AUTOMATED IRAF REDUCTION SCRIPTS FOR ASTRONOMY

GROUP AT BRIGHAM YOUNG UNIVERSITY

by

Craig A. Swenson

A senior thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Bachelor of Science

Department of Physics and Astronomy
Brigham Young University

April 2008

Copyright (©) 2008 Craig A. Swenson

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

DEPARTMENT APPROVAL

of a senior thesis submitted by

Craig A. Swenson

This thesis has been reviewed by the research advisor, research coordinator, and
department chair and has been found to be satisfactory.

Date Michael D. Joner, Advisor

Date Eric G. Hintz, Research Coordinator

Date Ross Spencer, Department Chair

ABSTRACT

AUTOMATED IRAF REDUCTION SCRIPTS FOR ASTRONOMY

GROUP AT BRIGHAM YOUNG UNIVERSITY

Craig A. Swenson
Department of Physics and Astronomy

Senior Thesis

This thesis introduces a series of IRAF scripts written to facilitate the reduc-
tion of large amounts of data by students and faculty in the Astronomy Research
Group of Brigham Young University. These automated reduction scripts provide a
complete data-pipeline for frames taken using Brigham Young University’s Orson
Pratt and West Mountain Observatory telescopes. The functionality of these scripts
is described in detail, along with the thought processes involved in their writing.
Observations of the variable stars DY Peg and AE UMa are used as a test case to
demonstrate the use of the scripts and to show improvements made in the reduction

process. 17 new times of maximum light are presented for DY Peg.

ACKNOWLEDGMENTS

I would like to acknowledge all those who have helped me in my work on this
thesis. In particular, I would like to thank my partner in this ambitious project, Paul
Iverson. Without Paul I wouldn’t have had the motivation to keep modifying and
tweaking these scripts. The creation of SIDAP made both of us stretch ourselves
beyond what either of us could do individually.

Also, I must thank Professor Michael D. Joner and Dr. Eric Hintz for their
patience through the barrage of questions that accompany the development of a new
reduction process, and though I've never met them, I need to thank Mike Fitzgerald
and Frank Valdes for their insights into the inner workings of IRAF.

I would like to thank Jeremy Schoonmaker and Alie Porter for beta testing
SIDAP and informing Paul and I of problems we were unaware of. I would also like
to thank Lisa Joner for her time reading and editing this thesis.

Lastly, I want to acknowledge my wife Katie. Her love and support (along

with not so subtle reminders) kept me working hard on completing this thesis.

Contents

Acknowledgments v

Table of Contents vii

List of Tables xi
List of Figures xiii
1 Introduction 1
1.1 TRAF Reduction Process 1
1.1.1 Bias Reduction 1

1.1.2 Dark Reduction oo 2

1.1.3 Flat Reduction 2

1.2 Purposes for Writing Automated Scripts 3

2 Automated IRAF Scripts 5
2.1 General Description of Scripts 5
2.2 Detailed Description of Scripts 6
221 aprfits 7

2.2.2 ap_calhead 7

2.2.3 (x)_obhead 7

224 ap_gain_rdnoise_(*) 9

2.2.5 ap.pierside 10

226 approc.o 11

2.2.7 ap-skynoise 16

2.2.8 ap_fwhm_obhead 17

2.2.9 aprotate Lo 17

2.210 ap_trim ..o 17

vii

2211 ap_aligno 18
2.2.12 ap_apphot 19
2.2.13 ap_reg_apphot 21
2.2.14 ap_imagecheck Lo 21
2.2.15 ap_subtrim 22
3 Application of Scripts to Data 23

3.1 Comparison of Reduction Methods on WMO .31m and DDT Data . . 23
3.2 Comparison of SIDAP and Traditional Method on DY Pegasi 29

4 Conclusions and Suggestions 35
References 37
A Automated IRAF Scripts 39
A.1 SIDAP Scripts. 39
ALT aprfits. . . o 39

A12 ap_calhead 42

A13 (x)obhead 43

A14 ap_gain_rdnoise_(x) 48

A15 appierside 56

A1.6 approc. 59

A7 ap_skynoise 64

A18 ap_fwhm_obhead 65

A19 aporotate 70

AT10 aptrim . . . oL 71

A1 ap_align 73

A 112 autoalign 74

A.1.13 autodaofind 7

A 114 xyshift.f . . . o 78

A.1.15 ap_apphot
A.2 Additional Scripts

A2.1 ap_reg_apphot

A.2.2 ap_imagecheck

A.2.3 ap_subtrim

List of Tables

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Standard Deviation of Differential Magnitudes for Star 1 in the Field
of DYPeg Using Different Reduction Algorithms (WMO .31m)
Standard Deviation of Raw Magnitudes for Star 1 in the Field of DY
Peg Using Different Reduction Algorithms (WMO .31m)
Standard Deviation of Raw Magnitudes for Star 1 in the Field of AE
UMa Different Reduction Algorithms (DDT)
Comparison of Sky Values and Standard Deviations (DDT)
Comparison of Sky Values and Standard Deviations (WMO .31m) . .
A Comparison of Magnitudes Produced by SIDAP and Traditional
Method
New Times of Maximum Light for DY Peg

x1

23

List of Figures

2.1
3.1
3.2
3.3
3.4
3.5
3.6

Example of an aligned frame 18
Field of DY Peg labeling both comparison stars used 24
Field of AE Ursa Majoris with comparison stars labeled 26

GSC 01712-00542 differential magnitude plot using traditional method. 31
GSC 01712-00542 differential magnitude plot using SIDAP. 31
O - C diagram for quadratic fit as given by Eq. 5. 34
O - C diagram for triple linear fit as given by Eq. 6, Eq. 7, and Eq. 8. 34

xiil

Chapter 1

Introduction

1.1 IRAF Reduction Process

The basic steps involved in the processing of astronomical data are universal
for the type of Charge-Coupled Device (CCD) cameras and telescope combinations
currently owned and operated by Brigham Young University (BYU). These data
reduction steps include bias-, dark-, and flat-field correction of the raw instrumental
data. There are several programs available that will perform these reductions, each
with unique advantages and disadvantages. Astronomy students and faculty of BYU
use the Image Reduction and Analysis Facility (IRAF) for nearly all of their data
reduction. IRAF is developed and maintained by the National Optical Astronomy
Observatories (NOAO) in Tucson, Arizona, and is specifically written for use with
astronomical data.

Each of the following reduction steps is necessary to remove unique noise

characteristics of the CCD.

1.1.1 Bias Reduction

Bias frame reduction removes the inherent bias that may be displayed by
individual pixels in the CCD. This bias is introduced as the pixels are read off the
CCD in order to eliminate negative pixel values, but it needs to be removed later.
The level of bias to be removed is determined by taking zero length exposures, which
ensures that no photons, cosmic rays, or dark counts are registered by the pixel array.
Several of these bias exposures are typically taken during each night of observations
and are then averaged, night by night, to determine an average bias count per pixel.
These averaged frames are then subtracted from the object frames to remove the

imperfection.

1.1.2 Dark Reduction

Dark reduction is necessary in order to remove the thermal noise present in
the CCD. The thermal noise, called “dark current”, diminishes with temperature, but
must be corrected for on the CCDs used by BY U, because their operating temperature
is relatively high. The amount of dark current present, and the response to that
current, varies from pixel to pixel. To remove this effect, a series of frames is taken
without opening the shutter of the camera. This eliminates any actual photon counts
from being recorded. The averaged bias correction is subtracted from these images,
leaving only the counts recorded due to dark current. These corrected “dark frames”

are averaged and then subtracted from the object frames.

1.1.3 Flat Reduction

A CCD operates by taking advantage of the photoelectric effect. Incoming
photons strike a layer of doped silicon, which absorbs the photons and releases elec-
trons. The linearity of a CCD refers to whether a single photon hit corresponds to the
release of a single electron. CCD cameras are good tools for astronomical purposes
because of their high linear response. Unfortunately, they are not absolutely linear.
Correction for non-linear response can be achieved through the use of flat fields. Flat
fields are frames taken by exposing the CCD to a uniform or “flat” light distribution
and then measuring the response of each pixel. A perfectly linear CCD will have an
equal number of electrons in each pixel. A non-linear CCD will have varying numbers
of counts per pixel. To remove this effect, several “flat frames” are taken, and then
corrected for both pixel bias and the dark current by subtracting the averaged bias
frame and dark frame. The corrected flat frames are then averaged to produce a flat
field correction frame. The object frames are divided by the flat field correction frame

in order to scale their non-linear response.

1.2 Purposes for Writing Automated Scripts

BYU astronomy students are first introduced to IRAF in Physics 329. This
class gives students the opportunity to learn how to use a telescope and CCD to obtain
data, and how to use IRAF to process the data and obtain magnitudes. The process
of learning how to use IRAF is one that takes patience and repetition. There are
dozens of parameters that need to be set, and literally hundreds of possible different
combinations of algorithms and parameters that could be used in order to produce
frames of scientific quality from the raw instrumental frames. Beginning students
are shown how to edit each necessary parameter from the xgterm command line, and
are then required to enter each individual command to average bias frames, subtract
the combined average bias frame from dark frames, average dark frames, subtract
the combined average dark frame from flat frames, etc. This process of individually
setting parameters and executing each command is essential knowledge for beginning
students. Without this experience, students would never fully understand what IRAF
does, how it works, and how to interpret their results. It is not uncommon for
mistakes to be made, and it becomes nearly impossible to determine where the error
was introduced without having an understanding of how each IRAF command works.

For more advanced students who know how to use IRAF, executing each of
these commands individually becomes very repetitive and is not an effective use of
research time. Particularly on very large data sets, a considerable amount of time
is added to the reduction process if the student is required to enter each command
individually. If a full night of telescope time is dedicated to observing a single object,
there can easily be over 1000 frames to reduce. Handling the reduction process of
such a large set, in addition to other obligations students have, can literally take
days. The use of automated scripts, written in the IRAF cl language, can combine
a series of IRAF tasks into a single command typed at the command prompt. By

combining steps in this type of automated script, there is no lag time between the

running of individual IRAF commands, and large data sets can be completely reduced
and magnitudes determined in the course of a few hours.

These types of automated scripts also allow the inclusion of UNIX commands.
By combining familiar IRAF cl commands with UNIX commands, it is possible to
produce scripts that work on data from a variety of CCD-telescope combinations. This
is extremely useful at BYU, where we have large amounts of data from four different
telescopes. Each telescope produces slightly different headers for their respective
frames, meaning that parameters have to be changed inside IRAF when switching
between telescopes. With automated scripts, the necessary parameter changes can
be written into the script itself, and then automatically changed by the script as
different situations arise.

Originally, these automated scripts were intended to condense the number
of individual typed commands required to execute the basic IRAF reduction steps
mentioned above. However, with each new script, it became an increasingly more
trivial task to re-reduce data with a different set of parameters and algorithms. In
a single day, researchers might experiment with multiple combinations of parameters
and algorithms. Because of the decrease in time required, the scripts began taking on
a new focus. They not only speed up the reduction process, but can also be used to
determine the most effective method for reduction of a specific data set. New scripts
were written and added to the reduction pipeline that were not part of the basic

reduction process outlined above, but which provide better final results.

Chapter 2

Automated IRAF Scripts

2.1 General Description of Scripts

There are two methods of writing scripts within IRAF: procedure language and
command language. Both methods offer distinct advantages as well as disadvantages.
Procedure language allows access to all of the programming abilities offered by the
native IRAF scripting language, such as error checking abilities, but UNIX commands
are not recognized. Command language gives access to all of the regular IRAF tasks
(i.e., rfits, cedproc, phot, etc.), and also allows for the use of UNIX commands. For
our purposes, the command language was the preferred option, because of the added
power offered by the UNIX abilities.

