™ / dy'(y* — y"?)é(y — 1)é(y' — 0)
0 1)
1 1—y
+f dyy"“/ dy'(y* — y™*)b(y ~ 0)é(y" — 1)}.
0 1]

The above integrations are trivial, with the first double integral being equal to 1,
and the second being equal to 0. Thus, we have obtained the expression

_ 2(21})”‘1
T on+1

n ?

which is the same result as equation (3.24) previously obtained for the spherical
shell. But notice that by using equation (3.57), the calculations necessary to obtain
~n have been significantly shortened.

Let us use (3.63) to obtain the differential-difference equation (3.43) for the spherical
shell. First, we will compute f(y). To do so, we will use the form for the charge
densities found in (3.70) for the spherical shell in {3.62), which becomes

fly) = % (%) (4@3)2/; e - ym)(QL)z(llﬁﬁL‘L)

x[8(y — 1)8(y" — 0) + 6(y — 0)8(y" — 1)].

The integrations are once again trivial, in which one obtains
£ = Z(5) T80 = 1) + (0 — sy — )] (3.71)
LNL/ 4

Let us check this expression of f(y) by seeing if condition (3.61) is satisfied. Inserting
(3.71) into (3.61), we have

2(5)3[ o001 (5) e o0
=0,
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and we see that condition (3.61) is indeed satisfied. Now to obtain the equation of
motion, we will insert (3.71) for f(y) into equation (3.64), and divide by m,:

= "=y (2) () 2 j By~ 1)+ (5~ DA R (2. (5.7

Mo Mo
Notice that

2e? emT
Y m — < = m(l — et /L),

mo:m_'

m m 1

m, m—cm7/L 1 —er/L’

As we used previously in the derivation of (3.43), we define

¢ _ (e/2D)(er/D)
(1—er/L)

Using these results and definitions, (3.72) becomes

R(t) = —rm o [ vty = 1+ 0 = ety — 0)Fie — 2Ey),

- m(l —er/L

Now performing the integrations over y,

fR(t) = m—(l_];j};%ﬁs + E[R(t — &) - R(1)).

By using the general form for the differential-difference equation (3.63), we have
been able to rederive equation (3.43) with much less effors.

Equation (3.68a) can also be verified by inserting f(y) and performing the integra-
tiom:

1
p= g/ dyly*8(y — 1) + (* — 1)6(y — 0)]e ™™ cos vy
0

= —g[l — e *cosv],
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which is the same as equation (3.46a). Now that we have verified the general results
of section 3.4, we can use them to obtain the equation of motion for the uniform
sphere, and determine the behavior of its solutions.

3.5 The Equation of Motion and Behavior of Solutions for the Uniform
Sphere

For the spherical shell, we saw that the general equations derived in this section
greatly simplified the derivation of v, and the equation of motion. The general
equations will also be very useful in our study of the uniform sphere. We start by
re-calculating +, for the uniform sphere previously obtained in section 3.2.2. We
begin with the product of the charge densities

pr)p(r") = T (T = T)O(L — 1),

where 8(L — r) is equal to 1 for r < L, and is equal to 0 otherwise. In order to rewrite
the step functions in terms of y and ', notice that the cut-offisat r =r' = L. It is
useful to refer to Figure 3.5, and notice that we are integrating over the equivalent
area of triangles 2,4,5, and 6. Therefore, the cut-off is y =1 and y =1 —y, and

0L — )L —r'y = 0(1 — y)0[(1 —y) — ¢'],

which just gives us back the same limits of integration as we started with. This
malkes sense because (3.57) was derived with the assumption of the charge density
being zero beyond the radius L. Therefore,

ol + ) oy ~ YD) = Tog b~ —y) ~y),  (373)

and (3.57) becomes

9 2 2 n+5 1 1—y
A = ™ ( L) / dyyn+1/ dyl(yil _ yfz) 9
0 0

n+1 1672 LS
9Ln—12n+2 1 31—y (374:)
= —“/ dyy™t |y'y* — L
i '+" 1 Y 3 0 '

Inserting the limits of integration, the term in brackets becomes
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and equation (3.74) becomes

gLn—12n+2 1 2 1
— d n+2 2 na+d - ntl

_9Lrignd? ( 1 2 1 )

- n+1 n+3 3n-+5 3n+2)
9Ln-—12n+2

(n+2)n+3)(n+5)

This is the same result obtained in section 3.2.2 for the uniform sphere. We have seen
how equation (3.57) has simplified the calculations in order to find the coefficients
Yn- In order to find the differential-difference equation for the uniform sphere, we
must first obtain f(y) by using (3.73) in (3.62):

1—y
fly) = ?ch (<) (4ﬂL3)2/ dy'(y* — y”)i—ﬁ%ﬁf?(l )

= % (%) 9 (y - —§—J3 — —) 6(1 —y). (8.75)

In passing, we can check this f(y) to be sure that the weighting condition (3.61) is
satisfied. Ignoring the constant factors, we have

1

R

which checks out. Substituting (3.75) in the equation of motion (3.64), we get

" Vooe ser 2, 1\ 2L
moR(f) = Fexe(t) +mf0 dy+ (“f) 9 (y — 3y - §> R (t — "C—y) :
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The differential difference equation of motion for the uniform sphere can therefore
be written as

)= 1= s [y (y- 20 -3 )R- @70)

That this equation reduces to (2.7) in the point charge limit can be seen by using
(3.59). In other words, all we have done is changed the variables, and the behavior
of the equation in the point limit will not be affected.

This equation represents the motion that an electron would undergo if it were a
solid, uniform sphere of charge. It is similar to the spherical shell equation (3.42),
but the differential-difference is a continuous one for the uniform sphere.

In order to determine the behavior of the solutions to the equation of motion (3.76),
we turn to the general equation (3.68a). If i is positive, runaway solutions appear.
For negative u, well behaved solutions can be obtained. Inserting expression (3.75)
for f(y) into (3.68a), we have

1
2
= 36g/ dy (y — §y3 — %) e ¥ cos vy, (3.77)
0

By plotting the integrand in (3.77), we can discuss the behavior of the solutions.
First, we will consider the integrand without the cos vy term, and for p positive.
The integrand for this case is graphed in Figure 3.5.
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Figure 3.6: Checking Esistence of Runaways for Uniform Sphere (pp > 0 and v = 1).
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( positive corresponds to runaway solutions as before. Remember that f(y) has as
much negative aren as positive. The function e is biased towards values close to
sero. In othier words, the negative avea of f(y) is weighted heavier than the positive,
and the integral in (3.77) would be negative overall.

But how about the cos vy term? Let us first counsider the two extreme values of
v =0 and ¥ — co. For v =0, cosvy = 1. This leaves the integrand unchanged,
and the integral would remain negative. For v — oo, cosvy — 0 since the function
oscillates rapidly between positive and negative values.

Can the sign of the integral be changed by a value of v in between zero and infinity?
Let us try a value such that cosvy 1s as graphed in Figure 3.6.

Notice that cosvy just contributes to the negative weight of the integral. If a small
value of ¥ is taken, such as in Figure 3.7, then even more negative weight is added.

m

e
1 L 1. PUEUN I B TR St

0.8 ! y

Cos Y

Figure 3.7: Checking Existence of Runaways for Uniform Sphere (4 > 0 and v =~ 3).

Therefore we conclude that the integral in (3.77) will always be negative for u > 0.
Now notice what this implies. For L > er, ¢ is positive. But this means that the
right hand side of (3.77) is negative, in contradiction with the assumption g > 0.
Therefore, there are no runaway or preacceleraling solutions for L > cr. Thisis the
same result obtained for the spherical shell.

What if L < er? Now g¢ is negative, and we see that there is no contradiction in

66



L]

(3.77). Therefore, runaway solutions return.

Now let us check to see what happens for i < 0, which corresponds to well behaved
solutions. For this case, the integrand, excluding the coswvy term, is graphed in
Figure 3.8.

2.5 F

Figure 3.8: Clecking Existence of Runaways for Uniform Sphere (p¢ < 0).

Now the e=™¥ term gives preference to the positive part of f (y). The two extreme
values v = 0, and v — oo yields the same results previously mentioned. But if the
integral is positive, L > o7 leads to a contradiction in (3.77) for u < 0. However,
notice that for middle range values of v as before (see Figure 3.9), the sign of the
integral can be changed to be negative overall.

Pherefore, there are possible values of v for which solutions can e found. That
means for L > cr, well behaved solutions do indeed exist as in the case of the
spherical shell. These solutions could he found by solving the integrals in (3.68),
and simultaneously solving for g and v.
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Figure 3.9: Checking Existence of Runaways for Uniform Sphere (¢ < 0 and v & 3).

3.6 Suminary

In this chapter we derived the equation of motion for the exteuded electron. We saw
that well-behaved solutious could be found for L > cr. Bub for L < e, runaway or
preaccelerating solutions return. In other words, these problems are not limited to
point charges.

We have also seen iow the theory based on an extended charge distribution reduces
to the point charge case for L — 0. In doing so, the problems of the point charge
theory return, We conclude that the classical extended model theory is not capable
of resolving the problems inherent to the point charge theory. In obtaining these
results, we used different charge distributions and different approaches.

Looking at the quantum theory will help us answer the following question: is the
runaway solution a true solution, or is it a “ghost” solution due to the particlar
form of the classical equations. The derivations and results of this chapter will be
helpful in deriving a quantum theory. We will be able to follow shnilar steps, and
compare with the classical theory as we go.
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CHAPTER 4

THE QUANTUM THEORY OF THE ELECTRON

The classical theory for a point electron has problems which are not resolvable
within the domain of classical mechanics, Only when we considered an extended
electron with charge radius L > ¢ was classical mechanics able to describe the
motion without complications. Since the electron is really a quantum particle, it
makes sense that we would need to turn to quantum mechanics in order to obtain an
appropriate theory. On the other hand, classical mechanics is sufficient to describe
a macroscopic charge.

In this chapter we develop the quantum mechanical theory of radiation reaction for
an extended charge and for a point charge. In doing so, we will compare equations
derived in the quantum theory with their classical counterparts in order to discover
some of the similarities and differences of the two theories. In order to remain as
close as possible to our classical treatment, we will make the same assumptions of
rigidity and low velocity with respect to the speed of light.

We first derive the operator form of the equation of motion for an extended charge
in section 4.1. Then, in section 4.2, we discuss the behavior of the self-mass in the
point limit, and investigate whether it diverges as in the classical case. In section
4.3 we derive the point charge equation of motion, and we discuss the behavior of
its solutions with no external forces in section 4.4. Finally, in section 4.5, we discuss
the behavior of the solutions when external forces are present.

Both in the classical and quantum cases we use models of charge distributions. We
consider the use of models simply as a mathematical tool, and not as a means to
find an actual charge distribution for the electron. The discussion is based on the
development given in [4].

4.1 Equation of Motion for an Extended Model

In order to derive a quantum mechanical equation of motion we follow the procedure
used for the classical electron. But in doing so, we take into account that we are
now dealing with operators which may not commute. It is to our advantage to
use the Heisenberg picture of quantum mechanics because it resembles the classical
equations of motion more closely than the Schroedinger picture. This is because
in the Heisenberg picture the time dependence is in the operators representing the
physical quantities in analogy with the time-dependent classical variables. The
equations of motion take the form [25],
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R _ 1
dt ~ ih

[R, H], (4.1)

where H is the systems Hamiltonian and R could be any operator. We will primarily
be interested in the position operator R representing first the position of the center
of charge, and later the position of the point charge. Notice the similarity with
the Poisson brackets from classical Hamiltonian mechanics. For the electron, the
Hamiltonian is [26]

1
2m,

H= [P - %A(R)] " 4 ed(R) + 8% / dr [E*(r,t) + [V x A(r, 2], (4.2)

where

AR) = [ drg (s~ REDAR 1) + Al olr — R}

(4.3)
$R) = [ drofr — R, )

Notice that equation (4.2) resembles the classical Hamiltonian, except now we are
dealing with operators. The first two terms represent the contribution from the
particle, and the last term represents the contribution from the fields. The equation
for A(R) has been accordingly symmetrized. At first glance, it may appear that
p(r — R(t)) and A(r,t) comrmute. However, a closer look shows otherwise. We will
return to this point later. Another interesting point is that in equation (4.3) we are

smearing out at the level of the potential, whereas classically we smeared out at the
level of the field.