The scripts can be broken up into two main categories: those that are observa-
tory specific, and those that have been written to allow for use on any telescope-CCD
combination currently being used by BYU. The observatory specific scripts are named
to reflect either the observatory to which they apply, if the observatory has multiple
telescopes, or a specific telescope, at observatories with only a single telescope. For
example, scripts written for data obtained by telescopes at the West Mountain Ob-
servatory (WMO) are given the prefix ‘wmo_’; and will work with any of the three
telescopes located at WMO. Data obtained on the David Derrick telescope (DDT)
of the Orson Pratt Observatory are given the prefix ‘ddt_’, because there is only one
telescope located at the observatory. Data from the Tenagra II telescope are given
the prefix ‘ten_’ for the same reason. The remaining scripts, those that are not ob-
servatory specific, are given the prefix ‘ap_’ signifying that they are “all-purpose”
scripts.

It may be difficult for a user to remember at what point they stopped during

a reduction process when large data sets are involved, or when working with multiple
5

data sets at once. To help with this problem, some of the scripts rename the object
files as they run. For example, after running the ap_proc script the object files are re-
named with a ".proc.fits’ extension, signifying that they are processed. The renaming
of filenames has been reserved to those scripts that make permanent changes to the
images. We felt it important, however, to have a method of knowing exactly what
scripts have been run, including those which don’t rename the files. To achieve this,
every script adds a new keyword to the header containing the date and time the script
was run. The keyword added to the header is the name of the script that was run
(i.e., ap_proc adds the header keyword AP_PROC).

In order to make the running of these scripts as simple as possible, care has
been taken to set parameters “on the fly” within the script itself, thus eliminating
the need to epar multiple IRAF tasks before reducing data. It is still recommended
that users task and execute Dr. Eric Hintz’s newton script, because a few of the
parameters defined in newton are still used in the new reduction methods. Those
parameters that carry over from newton are not necessarily set as part of any of these
scripts.

The current script versions (at time of this publication) use what seem to be
the best methods available for data reduction. As further investigations are made into
data reduction methods, it may become necessary to update the automated scripts

to reflect new findings.

2.2 Detailed Description of Scripts

This section provides a detailed description of each of the scripts. The descrip-
tions include lists detailing which IRAF commands, normally entered individually at
the command line, are covered by using the specific script. Also discussed are the
reasons for using the chosen parameters and algorithms. These scripts are not in-
tended to be run separate of each other, but rather consecutively as an entire data
reduction package. The Swenson-Iverson Data Analysis Package (SIDAP) consists of

12 scripts, or groups of scripts, which are presented here in the order that they must

6

be executed. Three additional scripts are also presented, after the 12 SIDAP scripts,
which are not necessary but useful nonetheless. The name given for each script is
the root name, leaving off any associated version number in anticipation of further

versions. All scripts are presented in their entirety in Appendix A.

2.2.1 ap_rfits

This script replaces the regular IRAF rfits command. The purpose for this
script is to create a uniform naming convention that will be used throughout the
remainder of the scripts. Bias frames are named ‘zero-’, followed by the file number.
Dark frames are similarly named ‘dark-’, followed by the file number. Flat frames
are named 'flat(filterletter)-’; followed by the file number (i.e., flatV-1.fits). Object
frames are named using a user defined name preceded by ‘obj-’ (signifying that it is
an ‘object’ frame), followed by ‘-” and the file number (i.e., obj-dypeg-1.fits). In order
to run ap_rfits, the script makes the assumption that all of the object frames for a
specific object and all necessary calibration frames are in the same folder. Because
ap_rfits was written to work specifically with large data sets, it only accepts a single
user input for the name of all object frames. The script moves the raw frames into a

folder named filesrawfit, which is a subdirectory of the current folder.

2.2.2 ap_calhead

The ap_calhead script fixes the headers for all of the calibration frames. This
includes changing the IMAGETYP in the image headers to either “zero”, “dark”, or
"flat”. It also adds SUBSET to the flat frame headers and sets it to the appropriate

filter letter. All of these changes are achieved using the IRAF hedit commands.

2.2.3 (x)_obhead

There are three versions of the (*)_obhead script that are responsible for edit-
ing the headers of object frames. Each of the three are observatory specific (as

outlined in Section 2.1), but perform essentially the same function. The wmo_obhead
7

script works for all three telescopes at WMO, with the user being prompted to enter
which specific telescope was used to obtain the frames. Both the ddt_obhead and
the ten_obhead run without user input. The (%) obhead scripts replace the use of
a ‘.cmds’ file and the asthedit command. If the right ascension and declination are
already in the header, the script accepts these values as being correct. If neither of
these values exist in the header, the user is prompted to enter the right ascension
and declination, which the script places into the header under RA and DEC. The
script also sets SUBSET to the filter used, EPOCH to “2000”, OBSERVAT to the
appropriate observatory, OBSERVER to “BYU”, and IMAGETYP to “object”. The
IRAF commands setairmass and setjd are also executed by the (%) _obhead scripts.

In order to calculate the correct airmass and Julian date, the header must
include correct values for the universal time and the sidereal time. There are two
different formats used to report the universal time in the image header, depending
on what software is used. In order to make the scripts compatible with both formats,
the imgets command is used to extract the universal time from either the DATE-OBS
or TIME-OBS image header keywords (whichever keyword exists for the particular
frame), and a new header entry called UT is created with the universal time. Although
this process may seem redundant because the universal time is already contained in
either DATE-OBS or TIME-OBS, having a separate UT header keyword is necessary
to simplify the sidereal time calculation, and the setairmass and setjd tasks.

The wmo_obhead was also specifically designed to handle data taken at WMO
during the summer and fall of 2006. During this period of time, image headers
reported the local time rather than the universal time. After the script extracts the
universal time and calculates the sidereal time, it displays the universal time given in
the header, the calculated sidereal time, and the right ascension of the object. The
user is prompted to enter whether the given universal time is correct or whether it
is the local time. If the universal time is correct, the script continues. If the given

universal time is incorrect, the user is prompted to input the correct hour difference

(dependent on daylight savings time) and the script modifies the UT header value

appropriately, recalculates the sidereal time, and then continues.

2.2.4 ap_gain_rdnoise_(*)

There are three separate scripts involved with the calculation of the CCD gain
and readnoise. It is possible, and often convenient, to execute these three scripts using
a single script (i.e., some sort of ap_gain_rdnoise_master), but the scripts were written
independently of each other and are presented here in their independent form. The
three scripts will likely be officially combined at a future time to ensure uniformity
of data reduction among students.

The calculation of the gain and readnoise has not historically been a part of the
basic IRAF reduction procedure used by BYU students. However, these calculations

are crucial in order to obtain the best possible reduction, and are mandatory if using

SIDAP.

i. ap_gain_rdnoise_collector
The purpose of the ap_gain_rdnoise_collector is to take the raw bias and raw flat
frames, then calculate the gain and readnoise. The script determines the total
number of flat frames available and prompts the user to input the number of the
available frames to be used. The same is done for the bias frames. Rather than
using the findgain task included with the IRAF distribution, users of SIDAP
should task a special ap_findgain command in their ‘login.cl’. This separate
ap_findgain was created under the advice of Frank Valdez (Valdez 2007) be-
cause of problems arising in the verbose features of the IRAF findgain. The

only difference in the ap_findgain is the exclusion of the verbose output.

The gain and readnoise values are calculated for five different sections of the
CCD. Each section is a square 100 pixels by 100 pixels in size. The sections are
placed across the CCD chip with one in each of the four corners of the CCD and

the final section centered in the middle of the chip. This distribution gives a

9

large enough sampling of the entire chip to give accurate results, and speeds up
the time required to calculate the gain and readnoise. The gain and readnoise

values from each of these calculations are dumped into a gainrdnoise.info file.

ii. ap_gain_rdnoise_calculator
This script takes the gainrdnoise.info file created by ap_gain_rdnoise_collector,
averages all the gain values and readnoise values, and produces a gain.info and
rdnoise.info file. These two ‘.info’ files contain the single averaged value for
the gain and readnoise, respectively, as well as the standard deviation of those

averages.

iii. ap_gain_rdnoise_obhead
In order to run ap_apphot, the gain and readnoise are required to be in the
object frame headers. Even for those who do not wish to use ap_apphot, the
gain and readnoise are also used in the IRAF phot package inside of datapars.
Historically, these values have been left blank. To use the cedelip rejection
algorithm inside zerocombine, darkcombine, and flatcombine, the gain and read-
noise need to be present in the bias, dark, and flat field headers as well. (See
discussion on ccdelip and other rejection algorithms under ap_proc.) Not know-
ing what rejection algorithm is going to be used, ap_gain_rdnoise_obhead uses
hedit to add the gain and readnoise to the headers of the object frames, as well
as the calibration frames under the GAIN and RDNOISE header keywords,

respectively.

2.2.5 ap_pierside

All of the telescopes currently used by BYU must flip over the pier when
observing an object on both sides of the meridian. The exception to this is the DDT,
which can observe objects near the celestial equator continuously without flipping.
When a telescope goes over the pier, it rotates the CCD by 180°. Historically, this
has meant that two different coordinate files must be created, one for each side of

10

the pier. Use of the IRAF rotate command can correct for this 180° rotation, and
make the frames appear continuous. The ap_pierside script is designed to separate
the images into the two different orientations to simplify their rotation.

This script requires the most user interaction and is the least automated of
the group. The script determines, based on exposure length, a window of time during
which the telescope needed to be moved over the pier. Any exposures prior to this
window are defined as ‘east’ and those after it are defined as ‘west’, with ‘east’ and
‘west’ referring to which side of the meridian the object was located. Pier flips do
not always occur right at the meridian, so the first few frames west of the meridian
may actually be in the ‘east’ orientation. For frames taken during the window of
time when the telescope was flipped, each frame is displayed in ds9 and the user is
prompted as to whether the frame in question is an ‘east’ oriented frame or a ‘west’
oriented frame. As soon as the user declares a frame to be in the ‘west’ orientation,
the script assumes that the remainder of the frames taken will also be ‘west’ oriented.

The script makes two modifications, one to the header and the other to the
file name, to distinguish ‘east’ frames from ‘west’ frames. A new header keyword,
PIER, is added with either the letter ‘E’ or “W’, depending on the orientation. The
file names are also modified to include ‘-east’ or ‘-west’ immediately before the ‘.fits’

extension.

2.2.6 ap_proc

One of the most crucial changes to the basic IRAF reduction process occurs in
ap_proc. The IRAF commands zerocombine, darkcombine, flatcombine, mkillumcor,
and ccdproc are all run as part of ap_proc. Within zerocombine, darkcombine, and
flatcombine, the user must specify the desired rejection algorithm. This rejection
algorithm determines what pixels should be thrown out before making a combined
averaged frame. There are seven different rejection algorithms to choose from: none,

minmazx, ccdclip, crreject, sigclip, avsigcelip, and pclip. By default, IRAF uses the

11

minmax rejection algorithm. BYU students have generally used either this algorithm
or avsigclip.

The user is also prompted as to what type of “Flat algorithm” they would
like to use in their reduction. The two options given are “Calibration” or “Object”.
Calibration refers to the normal flat reduction using flat field frames, whereas Object
refers to using a sampling of the object frames to create an artificial flat frame which
can be used for flat field reduction in the absence of flat fields.