4.1.1 The Operator Form of the Lorentz Force Equation

QOur starting point is the same as it was in the classical case; namely, the Lorentz
force equation. We can derive the operator form for the Lorentz force equation by
using the Hamiltonian (4.2), and equation (4.1) in component form:

dR; 1
L

Since we are considering a free electron, there are no external fields. We will neglect
quadratic and higher terms of the self-fields. We will also neglect the magnetic
interactions because of the assumption of low velocities. Now substituting H into
the equation of motion, we get
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dt ik

Ri, —(P — %A(R))2 +

“ S R;, #(R)].

e
=

dR; 1 l 1

The second commutator goes to zero since a component of R commutes with other
components of R and any function of it. Expanding the first commutator and

writing A for A(R), we obtain

dR; 1
dt  ihom,

2
[[Re‘,PZ] + i—z[R,-Az] - Z[Ri,PjAj] - %[Ri,Aij] :

The second commutator in this expression is zero (in addition to being of second
order), and

dR,' 1 e €
T = T [[Ri,Pj]Pj + Pj[Ri, Fj] — —[Ri, PilA; — — Pj[Ri, Aj]
(4 e
= [Bi, 43175 — —4;[Ri, Bl

Notice that the fourth and fifth commutators in this expression are zero, leaving us
with

dR; 1 € €
& = ihom. | e DilPi+ BylB, B = 2 (R, Pild; — ;Aj[RnPj]]-

This equation can be simplified by realizing that R and P are conjugate variables
and satisfy the relation [R;, P;] = ihé;;, yielding

moRi = P; — S A.. (4.4)
&

By taking the time derivative, (4.4) becomes

moBy = By — S

c dt (4.5)

Notice that we now have a force on the left hand side. In order to obtain the form
for the Lorentz force equation, we need the right side in terms of the operators R,
E, and B. In order to evaluate the time dependence of the momentum operator,
we again turn to the Heisenberg equation of motion,
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dP; 1
& = el

Substituting H into this equation we have

dP; 1
dt  ih2m,

: [Pi) '*?5]7

1R, BB+ SiP A4 - 1P P4 - P AR +

where the first commutator is zero. Expanding and keeping only the nonzero com-
mutators, we obtain

dP; 1
dt ’&thg

[ [P, 4545 + & © 4P Aj] - “P,[P:, 4j]
—2P, AjlP;| - =[P, 4] (4.6)

There are two different commutators in equation (4.6). But we notice that both A
and ¢ are functions of R. Therefore, once we find an expression for [P;, 4;(R)],
we can apply the result to [P, $(R)] as well. We begin by assuming that A;(R) is
analytic in R. Therefore, 4;(R) can be expanded in a power series, and we have

[P, A (

P, Z anR?
= a,[P;, R},

where the a, are the coeffecients of the series. We also used the fact that the

commutator of sums is the sum of the commutators. In order to find an expression
for [P;, R}], we begin with [P, Rj] = —iAé;;. Then

(4.7)

(P:, R} = [P:, Rj]R; + R;[P;, Rj]
— %6, R;.

Going one step further, we have
[Pi, R}] = [Pi, R3|R; + R2[P;, Ry

= ~2ih8ij R: ~ ihb; R
= —3ihéi; R
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From here we can guess the form of the commutator in general to be

[P, R?] = —niﬁ&jR}""l. (4_8)

Our guess can be checked by induction. If we increase n by 1 on the left hand side
of the equation, we should obtain the same expression for the right hand side with
n increased by 1. Trying this technique we have

[P, R = [P;, R} Rj]
= B, R;-I]Rj -+ R?[Pi, R;]
= —nihéij RY — ihéi R
= —(n + 1)ihé,; BT,

and we have proved our guess to be correct. Using (4.8) in equation (4.7), we get

[Pi, Aj] = =) annihbi R}

n

Now nR;‘_l = OR! /OR;. Therefore,

OR"

) J = — S ¥ Y

[P, Aj] = gﬂ anthd;; 5%,
OR; OR}

= — 7 T T
2 ani 9R; OR;’
w
where §;; has been written as 0R;/0R;. Now using the inverse chain rule, we have

_oR?
[Pi:AJ'] = _Zanz-ﬁ 8RJ, .

Or, by using the power series for A; as in equation (4.7), our final expression for
the commutator is

[P, 4] = —ih%%}. (4.9)

Notice that we have not used the fact that A(R) is a vector potential. Therefore
our result can be applied to the scalar potential, in which case we obtain
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[Pi, 8] = —ik gg (4.10)

Our goal is to eliminate P; from equation (4.5). Using (4.9) and (4.10) in equation
(4.6) yields

dr; 1 DA; DA; 0A;  BA; B¢
dt 2mo[ (BRA +A’aR) (P T OR; +3RP)] “OR:

But by using equation (4.4), we see that P; in this equation can be written as
. e
P; =myR; + -C-Aj.
Therefore one obtains

s e 0A;  0A; 8¢
Fi=g (Rf’ 9R, ) “OR;"

This is the form of the expression for Pi we want in equation (4.5). With this result,
(4.5) becomes

. e 04; 04, _eddi 04
molli = 5 (R IR T aRiRﬂ> Tedt T bRy (4:11)

To obtain the equation of motion in its desired form, we need to find the time
derivative of A;, which can be found using the chain rule in symmetrized form as

dAé_lRaAi+3A;R 04
d 2\ *0R, " 9R; * ot

Then equation (4.11) becomes

myR; = R ==L & Ry — R, -

"OR; " BR; "8R; OR;

( 0A; OA; (812)

OA; _0Ai»\ _ 94 _ DA,
3R3 c Ot

Using the electric field operator equation obtained by replacing observables by op-
erators in the classical equation
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T T

10A(R)

E(R)=-V¢(R) - —

c Ot
or in index notation,
6q5 e aA,;
E=— - -
T TR, T oot

and rearranging, the equation of motion (4.12) has the form

. e (o 0A; o DA  OAr:  OA;
mofti = elli + o (RJ or;  Yiam, T om, Tt 3R, R’“) '

By using the relation
€ijk€kim = Gitdjm — imbjt,
the expression inside the brackets of (4.14) becomes

. QAL O0An -
ea‘jkek:ij—é—RT - & jk€Im E‘ERI:-

Notice that egim(d4m /OR)) can be written as (V x A)g. Therefore,

I = e,;ijj(\_/' X A — e,'jk(v X A)ij-
=[RxVXxA-VxAxR].

Substituting this result into equation (4.14) and using the definition
B(R) =V x A(R),

yields the final result

moR = eB(R) + o R x B(R) - B(R) R] .

(4.13)

(4.14)

(4.15)

This is the operator form of the Lorentz force equation. Notice the similarity of

this equation with its classical counterpart
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moR = cE + -‘C?R x B. (4.16)

Notice that we could have obtained (4.15) directly by replacing the classical ob-
servables in (4.16) by their corresponding operators. In doing so, we would have
to take into account that the operators R and B do not commute. Therefore we
would need to use symmetrization of operators. The minus sign in equation (4.15)
comes from the symmetrization of a cross product.

4.1.2 Equation of Motion in Commutator Form

Now that we have the operator form of the Lorentz force equation, we can begin
the derivation of the quantum equation of motion. In doing so, we closely follow
the steps in deriving the classical equation of motion. But now we must be careful
to keep the order of non-commuting operators.

In order to obtain the quantum mechanical equation of motion, we need to eliminate
the self-fields in the operator form of the Lorentz force equation as we did in the
classical case. To do so we can use the operator field equations in the Lorentz gauge

1 8A(r,1) 4t ,
2

2 _ __ ="
\vi A(I‘,t) a2 o J(ra t)a
and | o2 54(x,)
r,t
V23 (r, ) — 7 o = —4mp.
These operator field equations have the solutions
.] r 7t' t
A — m t + /d PN 2 Prel /s
=9 ) -] (4.17a)
= A + Aself:
and ’
P r 7tret
r,t in( -|-6/dl"
Hrrt) = dun( v — r'| (4.17b)
= Gin + Pgelf,
where

trew =t — (It —x'|/c).

The integral terms are called self-potentials since no other charges or currents are
present. The retarded time is due to the fact that the field travels at the finite
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speed ¢. The term |r — r'|/c is the time it takes for the field to travel from a point
at r to a point at r/. Therefore the retarded time is the difference between the time
the field was actually emitted from r and the time it arrived at r'.

Let us now return to equation (4.3), and investigate further why we needed to use
symmetrization, or in other words, why A and R do not commute. The classical
equation of motion for the current density is

J(x,t) = p(x,t)v(t).

Here v or R represents the velocity of the center of charge, or the velocity of
the (rigid) charge distribution. In order to write down the operator form of this
equation, we must use symmetrization since the operators p(r,t) and R do not
commute. Therefore, the operator form of the current density must be written as

3(r,1) = 31o(e,), R4

Now we see that the current density depends on R. And by equation (4.17), we see
that A(r,t) depends on the current density. Therefore, A(r,t) depends on R. And
since p(r — R(t)) depends on R, it does not commute with A(r,?). Therefore, we
had to use symmetrization in equation (4.3).

The operators j and p in (4.17) are evaluated at the retarded time te. We can
derive a formula that relates an operator evaluated at the retarded time to that
same operator evaluated at time ¢. To do so we start with the Heisenberg equation

[25]

Otrer) = exp[+iH (tro, — £)|O(t) exp[~1H (b1, — 1)]. (4.18)

But by using t!, =% — |r — r'|/¢ and expanding we can write

exp[+iH (te; — t)1=expl i II}

| Y. 2|r

and
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ot
exp[—tH (t,q — )] = exp [iH e —x |]

c

ol - 2
c1piglr=rl el
¢ 2lc?

By incorperating these expansions into equation (4.18) one obtains

[ —x'f?

O(t;et)z{l_i_( z)H‘ |_|_( {2 H? o3 +...}O(t)

ol . 2
X{1+5Hu+zﬂzu+.._}.
c 2lc2

If we multiply out the first few terms, we begin to see a pattern develop:

i

Ofttes) = 0ft) + 0B ==+ iy == logy 1 ipm Il o)

+o@ ez E=El 2|+( )H' owyiya =l '|+---.

2e

Combining like terms in the above equation yields

Ir ’|

/2
[HO—OH]+(- )2|r ' o+om2—2HOH]+- -

Ofther) = O(t)H(—3) s

The quantity in brackets of the second term on the right hand side is obviously the
commutation relation [H, O]. Let us take a closer look at the brackets in the third
term to see if they too can be simplified.

H?0 -2HOH +OH® = H* - HOH - HOH + OH*?
= H(HO - OH)— (HO ~ OH)H
= H[H,O] - [H,0)H

Therefore we see that the brackets of the third term can be written as the nested
commutator [H,[H,O]]. If we continued to the fourth term, we would find the
nested commutator [H, [H,[H, Ol]], and so on. By using the definition
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(ad H)YO = [H,0l- and (2d*H)O = [H,[H,O0]-]-.

we can write equation (4.18) in the form

ot = 3 ELEIT warmyoqs, (4.19)

=0

Now by use of the operator form of the Lorentz force equation, we derive the
equation of motion for an extended electron in quantum mechanics. In doing so we
follow very closely the clagsical derivation, being careful to keep the proper ordering
of noncommuting operators. We first consider the non-symmetrized form of A(R)
for simplicity. The derivation for the second half of A(R) will be analogous. We
begin by inserting (4.17) into (4.3):

A(R) = f deplr — R{)]A(r, 1)
= [ drple - x(e) [ wteyt) + & [ i),

88 = [ deple - RI(r,
= [ duple — R©) [sutr,0) e [ar )],

e x|

(4.20a)

and

(4.20)

The magnetic and nonlinear terms should be dropped as in the classical case to
remain consistent with the assumption of low velocities. Therefore, the vector form
of the equation of motion (4.15) is simply

moR = eB(R)

= —eVrd(R) - -7 A(R).

By using (4.20), we have
m,R = —eVg { / drp(r — R(t)) {qﬁm(r, Hte ] g P tle’T)] }

<8 {farem s 23]

79



Rearranging, and using the fact that

18
Eip = —Vrén(R) — -

o aAiH(R):

we have

moR = eFin — 62VR//drdr’p(r - R(t))p(r rbrot)

v — |

Cz Bt / f drdr'p(r — R(t)) |(r ‘:fl) (4.21)

In order to simplify (4.21) further, we will look at the integral terms separately. Us-
ing (4.19) to rewrite p as a function of ¢ rather than #;et, the first integral expression
in (4.21) becomes (call it I for conveniance)

) ni?ﬂ / / dede! Vgl = RO ¥ ad H)p(r,8).  (4.22)

Notice that Vg acts only on p(r — R(t)), which can be written as

Vaa(r — R(£)) = —Veo(r - R(2).

We now use this result in (4.22), and perform partial integration over r (with
vanishing surface densities) in the form of

— [ @{Tepte = RO =17 = [ dple = R)Tafe - ¥
to obtain
I=-eY % f f drde' p(r — R())WVe|r — ¢/ [P (ad " H)p(r', ). (4.23)

The first term (n = 0) in (4.23) is

e f f drdr' p(x — R(£))V, (‘r . r,|) o(r' 1),
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This is the electrostatic self-force which vanishes for spherically symmetric charge
distributions as it did in the classical case.

For the second term (n = 1), we get V|r — 1’|’ = V1 = 0. Therefore, the series in
equation {4.5) can be rewritten by letting n - n+ 2 as

)n+2

¢ Z n(+z—)rcn+2 f / drdr’'p(r — R(1))Ve|r - ¥'|"+ ! (ad" P H)p(r',1). (4.24)

But (—1)"+2 = (—i)"(—4)? = —(—1)" and (n +2)l = nl(n + 1)(n + 2). Therefore
the equation of motion, equation (4.21), can be written as

Cb

o0 z)n

moR = ey — —2 2 gy f]drdr’{m s 1)1(n - 2)p(r — R())Vy|r — r']"H

<(ad™ 2 H)p(x', ) = < p(r ~ R(1)) e - r’|n-1<ad“rf>j(r',t)1}. (4.25)

where we have again used (4.19) to write j as a function of £. Now notice that we
have

(ad™ 2 H)p(r', ) = (ad™ M adH)p(r', 1),

where by definition

(s )p(,£) = [H, (0, )] = —i oo, ).