Regardless of which “Flat algorithm” is chosen, an illumination frame is also
created and applied to the object frames. [llumination frames are created by combin-
ing multiple flat frames while drastically smoothing out the pixel to pixel variations
in order to see the large scale CCD illumination (mkillumcor help file). The addi-
tion of illumination field correction is a major change to the processing and has not
historically been used at BYU. The addition of illumination correction is more for
thoroughness than for significant improvement of the images. The effect seems to be
negligible on the current BYU telescopes, but it may be something that will be of
use in the future. Illumination corrections were added at the suggestion of Professor
Mike Joner (Joner 2008).

In addition to processing all of the frames, the script also copies the unpro-
cessed frames to a new folder called filespreproc, which is a subdirectory of the current
folder. With the unprocessed frames easily available, users can reprocess the frames
using a different algorithm or different parameters, without having to completely start
the script sequence over with ap_rfits. The script also changes the file names of the
processed frames to make them easily distinguishable, giving them a ‘.proc.fits’ suffix
instead of just ‘.fits’.

As stated, BYU students have generally used either minmax or avsigclip for
the rejection algorithm. Both of these rejection algorithms are useful, in certain
circumstances, but they may not be the most rigorous choices. The IRAF help file
for the combine task states that the ccdclip algorithm is “the best clipping algorithm

to use if the CCD noise parameters are adequately known”. We recommend the use

12

of the cedclip algorithm, but because there may be times where it is necessary to use
other algorithms, the script gives the user the option of choosing between minmaz,
avsigclip, and cedclip. The other four algorithm options are used so infrequently that
they are not currently an option provided by SIDAP.

A brief description of the three algorithms available in SIDAP is given to
help users understand why the cedelip algorithm is recommended. (To see numerical

comparisons between reduction methods, see Section 3.1 in the next chapter).

i. minmaz
The minmazx algorithm simply rejects a user specified percentage of the high
and low pixels, determined by the nlow and nhigh parameters. If the CCD
varies greatly from frame to frame, then the quality of the combined frames
would depend highly on the values of nlow and nhigh. For example, if nhigh is
set to reject a low percentage of pixels, it may not reject a large enough sample
and the frames would not be adequately reduced. On the reverse side, if the
CCD being used is exceptionally consistent in its bias level, then minmaz will

unnecessarily discard pixels.

ii. awvsigclip
The other commonly used algorithm, avsigclip, is designed to compensate for
both of the aforementioned problems that can arise by using minmaxz. The
algorithm rejects pixels based on a comparison to an estimated o (standard

deviation) of each pixel. This o is calculated using Eq. 1.

O (column,line) = \/GAIN(lzne) X SIGNAL(line,COlumn) (]-)

The SIGNAL(ine,cotumn) is estimated using either the mean or median value
(user defined parameter) of each (column,line) (i.e., pixel). The GAIN () is
estimated for each line along the read out axis of the CCD by scaling the square
of the residuals along the line with the mean/median. The scaling factor is the

13

estimated GAIN (). Theoretically, the CCD gain is a constant number across
the entire chip. However, the GAIN ;) may vary due to the fact that it is

simply an estimate.

The parameters lsigma and hsigma define the range of acceptable pixel val-
ues. Any pixel value higher than hsigma X o (coumn,iine) OF lower than lsigma x
O (columniline) 15 rejected. After rejecting pixels, the SIGNAL ine cotumn) is Tecom-
puted with the new mean/median and the process is repeated. The GAIN)
is not recomputed during each successive iteration. This process is repeated
until no more pixels are removed, or the number of total pixels remaining falls
below the user defined parameter nkeep. Currently, lsigma and hsigma are set
so as to retain about 55% of the pixels (assuming a Gaussian distribution), and

nkeep is set to half the number of input images.

The avsigclip algorithm has some obvious advantages over the minmazx algo-
rithm. By using awvsigclip, the rejection algorithm isn’t limited to rejecting only
a set percentage of the pixels if it determines that a larger number should be
rejected. Also improving on the deficiencies of minmaz, avsigclip is not required
to reject any pixels if they all fall within ¢. The iterative nature of the algo-
rithm also gives it an advantage, as it is able to weed out bad pixels and obtain

a more accurate solution.

Limitations still exist with this method, however. The estimation of GAIN .
can be easily skewed by a handful of erroneous pixels. Since the GAIN) is not
recalculated after the first iteration, any errors introduced at the beginning will
propagate through the data. Another limitation is that this algorithm doesn’t
take into account the readnoise of the chip, which will also adversely affect the

estimated GAIN ().

iii. ccdclip
Just as awvsigclip is able to compensate for the limitations of minmax, the ccd-

clip algorithm is able to improve on the weaknesses of avsigclip. The ccdclip
14

algorithm has generally not been used by BYU students because it requires
that a good value for both the CCD gain and readnoise be known. In the past,
students have thought of the calculation of the gain and readnoise as something
that was difficult to do (an unfortunate misconception that somehow was prop-
agated down through generations of students). Because of this misconception,
using the ccdcelip algorithm hasn’t been a technique utilized until now. The
previously discussed set of ap_gain_rdnoise_x scripts makes the calculation of
the gain and readnoise a trivial exercise that requires nothing more than a little

time.

The main difference between ccdcelip and avsigelip is the method by which o is
evaluated. The equation used by ccdclip to calculate the standard deviation is

given in Eq. 2.

o = +/(RDNOISE <+ GAIN)2 + SIGNAL = GAIN + (SNOISE x SIGNAL)?

(2)
The RDNOISE and GAIN values are taken from the header values. The SIG-
NAL is determined for each pixel over the set of frames being processed, just
as in awsigelip. The SNOISE is the sensitivity noise value of the CCD. If this
value is unknown (as it currently is for the CCDs being used by BYU), then the
value can be set to 0 (combine help file). This determination of ¢ is superior to
that of awvsigclip because it uses the actual CCD gain instead of estimating the
value during the rejection procedure. It also takes into account the readnoise,

something that avsigclip ignores completely.

Once o is calculated, pixels are rejected if their value is higher than hsigma X o
or lower than Isigma x o. After eliminating outliers, sigma is recalculated
without the rejected pixels and the process is reiterated. Reiteration occurs

until no remaining pixels are rejected. Should the number of pixels remaining

15

fall below the value of the parameter nkeep, the iterations stop and the last
nkeep number of pixels are used. Currently, [sigma and hsigma are set so as
to keep about 55% of the pixels (assuming a Gaussian distribution), and nkeep

is set to half the number of input images.

2.2.7 ap_skynoise

The ap_skynoise script determines an accurate value of the sky background
and the deviation of the sky for each frame. The determination of the sky back-
ground is mostly for analysis purposes (i.e., seeing how the sky brightness fluctuates
over the night). The deviation in the sky background, however, is a parameter in dat-
apars, called sigma, that needs to be set in order to run phot with greater precision.
Historically, the default value, INDEF, has been kept. The parameter sigma is not
only used by the centering algorithm in phot, but also by the finding algorithm inside
daofind.

In order to calculate precise values for the sky background and the sky devia-
tion, a relatively large sample size is needed, distributed across the CCD. The IRAF
task daofind is used when skynoise is run, using estimated values for sigma and the
threshold parameter in order to find candidate stars to use in calculating the sky
background. If less than 25 candidates are found, then the value of sigma is lowered
and daofind is run again. If more than 100 are found, then the value of sigma is raised
and daofind is run again. The reason for limiting the number of candidate stars is to
limit the total script execution time. Once a suitable number of candidate stars have
been found, phot is run using a set annulus of 10 pixels, and dannulus of 4 pixels. The
sky background and sky deviation values are extracted from the ‘«x.mag.1’ files for all
of the object frames. These values are averaged and the average sky background and
average sky deviation are inserted into the header under SKYAVG and SKYDEV,
respectively.

Some may worry about running this script on a frame with fewer than 25 stars,

because of the required minimum candidate number. Such concern is unnecessary,

16

because eventually sigma will be lowered enough that hot pixels will be interpreted

as stars and the sky will be calculated in a ring around the hot pixel.

2.2.8 ap_fwhm_obhead

Originally, ap_apphot was written with the intent of using an aperture equal to
the full-width at half-maximum (FWHM), with the FWHM calculated for each frame
using a weighted average, as calculated by psmeasure. As ap_apphot was developed
further, it moved away from this method. Nonetheless, ap_fwhm script was retained
for analysis purposes and to define another datapars parameter. The parameter
fwhmpsf is used in daofind to eliminate non-stellar objects from its finding routine.
This increases the precision of daofind, which then increases the accuracy and speed
of the ap_align script. The fwhmpsf is also used by the ofilter and gauss centering
algorithms. The weighted average FWHM of each frame is written to the image
header under the keyword FWHM.

2.2.9 ap_rotate

With the object frames split into ‘east’ and ‘west’, the ap_rotate script can
be used to rotate either the ‘east’ or ‘west’ frames so that all the frames are in the
same orientation. The user is allowed to choose which set of frames will be rotated
by supplying the script a character string specific to that set. This design allows for
the script to be used in situations other than those where the frames are separated

into ’east’ and ‘west’.

2.2.10 ap_trim

The ap_trim script is designed to remove a set number of pixels around the
entire edge of the frame. The default value is set to 10 pixels. This trimming of
the frames is required to eliminate possible overscan regions along the edges of some
CCDs. These overscan regions (regions of no data but still containing biased pixels)

are interpreted by daofind as high concentrations of stars. These misinterpreted
17

Figure 2.1: Example of an aligned frame

points result in ”floating point errors” when running the ap_align script, making it

impossible to run ap_align with the overscan region included.

2.2.11 ap_align

This is the only script that was not programmed primarily at BYU. The
ap-align script actually calls another script autoalign (Ofek 2008). The autoalign
script takes advantage of two other scripts also written by Ofek, autodaofind and
xyshift.f, which use daofind to create a coordinate file for each frame and then cal-
culate the shift between coordinate files from frame to frame. The frames are then
reoriented according to the calculated shift, relative to the first frame. This reorien-
tation results in the pixels along the edge of the frame being dragged to fill in the
empty space created. See Figure 2.1 for an example of an aligned frame.

18

The amount of shifting required, in both the x and y directions, is written into
the header under X_PIXEL and Y_PIXEL. These X_PIXEL and Y_PIXEL values
are then used by ap_apphot in determining whether a given star has drifted off the
frame. The newly aligned frames are given an ‘a-’ prefix, to signify that they are
aligned frames. The unaligned frames are copied to a new folder, filescomp, which is

a subdirectory of the current folder.

2.2.12 ap_apphot

A very basic description of ap_apphot will be given here. For a more detailed
description, including comparisons with other photometric methods, please see Senior
Thesis written by Paul Iverson (Iverson 2008).

The ap_apphot script offers two different methods of determining the photo-
metric magnitude of stellar objects. One method uses an integrated flux technique,
and the other uses a multiple of the stellar FWHM. Both methods take advantage of
differential apertures on a per star basis. By using differential apertures, the script
ensures that equal percentages of each star are included in the magnitude determi-
nation, regardless of seeing conditions. Historically, BYU students have simply used
large apertures, regardless of brightness, in order to compensate for varying seeing
conditions. This results in an unacceptably low signal-to-noise ratio (S/N) for faint
stars. Ideally, smaller apertures would be used to increase the S/N for these faint
objects, while retaining the larger apertures for brighter sources. By using varying
aperture sizes on stars of different magnitudes, it would be necessary to apply aperture
corrections to bring all the stars to an equal level (Da Costa 1992). This is something
that isn’t done at BYU. By using ap_apphot, smaller apertures can be used, yielding
a higher S/N, without having to employ aperture correction techniques. The use of
differential aperture sizes replaces the need for aperture corrections. The script uses
the IRAF psfmeasure and phot commands in determining the appropriate aperture

size and the stellar magnitude.

19

The way in which the sky value around the star is determined has also been
modified. Traditionally, set values were used for both the annulus and dannulus in
datapars, with the annulus being at least as large as the actual aperture and the
dannulus set to a value of 4 - 6 pixels. The use of a large annulus and dannulus limits
how close two stars can be on the frame without an overlap of their annuli. If seeing
conditions are good enough, an observer should be able to use a smaller annulus
and dannulus and achieve magnitudes for stars that are close to one another. When
ap_apphot was first written, the annulus was set using a multiple of the weighted
average FWHM, as calculated by ap_fwhm_obhead with a constant dannulus. This
was done to take advantage of good seeing conditions. It was pointed out, however,
that by using this method, frames with good seeing — and consequently a small FWHM
— are effectively penalized in their sky calculation by severely limiting the number of
pixels included by the dannulus (Joner 2008). Nights of poor seeing (large FWHM)
would in turn have a much larger number of pixels included in their sky calculation.
In order to place all observation conditions on equal footing and still take advantage
of good seeing conditions, it was decided to always include approximately 500 pixels
in the sky calculation. This is achieved by having an annulus set to a multiple of the
FWHM and varying the dannulus in incremental steps. This is done by reading out
the number of pixels being used from the magnitude file, adjusting the dannulus size
accordingly, and running phot again.

When ap_apphot is run, the user is prompted for a specific character string
unique to the object frames. Typically, “a-*” is used because of the way that ap_align
renames frames. The user is also prompted for the name of the coordinate file (i.e.,
ds9.reg), the photometry method to be used, and whether the frames should be
separated by pier side. The inclusion of the option to separate frames based on pier
side is for frames that are taken using a CCD with a gradient. Both the WMO .31m
and .4m CCDs have known gradients. Without separating the two pier sides, the
errors calculated in a program such as wvarstar will be incorrect because of the shift

introduced across the pier break due to the gradient.

20

It is assumed that the user will be using the varstar program, written by Dr.
Eric Hintz, to produce differential magnitudes. As such, ap_apphot outputs ‘.Ist’ files
and automatically removes any INDEF values, replacing them with the IRAF zmag
value. The ‘.Ist’ files are named to uniquely distinguish them by filter, exposure time,
pier side, and photometry method. For example, 20-second exposures on the east
side of the pier, taken in the V filter that used the integrated flux method to include
95% of the flux, would receive the name “starV_20._E_flux95.1st”.

It is important to note that the ap_apphot script requires that all of the previ-
ously described scripts will have already been executed. Otherwise, pertinent header

information will not be available and the script will crash.

2.2.13 ap_reg_apphot

The ap_reg_apphot script was written simply as a way to quickly produce stellar
magnitudes using the set aperture method that has traditionally been used at BYU.
These magnitudes have been used for comparison purposes only, to judge the benefits
obtained by using the newly developed integrated flux method of photometry.

The script prompts the user for a character string unique to the object frames,
the name of the coordinate file, the size of aperture to be used, and whether to
separate the frames by pier side. The script produces ‘.Ist’ files, just as ap_apphot
does, replacing all INDEF values with the IRAF zmag value, and naming them in an

identical manner as ap_apphot.

2.2.14 ap_imagecheck

The ap_imagecheck provides a simple way of quickly viewing large numbers of
frames, determining if any need to be removed, and providing a way to permanently
delete those images. When the script is run, the user is prompted for a character
string unique to the set of images being examined. The images can be viewed either
individually or in sets of 16 at a time. In both instances, the SAOImage DS9 program

is used to view the images. If the single frame method is chosen, then following the
21

display of each frame the user is given the option to continue to the next frame, delete
the current frame, or quit the script. The multiple frame method is similar. After
each set is displayed, the user is given the option of deleting any of the current frames,
continuing on to the next set, or quitting the program.

Although this script is not required to be used during the reduction procedure,
it is available for the convenience of individuals working with large numbers of images

in IRAF.

2.2.15 ap_subtrim

The ap_subtrim script is a user interactive version of the ap_trim script. The
user specifies lower and higher x and y dimensions, and the script crops the object
images at the specified dimensions. The trimmed files are output with a ‘.sub’ file
extension so as not to permanently alter the original images. This script can be useful
when running scripts such as ap_fwhm_obhead. If an extremely bright, over-exposed
star dominates the frame, the calculated FWHM will be significantly influenced by
that star (psfmeasure uses a weighted average when calculating the FWHM). A more
accurate representation of the FWHM can be determined if the frame is trimmed so
as to remove the bright star, and the trimmed ‘.sub’ files are used to determine the
FWHM.

Although this script is not required to be used during the reduction procedure,
it is available for the convenience of individuals working with images that need to be

trimmed to a specific size.

22

Chapter 3

Application of Scripts to Data

3.1 Comparison of Reduction Methods on WMO .31m and DDT Data

The IRAF help file for the combine task states that ccdclip is the best reduction
algorithm to use if the CCD has well-defined noise parameters. These parameters
include the gain and the readnoise. We feel that the ap_gain_rdnoise_(x) scripts give
an effective means for establishing acceptable values of the gain and readnoise for all
of the CCDs operated by BYU. This means that we should be able to take advantage
of the benefits of using ccdclip. We conducted several different tests in an attempt to
show how one reduction algorithm compares to another, and to confirm that ccdclip
is the best option.

The first tests involved reducing the same night of data three times, using the
minmaz, avsigclip, and cedcelip reduction algorithms once each. All other reduction
methods and parameters were held constant. Magnitudes were determined using the
phot task, and varstard was used to produce differential magnitudes. The hope was
that an inferior reduction algorithm would produce results that contained more noise.

The results were not what we expected. Table 3.1 shows the standard deviations of

Table 3.1. Standard Deviation of Differential Magnitudes for Star 1 in the Field of
DYPeg Using Different Reduction Algorithms (WMO .31m)

Reduction Algorithm o
minmaz ---0.009372
avsiglcip ---0.009516

cedelip ---0.009330

23

DY Pe
. g

Figure 3.1: Field of DY Peg labeling both comparison stars used

the differential magnitude of a comparison star in the field of DY Pegasi (aa000 =
23M08™51318, Jogg0 = +17°12'557975). The standard deviation is calculated from
3000 frames, taken during October 2007 on the WMO .31m telescope with an SBIG
ST-10 XME CCD at the Cassegrain focus. The cedclip algorithm did produce the
smallest errors, but by such a small amount that, statistically speaking, all three
values are identical. Figure 3.1 shows the field of DY Peg and the two comparison
stars used. The comparison stars, labeled 1 and 2, are GSC 01712-00542 and GSC
01712-01246, respectively. The standard deviations calculated are for comparison star
1.

In trying to analyze the results of the first test, we concluded that any dif-
ference in the reduction methods may have been inadvertently washed out by using
differential magnitudes. Any noise left behind from the reduction algorithm would

24

Table 3.2. Standard Deviation of Raw Magnitudes for Star 1 in the Field of DY
Peg Using Different Reduction Algorithms (WMO .31m)

Reduction Algorithm o
minmax e 0.009451
avsiglcip e 0.009486

cedcelip e 0.009484

have been present across the entire frame. This excess noise would have been added
into the ensemble average and then canceled out during the differential magnitude
determination when the ensemble average was subtracted from each individual star
(Joner 2008).

In order to detect any remaining noise due to choice of reduction algorithm,
we moved from differential magnitudes to raw magnitudes for our second test. This
meant that we needed to calculate the extinction coefficients for each side of the pier,
apply the coefficient to the raw instrumental magnitudes, and examine the frames
for remaining noise. The results of this test, Table 3.2, show that the standard
deviations are very similar to those found when using differential magnitudes. The
minmax algorithm actually has the smallest o; however, the differences between the
three standard deviations are so small that they are essentially equal. Again, this
seems to contradict the statements made in the IRAF help files.

After seeing the results of the second test, it was decided to try the same
approach on frames from the DDT. The idea was that since the observing conditions
at WMO produced frames with very little noise to begin with (an average of only
167.38 counts per pixel over the 3000 frames before processing) it would be difficult
to see any major differences between the reduction algorithms. The DDT experiences

a significantly greater amount of light pollution (an average of 3172.68 counts per

25

Figure 3.2: Field of AE Ursa Majoris with comparison stars labeled

pixel before processing), so any leftover noise may be more obvious on frames that
are much noisier to begin with.

The same raw magnitude technique was applied to 96 frames, taken dur-
ing May 2007, for a comparison star in the field of AE Ursa Majoris (agg00 =
098365331557, dago0 = +44°04’007404). Frames were taken using the DDT .4m tele-
scope with an SBIG ST-10 XME CCD camera at the Newtonian focus. Figure 3.2
shows the field of AE UMa with the comparison stars labeled. Star 1 is TYC 2998-
1249-1 and star 2 is unidentified. Standard deviations are for star 1. Extinction curves
were plotted, and the extinction coefficients were determined and applied. Unfortu-
nately, the results disappointed once again. The results from this third attempt are

shown in Table 3.3. The differences in o are, again, statistically indistinguishable.

26

Table 3.3. Standard Deviation of Raw Magnitudes for Star 1 in the Field of AE
UMa Different Reduction Algorithms (DDT)

Reduction Algorithm o
minmax e 0.007735
avsiglcip e 0.007634

cedcelip e 0.007492

The fact that the errors from the DDT were so small was disturbing. Be-
cause there was so much noise in the data, we were confident that differences would
arise between the reduction algorithms. At this point it was finally realized that the
differences were actually present, but we had been searching for them in the wrong
way.

By comparing the magnitude standard deviation, whether based on differential
magnitudes or raw magnitudes, the robustness of the reduction algorithm was not
being tested. In the attempt to hold all other variables constant, a major component
of the IRAF magnitude determination had been overlooked. We had not taken into
consideration the sky fitting algorithm that calculates the sky value during the phot
task.

IRAF determines the raw instrumental magnitude based on Eq. 3, with the

flux being defined by Eq. 4.

mag = zmag — 2.5 X logyo(flux) + 2.5 X logyo(itime) (3)

flux = sum — (area x msky) (4)

The value of msky is the average sky value surrounding the star and must be

subtracted from the total number of counts in order to determine the true flux of

27

Table 3.4. Comparison of Sky Values and Standard Deviations (DDT)

Reduction Algorithm Average Sky Value Average o O
minmax e 3084.65 44.35 8.855
avsiglcip e 3051.72 43.93 7.985

cedclip e 3092.30 44.09 5.460

only the star. Regardless of which reduction algorithm was used, any remaining noise
would be removed and the same value for flur would be returned, if the sky fitting
algorithm performs well. In order to see how well the reduction algorithm performs,
without being influenced by the strength of the sky fitting algorithm, we had to look
at something unaffected by the sky fitting algorithm, namely, the value of the sky
itself.

Table 3.4 shows, for the 96 frames taken on the DDT, the average sky value (as
determined by ap_skynoise_obhead), the average standard deviation of the frame to
frame sky value, and the standard deviation of the frame to frame sky value standard
deviation (hereafter called o) for the three reduction methods. As can be seen, the
average sky value is very consistent, differing by less than 1.4% between the maximum
and minimum values. Even the average standard deviation of the sky values is very
similar for each method. However, examination of the value of o, shows noticeable
difference between the three algorithms. The value of o, is a measurement of how
consistent the given algorithm is at producing frames of equal ”"flatness” (i.e., pixels
do not vary greatly across the CCD). A lower value means that it becomes more
difficult to differentiate one frame from another, because they have all been reduced
to a similar level of noise. Higher values mean that the differences from frame to
frame are more noticeable, because each frame has not been reduced to the same

noise levels.