Also by definition, we can write

O30, 1) = B30, )] = (o ),

where we have dropped the factors of %. The partial derivative in the second term
in curly brackets of (4.25) is

Pt~ RO e =P ad B 1)+ e — ROl — ¥ 7 o B 6,0,

81



But p(r — R(t)) does not depend explicity on time because of the assumption that
the charge distribution is rigid. Putting the above results into (4.25), and factoring
out —ip(r — R())|r — r'|*~, we have

n-—l—l
moR = B + == 3 Z nlc" ]/drdr p(r — R(t))jr — ¢'|*?

1 Velp — ¢ |7 !
n+1){n+2) jr—rir1

{arrimice ) + ¢ ) a0 | (420)

We can compare (4.26) to the classical equation (3.7) where H corresponds to taking
the time derivative in classical theory. Using the continuity equation

d .
-é?p(r’,t) = —=Vy -J(I",t),

the expression in brackets of equation (4.26) becomes

vr|r_rl|n+1

{ } = (a‘dn+1H)j(r!1t) - (?’L T 1)(7% + 2) |I‘— I..vln—l

(ad™ L H)V - j(r', 1).

(4.27)
But,
+1 r— I"
VHI‘—I"{" —(n-|—1)|r—r’|"m.
Therefore, equation (4.27) can be written as
1
{ }=(ad""Hj{x', 1) - ) (r—r")(ad" T HYV,. - j(0', 1), (4.28)

We can simplify the second term in (4.28). To do so, we insert (4.28) back into
equation (4.26) for the curly brackets, and consider the integration over r’ on the
second term in (4.28). Using integration by parts in the form

Lu(v-v)dv :.L u(v-ﬁ)da—/‘;(v-V)udv,

( we obtain
i
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p(l‘ - R(t)) ' -1 ' n sr b oy
Tt dr'le — o' |""Hr — ¢ ad" T BV, - j(r', 1) =

= FO [ =Pt = ) (o™ ) 8, ) -] de

+ /dr'(ad“"'lﬂ)j(r', ) Vo [[r—2'|" (e — )] } (4.29)

As in the classical case, the surface term vanishes. By following the classical deriva-
tion, we see that the integrand of the remaining term on the right hand side of
(4.29) can be written as

(ad" M H)j  Vplr — /" (r — 1) =
o
e — P ad™ ) [+ (0 — 1)J|rr—‘°)(r |, (4.30)

12

By inserting (4.30) into (4.29), and then (4.29) back into (4.26), the equation of
motion becomes .

. 2 = ¢ an+l
B S T o )
C
n=0

, _(n—l)j(r’,t)-(r—r’)r_r,
{070 g~ (g e e ) e

/ drdr’ p(r — R(E)|r — '[*~ (ad™ H)

nlen

The first two terms in the curly brackets of equation (4.31) can be added together,
and the curly brackets can be written as

_(n‘l'l)-rr _(n—l)j(r',t)-(r—r') r—1
)= (n+2)']( ) (n+2) |r-r|? ( ) (4.32)

Expression (4.32) can be compared with the classical expression (3.11). For a spheri-
cally symmetric charge distribution, the only relevant direction is that of the current
density j(r',t). In comparison with the steps taken to obtain (3.13) from (3.12), we
see that (4.32) can be replaced by
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DR

(X8} Wy
ol T )

Or=iew | (557) - () e

Farf 3

(4.33)

e (2L (2L B oo
SV \nT2) T \nr2) BE Rk - P
In order to simplify, we define the angle 8 between j and (r — r'):

li(r', ) - (xr —1")]*
J )2 r — )2

= cos® 4.

And, when we insert this into equation (4.33), and then into (4.31), the second term
in curly brackets of equation (4.33) is an integral of the form

/ ) cos* i = : / F(r,t)dr.

As in the classical case, the curly brackets can therefore be written as

=i -5 ()]

_ %j(r’,t).

And the final expression for equation {4.31) becomes

- 28 n+1
Mok = el + oo / drde’ p(r — R(E)|r — '|"~ (ad™ L H)(x', 1),

n"”

(4.34)

But remember that we need the symmetrized form of equation (4.3), and all we
have considered up to this point is the product of p(r — R(t))A(r,t). We can
follow through with an analogous derivation in which we let the order of the charge
density and vector potential operators be reversed. In comparing line by line we
see that the final result is the same as (4.34), but with the order of p{r - R(%)) and
(ad™t H)j(x', ) reversed. Remembering the factor of 1/2, we see that the form for
the equation of motion is
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. 2e? had (_i)n-}-l
meR =eBiyy + o= Y  ~—~—
° T 8e2 v nlct

[ [ v 3lote = R~ A I ) (439)

Equation (4.35) is the quantum mechanical equation of motion for an extended
charge as we have derived it thus far. In doing so, we have neglected nonlinear
terms, as well as magnetic terms because of the nonrelativistic assumption. Notice
that equation (4.35) contains nested commutators which must be evaluated in order
to obtain a more useful form for the equation of motion. After the commutators
have been evaluated, we will compare the quantum mechanical equation of motion
with the classical ones derived in Chapter 3. The final form of equation (4.35) will
be derived in the next section.

4.1.3 Evaluation of the Commutators

We want to write (4.35) in the form of equation (3.17). To do so, we need to evaluate
the nested commutators, Once again, we will retain only those terms which are a
product of the charge density and some time derivative of the position operator.
Since d"R/dt" does not commute with p, we define “right-ordering” as the case
when all R operators are on the right of p, and “left-ordering” when they are on
the left. We will derive only the right-ordered expressions since the left-ordered
can be obtained by reversing the order of the operators, and letting i — —A. That
A should be replaced by —A can be seen in the following way. Starting with the
symmetrized current density operator we have

(1) = 5lolr ~ R), Rl
= —;—p(r ~R)R + %Rp(r - R)
= p(r -R)R — —;-p(r ~R)R + %Rp(r - R)

= plr ~R)R — _[p(r — R), R]...

The commutator in the second term can be written as
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[p(I‘ - R)aﬁ] =

p(r — R)vmoﬁl

o

1

= ;;;:[P(I‘ - R),P]
7

=~ Vap(r-R),

where we have used the fact that [f(—x),P] = thVxf(—2z). We can now use
Vrp(r — R) = —V,p(r — R) to obtain the final form

ih

j(,) = p(r — RIR + -V, p(r — R). (4.36)

2m,
Equation (4.36) is the operator form for the current density in right-ordered form

(R is on the right side of p). Following similar steps, the left-ordered form can be
obtained as follows:

j(r,8) = Slox ~ R), Rl
= Rp(r — R) — %Rp(r -R)+ %p(r ~R)R
= Ro(r —R)+ 5 [o(r — R), R]-

: ih
=Rp(r ~R) - -

Vep(r — R).

o

In comparison with (4.36), we see that left-ordering is indeed accomplished by
reversing the order of p and R and replacing % by —A. Returning to the right-
ordered case, we evaluate the nested commutators (ad™ 1 H)j(r,t) with the use of
(4.35). We begin by looking at the n = 0 term. By definition and (4.36),

[H,j(r,t)] = —ih%j(r,t)

dp(r—R). ik 8
& 2 o, atv“p(r_R)] '

= —ih [p(r ~R)R +

By switching the order of differentiation in the last term, we have

. L f s Ope ih _Op
7,5(r,8) = =it (it + L + 2 v%).
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Using the continuity equation and equation (4.36), we can now write the commu-

tator in the form

[H,j(r,t)] = ? [pii- v. (pft+ 2?2()%) ' ' ( )]

Notice that the second term in the square brackets is on the order of R2, and so we
neglect it. Thus we have the result

2 2 3
(adB)j(r, 1) = SRR — 5 —V(Vp) R~ 5 V%Rt~ 2
1

V(V? 4.37
oy e o V(Vip).  (4.37)

4]

Remember that we are after an expression for (ad™ ™ H)j(r, ). By using the Heisen-
berg equation once again, and pulling out an extra k, the nested commutator for
n = 1 becomes

fﬁa 1
i Ot

5 .
o V(Ve) R

B h . zhz
2m, P 4m

[H: [H:j]] pR’— —(vp )R -

Working out the derivative, we obtain

AL . p2R+( v R) +(Vp B)R + (Vp - it

K2 ot ot At
R Ip\ fi .. ki o0p
~Zimy " (v 8t) 2, R Y T
h oo g 2 3p
SV R — 4 vv 5 (4.38)

We can replace the dp/d% terms by use of the continuity equation where j is given
in equation (4.36). Doing so, and simplifying, allows us to write (4.38) in the final
form
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[H,[H,§]] _ 9

=P atR-I—Z(Vp R)R+(Vp - R)R—(V(Vp-R) -R)R+
ik ik . R A 1/ o
ViR + 5 V(Y R (Vo R)) R (Vo R)-R)
V2R + i V(V(V?0)-R) if” \AvEAvE (4.39)
4m§ P 2m2 P + 8m3 P '

where the V-operations act on p only. From here it is obvious that the higher
order commutators get increasingly complicated. The general form for the nested
commutators (ad™t* H)j(r,t) turns out to be [27]

[(ad““;z;)j(r,t)] (=) Z (25‘) (;) (Vz)"‘p%;;}?"?
Hei Y (;f)m (mri 1) Vv (VP %>

m —i ( — )nﬂ V(VH"p. (4.40)

2m,

In order to obtain (4.40), all of the non-linear terms have been neglected. We can
check this equation for n =1, in which case

1

wil ==Y () (o) e

m={
L —in\™ /1 J2-m “m\?
o 2yvm—1 . 2
zmzzl(mo) (m—1>v(v) (V” a- mR) (2m) v(Vie:
But, since

equation (4.40) yields

[Haj] =
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By comparing with the linear terms of equation (4.37), equation (4.40) checks out.

When equation (4.40) and the corresponding left-ordered expression are inserted
into the equation of motion (4.35), the last term in (4.40) vanishes upon angular
integration because of the assumed spherical symmetry of the charge distribution.
Also, in symmetrizing, the order of the operators is reversed, i — —%. Therefore,
all terms containing odd powers of % drop out of the equation of motion. The
equation (4.35) therefore becomes [28]

oo (n+1)/2
. 2e? (—1)n+1 —)\? n+1
moit) = B+ 3550 S, (=) (")
=0

dx’ Hn—1pg2 \2 N
dxdx'p(z)|x — X" (Vi ) kp(2)| =y

02 & (”"'1)/2 _1)nE )2 k n+1
302Z Z nlen—2k ( 4 ) (Zk—l)

dn—}-z —2k

R,

din+t2— —2k

EEE —x'\“*l(ﬁ?i,)?*“lvxf(v (')

where A = fi/m,c is the Compton wavelength. The equation of motion can be
simplified by using the spherical symmetry property to replace (Vyr);(Vx )i by
$6i;V2, under the integral sign. Also, a change of indices ., 37, — 3., >, where
I = n — 2k is made. The equation of motion then takes the form [29]

( 1)’n dn+2
362 S An o R(D), (4.41)
0

A ) A b

i—k( )\2) /fdxdxp — X"V (). (443)

k=0

moR(t) = e (R(t), 1) —

where

and

Equation (4.41) is the quantum equation of motion for an extended electron. It is the
quantum equivalent of the classical equation of an extended electron model, equation
(3.17). The only difference in form of the two equations lies in the coefficients v,
and Ay. In the proper correspondence limit, (4.41) reduces to (3.17). The classical
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limit is when A — 0. But this implies A — 0, in which case only the leading term in
(4.43) survives. Therefore, equation (4.43) contains an infinite number of quantum
“correction” terms which have no classical counterpart.

The infinite series in 2, is an important difference between the quantum and clas-
sical theories, and allows quantum mechanics to give a more complete desciption
of the electron. A useful study would be to investigate the mathematical origin of
these extra terms, and see why classical mechanics was unable to generate them.
Rather than considering this idea however, we furn our attention to seeing if quan-
tum mechanics can resolve the infinite self-energy problem.

4.2 The Electrostatic Self-Energy for a Point Charge

We now turn our attention to the evaluation of the structure dependent coeflicients
Ap. The first question we would like to consider is whether or not the quantum
mechanical theory suffers from the problem of infinite self-energy in the point limit.
Remember that the self-energy term comes from the first term of the series in the
equation of motion. In other words, it is the coefficient of the R term in the series.
Therefore, we have

2¢? 2e* A D d
5m:3?A 3 (1+68/\) <1+A6A)Q (4.44)

In order to simplify (4.44), we will first need to calculate 2,, and then take the
appropriate derivatives. Beginning with (4.43),

o 4]

0= 3 b () [ [ oo -,

k=0

It will be convenient to evaluate (4.45) in k-space. In order not to confuse the
summation index k with k-space, we will change it from k to [. We will also use
the Fourier transforms

plz) = (271]”)3 fﬁ(k)eik'xdk, and p(k) = fp(m)e_ik'xdx. (4.46)

Also, notice that r = |x — x'|. Therefore, equation (4.45) can be written as

2= % (%)2[ / / dedx (Zi)g / ﬁ(k)eik*dk”?m(vi,)pr(m'). (4.47)

{==0
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To simplify, notice that

(V3 P!o(e') = (VP gy [ DR e

1 ~ ik’ %!
— Wfp(kf)(_er)zlek dkf.