28

Table 3.5. Comparison of Sky Values and Standard Deviations (WMO .31m)

Reduction Algorithm Average Sky Value Average o O
MINMax e 29.24 7.497 0.4185
avsiglcip ‘e 28.08 7.504 0.4188

cedelip ‘.- 24.55 7.408 0.4383

Examining these same values for the WMO .31m gives slightly different results,
but still seems to show that cedelip may be the better choice. Table 3.5 shows that
the average sky value for the 3,000 frames is different for the three different reduction
algorithms, with ccdclip being the best choice. The difference of 4 - 5 counts per pixel
may not seem like much, but for a star with 10,000 total counts on a poor night of
seeing (4 pixel FWHM), those 4 - 5 counts can total up to over 200 counts. That is
over a 2% difference in the total flux of the star, simply by using ccdclip as opposed
to minmaz. The strength of the sky fitting algorithm should be able to compensate
for the difference, but the ultimate goal is finding the best reduction algorithm. The
average standard deviation is essentially equal for each algorithm, as well as the values
for oy.

These results, for both the DDT and WMO .31m, are far from conclusive.
When taken in context with the statement from the combine help file, however, it
does seems that the cedelip algorithm does offer advantages for CCDs with established
values for gain and readnoise. To solidify this statement, further tests are suggested

on the DDT, as well as the WMO .4m and .51m telescopes.

3.2 Comparison of SIDAP and Traditional Method on DY Pegasi

As the previous section showed, SIDAP was designed to make small improve-

ments, wherever possible, in the overall reduction process. While the gains of choosing

29

Table 3.6. A Comparison of Magnitudes Produced by SIDAP and Traditional

Method
Method o
Traditional . 0.007551
SIDAP . 0.004398

one reduction method over another may be minimal with the CCDs currently oper-
ated at BYU, the final results of using SIDAP over the traditional reduction and
photometric methods are significant.

The two stars labeled in Figure 3.1 are both used as comparison stars during
differential analysis of DY Peg. A total of 1000 frames of the DY Peg field, from 9
October 2007, were reduced using the SIDAP methods, with the ccdclip reduction
algorithm and the 95% integrated flux method in ap_apphot, to achieve magnitudes
for both stars. The same 1000 frames were also reduced using the minmaz reduction
algorithm, and magnitudes were calculated using a 13-pixel aperture and annulus
and a 4-pixel dannulus. Dr. FEric Hintz’s varstard program was used to produce
differential magnitudes for the two comparison star ensemble.

Figure 3.3 shows a graph of the differential magnitude produced using the
traditional reduction method plotted against the Heliocentric Julian Date (HJD)
for GSC 01712-00542. Figure 3.4 shows the differential magnitude versus HJD as
produced by SIDAP, with observations colored by pier side, plotted on the same scale
as Figure 3.3. The difference in scatter between the two methods is immediately
obvious. Table 3.6 shows the standard deviations of the magnitudes for both methods.

Another difference that stands out immediately is the discontinuity at the
pier break. There is approximately a .005 average magnitude difference between
observations on the east and west side of the pier. Observations of M67 that were

reduced using SIDAP and analyzed by Dr. Benjamin Taylor reveal a significant

30

0.15

0.16

+

017 £ : . .
g XYY Ve v et
£ 01g- WAL TP N S VRN S TS - 38 28
B ot S gk ST RN
S 019 AN IRER Do Yy PR L Y .
E ".g % i B e O ' ot
= t@, ,0%*"#10 A ,:{‘{:‘ * o
2 02 - L - » * 4 - + *
o % ¥ ’ 5
a *
(=4 +
g 021
a

0.22

-
0.23 -
K
D24 T T T T T T T
433255 43326 433265 43827 438275 43823 438285 43329 433205
HJD

Figure 3.3: GSC 01712-00542 differential magnitude plot using traditional method.

0.15

0.14

017

=

—

(=)
!

019

0.2

0

Differential Magnitude

02

023

024 T T T T T T T
435255 43828 4382.65 43827 438275 43818 438285 43829 4382.05

HID

Figure 3.4: GSC 01712-00542 differential magnitude plot using SIDAP.

31

gradient in both the x and y dimensions across the CCD. The first results seem to
indicate a .005 magnitude per 1000 pixels gradient in the x dimension and a .018
magnitude gradient per 1000 pixels in the y dimension (Joner 2008, Taylor 2008).
Until a precise value for the gradient is established, it will be not be possible to
perform frequency analysis on multi-periodic stars such as DY Pegasi. The presence
of the gradient introduces an artificial, low-amplitude period which makes extracting
the real frequencies impossible.

Despite not being able to perform any frequency analysis, times of maximum
light can still be determined. Table 3.7 presents 17 times of new maximum light for
DY Peg. We compared these times of maximum light to the two possible ephemerides
presented by Hintz et. al (2004). Hintz et. al concluded that DY Peg was best
modeled by either the second order polynomial shown in Eq. 5., or a triple linear fit

given by Eq. 6, Eq. 7, and Eq. 8.

HID e = 2429193.4464 + 0.072926383F — 2.187 x 10 E? (5)
HIDnae = 2429193.4471 4 0.072926357E (6)
HJID,00 = 2438276.8623 4 0.072926298 £ (7)
HID e = 2450052.1985 4 0.072926197E (8)

The newest 17 times of maximum light were added to the existing Observed
minus Calculated (O - C) plots for both the quadratic and triple linear fits. The
quadratic 0 - C, Figure 3.5, shows that the new observed maxima (shown in orange)
consistently precede the calculated times. Figure 3.6 shows the O - C for the triple
linear fit. As with the quadratic fit, the observed maxima (shown in orange) con-

sistently precede the calculated maxima. The triple linear fit is a better fit to the

32

Table 3.7. New Times of Maximum Light for DY Peg

HJD Quadratic Triple Linear HJD Quadratic Triple Linear
2450000.0+ Cycle Number Cycle Number 2450000.04 Cycle Number Cycle Number
4374.60662 345296 59271 4382.62855 345406 59381
4374.67935 345297 59272 4382.70135 345407 59382
4374.75240 345298 59273 4382.77377 345408 59383
4374.82555 345299 59274 4382.84714 345409 59384
4374.89830 345300 59275 4383.64927 345420 59395
4376.64848 345324 59299 4383.72222 345421 59396
4376.72096 345325 59300 4383.79467 345422 59397
4376.79356 345326 59301 4383.86817 345423 59398
4376.86757 345327 59302 e e e

new data points, but we cannot say whether it is correct. It is possible that Hintz
et. al presented a period that was too short, but it is equally likely that DY Peg has
undergone another period break.

Once the gradient on the WMO .31m is better established, we will be able
to reduce archival data and reexamine DY Peg with frequency analysis to determine
whether another period break has occurred. Until that time, we can only say that

the triple linear fit presented by Hintz et. al is the best fit.

33

0.0030
0.0020 - * *
- O: . + t
H *
+ * * . i' +
p.oo10 ’.; :: .+ ¥ t + . :‘4.
t P M . TEr et t
& 3 3‘ : A ; * ’
0.on0n - i : : * “ t : ﬁi .A
’ . S ¥ -t e ¥ » g*
.t ;: ;’ * * : -1 +
- *
-0.0010 ’f”‘ s " ,i'
+7 N * e ‘, .
- + . H
-0.0020 ¥ !
]
-
_DDD3D T T T T T
2850000 3350000 3850000 43500.00 48500.00 5350000
HJID 2400000.0+

Figure 3.5: O - C diagram for quadratic fit as given by Eq. 5.

0.0030
0.0020 . : -
‘ﬁ. . *
0: : [‘l
+ L -
0.0010 = - r
.‘t ¥ i - " 'l L &
my T a4
F + bt . 5. Tt n‘r‘*;. 44
- | | | | .l "
0.0000 R T P —
:'f‘ i’t . " . . et by i
. P - - . s
00010 ai—t = “—y
. - " & *
. |]
-0.0020 " I
-[0.0030 T T T T T
2700000 32000.00 37000.00 42000.00 4700000 5200000 57000.00
HID 2400000.0+

Figure 3.6: O - C diagram for triple linear fit as given by Eq. 6, Eq. 7, and Eq. 8.

34

Chapter 4

Conclusions and Suggestions

Creating SIDAP has been a long and arduous process, the results of which are
just now being fully understood. The speed at which data can be reduced because
of automation allows for the exploration of previously unused and unknown IRAF
tasks, such as psfmeasure. The exploration of these new tasks has led to significant
improvements in the aperture photometry techniques being used at BYU.

The development of the ap_apphot script may be the most important advance-
ment. The idea of using differential aperture sizes across a single frame, and through-
out the observation run, is something that has already yielded huge benefits in the
precision with which stellar magnitudes are calculated. It has also led to the discovery
of previously undiscovered gradients on the WMO .31m and .4m telescopes. Without
the increase in precision, these gradients may have continued to go unnoticed.

The techniques used as part of SIDAP are still in a fledgling state and will
continue to undergo major changes and improvements. Part of the planned improve-
ments include rewriting all of the scripts using a more uniform style of code, including
better comments. We also wish to write them in such a way as to render them “read-
able” to other astronomy students with no programming experience. We will also
be removing unnecessary parts of scripts, such as the integrated FWHM option from
the ap_apphot script. It was programmed before we discovered the integrated flux
method and has since been used solely for comparison purposes. By removing these
unnecessary or unused parts of the scripts, we will make them run more efficiently
and remove any possible confusion that may arise.

As we have distributed the scripts to other individuals, several small problems
have arisen that we have currently resolved simply through brute force. Most of these

problems have been contingencies that we had simply not anticipated. As we rewrite

35

the scripts, we will search for more permanent solutions in hopes of making the scripts
“smart enough” to overcome the majority of situations that may arise.

Future plans also include modifying the current IRAF psfmeasure task to allow
for errors without breaking out of the script. If psfmeasure is unable to calculate a
point-spread-function for the object in question, it currently breaks out of the script
and crashes. We hope to change this and instead have it simply notify the user of the
problem, mark the star for inspection, and continue running. The psfmeasure task also
has the ability of marking stars as being saturated. We would like to take advantage
of this ability, but are currently unable to do so because of the way that psfmeasure
deals with the saturated stars. We hope to also rewrite psfmeasure to simply notify
the user of a saturated star so that the star won’t be used as a comparison star during
analysis.

Though there will be many significant changes to SIDAP in the near future,
the basic principles explained here and in Iverson (2008) will remain. We hope that
by making these scripts available to others we can improve the overall quality of
research performed at BYU, and also help introduce new students to the ideas of

IRAF automation in hopes that they will continue what we have begun.

36

References

Da Costa, G. S. 1992, ASP Conference Series, 23, 90

Hintz, E. G., Joner, M. D., Ivanushkina, M., & Pilachowski, C. A. 2004, PASP, 116,
543

Iverson, P. 2008, Senior Thesis

Joner, M. 2008, private communications

Ofek, Eran 2008, (http://wise-obs.tau.ac.il/~eran/iraf/index.html)
Taylor, B. 2008, private communications

Valdez, F. 2007, private communications

37

38

Appendix A

Automated IRAF Scripts

A.1 SIDAP Scripts

Al1l

ap_rfits

#DOCUMENTATION: ap_rfits_v_2.cl

HEHHFHF B EFREEE

ap_rfits_v_z.cirby Paul Iverson
ap_rfits_v_2.cl is a script designed to utilized and facilitate IRAF"s RFITS command.

This script performs essentially the same operation as the IRAF command with some added
functionality. Specifically, the ap_rfits script locates and sorts raw object, flat, bias, and dark
frames based on a set of parameters. Flat frames are further sorted by filter. The ap_rfits script
then performs the rfits command using a User-defined name for object files.

Flat, bias, and dark frames are named flat{filter}, zero, and dark respectively.

IRAF packages required
system
dataio
imutil
language

Linux commands required
mkdir
date

Possible sources of error:
Inaccurate entries in filename, imagetype, or filter entries in header -> no data in
datalists

procedure ap_rfits_v_2 (object_name)

string object_name {prompt = "Enter desired name for object files"}

begin

string objectname
objectname = object_name

end

#variable declarations

int

string
string
string
string
string
string
string
string
struct

#deletes possibly incompatible datalists

del data*

#cleans tmp folder
del /tmp/iraf*_fits

#extracts filename,
hselect ("*.{fit}",

agetyp, and filter from raw frames
1, IMAGETYP,FILTER",yes,>"datalist1")

sections @datalistl

if (sections.nimages>0){
#filters raw object frames from flat, bias, and dark raw frames
match ('{light}","datalistl”,>>"datalistlightA™)

39

sections @datalistlightA
if (sections.nimages==0){

match (“{object}","datalistl",>>"datalistlightA™)
3

match (“{flat}","datalistlightA”,stop+,>>"datalistlightB™)
match (“"{bias}","datalistlightB",stop+,>>"datalist
match (“{zero}","datalistlightC"”,stop+,>>"datalist
match ('{dark}","datalistlightD",stop+,>>"datalistlightfiles')

#rfits raw object frames using User-defined name
sections @datalistlightfiles
if (sections.nimages>0){
for (n=1;n<=sections.nimages;n+=1){
tabpar (“datalistlightfiles”,1,n)
files=tabpar
rfits (files,"","obj-"//(objectname)//"-"//n)

}

&el data*

#extracts filename, imagetyp, and filter from raw frames
hselect ("*.{fit}","$1,FILTER",yes,>"datalistl™)

sections @datalistl

if (sections.nimages>0){
#filters raw flat frames from object, bias, and dark raw frames
match ('{flat}","datalistl”,>>"datalistflatfiles™)

#rfits raw flat frames by filter
sections @datalistflatfiles
if (sections.nimages>0){
tsort (“datalistflatfiles”,2)
listl="datalistflatfiles"
while (fscan(listl,sl,s2)!=EOF){
Files=(sl)
filter=(s2)

if (Ffilter!=checkfilter){

n=1
3
rfits (files,"","flat"//filter//"-"//n)
n=n+1

checkfilter=Ffilter

}

}
éel data*

#extracts filename and imagetyp from raw frames
hselect ("*.{fit}","$1, IMAGETYP",,yes,>"datalistl")

sections @datalistl
if (sections.nimages>0){
#Ffilters raw bias frames from object, flat, and dark raw frames
match (“{bias}","datalistl”,>>"datalistzerofiles™)
sections @datalistzerofiles
if (sections.nimages==0){
match (““{zero}","datalistl"”,>>"datalistzerofiles™)
3

#rfits raw bias frames
sections @datalistzerofiles
if (sections.nimages>0){
for (n=1;n<=sections.nimages;n+=1){
tabpar (“'datalistzerofiles™,1,n)

40

files=tabpar.value
imgets (Ffiles,param="EXPTIME'")
if (real(imgets.value)==0){
rfits (files,"","zero-"//n)
3

¥

#Ffilters raw dark frames from object, flat, and bias raw frames
match (“{dark}","datalistl”,>> "datalistdarkfiles')

#rfits raw dark frames

sections @datalistdarkfiles

if (sections.nimages>0){

for (n=1;n<=sections.nimages;n+=1){
tabpar (“'datalistdarkfiles’™,1,n)
files=tabpar.value
imgets (Ffiles,param="EXPTIME'")
if (real(imgets.value)>0){
rfits (files,"","dark-"//n)

3

¥

#copies all _fit files to filesrawfit folder
if (access("filesrawfit™)){
cd filesrawfit

-fit filesrawfit
mv *_FIT filesrawfit

}

if (access(“"filesrawfit™)!=yes){
mkdir filesrawfit
mv *_fit Ffilesrawfit
mv *.FIT filesrawfit

#deletes possibly incompatible datalists
del data*

#adds date and time of when script was applied to frames to headers
date "+DATE:%m/%d/%y%nTIME:%H:%M:%S" > “datalist”

tabpar ('datalist”,1,1)

datestring=tabpar.value

tabpar (“datalist”,1,2)

timestring=tabpar.value

hedit ('*.fits","AP_RFITS" ,datestring//" "//timestring,add+,ver-)

#deletes possibly incompatible datalists
del data*

beep

41

A.1.2 ap_calhead

#DOCUMENTATION: ap_calhead_v_2.cl
ap_calhead_v_2.cl by Paul lverson

ap_calhead_v_2.cl is a script designed to modify the headers of calibration frames
rfits“ed with the ap_rfits_v_2.cl script.

This script packages the initial header changes performed previously either by hand or
using cmds files.
Specifically, it modifies SUBSET, IMAGETYP, and OBJECT.

IRAF packages required
imutil

Linux commands required
date

Possible sources of error:
Inaccurate filenames or filter entries in header -> no data in datalists

HHEUHFHBFHE TR TR

#variable declarations
1=

string '

string

string files=""
string filter=""
string datestring="""
string timestring=""
struct *listl

#deletes possibly incompatible datalists
del data*

#extracts filename and filter from rfits“ed flat frames
hselect ("*flat*","$1,FILTER",yes,>"datalistl"™)
listl="datalistl"
while (fscan(listl,sl,s2)!=EOF){

files=(s1)

filter=(s2)

#edits header field "SUBSET" for all flat frames
hedit (files," SUBSET",filter,add+,ver-)

#edits header field "IMAGETYP" for all flat frames
hedit (files,"IMAGETYP","flat",add+,ver-)

#edits header field "OBJECT" for all flat frames
hedit (files,"OBJECT","Flat "//filter,add+,ver-)
3

#edits header field "IMAGETYPE"™ for all bias and dark frames
hedit ("*zero*.fits","IMAGETYP","zero",add+,ver-)
hedit (“"*dark*.fits","IMAGETYP","dark",add+,ver-)

#edits header field "OBJECT™ for all bias and dark frames
hedit ("*zero*.fits","OBJECT","Zero",add+,ver-)
hedit ("*dark*.fits","OBJECT",""Dark",add+,ver-)

#deletes possibly incompatible datalists
del data*

#adds date and time of when script was applied to frames to headers
date "+DATE:%m/%d/%y%nTIME:%H:%M:%S" > "datalist”

tabpar (“datalist"”,1,1)

datestring=tabpar.value

tabpar (“datalist”,1,2)

timestring=tabpar.value

hedit (“flat*.fits","AP_CALHEAD",datestring//" '//timestring,add+,ver-)
hedit (zero*.fits" P_CALHEAD",datestring//" '//timestring,add+,ver-)
hedit (“dark*.fits","AP_CALHEAD",datestring//" "//timestring,add+,ver-)

#deletes possibly incompatible datalists
del data*

beep

42

A.1.3 (x)_obhead

#DOCUMENTATION: wmo_12_obhead_v_2.cl
wmo_12_obhead_v_2.cl by Paul lIverson

wmo_12_obhead_v_2.cl is a script designed to modify the headers of object
frames taken on WMO"s 12 in. and rfits"ed with the ap_rfits_v_2.cl script.

This script packages the initial header changes performed previously either by
hand or using cmds files. Specifically, it modifies TELESCOP, SUBSET,
IMAGETYP, OBSERVER, OBSERVAT, RA, DEC, UT, AIRMASS, and HJD.

IRAF packages required
astutil
imutil

Linux commands required
sed
echo
date

Possible sources of error:
Inaccurate filenames or filter entries in header files -> no data in
datalists

HHEFHFHE R TS E S

procedure wmo_12_obhead_v_2 (telescope,object_RA,object_ DEC,hour_correct,hour_change)

string telescope {prompt="Enter the diameter of the telescope",enum="12]|16]20]36"}

string object RA {prompt="Enter the RA of your object (i.e. 12 34 54.5)"}

string object DEC {prompt="Enter the Dec of your object (i.e. +12 34 54.5)"}

string hour_correct {prompt="Enter the time reference of the image",enum="Local |JUT"}

string hour_change {prompt="Enter the time difference from Greenwich UT on the date of image"}

begin

string DECvalue

string hr_corr

string hr_change
end

#variable declarations
int n=1

int I=1

real time

real checktime

string RAcheck="""
string DECcheck="""
string s1="""
string
string
string
string
string
string
string
string
string
string
string timestring=
struct *listl
struct *list2

#deletes possibly incompatible datalists
del data*

#adds date and time of when script was applied to frames to headers
date “+DATE:%m/%d/%y%nTIME:%H:%M:%S" > “datalist™

tabpar (datalist”,1,1)

datestring=tabpar.value

tabpar (“datalist”,1,2)

timestring=tabpar.value

tele=telescope
hedit (Tobj*.fits™,"WMO_"//tele//" OBHEAD",datestring//" "//timestring,add+,ver-)

#deletes possibly incompatible datalists
del data*

43

#edits header

hedit (“"*obj*.

#edits header

hedit (“"*obj*.

#edits header

hedit (“"*obj*.

#edits header

hedit (“"*obj*.

#edits header

hedit (“"*obj*.

#edits header

field "TELESCOP"
fits"”,"TELESCOP™,tele//"-inch",add+,ver-)

field ""SUBSET"
fits",""SUBSET","(FILTER)",add+,ver-)

fie
fits'

"IMAGETYP"
"IMAGETYP™,""object",add+,ver-)

field ""OBSERVER"
fits'","OBSERVER",""BYU-WMO™,add+,ver-)

field "OBSERVAT"
fits",""OBSERVAT","wmo",add+,ver-)

fields "RA™ and "DEC" and modifies for use

sections ("*obj*.fits",opt="fullname",>"datalistl")
listl="datalistl"
while (fscan(listl,s1)!=EOF){

files=(sl)

imgets (files,param="RA™)
RAcheck=(imgets.value)
if (RAcheck=="0"){
imgets (files,param="0BJCTRA™)
RAcheck=(imgets.value)
if (RAcheck!="0"){

3

if (RAcheck==

}

}

hed (files,"RA™,"(OBJCTRA)",add+,ver-)
hedit (files,"RA"™,"(0BJCTRA)",add+,ver-)

")
clear
RAvalue=object_RA

hedit ("*obj*.Ffits","RA", (RAvalue),add+,ver-)
hedit ("*obj*.fits","RA", (RAvalue),add+,ver-)

imgets (files,param="DEC")

DECcheck=

(imgets.value)

if (DECcheck=="0"){
imgets (files,param="0BJCTDEC")
DECcheck=(imgets.value)
if (DECcheck!="0"){

3

hedit (Files,"DEC","(OBJCTDEC)",add+,ver-)
hedit (files,"DEC","(OBJCTDEC)",add+,ver-)

if (DECcheck=="0"){

}

3
del data*

clear
DECvalue=object_DEC

hedit (“"*obj*.fits","DEC", (DECvalue),add+,ver-)
hedit ("*obj*.fits","DEC", (DECvalue),add+,ver-)

hselect (“"*obj*.fits","$l1,RA,DEC",yes,>"datalistl")

sed "s/\ /:/g"

“datalistl” > "datalist2"

listl="datalist2"

while (fscan(listl,sl,s2,s3)!=E0F){
hedit (sl1,"RA",s2,add+,ver-)
hedit (s1,"DEC",s3,add+,ver-)

}
del data*

#edits header field "EPOCH"
hedit (“*obj*.fits", "EPOCH","2000.0",add+,ver-)