Also, rewriting x as r + x’, we have
. ' 1 I
ezkx — ezk reth. .

Also, dx = dr, and (4.47) becomes

2;). ( >2I/f//drdx dkdk’

ﬁ(k)p(ki)eikreikx' P21 (—Ic'z)z’e“"k"" '

1
@)
Now,

1
(2m)°

/d}{’ tlex’ zkx _6(k+k1)

Performing the integration over k' yields

ar (3) [ [,

Bringing the summation inside the integral where it belongs in a careful derivation
(see transition from (4.21) to (4.23)), and using the fact that 5(—k) = p(k), 2, takes
the form

_y
mg(

Q, = / ory ———j(k)* g-((:% ()‘T}“z)ﬂ / dreterp2t=l, (4.48)

The last integral can be written as
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dr . co  pm )
/ _ezk-rrﬂ — f / r2drd cos gdqseik'rcos 31,2(—1
0 0

P

o0 1 .
= 27:] r2[+1d'r/ dze™* e, (4.49)
0 -1

where we let z = cos#. The second integral on the right hand side of (4.49) is easily
evaluated, and yields

L. 2
/ dzet*™® = = sin kr.
—1 k‘?"

Equation (4.48) can therefore be written as

dk o1 [ (=1 AR,
Qo:/ﬁ}ﬁp(k)zﬁ smkr; ) (T rH, (4.50)
0 =0

The series has the sum of cos(Ak?r/2). Using the trigonometric identity
: 1. . :
sin aicosf = -z;[sm(o: + ) + sin{a — A)],
and doing the k angular integrations, equation (4.50) becomes

oo Z 2
Q, = %fdkﬁ(k)zk/ dr [Sin (k + %) T+ sin (k — %) r] . (4.51)
0 B

We consider the two integrations over r separatly. Using a convergence factor and
integral tables [30],

o0 k2 (k+2%)
lim dre ™" gin (k - --2--) r = [im e #"

p—0 0

Similarly,

oo 2
lim dre ™ sin (k - Ak ) r= i !

n=0 [
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Therefore, the term in square brackets of (4.51) becomes

1 1 2

[ ]:k+é§i+km,\Tp—k(1_)\2k2)ﬂ

4

and Q, can be written in final form as

2 pk)?
- /dkl mprEIe (4.52)

where we have regularized using the principle value P defined as

b singularity—e b
P/ dk = 11m dk -I—/ dk.
a 8

¢=0Jq ingularity+e

In changing o k-space, we have been able to simplify (4.45). Using equation (4.52)
we can study the behavior of §m more easily than we could have in z-space. Once
we have ém for an extended charge, we will observe its behavior in the point limat.

In order to evaluate (4.52) further, it will be necessary to choose specific charge
distributions. The two charge distributions we will consider are the spherical shell
and the Yukawa distributions as used in Chapter 3. The most straightforward is
the Yukawa distribution:

Subsitituting into (4.52), 2, becomes

1
= EP/G IR T R

By using Mathematica to evaluate the integral, Q, can be written in the form

o _ (4P £33) 4 (4433/IY)
o T AT ¥ B T L(4 ¥ NIRRT

(4.53)

Notice that when X = 0, €, is equal to 1/L, which when inserted back into (4.42),
yields the classical result for ,. Inserting (4.53) into equation (4.44), and allowing
Mathematica to perform the differentiations and simplifying algebra, yields
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s 2¢? SL(32L% + 64L*\? — 6L2\M — AF)
m = —= R

3c? (4L% 4 22}t

which can Dbe rewritten in the form

2¢ 8L (32L5 /A% 4+ 64L* /M — 6L2/A? — 1)
3¢ A2 (4L2/N2 1) '

dm =

We can now simplify by defining the dinensionless parameter £ = 2L/, and using
the fine structure constant « = e?/Amc®. The final form of dm is then

2\ 2¢(6 8¢t — 3¢ -2 )
din = (gam) T+ &) ) (4.54)

Equation (4.54) is the self-mass for an extended quantum particle using a Yukawa
model. To observe the behavior of §m as a funcetion of its size, we can plot (4.54).
First, we will divide by am. Figure 4.1 shows the plob in whichi it can be seen thit
§m = 0 for & = 0. But ¢ = 0 correspouds to L = 0, or a point charge. Therefore, we
see that for a point charge the self-nass is zero. The quantum point theory using
a Yukawa model does not seem to stumble on the problem of infinite self-energy as
does the classical point theory.

£
d 1
.
[ap
.
(3]
R
—
g o}
o
-0.5
-1 F

Figure 4.1: Self-Mass for a Yukawa Distribution.
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Let us check the generality of the above results by deriving ém for the spherical
shell, and see if it too goes to zero in the point limit. To do so, we insert the charge
density

~ 1 .
pk) = WL sinkL,

into (4.52):

1 o sin®(kL)
o = 4miL? /0 dkk2(1 — A2k2 /4

Once again, we can use Mathematica to obtain

1 wAsin(4L/ )
o = rere [L - 4 '

Substituting into (4.51), and using Mathematica, we obtain

Sy 2¢? [12L)\ + 16LAcos(4L/X) + 8L% sin{4L/)\) — TA2sin(4L/))

T 3¢t 481273\

With the use of £ and « as before, the self-mass can be written in the form

Srny = (%am) 125%’”3[66 + 8¢ cos(2¢) + (2£* — 7) sin(2€)). (4.55)

Once again we divide by 2am, and plot (4.55) in Figure 4.2.

95




ém/(2/3)am

~10 k

-15 b

-20 F

Figure 4.2; Self-Mass for a Spherical Shell Distribution.

We see that the self-mass is again gives zero, which turns out to be a general result
for any model chosew. This can be seen by taking the point limit of p(x) in general:

5(:1:).
47

i X} o=
liy pla}

The Fougier transform of 8(z)/4r is p(k) = 1. We can check this transform by
inserting p(k) = 1 into

1 ik 1 e é()
2 = B lei®® (k) = / 3 Lo ilox i
ple) (2m)? /( e plk) (2m)? e 4

Tuserting p(k) for a point charge into (4.52) yields

2 had 1
Q,=-=-" dk———7or
T A 1 - /\2!33/4

8 o 1
= P ik ——s.
A2 _/0 ¢ ;\12 — k2

The integral on the right can be done as follows;
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B 2

I =lim /Tf dh +/o° a
= i | %ukg 2 — k2

X

4

)\2
$—e A

4

[ oa (k—2/x k—2/A]®
= lim | —21 _2
vl iyl n‘k+2/A _+]
Ao |(e+4/)
— 2 lhmin |2
421_1?(1)11 (E—4/A)‘
=—2ln|—1|
= (.

If Q, = 0 in general, then by equation (4.44), the self-mass §m is zero in general.
This is a significant difference between this theory and the classical theory. There
is no self-energy of a point particle in quantum mechanics, whereas the self-energy
of a classical particle is infinite. This has been recognized as a most remarkable
result [14, 15]. What are we doing that the classical theory isn’t? In order to
compare expression (4.52) for 2, with the classical expression (3.18) for v,, we can
transform (4.52) back into coordinate space using a three-dimensional convolution
theorem (a straightforward generalization of the one-dimensional convolution the-
orem [31]). To derive the three-dimensional theory, we use the three-dimensional
Fourier transforms as

S S pikox
f(X) - (27{')3 ff(k) dk:

(4.56)
f(k):ff(x)e“"k'xdx.

Let f(x) and g(x) have Fourier transforms f (k) and §(k) respectively. We define

frg= /g(x’)f(x - x")dx’

to be the convolution of f and g. Now using (4.56), we have

g(xYf(x — x"Vdx' = L 5 | 9(x) Flk)e™ =) g gy
o)

— @ / FK) { / g(x’)e”*‘k*‘dx’] e *dk.
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The above integral in brackets is just §(k). Therefore, the three-dimensional con-
volution theorem is

frg= / 9(x')f(x — x')dx’ = (27103 / §0OfM)e*xdk.  (457)

Returning to (4.52), we see that it can be written as an integral over vector k in
the following way:

x(7.\2
QO=EP/ dkL
0

1 ~ A2k2/4
_ pk)?
——P/ dk /s1n9kd9kd¢ mpYry7
1 fdk (k)
B 2 k21— \2k2/4

Since p(k) = p*(k), we can write

1 47 1 r
Q, = @Tﬁpfﬁdkmp (k)p(k).

The Fourier transform of g*(k) is

54 = [ o) vax

Therefore,

Q, = fdx A12k2/4p(k) x dkp(z). (4.58)

To write the second integral in (4.58) as a convolution, remember that V2 acting
on p(z) corresponds to {—k?) times e*p(k) in the Fourier integral. Therefore,

1 1
1—Xk2jd 14 a2vE/4

and (4.58) becomes

1 4 1 . ox
QD :/dxp(m) lwpfk—zm/—ép(k)ek dk| . (459)
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We can now use the convolution theory (4.57) by making the associations

fry =15, wnd g0 = 5k) (4.60)

The operator factor 1/(1 + A2VZ/4) can be treated as a constant because it is not
a function of k, or does not operate on k. However, since it is an operator, we must
be careful to keep its relative position to functions of x.

We need the Fourier transform of the functions (4.60). For s(k), the Fourier trans-
form is just p(z'). We can show that the Fourier transform of 4n/k? is 1/|x — x|
by using [32]

V2 (_,_1_> = —4n8(jx — x']),

[x — x|

which can be written as

1 A .
2 — . ikr
A% (—I'X — x’|) oyl dk.

Working backwards, we now ask the question, “What is the Fourier transform of
1/ix — x'|?” To answer this question, we write

f Flk)e ™ dk = — — ] e'*"dk.

Taking the Laplacian inside the integral, we obtain

_1" s _L2N,—ikr ___“_41 ikr
w]f(k)( K2)e T gk = wae k.

We equate the integrands to obtain

fR)(—k*) = —4r, or flk)= 13

In other words, the Fourier transform of 4w /k? is 1/|x — x'|. Going back to (4.57),
we see that f(x —x') =1/|x — x'|. Therefore, the convolution theorem applied to
the integral in brackets of (4.59) yields the final result

o= // led};q 1 +/\21\7' /4”(’“’)‘ (4.61)
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Now that £, is written in z-space, we can compare it with the classical coefficients

vo= [ ﬁﬁ@‘ip(w)p(m'm

x — x|

Both expressions have a 1/|x — x'| term. But notice that in the quantum equation
(4.61) there is an operation acting on p(z'). This operation came about as the sum
of the infinite series which was absent in the classical point electron equation. It is
the operation which is able to make the integral converge.

The integration in frequency space is definitely supposed to reach beyond the sin-
gularities k = 2/) for the principal value regularization to work. In fact the very
result §m = 0 hinges on the fact that one integrates over all frequencies. But high
frequencies correspond to high energies. This is a problem since the nonrelativistic
assumption is one of the basic ingredients of the theory and allows us e.g. to neglect
the nonlinear terms in the equation of motion. In conclusion, we believe that this
question needs to be looked into further, but this particular point underscores the
peculiarity of the Moniz and Sharp approach.

We now want to continue on with the derivation of the quantum point theory.
We want to consider whether or not it is free from the problems of runaway or
preaccelerating solutions.
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4.3 The Point Charge Equation of Motion

4.3.1 Evaluation of the Even Coefficients Ay,

In order to determine the behavior of the solutions for a quantum point electron,
we must first obtain the equation of motion for a point model. The equation of
motion for the extended electron (4.41) depends on the structure of the model
chosen through the coefficients A,. It can be argued using dimensional analysis
that the even coefficients A, must vanish. Consider the Q, (4.43). Notice that
the first term in the series is just the classical coeflicients 7, (3.18) which have the
dimensions of L™™*, So 2, equals the classical coefficients multiplied by an infinite
series in k:

Qp ~ Y E A2 x — x!|2R (V2 )2k,
k

The V. operator has units of 1/L. Therefore,

and thus Q, ~ L*™1. In the point limit L — 0, all of the factors of I must disappear.
For n even, n — 2m, and we obtain a factor of L*™~1, But this is an odd power of
L, and it is not possible to obtain an odd power from the series in A? /L%, Therefore,
there is no possibility of canceling the factors of L unless all even coefficients vanish.

Now let us consider the problem by actually doing the calculations. To obtain a
point charge theory, all we need to do is find the point limit of the ©,,. We can find
the even (1, by letting n — 2m in (4.43):

=3 o () [ [ i~ e o),

k=0

Following the derivation of (4.52), let £ — [, and use r = [x — x|, as well as the
Fourier transforms (4.46) to write

— = (—1)l A ZI/f . ~ ikex p2tham 20 /.1
Qo = Z RG dxdx Gy fp(k)e dk " (Vo ) plzh).
=0
In analogy with the simplifying steps for 2, from equation (4.47) to (4.48), we have
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LY 0 24 .

Now, by comparison with (4.49),

1
/dreik-rr2(l+m)—-1 — zﬂ/oo T2(1+m)+1d,r/ dgetkre
0 -1

e 2
= 27r/ p2(tm) el g = oin br
0 k'f'

A 2(1+ m)]!(—l)“"m
L L2(1+m)+1

Therefore, (4.62) can be written as

Q2m

Y 2217‘. m-wlm
N()Z( ) (A;’> 4201 4 mi (1)

(2 )3 (20! L2 hmt1)

1 2( 1™ X [2(1 + m))! “
=53 v Z & ( 5 ) . (4.63)

Compare (4.63) for m = 0 with equation (4.51). Using the definition of the Fourier
transform of j(k), equation (4.63) can be written as

m 1 4r 2L+ 2m)! (XZEPNC| L dex
Qam = (—1) //drdk(zw)s L2m+2 L%;( (—;) ) ( 4 )] k)e™ ™ p(z).

We now replace k? by —V2 and write {2y, in the form

(1) @ 42m) (2N ar pR)eikx
Qo = (~1) //drdkp(m) [; &l ( 1 )](271')3 T

The series in brackets has the sum [33]

>

(204 2m)! [/ =A292\" gm [ g
> 1), ( 1 )“a,\zfn [’\ 1—|«A2V§/4]' (4.64)

=0
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We can easily check (4.64) for m = 0. In this case the sum is just the geometric
sum of operators which can be written formally as

i o A~ AC
¢ ) T IV

=0

We can also check for m =1, in which case the left hand side of (4.64) is

 @r42) vEY & ALV 2

> & 5 => (21 +1)(21+2) 1

=0 =0
=4Zl2al+6Zlal+22al,

where ¢ = A2VZ2 /4. The last two series in (4.65) have the sums [34]

la} = —-~E———.
; (1—a)?

In order to find the first sum in (4.65), notice that

il(f — e = Ll ia’ = d—2(1 —a)™!
— da? P da®

d L, 2
= EE(]. — (I) =

Then, let f(z) =Y I?d%, so that

f(l?) — f: lza!-z-

=0
Now if we subtract 3 la' from both sides,
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1 A 2, 1-2 2
s (@) = ta) =3 el = 311 -1 = o
where the last equality follows by equation (4.68). Solving for f(z) yields

2

2,0 2a a
Zz T T (4.69)

Inserting the results from (4.66), (4.67), and (4.69) into (4.65) yields

(20 +2) 8a? 10a 2
= . 4.70
2 T sap ta—ay T1oa (+.70)
Now for the right hand side of (4.63), we define b = V2 /4, and obtain
2 2 9 2y—1 3 24 —2
a}\z[)\ (1 -+ = —a—X[Z\(l—l-b/\ )T = 2bA7 (14 04%)
2 1owN + 8b2 A4
COL4BAZ (1406A2)2 7 (14 bAZ)3
or in terms of a,
._‘_?_2_.[/\2(1 + 0337 = 2_y e 8a” (4.71)
N2 Clea (1—a)?  (1—a)® '

So equation (4.64) checks for m = 1 also. We will therefore accept (4.63) as being
valid. We must use the three-dimensional convolution theorem, which allows us to
make the association [35]

st [ Mpmzaex = SO [axpain-xpm,

where §(k) = p(k) and F(k) = 4w/k*™+? with the Fourier transform of j(k) being
p(z'), and for f(k), it is ((EIT))JX —x'|*™=1. For m =0, (4.72) collapses to our

previous convolution theorem in obtaining §2,. Equation (4.63) can now be written
as

1 82"7' 2m H2m—1 1
N [)\ /fdxdxp(m P el (479)
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A 3 o A T 4 e e b <

This is our final expression for the even coefficients of an extended electron. Since
we are after an equation of motion for the point electron, we can evaluate (4.73) in
the point limit. We already found that §, = 0. Notice that for 2m > 2, the factor
|x — x'|*™~1 goes to zero. Therefore, all of the even coefficients Q2 vanish.

4.3.2 Evaluation of the Odd Coefficients Agm1
The odd coefficients are found by letting n — 2m + 1 in (4.43):
f12m+2k 72 2k '
Uumts =3 s (S ) [ [ daxtotax —x Pk Photet),
Again following the derivation of (4.52), we let

1

k—1, and p(z)= W /ﬁ(k)eik'xdk.

Since r2(m+k) = |x _ x/|2(m+k) e have

Qg"’“:?(z;))ll( )1/ J i gy [ BRI e,

We will also use

x=r+x" and @k (k)—fdx’ ex’

Therefore,

s — Z -1 (_Yl/dk Sk (kz)zz(z )3/dr81kr p2med2l

The integrals over §; and ¢ yield a factor of 47, which leaves

Qamt1 = i(“nt 5)21 / mdkkf*ﬁ(k)z(kz)“i / dre e (474)
T L \2) s o2 : :
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The last integral on the right integrates as follows:

4 -1

1 tker 2m-21 1 i 2m-21+2 ! thrcos §
I= oz dre™ " r = — P e dcos 8
7T 0
. o poo
= = / p2mE2itl g krdr
T

2m+2l—|—1 kr_ eﬁikr)d 4.75
=Tk / 24 " (4.75)

Notice that the exponential factors can be written in the form

2m+214+1
pikr 1 o Gikr
- (ir)2m+2l+1 Ok !
or 2m+t204-1
m
o~ ihT 1 2 Pl
(_,ir)zm+2l+1 Ok :

The factors of v will then cancel, and the factors of i, along with the i in (4.75),
become (—1)™+*!, Equation (4.75) is therefore

m+2l oo tkr —ikr
I:_z..(wl)m*‘“ﬂ LAY +2+1/ & =)

where we have reversed the order of integration and differentiation. If we consider
the integral over the second exponential term separately, we can simplify I even
further. Notice that if we let »r — —r in the second integral, switch the limits of
integration, and add the two integrals back together, we obtain

2m+-214-1 oo
I = 2( )m-I-'H-l 4 i dreik:‘
k ok

27
But by using the definition of the delta function, we have
9 g\ 2t
| mi4+1 [ Y i
= () s

We insert this result back into (4.74), and also change the limits of integration
over k to go from —co to oo and divide by 2. We can make this change since the
integrand is even in k. Equation (4.74) can therefore be written as
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0o ;.\ 2 poo 2m+20+1
nzmH:;(@}){ (g) [ amkaer ey (%) (k).
(4.76)

Since we want to obtain the equation of motion for a point electron, we take the
point limit of (4.76). In the point limit, g(k) = 1, and we have

B 00( 1)m+l+1 é‘ 21/00 a1 P_ 2m—+2141
Qzmi1 _EH—W 5 N dkk ak 5(k).

By partial integration, the partial derivative with respect to & can be switched
from operating on the delta function to operating on k*t, We partial integrate
2m 4 21 4 1 times in order to kill all of the partial derivatives. Doing so leaves us
with a simple integration over k., Notice that by partial integrating 2m + 21 + 1
times brings down the power of &k that many times, yielding 2m + 2! + 1 terms in
the product (41 + 1)(41}(4] — 1)---. Each time we partial integrate, we also obtain
a minus sign. Therefore, we have an additional {—1)?™+24+1 Taking all of this into
account, :

Qs = Z( 1(327;““ <-§> (41 + D)AD& = 1)+ (4 -} 1 — 2m — 20 — 1)

/oo dkk4l+1—2m—2!—16(k_)-

With the delta function, the integral over k is easily evaluated. But notice what it
implies. Since k becomes zero, the only nonzero value is when its exponent is equal
to zero. Therefore, I = m. Notice that the product (47 +- 1)(4l)(4{ — 1)--- now has
exactly 4m + 1 terms, and can be written as (4m + 1)I. Therefore,

e
ng+1 = (Q—ij (§> (4m + 1)'

Now converting 2m + 1 back to n we have m = (n — 1)/2. Therefore,

H(a—-1/2 (2 = DI
= (=1) (n—1)! on—t"
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The factorials and factors of 2 combine into the single term (2n — 1)!I. Therefore,
the final result for £2,, is

_J(=D)D220 - DAL for 1 odd,
Q, = ;
0, for n even.

These are the 2, for the point charge which will give us the point charge equation
of motion. Inserting the €, into (4.42), and performing the first differentiation, we
have

A 3} A0
A — (r—1)/2 fyn—1
n odd (1 3(n + 2) 3)\) (1 ' n+1a,\>( 2 (2n —1)1A

= (1 = %ﬁ—ﬁ%) [(—1)("~1>/2(2n — yant

(=)= D/2(2n — 1 et
-+ w1 (n— 1A ,
or,
' A d n—1
= (—1)(*=1/2(2 — 1)1 — 2 )t _
Apodd = (~1)"=D/2(25 — 1) (1+3(n+2)m),\ (1+n+1)
But

1+n—1 . In
n+l/) ni1’

and the second differentiation yields

Anoda = (=1)D/2 (20 — 1)1 (1 + é(_(%) )\ﬂﬂln“’fl.
Since . .
(1 + 3(7;12)) = 3(212)’
we obtain the final form of A, cqq4 a8
Aoy = (-1 S on - et
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These are the odd coeflicients for a point charge, and the even coefficients are zero.
Therefore, by (4.41), we see that the final expression for the equation of motion of
a point charge is

R(1) = eBan (R(E), 1) + 25 L, 4™ e 477
mo()—ein(():)‘l‘B_ZmnW() (4.77)

2
C
n odd

where

3(n+1)(n+2)
0, for n even.

A, = { (—1)("_1)/2M—(2n — 1)!!Xn—1, for n odd, (4_78)

This is the equation we have been looking for. It is the quantum mechanical equation
of motion for the point electron, Notice that this equation of motion for a quantum
point charge has maintained an infinite series. The classical point equation (2.6) on
the other hand only has one term coming from radiation reaction effects. Equation
(4.77) is similar to the classical equation (3.17) for the exztended electron, where A
plays the role of a size parameter instead of L as in the classical case. We now
study the behavior of the solutions of equation (4.77). In what follows, the symbol
T, represents the mechanical rest mass from the Moniz and Sharp theory including
the ém term from the A, coefficient.

4.4 Solutions in the Absence of External Forces

In this section we consider the behavior of the solutions for the quantum mechanical
~ equation of motion (4.77). Is this equation for a point electron well-behaved, or does
it display runaway solutions like the classical equation? We showed in section 4.2
that in quantum mechanics, the self-energy for a point electron is zero. If there are
no runaway or preaccelerating solutions, then the problems of the classical theory
do not exist in quantum mechanics.

4.4,1 The Constant Velocity Solution

In order to write the equation of motion (4.77) in a form in which we can search
for solutions, we return to the Hamiltonian equation (4.2). Consider taking matrix
elements of the equation of motion (4.77) between exact stationary states |m > and
ln > of the Hamiltonian in order to determine the behavior of these states. After
dividing both sides by m,, we have
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~1)»=D/2 on(4n + 5)

R(t)jn>= - <mlE i ol
mn o

3me, nle®  3(n+1)(n+2)

n+1l | .
(2 — 1A <l 2 R(t)jn> . (4.79)

dt"'"‘l

We want to find states for which the matrix elements <m|Ej,|n> are negligible.
This is possible since we are dealing with a free electron. We want to examine the
effects of the self-force, and not the effects due to an external electric field. In the
Heisenberg picture, the time development of an operator is given by

O(t) = 7'0(0)e ™,

We use this equation to find the matrix elements of (4.79), in which we have

<m|R(t)|n> =< m| T R(0)e Tt |n >
— piBmt/h < WLIR(O)ITE.> e~ tEnt/h
= ¢/ Bm=Et/h o | R(0) | > .

Let Bmn = B — By, and R(0)ynn =<m|R(0)|n>. Then

<m|R(B)|n>= et R(0) . (4.80)

We now use the Heisenberg equation (4.1) to obtain the matrix element for the
second time derivative of R(%):

d .. 1 .
<m|EER(t)|n> == <m|[R(?), H]n >
2

= ——[<m|R(t)H|n> — <m|HR(t)|n>]

h
= — L [<mIR)|n> By ~ By <mlR(D)In >]
.Emn b
. = <mlR(t)|n> .
Therefore,
d - _ 1B it/ AT
<m|Z R >= e R{0)mn-
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These are the needed matrix elements for the left hand side of the equation of motion
(4.79). However, notice that on the right hand side, there are matrix elements for
higher time derivatives (up to infinity) of R(¢). In order to see what the general
formula might be for these matrix elements, consider the matrix element for the
triple time derivative of R(t):

2

<m|dt2

(t)|n>——1—<m| Rt H| |n>

1h

i d . d

_—g{<m[—&¥ (H|n> - <m|H— R(t)|n>]

i d .
=-z [< m|aR(t)|n> E, — B, <m|£R(t)]n >]
_ tBEmp
Tk

. 2
_ (3E£1n ) ez’Em,, t/hR(O)mn '

d .
ZR(t)in >

In general, it is found that

dr+1 1B\ :
<l R(E)In >= ( z ) R0} (4.81)

We define the parameter 8 = iEy,/fi, so that (4.81) becomes

n-+1

e ———R(t)[n >= " R(0)un. (4.82)

< m|

With the use of (4.82), the equation of motion (4.79) becomes

. 2¢* (—1)»=D/2 9n(dn 4 5)
0= 8" "R(0)pn |1 — ——
Be" R(0)m 3 20: nlen 3(n+1)}n+2)

2
myc
%" podd

(2n — AR ﬁ”}
(4.83)

Now that we have taken stationary states of the operator form for the equation of
motion, we are able to solve for the roots §. Since § = iEp, /%, by equation (4.80)
we see that f positive corresponds to runaway solutions. In other words, by finding
the roots 8, we are able to determine the behavior of the solutions. Notice that one
solution of (4.83) is for # = 0. But, by equation (4.80), this implies
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R(t)mn = R(0)mn.