44

#edits header field "UT"
hselect ("*obj*.fits","$1,DATE-OBS",yes,>"datalistl")
sections @datalistl
if (sections.
match ('T",™ ", stop-,>"datal istdateobs')
match ("T","datalistl",stop+,>"datalisttimeobs")
sections @datalistdateobs
if (sections.nimages>0){
sed "s/[0-9-1*[T]//g" "datalistdateobs" > "datalist2"
listl="datalist2"
while (fscan(listl,sl,s2)!=EOF) {
hedit (s1,"UT",s2,add+,ver-)
hedit (s1,"TIME-DAT","DATE-OBS",add+,ver-)

3
}

sections @datalisttimeobs
if (sections.nimages>0){
hselect (“"*obj*.fits","$l,TIME-OBS™,yes,>"datalist3")
sections @datalist3
if (sections.nimages>0){
listl="datalist3"
while (fscan(listl,sl,s2)!=EOF) {
hedit (s1,"UT",s2,ad ver-)
hedit (s1,"TIME-DAT" IME-0BS™,add+,ver-)

¥

3
&el data*

#determines sidereal time and edits header field "ST"

Techo "st = mst(@"DATE-OBS", UT, obsdb (observat, \"longitude\'))" > st.cmds
asthedit (“"*obj*.fits","st.cmds",table=""",verbose+)

del st.cmds

#determines airmass and edits header field "AIRMASS"
setairmass (“"*obj*.fits")

#determines julian date, helian julian date, etc. and edits header fields "JD", etc.
setjd ("*obj*.fits")

#checks for incorrect start times (i.e. UT set as Local or set as actual UT)
hselect (“"*obj*.fits","$I1,TIME-DAT",yes,>"datalistl"™)

listl="datalistl"
while (fscan(listl,sl,s2)!=EOF){
files=(sl)

timedate=(s2)

if (timedate=="DATE-OBS"&&n==1){
hselect (files,"DATE-0BS,UT,ST,RA",yes,>"datalist2")
list2="datalist2"
while (fscan(list2,s3,s4,s5,s6)1=EOF){
UTnow=(s4)
clear
print ("'DATE-OBS: ",s3)
print (")
print ("Given UT: ",s4)
print ("Calculated ST: ",s5)
print ("Object RA: ",s6)

print (')
hr_corr=hour_correct
print (')

3

if (hr_corr=="Local""){
hr_change=hour_change
time=real (UTnow)
time=time+real (hr_change)
if (time>24){
time=time-24
3

ﬁedit (files,"UT", time,add+,ver-)

45

hedit (files,"TIME-DAT","UT Corrected",add+,ver-)

#determines sidereal time and edits header field "ST"

lecho "st = mst(@"DATE-OBS®, UT, obsdb (observat, \"longitude\"™))" > st.cmds
asthedit (files,”st.cmds",table=""",verbose+)

del st.cmds

#determines airmass and edits header field "AIRMASS"
setairmass (files)

#determines julian date, helian julian date, etc. and edits header fields "JD", etc.
setjd (Files)
3

éel datalist2
3

if (timedate=="DATE-0BS"&&n!=1&&hr_corr=="Local'){

hselect (files,"UT",yes,>"datalist2")
list2="datalist2"
while (fscan(list2,s3)!1=EOF){

time=real (s3)

time=time+real (hr_change)

if (time>24){

time=time-24
3

hedit (files,"UT",time,add+,ver-)

#determines sidereal time and edits header field "ST"

lecho "st = mst(@"DATE-OBS", UT, obsdb (observat, \"longitude\'))" > st.cmds
asthedit (files,"st.cmds",table=""",verbose+)

del st.cmds

#determines airmass and edits header field "AIRMASS"
setairmass (files)

#determines julian date, helian julian date, etc. and edits header fields "JD", etc.
setjd (Files)

hedit (files,"TIME-DAT","UT Corrected",add+,ver-)

3
del datalist2
3

n=n+1

if (timedate=="TIME-0BS"&&1==1){
hselect (files, "DATE-0BS,TIME-OBS,UT,ST",yes,>"datalist2)
list2="datalist2"
while (fscan(list2,s3,s4,s5,s6)1=EOF){
UTnow=(s5)
clear
print ("'DATE-OBS: ",s3)
print ("TIME-OBS: ",s4)
print (")
print ("Given UT: ",s5)
print (Calculated ST: ",s6)

print (")
hr_corr=hour_correct
print (')

3

if (hr_corr=="Local"){
hr_change=hour_change
time=real (UTnow)
time=time+real (hr_change)
if (time>24){
time=time-24
3

ﬁedit (files,"UT",time,add+,ver-)
#determines sidereal time and edits header field "ST"
lecho "st = mst(@"DATE-OBS", UT, obsdb (observat, \"longitude\'))" > st.cmds

asthedit (files,"st.cmds",table=""",verbose+)
del st.cmds

46

#determines airmass and edits header field "AIRMASS"
setairmass (files)

#determines julian date, helian julian date, etc. and edits header fields "JD", etc.
setjd (Files)
3

ﬁedit (files,"TIME-DAT","UT Corrected",add+,ver-)
del datalist2
3

if (timedate=="TIME-0BS"&&1!=1&&hr_corr=="Local'"){

hselect (files,"UT",yes,>"datalist2")
list2="datalist2"
while (fscan(list2,s3)!1=EOF){

time=real (s3)

time=time+real (hr_change)

if (time>24){

time=time-24
3

hedit (Files,"UT",time,add+,ver-)

#determines sidereal time and edits header field "ST"

lecho "st = mst(@"DATE-OBS", UT, obsdb (observat, \"longitude\'))" > st.cmds
asthedit (files,”st.cmds",table=""",verbose+)

del st.cmds

#determines airmass and edits header field "AIRMASS"
setairmass (files)

#determines julian date, helian julian date, etc. and edits header fields "JD", etc.
setjd (Files)

hedit (files,"TIME-DAT","UT Corrected",add+,ver-)

3
del datalist2
}

1=1+1
if (hr_corr=="UT"){

hedit (files, "TIME-DAT","UT Given",add+,ver-)
3

}

#deletes possibly incompatible datalists
del data*

beep

47

A.1.4 ap_gain_rdnoise_(x)

ap_findgain

ap_findgain.cl by Paul lverson nodified fromfindgain.cl script from|RAF package

- calculates the gain and readnoise given tw flats and two

bias frames. Algorithm (nmethod of Janesick) courtesy Phil Massey.
flatdif = flatl - flat2

bi asdif = biasl - bias2

e_per_adu = ((rean(flatl)+mean(flat2)) - (mean(biasl)+mean(bias2))) /
((ros(flatdif))**2 - (rns(biasdif))**2)

readnoi se = e_per_adu * rns(biasdif) / sqrt(2)

HFHHHFF RS

procedure findgain (flatl, flat2, zerol, zero2)

string flatl {prompt="First flat frame"}

string flat2 {pronp Second flat frame"}

string zerol {pronp First zero frane"}

string zero2 {pronpt =" Second zero frane"}

string section = "" {pronpt ="Sel ected i nage section"}

string center = "nmean" {pronpt="Central statistical nmeasure", enun¥"nean|n dpt|node"}
int nclip =3 {pronpt ="Nunber of clipping iterations"}
real |sigma = 4 {pronpt ="Lower clipping sigm factor"}

real usignma = 4 {pronpt ="Upper clipping sigma factor"}

real binwidth = 0.1 {pronpt="Bin width of histogramin sigm"}

bool verbose = no {pronpt =" Ver bose out put ?"}

begi n
string f1, f2, z1, z2
string 1f1, 1f2, Iz1, |z2
string flatdif, zerodif

#flatdif = nktenp ("tnp$iraf")
#zerodif = nktenp ("tnp$iraf")
fi="flatl
f2 =flat2
z1 = zerol
z2 = zero2
If1 = f1//section
1f2 = f2//section
1z1 = z1//section
1z2 = z2//section
imarith (1f1, "-", 1f2, "flatdif")
imarith (1z1, 1z2, "zerodif")
end
int n=1
real e_per_adu, readnoise, mfl, mf2, mbl, mb2, s_fd, s_bd, junk
string
string
struct
struct

#printf ("%,%,%,%, %, %\n", If1, 1f2, 1z1, 1z2, "flatdif", "zerodif") | scan (inmges)

i mst at

(If1,fields=center//", stddev", | ower=I NDEF, upper =I NDEF, ncl i p=ncl i p, | si gma=| si gna, usi gma=usi gnma, bi nwi dt h=bi nwi dt h
,format-,>> "statsfile")

i mst at

(1f2,fields=center//", stddev", | ower=I NDEF, upper =I NDEF, ncl i p=ncl i p, | si gma=| si gna, usi gma=usi gnma, bi nwi dt h=bi nwi dt h
,format-,>> "statsfile")

i mst at

(l'z1,fields=center//", stddev", | ower =I NDEF, upper =I NDEF, ncl i p=ncl i p, | si gma=| si gna, usi gma=usi gnma, bi nwi dt h=bi nwi dt h
,format-,>> "statsfile")

i mst at

(1z2,fields=center//", stddev", | ower =I NDEF, upper =I NDEF, ncl i p=ncl i p, | si gma=| si gna, usi gma=usi gna, bi nwi dt h=bi nwi dt h
,format-,>> "statsfile")

i nst at

("flatdif.fits",fields=center//", stddev", | ower=I NDEF, upper =I NDEF, ncl i p=ncl i p, | si gma=I| si gma, usi gma=usi gnma, bi nwi d
th=bi nwi dt h, format-, >> "statsfile")

48

i nst at
("zerodif.fits",fields=center//", stddev", | ower =I NDEF, upper =I NDEF, ncl i p=ncl i p, | si gma=I| si gma, usi gma=usi gna, bi nwi d
th=bi nwi dt h, format-, >> "statsfile")

del ("flatdif*", verify-)
del ("zerodif*", verify-)

listl = "statsfile"
while (fscan(listl,sl,s2) != EOF){
if (n==1){
mfl = real(sl)
}
it (n==2){
mf2 = real (sl)
!
it (n == 3){
mbl = real (s1)
}
it (n == 4){
mb2 = real (s1)
}
if (n==5){
s_fd = real (s2)
}
it (n==6){
s_bd = real (s2)
!
h:n+l
}
e_per_adu = ((mf1 + mf2) - (mbl + mb2)) / (s_fd**2 - s_bd**2)
readnoi se = e_per_adu * s_bd / sqrt(2)

round to three decimal places
e_per _adu real (nint (e_per_adu * 1000.)) / 1000.
readnoi se real (nint (readnoise * 1000.)) / 1000.

print results
if (verbose == yes) {
printf ("FI NDGAIN:\n")
printf (" center = %, binwidth = %\n", center, binw dth)
printf (" nclip =%, |Isigma = %, usigma = %\n",nclip, |sigm, usigm)

printf ("\n Flats =% & %\n", If1l, 1f2)
printf (" Zeros =% & %\n", 1z1, |z2)
printf (" Gain = 9. 2f electrons per ADUnN", e_per_adu)
printf (" Read noise = %.2f electrons\n", readnoise)
}
if (verbose == no){

printf ("9%.2f\t%.2f\n", e_per_adu, readnoise)

del stats*
del /tmp/*.fits

49

ap_gain_rdnoise_collector

#DOCUMENTATION: ap_gain_rdnoise_collector_v_4.cl
ap_gain_rdnoise_collector_v_4.cl by Paul lverson

ap_gain_rdnoise_collector_v_4.cl is a script designed to collect gain and
rdnoise data from raw bias and flat frames.