In other words, the velocity at any time ¢ just equals the initial velocity. This is of
course the desired solution when there are no external forces present. In the cor-
respondence limit, this solution yields the corresponding classical solution of final
velocity equaling the initial velocity. Therefore, we have obtained the appropriate
solution for the classical case which is well-behaved. We have not completely ex-
amined all of the roots of (4.83), however. There could still be “bad” roots lurking.
Rather than 8 =0 in (4.83), we could have

2¢? Z (—1)»=1/2 on(4n -+ 5)

nlen 3(n + 1)(n n 2)(27’1 — 1)”)\”_1[3“, (4.84)

We investigate possible roots of this equation in the subsections that follow. To
begin with, we must consider the possibility of summing the series in (4.84).

4.4.2 The Radius of Convergence

Before we can find roots of equation (4.84), we must do some simplification and
preliminary work. We simplify by using the fine structure constant o = €2/ Am,c*
to write

Ze? 2
3m,c: 3

Then,

n—1 n—1
8 ()

c™ c c

To further simplify, we define n = #A/¢, which is dimensionless. We combine the A
in (4.83) with the #/c above to obtain another factor of . With these modifications,
equation (4.84) becomes

. 2 (2TL — 1)” (n-—l)/Q 1 2n 4dn + 5 n—1
1_50”72 n! (=1) 3\n+1 (n-I—Z }7?

n odd
2

= gaf(n).

(4.85)
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Equation (4.85) is a power series in 7. It is the equation for finding roots obtained
from the operator equation (4.77).

Our next concern is whether or not the series in (4.85) converges. And if so, what is
its radius of convergence? And within this radius of convergence, what is the sum
of the series? The radius of convergence can be found using the general formula

An

r= lim
N—O0Q

. 4.86
- (4.86)

But the series in (4.85) is only for n odd. Therefore, to get a series over all values
of n, we will let n — 2n + 1. The series then becomes

i (2(2n + 1) — 1! | _pytenin-n/s F 220+ 1)\ [4(2n+1)+5 gt
—~ (2n+1) 3\2n+1+1 (2n+1)+2

Z(4n+1 _pye [L(2n 1Y (800N o
(2n + 1 3\n+1/\onts)|" -
We now have an equivalent expression for the series in (4.85). Notice that it is a

power series in 2. We can compute the radius of convergence by using the above
formula (4.86):

.= L (4n+1)!1l<2n+1 8n +9 (2n—[—3)!3 n 2 2n -+ 5
Camoo | (2n )3\ n+1 /\2n+3) (Un+31 "\ 2 +3) \8n+ 17

_ i |(@nt DM@ A3)! (204 1) (n+2) (80 +9) (2n+5)
= e @ 15 (20 + 1) (30 £ 3) (n = 1) (8n + 17) (2n + )

— L | 2@nt Dn+2)(8n +9)(2n + 5) }
oo |{4n 4+ 5)(4n + 3)(8n + 1T)(2n + 3) |

As n — oo, the highest power of n dominates. The highest power of n for both
the numerator and the denominator is n*. Therefore, as n — oo, we keep only the
coeficients of the n* terms, which yields

P o=

_1
256 s
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Therefore, the radius of convergence for n? is 1/4, and the series in (4.85) converges
on the interval 5% € (—i, 1). Or equivalently, the series converges for |n] < 1.

4.4.3 Summing the Series

The series in (4.85) can be summed inside its radius of convergence. We need to
sum the series in order to discover any other roots of the equation of motion. To
do so we need to rewrite it so as to include all values of n, and to put it in the
simplest possible form. With a little thought and manipulation, we see that this
can be done by noticing that if we add 0 in the form of 8-14+16, and rewrite 5n as
12n — Tn, we obtain

3 GE) G- Sninhts

2 [4n2+12n—|—8—7n—-14-]~6]

3 (n+1)(n +2)
2 [4(n+1)(n+2)—7(n+2)+6]
3 (n+1)(n+2) '
Therefore, f(n) can be written as
(27’& ) (e 1)/2 n _ 6
f(n) = g;d (D [4 CE (n+1)(”+2)]
2 on —1 n=1)/2,m (2n —1)! n=1)/2)n
:5[4 de( n!) y(n=1)/ 72 (n+1'( 1)1/
1)(m=1)/2yn
+0 Z (n+2 = ] (50

and we have succesfully rewritten f(n) as the sum of three simpler series which can
be summed. Once these series have been summed, we can search for roots of equa-
tion (4.85). Similar to the classical case, any real roots of (4.85) will give runaway
solutions. Therefore, once we have found the roots, we will be able to determine the
behavior of the solutions for the equation of motion, and see if quantum mechanics
is free from the problems inherent to the classical point theory.

Let us consider each of the three series of (4.87) individually. To sum the first series,
we begin by writing down the first few terms as
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T i t i
3 (2n 1) (1) oy B e O 13 s (4.88)

) n—-
I !
n odd 3 2

Since n is odd only in this sum, the even terms
MM, T, 1
E?? 2 ETI ] F” )

are missing. In order to sum this series, we rewrite it to contain all values of n. In
doing so, we will be able to rewrite it as the difference of two series which contain
all values of n, where the even terms cancel, and the odd terms add together to
create the original series. In order to get the correct signs, we need to use powers
of ¢ such that:

Zz’":i—l—-z’-l—l-i—--- (4.890)
(=it =—i—1kit1l4- (4.895)

Using (4.89), consider the series difference

= (2n — 1) o, — - 2 - 5! 2 - 9l
Z% Z( —4)"n"™ = 2in — 3l i’ + £ "+

This is almost what we need. It is obvious that if we multiply the above difference
by —i/2, we will obtain an equivalent expression for the series (4.88), but with the
advantage of having series which include all values of n. Therefore

Zd:d (Zn?;—! 1)!!(H1)(n_1)/2nn _ Z (2n - 1)l Z (2n *in)"]
" (4.90)

To get a feel for what the sum of the first series in the brackets of (4.90) might be,
we will write out the first few terms:

3 e e — i B+ By + Dot
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This is actually a binomial expansion, which can be seen by introducing some factors
of 2, as well as adding 1 to both sides:

o0
2n — 1)1 2%?7 3! st !
143 B Dy 14 B4 T ain) — 2 ain 4 2t +

Let us rewrite this series in the form

1_|_Z(2n 1)( P =1 1(2 )+; 2(2;?)2+__§_g(_2§§_)3+,_,

22
=1+ (—%) (=2in) + (—%) <—% - 1) (“:%?lﬁ
() () (o

With the series written in this form, we can compare it with the binomial theorem:

n=1

(1+a)" ~1+rm+r(r—1) -l—r(?"wl)(r— )§+---,

where z € (—1,1), and r is any real number, from which we can make the identifi-
cations

1
= —2 d = e
z=-—2in, and r= 5

We therefore have the sum of the first series in the brackets of (4.90) in the form of
the binomial expression

Z (m)" = (1—2ip)7% —1

In a similar fashion, one can show that the second series in the brackets of (4.90) is

> Cr = iy (1 gigy e

nl
=
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When we insert these results into (4.90), we are left with

—~ 1\ '
3 (2n 1) (—1)(r=Di2gn _% [(1 _ 2y V2~ (1 +2z’n)1/2] - (497)
n odd

It turns out that the other two series in brackets of equation (4.87) can also be
shown to be the sum or difference of binomial expressions. Both of these series are
the same as the one just considered, except for the denominator; instead of n!, we

have (n + 1)! and (n + 2)\.

In order to sum the second series, and show that it is a binomial expansion, we
start with

T oo L T B
d d

If we write out the first few terms of this series

@n—1N . 171, 51, o
= Z ) (—1)(m= D 2gett ; [5 Pt g (4.92)

we see that once again there are only odd terms. To write the sum over all n, and
include the even terms, we need to write it as the sum of two series. We construct
(4.92) using (4.89) and making the appropriate shift in the powers of 7. Consider
the sum

2n — 1! 3 n41 2n—1 n+3 ont+l
g((_n:l___]%n& ++Z((n+1)1( ’L)+ +

AT T T e T
Notice that we have chosen the signs of the series so that we get a cancellation of the
unwanted terms. We now have two regular series (summations over all values of n)

which can be shown to be binomial expansions. Let us use the above combination
of series to rewrite the series in (4.92) as
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1 2n — DI n12n.1 2n — 1l n+1
“Z((nﬂ))r(l)( et 277[ sz(m-l))' (im)™*

- i (2?’2. - 1)'” (—Z”:'])n+1 . (4_93)

Consider the first series in brackets of (4.93). Again, it will be to our advantage to
write out the first few terms:

o0

(2= L (B B O
3 G = gin)*+ n) + )+ G +

Making this series negative, and adding 1 — in to both sides, we can show that this
is indeed a binomial expansion. To do so, we will insert the appropriate factors of
2, and rearrange. Let

—1—3n~2( 1(77)”“-

Therefore,

1. 4
S=1- 5(2“?) 2122 (2”?) - 3;23( 77) - 4|24 (2”])

1 1(22'77)2 1 1 3(23?})3

1, |
BRI A R TR SR R Rl

o e (3) () S (2) () 2
oo (50) S () (1) B

from which we can again compare with the binomial theorem to obtain the result

= (2n -1, : .
-3 B = @ -2~ 14,
n=1 ’

And similarly one can show that
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= (2n-1 .
- B iy = (1 i) 2 -1,

Returning to (4.93), we see that it can be written as

2n —1 n— " 1 ‘ '
hl Z ((n n 1) )( D/2yn+l % [(1 — 2“?)1/2 + (1 + 2im)H/? — 2] . (4.94)
m odd

Now following the same steps for the third series in equation (4.87), we have

B i1 B
d

The first few terms of the series are

11 5 -84 o o
ol A LA

Again, we include all values of n by taking the difference of two series; namely

S (2n—-DN A B 1
2 ((n-I—Z))! S ((n—f—2))! (=t =
=1

n==1

2 2.5 2.9
—gwf—{— 5 in® — 7 i’ 4. (4.95)

If we multiply both sides of (4.95) by i/2n?, we see that

Z (2?’1—1) ( 1)(“ 1)/2 n: [Z (2n+2)l (3n)n+2

n=1
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In order to show that the series in brackets of (4.96) are binomial expansions, let
us look at the first few terms of the first series:

1 3 51! gl
Z(( G = i + JW 5,(7?)5 Llin)® +

(4.97)
If we multiply both sides by 3, we have

S trnd 4 ()1 () (3)

HE DT

For a binomial expansion, we are missing the first three terms

(—2in)? I
or

17 %(_2”?)1

SRR
b =

If we add these three terms to both sides of (4.98), and again compare with the
binomial theorem, then

> Mgyt = L0 -2 1 §ziny - § T2 (a00

Z (?::_;;),” in)t? 1 {(1 + 22-??)3/2 1 g(ziﬂ) B g _

n=1 3

Inserting (4.99) and (4.100) into (4.96) gives
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Z (2n - 1) e IS =072 62? [(1 — 2in)*/% — (14 2in)*/% + ﬁin] - (4.101)
n odd

We have shown that the three series of (4.87) can be written as the sum, or the
difference, of binomial expressions. Let us use (4.91), (4.94), and (4.101) in equation
(4.87) to write the expression for f(n) as

fn) = 2{4 (—%) [(1 —2m) V(14 2@,7)“1/2}

7 (-2%) [(1 — 2ip)M/2 4 (1 4 20)H/% — 2]

+6 (g?%) [(1 — 2in)*/? — (14 2in)*/? + 6in} }

or,
fOn) = {(1 ~ 2in)y M2 - (1 4+ 20) 2]
—% (1= 202 (1 20m) 2] + %
+32—?:2 [(1 — 2in)** — (1 + 2in)°® ] _ 3_2
But,

14 12 1714 12} 2
37 3y g\ 3 3/ 3y

and f(n) becomes

f(n) = _igé [(1 - 23'?7)_1/2 —(1+ 23'”)—1/2]
_:_;% [(1 — 2in)M/? 4 (1 4+ 2im)/? — %1
-I—% [(1 —2inP2 — (1 +25??)3/2] . (4.102)
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We started out with the operator form of the equation of motion (4.77). We then
found matrix elements of this equation, and were able to sum the series within its
circle of convergence to obtain (4.102). Therefore, we now have an equation for
which we can obtain the roots, and determine the behavior of the solutions.

4.4.4 Correspondence with the Classical Equation of Motion

Let us first observe what sort of behavior is obtained from the equation in the
classical limit /i — 0. Notice that

Therefore, when % goes to zero, n also goes to zero. 8, which equals i Fpyp /f, is un-
affected since the energy contains an %. We want to obtain the classical counterpart
of equation (4.102). To do so, we will first expand the binomials in f(n):

45 3N 50 3N 511
f(n)h—(:,)) [1+m~gn - 3rin’ +- =Lttt —3,%?? +- ]

S Y AR ST SIS SIS 6 B e -
S R T TR T T

3 3, 3
—}—m [1—3?,17—577 -31zn + - —1—3%?7-1—2'17 —3’2?7 +- }

Adding like terms, we obtain

4 [ 2.5 7 2 p
f(n)—-—g[%n— TR ]mg[ﬂgn +----7]
2 . 6 .
+3—5[ 63n—§zn3+---],
or,
f()-?. _8'_5”3_&_&_. +3+E+ 12 +
L T I T L NI TK

As 17 — 0, the dominating terms are those containing 1/5. However, if we add all
of the 1/n terms together,
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we see that they vanish. The dominating terms are therefore the terms containing
n. As n — 0, f(n) becomes

: 8 14 12
lim f(n) = gn = 55 + 5577

3

2 7
=Zpla—-Z
37;( 2%—1)
_2

3

(3)

Referring back to equation (4.102), in the limit as & — 0,

2 A 2
11111 { af(??)} 3V = 2 (A;U&) (%‘) = gmi)czﬁ

But 7 = 2e2/3em,c®. Therefore we have the result

lim {-g-af(n)} =

We have shown that the classical counterpart of (4.85) and (4.102) is

1= pgr.

(4.103)

But notice this equation implies that § is real and positive since 7 is real and

positive. From equation (4.80) we see that

R(t)mn = e*'R(0)mn.

In the correspondence limit to the classical theory (A — 0), the matrix elements

R(t)mn and R{0)m, go to the corresponding classical observables

R(¢) and R(0).

Therefore, the classical equation (4.103) corresponds to the equation of motion

R(t) = **R(0).
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This equation of motion is just the classical equation (2.2). With § real, this classical
equation exibits runaway acceleration regardless of the initial velocity R(0). And
so, in the limit as A — 0, we return to the classical result for the point electron
of runaway solutions that we obtained in section 2.2. In other words, we cannot
obtain a well behaved equation of motion for the classical point electron. We now
turn again to the question of whether or not there are runaway or preaccelerating
solutions for the quantum point electron.

4.4.5 Other Solutions of the Quantum Equation of Motion

In section 4.4.1 we discovered that the quantum theory contains the expected con-
stant velocity solution when no external forces are present. We want to discover if
there are any roots to equation (4.85). But because of the difficulty of finding the
roots of this exact equation, it will be to our advantage to consider the simplified
form of f(n) as

fn) =~ (%) [(1 ~ 2in)"V% (14 23-,?)—1/2] _

The behavior of the solutions for this truncated form will also be the behavior of
the general solutions with minor modifications of the coeflicients [36]. Indeed, both
f(y) and f(y) are odd functions of y with the same asymptotic behavior and a
similar behavior for y — 0. Using f(n), equation (4.85) can be written as

1= _?‘3‘“ [(1 ~ %)Y (14 2in)_1/2] :
To simplify further, we make the definitions

B

=3 and & =2n.

g

Notice that we are now searching for the roots £ of the equation

L= —gi[(1-i&)™7 — (14ig)7], (4.104)

where the circle of convergence can be written in the form |£| < 1. Our task is to
solve for £. To do so we rewrite equation (4.104) as
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1—-:’[ L1 ]
T\ T Virae

\/1+i§—\/1—’i§}
e )

and square both sides to obtain

L [T T -1 i 14t
—Y 1+&

24 o/TFE]

=7 1+ €2

= 242 "—]‘J*"'Vl"’&z-

R T

‘We then have

1+ 6% + 297 = 2¢°/1 4 €2,

In order to isolate £, we square both sides again. After collecting like terms, we
obtain

&+ 2(1 4+ 2% — 2¢gME% + (1 +4¢%) = 0.

By use of the quadratic formula,

229" — 297 — 1) £ 2,/(2¢* — 2¢% — 1)? — (1 4 4g°)
B 2

= (2g* — 29° — 1) £ /498 — 8¢5.

And finally, we have the result

EZ

£% = (2g* — 267 — 1) £ 29%/¢% — 2. (4.105)

Remember that the roots must lie within the circle of convergence |£] <1 to be
valid. First, observe the case for g* < 2. In this case, (4.105) becomes
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£ = (2¢* ~ 2¢% — 1) £124°(2 — ¢2)/2

Notice that £ is complex. Therefore we can write

1/2
617 = [(20* - 29> — 1) + 4g°(2 ~ ¢)]
= (4g8 —4¢% — 294‘ —4g% + dg* + 24% - 29% +24% + 1 + 8¢°% — 498)1/2
— (492 + 1)1/2'

-And for real g,

E* = (46® + 1)*% > 1.

These roots lie outside the circle of convergence |£| < 1, and are therefore not valid.
So far we have not found any other roots comming from equation (4.85). Notice
what this means as far as the fine structure constant is concerned. Since g = 8a /9,
for the condition g% < 2,

9 9
= — -2 = 1.59,
o Sg<8\/_ 1.59

But the physical value of @ = 1/137. Since there are no roots inside the circle of
convergence for g% < 2, and ¢? has to be less than 2 in order to obtain the physical
value of «, there are no roots of the quantum equation of motion other than the
constant velocity solution obtained earlier. In other words, when no external forces
are present, the quantum theory contains only the expected solution of constant
velocity for the physical value of «.

Notice what the radius of convergence || < 1/2 for the series in (4.85) implies.
Since n = BA/c and f =iEp,/h,

1
In|* <

i B |2

he
Eon
he

1
1
1
1

<3

Since A = fif/rc, we obtain the condition on the energy as
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Ermn < =mct.

2

This means that only nonrelativistic energies are compatible with the convergence
of the series. But within this condition, there are no runaway solutions for the
physical value of a.

4.4.6 Strong-Coupling or Semiclassical Limit

When no external forces are present, the only solution for the quantum electron is
the expected constant velocity solution. Since we are also interested in the classical
theory and the correspondence limit from quantum to classical, we investigate the
case g® > 2. Notice that o« = e?/hc implies that as i — 0, a gets large. For g% > 2,
the value of « is large compared to the physical value 1/137, and can be interpreted
as a semiclassical limit. An alternative interpretation is to let the physical value of
e? grow. This is the strong-coupling limit. In this section we consider the validity
of such a limit. When g* > 2, from equation (4.105) we have

£ = =y/(29" — 297 — 1) £ 20%(g? — 2)1/2, (4.106)

Constder the four possible roots of (4.106) coming from the fact that there are four
different combinations of signs possible, We will evaluate these roots in the classical
lEmit & — 0, which implies that g — oo since

_8a 8 e? 8 e? (moc)_§£
=79 79 Amoc? /9 \myc8 B/ 9he

1/2
Ept = [(294 — 297 — 1)+ 24°(g* — 2)1’2] ,

which, in the limit as ¢ goes to infinity, is

im €iq = /29 + 294 = 2¢°.
g—o0

£y = [(25]4 — 297 — 1) — 243(4% — 2)1/2] 1/2 |
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The g* factor cancels. Therefore we will need to expand the binomial in the second
term in brackets as

1/2 1/2
{4 = 294—292—1—29 1-—

2g* 2 114
= [pot-at ot LS

S @R YEEA N v
2 2 31\ g2 '
From this we see that the g* factor, as well as the zeroth order factor, also cancel.

The first term that does not cancel is the 1/¢? term. This term will therefore be
the dominating term in the limit as ¢ — co, and we obtain

29*
+ 2

].111'1 €+_ = l

g—o0

The other two roots are just the negatives of the two roots found above. Therefore,
in the limit as ¢ — oo, the four roots are:

vt = 297, -t =24 |

1
E-I'—ﬂE? g-—— =

Only two of these roots are solutions of the original equation, however. This can
be seen by inserting each root back into the original equation (4.104). Let us begin
with {4 to see if it corresponds to a solution. Since £1_ = 1/g, in the limit as
¢ — o0, equation (4.104) becomes

o) ()]
e () (D) (D (D3 () v
S [DRBIGHORS
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where the first terms in the expansions cancel, and all other terms exept for the
second term go to zero in the limit as ¢ goes to infinity. Therefore we get an
indentity, and &4 _ is a solution of (4.104).

We can show that £, is also a solution. We do so by inserting &4+ = 2¢% into
(4.104) to obtain

1= —gi [(1—-2ig")™/* - (14 27;92)—1/2] .

In order to expand these binomials, we need to be more careful than before. Notice
that 7 and g can be rewritten as

i=¢e™?, and g=

(677"

The ¢ can be taken inside the binomial expressions to obtain

i /2 1 in/2 e 1 tr/2
1=—e 'gﬁ — 28' — g—2 + 2e .

In order to have the binomial expressions in the appropriate form for expansion, we
write

. Y 1 ~1/2
e imf2 o in/2 _
1=—¢ [( 2e ) (1 —nge"“ﬁ)
o\ —1/2 o1 —1/2
_ im/2
(28 ) (1 + Wzgzeiwﬂ) ] .

But notice that in the limit as ¢ — oo, only the first term of an expansion survives.
Therefore,

—-1/2

1 = —gin/? (_Qeiw/z)_l/z + i/ (23i7r/2)

= _e:';/; (Meiwlz)“‘lh . % (e"'“ﬁ)mm,

But —ei™/2 = ¢~i"/2 and we have
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Therefore we see that £, is indeed a solution. However, if we insert £_y and é__
into (4.33), we see that they differ from their positive counterparts by an overall
minus sign. Therefore, in both of these cases, we get the contradiction that 1 = —1.

Therefore, we have found that out of the four possible roots, only two are solutions
of (4.33).

Notice that {—+4 and ¢__, which are not solutions to the original equation, came
into play because of first squaring the equation containing ¢, and then taking the
square root, which introduced a plus and a minus sign.

In the limit as g — oo, the root {14+ — oo, and therefore lies outside the circle of
convergence |£| < 1. But what about £4_? For ¢ — oo,

which corresponds to the classical runaway solution (4.103). The 3/8 comes into
play because of the truncated form f(n). In other words, for g > 2, there is a root
inside the circle of convergence which corresponds to the clagsical runaway solu-
tion. However, let us investigate this solution further by considering a semiclassical
approach in which we let ¢ get large, but remain finite. In this case we have
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(;) (294__29'2_1)_293(92“2)1/2
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We now expand the binomial to obtain

1

— +
92

A
1ey 1 51 H/2
—‘2‘(5);[”19—2*'“] -

Since g is large, we will neglect all values of order 1/¢* on, and expand. In doing so
we will get the first two terms in a small - expansion about the classical runaway
solution § = 3/87. We first write 1/g as

E_ g MoAC?
g \8 e2

_l € 4 2 4 2 51 e
6—2( )[29 —2¢"—1-29"+2g" +1+ At

l_gmocz 5 _ 9%e
g 8 e2 mec/) 8e2’

we have

ﬁz—m[1+—g—n2+-»-]. (4.107)



Notice that this is an expansion in % about the classical runaway solution 8 = 3/87.
However, we need to consider the validity of such a semiclassical approach. Since
a = 9/8¢g, the possible values of « are separated by the earlier conditions, ¢ < 2,
and g2 > 2; the critical value of o being

9
Oterit, = gx/i ~ 1.59. (4.108)

Remember that

£ = (2¢* - 29> — 1) £ 26°(¢* — 2)'/2.

If we take the derivative, we will be able to obtain an expression for d¢/dyg:

1 2gd.
26d¢ = 8¢”dg — 4gdg £ 6¢°dg(g* — 2)'/% + 2¢° (‘2'> o - _92_9;1/2 :
Therefore,
df 1 3 | 27 2 1/2 g'
ik ) — -2 — |

Using the original definitions ¢ = 8a/9 and £ = 27, the derivative can be written as

dp 41 3 27 .2 1 g*
il A PV LI T —
da Qflg 9+39%(g ) :l:(g2__2)1/2

At the critical value of a, g% = 2, and we have

This suggests that there is a “first order phase transition” at o = ag;. In other
words, there is a boundary or a cusp at ag;. Within the ecircle of convergence, and
for @ < Gerig, the quantum theory is perfectly well behaved.

In the correspondence limit, there are some runaway solutions which begin to ap-
pear, but they appear only after the boundary has been crossed (@ > arris). Because
of the cusp, there is no meaningful connection or extrapolation from the domain
containing the physical value of & with the semiclassical to classical domain of « (see
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Figure 4.3). Therefore, the semiclassical approach is not meaningful for studying
the question of runaways in quantum mechanics.

What if we consider at what value of g or @ we first get a root which is inside the
circle of convergence of the original series in (4.85)7 To do so we use the truncated

~

form f(n) in equation (4.85) as before,

1= —S-Ofi ! - !

9 V12 142y
8 | VIT 2 -T2
9 V1442 '

—ord

Squaring both sides, we obtain

2
()
2
-2

If we insert 1/2 in for  and solve for «, we obtain the first value of o which is inside
the circle of convergence. When n = 1/2 we have

=)

= - (§>2a2[1 — V2.

14 4n?

1 —+/1+4n?

1 -} 4n?

1+2z‘n+1—2z'n—2~,/1+4n2]

9

Therefore,

ol == (2) 1 —lﬁ - @ (1 —xl/;)(\ﬁ Vo @2(”‘@'

Or equivalently,

o = 2(1 +2)1? ~ 1.75. (4.109)

This is the first value of o we obtain, and corresponds to the first root ¢ inside the
radius of convergence, But as is shown in Figure 4.3, this first value of a is beyond
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ey and cannot be cousidered as coming from a quantum solution. As « — oo, the
root ¢ corresponding to (4.109) goes to the root {4_ mentioned earlier,

)
Diverging
Roots
Radius of
1 Sfe
root Convergeuce
No
Converging
Roots
1 H ot
T ¥ e
o

Classical Linit—

Figure 4.3: The Limit From Quaubumn to Classical Solutions.

Remetuber that £y was the root corresponding to classical runaway solutions.
But since there is no connection across the cusp at o, we are not able to obtain
the classical runaway solutions from guantun mechanics. Therefore, since there
is no connection, the classical runaway solutions should be non-existent and can
be neglected in the classical theory. In other words, the runaways are strictly a
mathematical byproduct of the classical theory with no physical significance. It
arises simply from the inability of the classical theory to handle a quantum particle
such as the electron.
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4.5 Solutions with External Forces

We have considered the behavior of the solutions when no external forces are present,
and found that there are no runaways in the quantum point theory. We also found
that the classical runaways do not come from the correspondence limit, and should
not exist in classical theory. But what if there are external forces present? Can the
problem of runaway solutions also be resolved through a correspondence with the
quantum theory?

We assume a classical time-dependent external force, and again assume that the
effects of the in-field are negligible. In this case, equation (4.77) becomes

. 2e? A, drt?
moR(t) = F(t) + 37 nlcn dtnte
n odd

R(t). (4.110)

If we multiply equation (4.83) by mof{,(t), and add in the external force, we see
that equation {4.110) can be reduced to

moR (1) (1 - %a f(n)) — F(b). (4.111)

Using the definitions 7 = gA/c and 3 == :FE [}, as well as the relation F = fiw, equa-~
tion (4.111) can be written as

F(¢)
1~ 2af(iwrfe)’

moR(t) = (4.112)

where f(n) is given by equation (4.102). Now multiplying both sides of (4.112) by
\/-sz?dte"'“’t, integrating over all times, and using the Fourier transforms

ft(@:\/% / dteR(2), and F(w)m% / dteIR(E), (4.113)

we obtain

F(w)

moR) = T T e

(4.114)

Projecting back using the inverse transforms of (4.113), we obtain
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F(w)

r 1 * twi
m,R(t) = T /;m dwe 1= Zaf(iwr/e)

We once again write F'(w) using (4.113),

iw(t—t')

R(t) / v dw / T #EE)—S (4.115)
Mo = — _ . .
o0 27 J oo 1-— %af(zw)\/c)

Equation (4.115) can now be written as

moR(t) = / Gt — )F(), (4.116)
where G(t —t') is the response function given by

G(t—1) = / T )eit)
—oo 2T
(4.117)

/2 g etw(i=1)

B I-c/za 2r 1 - saf(iwife)’

and the limits of integration come from the condition jw| < ¢/2A. This condition
comes from the radius of convergence |n| < 1/2, in which case we have

By 1
he 2
Since E = hw, this condition becomes
W] < — (4.118)
TR .

Condition (4.118) means that the applied force changes slowly in the time required
for light to cross the Compton wavelength of an electron. We must require F(w) to
vanish for |w| > ¢/2)\. In other words, this model is consistent only for frequencies
less than ¢/2A, which implies that the response function is spread about the origin
(t = t') with a minimum width given by the Heisenberg uncertainty relation as

i

mn c

At ~
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By equation (2.10) we see that preacceleration is on the order of 7, and for physical
values of «,

T ~a(Ac) € At.

Therefore, the noncausal behavior acts over too short of a time to be observable. The
quantum mechanical equation of motion for the point electron, therefore, exibits no
observable violations of causality.

It has been shown [37] that since the cutoff frequency is small compared to ¢/ A, the
denominator of (4.117) can be expanded in order to obtain the classical solution
corresponding to the quantum solution (4.116). In doing so, one obtains

moR(t) = /0 ” dse™*F(t + 5). (4.119)

But equation (4.119) is just the classical solution (2.10). Therefore, when external
forces are present, the quantum solution yields the classical solution (2.10). In
obtaining this equation the runaway solutions of the classical equation (2.9) were
not even introduced.

Even though the classical solution that contains acausal behavior has been recovered
from quantum mechanics, the problem of preacceleration has still been resolved.
This is because of the condition of the cut off frequency, making any noncausal
effects unmeasurable. We conclude therefore that the classical theory is completely
consistent within the domains of classical mechanics.

4.6 Summary

In this chapter, we first derived the quantum equation of motion for an extended,
nonrelativistic electron. We next discussed the self-energy for a quantum point
electron. This is an important difference with the classical theory which claims
infinite self-energy. We noticed that the difference between the expressions for the
self-energy of the two theories can be related to the fact that the quantum expression
contained an infinite series which was not present in the classical expression.

The quantum point theory was next obtained from the quantum extended model
theory in the appropriate limit. The quantum point theory was shown to contain
no runaway solutions. It has also been shown that the point theory contains no
observable acausality. Therefore, we can conclude with Moniz and Sharp that the
quantum mechanical theory for the point electron does not contain the problems
inherent to the classical point theory.
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We showed that the classical limit of the quantum point theory reduced back to
the classical equation of motion for the point electron. Therefore, the problems of
the classical theory cannot be resolved in such a limit. However, by considering
the correspondence limit of the solutions, answers were found. First, the constant
velocity solution was found when no external forces were present. This solution
corresponds to the classical constant velocity solutions. Second, it was found that
the runaway solutions enter in as one is taking the classical limit only after jumping
over a cusp. Therefore, the runaway solution in classical theory has no meaningful
connection with the quantum theory. Third, it has been shown [37] that when
external forces are present, the time over which acausal behavior occurs is over
too short of a time scale to be measurable, and therefore has no meaning. In the
classical limit, the solution (2.10) was found. However, the problems of runaways,
preacceleration, and infinite self-mass have been resolved through the quantum
theory. Finally, we learn from the limiting process the importance of taking limits
in the right order. This study illustrates how the order in which limits are taken
can have a major effect on the final results.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

The electron is one of the simplest charged particles we know of. And yet, as we
have seen, the equations of motion for the electron are complicated when radiation
reaction effects are included. In Chapter 2 for instance, we found that the equation
of motion was a third order differential equation. The solutions to this classical
equation exhibit the well-known problems of runaway and preaccelerating behavior,
along with infinite self-energy. These problems of the theory have sparked and
continue to spark much research in an effort to understand and resolve them.

A more thorough theory was developed by Abraham and Lorentz for the classical
electron in which the physical extension in space of the charge was taken into
account. This theory does not contain the problems of the classical point electron
theory as long as the effective charge radius L is taken to be greater than cr. This
is interesting because it shows that the runaway and acausal behavior are not a
characteristic of the point theory only, but occur for an extended model as well if
the extension is not sufficient. This condition on L was obtained using the spherical
shell model. We tested the generality of this result by using a uniform sphere. Once
again, we found that the effective charge radius L had to be greater than e for well
behaved solutions. We consider the use of different models simply a mathematical
tool for understanding the theory, and not an attempt to find a real model of the
electromn.

For Lorentz the electron was a real, physical particle. He calculated its radius by
assuming that all of the mass was electromagnetic in nature. However, we now
know that the electron is three orders of magnitude smaller than that predicted by
Lorentz. Many believe it to be a true point particle in modern theory. That the
electron has structure beyond or in addition to its spatial extension is illustrated by
spin (usually described as a relativistic effect) and its anomalous magnetic moment
(quantum field theoretic effect). Any attempt to take the point limit of the classical
extended electron theory, however, results in recovering the problems of the point
theory. Therefore, the problems of the point theory cannot be resolved within
the framework of classical mechanics, and we must turn our attention to a more
comprehensive theory.

Using the Heisenberg picture of quantum mechanics, we followed the derivation of
the nonrelativistic quantum theory for an extended electron in Chapter 4. From
this equation we obtained an expression for the self-mass.

From the extended model theory, a quantum point electron theory is obtained.
This equation of motion was shown to have no runaway solutions and no observ-
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able acausal behavior. In other words, major problems from the classical theory
disappear from the framework of quantum mechanics for a nonrelativistic point
equation.

Taking the classical limit of the quantum point equation of motion just brings us
back to the classical equation for the point electron with most of the associated
problems. Therefore, there is not much to be learned from such a limit. However,
a more productive approach consists in looking at the correspondence between the
solutions of the two theories. When no external forces are present, the constant ve-
locity solution corresponds to the classical constant velocity solution. The runaway
golution cannot come from the correspondence of the quantum solutions, however,
because of the discontinuity between the two theories as illustrated by «c.iy in Fig-
ure 4.3. Therefore, the runaway solutions of the classical theory have no meaning
and are simply due to the inability of classical mechanics to describe a quantum
particle.

The acausal behavior was also shown to be nonobservable in quantum mechanics.
The preacceleration happens on too short of a time scale to be observable as dictated
by the Heisenberg uncertainty principle. Therefore, the acausal behavior in the
classical theory is not measurable, and therefore has no meaning. Since the runaway
solutions should not exist, and any acausal behavior is not observable, we can use
the classical theory in confidence within the appropriate domain. The problems
of the classical theory have been resolved by taking an appropriate route through
quantum mechanics. These results are summarized in Figure 5.1.

Keeping in mind the limitations inherent to our nonrelativistic, idealized free elec-
tron and the limitations of the (nonperturbative) series of the Moniz and Sharp
theory, the conclusion emerging from this research is threefold: First, it appears
that the problems of the classical point electron theory are understood. They can-
not be resolved within classical theory. They cannot be resolved by realistically or
artificially considering an extended classical charge.

Secondly, the problem is “manageable” in the sense that there exists a more general
theory in which the solutions do not exhibit the problematic behavior. The two
theories are related in particular through a limiting procedure (A — 0, or & — 0,
or o — 00). Through this relation, it can be seen that the unphysical solutions
from the classical theory do not correspond to the limiting values of the physical
quantum solutions. This is to be contrasted with the unphysical classical point
electron solutions obtained as a zero radius limit of the physical extended electron
within classical mechanics.

Thirdly, as pointed out by Rohrlich [13], a great deal of physics can be learned by
taking the correspondence limit between theories. By observing what one theory
is doing which another theory is not, we learn more about the two theories. This
observation could be extended to the next level of sophistication: quantum field
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theory. We would then ask the question, What is quantum mechanics doing dif-
ferent so as not to contain the problemns of the classical theory?” Obviously the
relation between classical and guantum theory is very complex and goes beyond
the limiting provedure used in this research. This work can only hope to lift one
corner of the veil. Tn the process of comparing the two theories, we observed thab
the quantum theory maintained an infinite series in the point theory not present
in the classical point theory. In fact, the quantum point theory looks much like
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for an extended model. What the quantum theory seems to be doing is maintaining
an extension in space even for a point electron. This “extension” is represented by
the Compton wavelength.

Somehow the additional structure present in a quantum particle (whether repre-
sented by a spatial extension or not), is probably the same structure which leads to
the intriguing quantum behavior present in so many “quantum parodoxes” studied
elsewhere, and fulfils here a very worthy purpose: it gives a more definite answer
to a problem raised one hundred years ago.
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ABSTRACT

According to classical electrodynamics, accelerating charged particles radiate. This
radiation carries away some of the particles energy and momentum, and conse-
quently affects its motion. This phenomenon is called radiation reaction.

We study the equations of motion for the nonrelativistic electron including radiation
reaction. In doing so, we choose to emphasize the classical quantum connection in
the approach of Moniz and Sharp [Phys Rev D, 15 2850 (1977)]. We provide detailed
calculations and analysis of their results. In the classical case, it is shown that
the solutions to the equation of motion exhibit the well-known problems of either
runaway behavior or preacceleration for a point electron., Any attempt to resolve
these problems within the realms of classical electrodynamics is fruitless. Using
the Heisenberg picture of quantum mechanics, we study the quantum equations of
motion, and find that the quantum point electron theory does avoid some of the
problems of the classical theory. Through an appropriate correspondence limit we
study how the quantum theory is able to resolve some of these problems. In so
doing, we gain further understanding of quantum mechanics, and its connection
with classical mechanics.
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