IRAF packages required
imutil

Possible sources of error:
Inaccurate filenames or filter entries in header -> no data in
datalists

BRI R R R

procedure ap_gain_rdnoise_collector_v_4 (frame_num)
string frame_num {prompt="Enter the number of frames to use"}

begin
string framenum
end

#variable declarations

n=1

=1

t™Tn

f1,f2,fn

b1,b2,bn

xlen,ylen
x1,x2,x3,x4,x5,x6
yl,y2,y3,y4,y5,y6
numtotal ,numflat,numbias
nflat, nbias

nF

files=""
filter
checkfilter=""
flatl,flat2
biasl,bias2
temp

*listl

*list2

#deletes possibly incompatible datalists
del data*

#extracts filename and filter from raw flat frames
hselect ("*{flat}*.{fit}","$1,FILTER",yes,>"datalistflat")

#creates flat table composed of filter and number; creates datalist of flat frames to be used
sections @datalistflat
numtotal=sections.nimages
if (numtotal>0){

tsort (“datalistflat”,2)

listl="datalistflat"

while (fscan(listl,sl,s2)!=EOF){

filter=(s2)

if (Ffilter!=checkfilter&&numtotal>0){
print (filter,>>"datalistfiltertable™)

clear

match (filter//"$","datalistflat”,>"datalistflat"//filter)
sections (“@datalistflat"//filter)
numflat=sections.nimages

print (')
print (“Total number of flats remaining: ,numtotal)
print ("Number of flat ",filter,” frames: ",numflat)
print (")
framenum=Fframe_num
while (int(framenum)>numflat){
framenum=Frame_num
3

20

print (framenum,>>"datalistfilternumtouse™)

numtotal=numtotal-numflat

3

checkfilter=Ffilter
3
3

joinlines (“"datalistfiltertable,datalistfilternumtouse’,>>"datalistfilternumtable”

listl="datalistfilternumtable”
while (fscan(listl,sl,s2)!=EOF){
filter=(sl1)
numflat=int(s2)

list2="datalistflat"//filter
while (fscan(list2,s3,s4)1=EO0F){
files=(s3)

if (n<=numflat){
print (files,>>"datalistflatuse')

n=n+1
3
n=1
3
#resets counter to 1
n=1

#extracts filename and imagetyp from raw frames
hselect (“*{bias}*.{fit}","$l,IMAGETYP",yes,>"datalistbias")

#creates datalist with bias frames to be used
sections @datalistbias
if (sections. ages==0){
del datalistbias
hselect ("*{zero}*.{fit}","$l,IMAGETYP", yes,>"datalistbias™)

sections @datalistbias
numbias=sections.nimages
if (numbias>0){

print (")
print (“Number of bias frames: *,numbias)
print (")

framenum=Fframe_num

while (int(framenum)>numbias){
Fframenum=Fframe_num

3

listl="datalistbias"
while (fscan(listl,sl,s2)!=EOF){
files=(sl)

if (n<=int(framenum)){

print (files,>>"datalistbiasuse')
n=n+1

numbias=int(framenum)

clear

#prints to screen results of compiled flat and bias tables
listl="datalistfilternumtable”

while (fscan(listl,sl,s2)!=EOF){
print (“Using ",s2," flat ",sl1," frames'")

o1

print ("Using ",numbias,” bias frames™)
sleep (2)

#recalculates number of flat and bias frames to be used
sections @datalistflatuse
numflat=sections.nimages
sections @datalistbiasuse
numbias=sections.nimages

if (numflat>0&&numbias>0) {
nflat = numflat
nbias = numbias

nfactflat
nfactbias

(nflat * (nflat - 1)) / 2
(nbias * (nbias - 1)) / 2

remaining = nfactflat * nfactbias

#determines gain and rdnoise is 5 areas of each flatl, flat2, biasl, and bias2 permutation
if (numflat>0&&numbias>0) {
for (fl=1;fl<=numflat-1;fl+=1){
for (F2=Fl+1;f2<=numflat;f2+=1){
for (bl=1;bl<=numbias-1;bl+=1){
for (b2=bl+1;b2<=numbias;b2+=1){
tabpar (“‘datalistflatuse”,1,fl)
flatl=tabpar.value

imgets (flatl,param="i_naxisl")
xlen=int(imgets.value)
imgets (flatl,param="i_naxis2")
ylen=int(imgets.value)

x1=50

x2=150

x3=xlen-150

x4=xlen-50

if ((xlen%2)==0){
x5=(xlen/2)-50
x6=(xlen/2)+50

3

i ((xlen%2)==1){
x5=((xlen-1)/2)-50
x6=((xlen-1)/2)+50

3

y1=50

y2=150

y3=ylen-150

y4=ylen-50

if ((ylen%2)==0){
y5=(ylen/2)-50
y6=(ylen/2)+50

i ((ylen2)==1){
y5=((ylen-1)/2)-50
y6=((ylen-1)/2)+50

tabpar (“datalistflatuse”,1,f2)
flat2=tabpar.value

tabpar (“datalistbiasuse™,1,bl)
biasl=tabpar.value

tabpar (“datalistbiasuse™,1,b2)
bias2=tabpar.value

clear

path

print (")

52

remaining = remaining - 1
print ("lterations remaining: ",remaining)

print (")

print ("Flat 1: ",flatl)
print ("Flat 2: ",flat2)
print ("Bias 1: ",biasl)
print (“Bias 2: ",bias2)

(flatl,flat2,biasl,bias2,section="" “/Ix2// /Yy Y2/ 7], verbose- ,>>"gainrdnoise. info')
ap_findgain

(flatl,flat2,biasl,bias2,section="["//x1//":
ap_findgai

(flatl,flat2,biasl,bias2,section="["//x3//
ap_findgain

(flatl,flat2,biasl,bias2,section="[""//x3//":"//x4//","//y3//":"'//y4//""]" ,verbose-,>>"gainrdnoise.info")
ap_findgain

(flatl,flat2,biasl,bias2,section="["//x5//":"//x6//","//y5//":"'//y6//"]" ,verbose-,>>"gainrdnoise.info")

¥

“1Ix2/7 "/ /y3// 2 /yA/ /], verbose—-, >>gainrdnoise. info™)

“LIXAL/ Ny Y2/ /) verbose- , >>gainrdnoise. info™)

3
3
3
}
#deletes possibly incompatible datalists
del data*
beep

93

ap_gain_rdnoise_calculator

#DOCUMENTATION: ap_gain_rdnoise_calculator_v_2.cl
ap_gain_rdnoise_calculator_v_2.cl by Paul Iverson

o

ap_gain_rdnoise_calculator_v_2.cl is a script designed to calculate gain and rdnoise data from
gainrdnoise.info files. It is necessary
to run the ap_gain_rdnoise_collector_v_3.cl previous to running this script.

#

IRAF packages required

imutil

#

Possible sources of error:
Inaccurate filenames -> no data in datalists
#variable declarations

string si="""

string s2

string gai

string rdnoise="""

struct *listl

struct *list2

#deletes possibly incompatible datalists
del data*

#determines average gain and rdnoise
if (access(gainrdnoise.info™)){
listl="gainrdnoise.info"
while (fscan(listl,sl,s2)!=EOF){
gain=(sl)
rdnoise=(s2)

clear
print (“Calculating gain and rdnoise’™)
if (real(gain)>0){

print (gain,>>"gain.info.temp™)
3

if (real(rdnoise)>0){
print (rdnoise,>>"rdnoise.info.temp™)
3

}

sections (“'gain.info.temp™)
if (sections.nimages>0){
type “gain.info.temp” | average > “gain.info"

sections (“rdnoise.info.temp™)
if (sections.nimages>0){
type "rdnoise.info.temp"” | average > "rdnoise.info"

b
#deletes possibly incompatible datalists

del data*
del *temp

o4

ap_gain_rdnoise_obhead

#DOCUMENTATION: ap_gain_rdnoise_obhead_v_2.cl
ap_gain_rdnoise_obhead_v_2.cl by Paul lverson

ap_gain_rdnoise_obhead_v_2.cl is a script designed to modify the headers of object and
flat frames
rfits“ed with the ap_rfits_v_2.cl script.

This script adds the header fields GAIN and RDNOISE. These fields are utilized later in
the ap_align_v_7?.cl script.

It is necessary to run the ap_gain_rdnoise_collector_v_?.cl and the
ap_gain_rdnoise_calculator_v_?.cl

scripts on raw bias and flat frames previous to running this script.

IRAF packages required
imutil
astutil

Linux commands required
date

Possible sources of error:
Inaccurate filenames or filter entries in header -> no data in datalists
No .info files from the collector and calculator scripts -> no data in variables

HEHHFHE BT RE

#variable declarations
real Gain=0.0
real RDNoise=0.

string

string

string

string timestring=""
struct *listl

#deletes possibly incompatible datalists
del data*

#extracts filename and subset from rfits"ed object and flat frames
hselect ("*.fits","$1,SUBSET",yes,>>"datalistl"™)
listl="datalistl"
while (fscan(listl,s1)!=EOF){
files=(sl)

#finds gain value from .info file
if (access(“gain.info)){
tabpar (‘“'gain.info",1,1)
Gain=real (tabpar.value)

}

#Ffinds rdnoise value from .info file
if (access(*'rdnoise.info")){
tabpar (“'rdnoise.info”,1,1)
RDNoise=real (tabpar.value)

}

#edits header fields "GAIN" and "RDNOISE"

hedit (files,"GAIN",Gain,add+,ver-)

hedit (files,"RDNOISE",RDNoise,add+,ver-)
}

#deletes possibly incompatible datalists
del data*

#adds date and time of when script was applied to frames to headers
date "+DATE:%m/%d/%y%nTIME:%H:%M:%S" > “datalist”

tabpar (“'datalist",1,1)

datestring=tabpar.value

tabpar (“‘datalist",1,2)

timestring=tabpar.value

hedit (obj*.fits"™,"AP_GAIN_RDNOISE_OBHEAD'",datestring//" "//timestring,add+,ver-)
hedit (“flat*.fits", "AP_GAIN_RDNOISE_OBHEAD",datestring//" "//timestring,add+,ver-)

#deletes possibly incompatible datalists
del data*
beep

95

A.1.5

ap_pierside

#DOCUMENTATION: ap_pierside_obhead_v_1.cl
ap_pierside_obhead_v_1.cl by Paul Iverson

ap_pierside_obhead_v_1.cl is a script designed to modify filenames based on
pier side. Since this is an issue only on side mounted telescopes, it only is
necessary when reducing frames from such systems. It is made to function on
object frames rfits"ed with the ap_rfits_v_2.cl script and header modified

by general obhead scripts.

This script modifies the name of a file based on the side of the pier that is
located on. The "E" addition is equivalent to an East-facing orientation whereas
the "W" denotes a West-facing orientation. These are primarily determined by
calculating the hour angle (LST-RA); however, it has been noted that close to
the meridian, a side-mounted telescope can track into positive hour angles
without changing orientation. Therefore near HA=0, the script displays the

image in ds9 and asks the user to verify whether it is E or W oriented.

IRAF packages required
Linux commands required
date

Possible sources of error:
Inaccurate filess or filter entries in header -> no data in datalists

HHEFHFHE RS T

procedure ap_pierside_obhead_v_1 (East_or_West)

string East_or_West {prompt="Enter orientation of image",enum=

begin
string EastWest
end

#variable declarations
int n=1

t numimg=1

int t=0

int cont=0
real HA=0

real ST=0

real STCheck=0
real RA=0

real exp

struct

#deletes possibly incompatible datalists
del data*

hselect ('obj*","$1,HJID",yes,>"datalistl™)
tsort (“'datali

sections @datalistl
numimg=sections.nimages

hselect (“obj*","$1",yes,>"datalistfiles")
sed -e "s/.fits//g" "datalistfiles” >"datalistfilenames"

hselect ('obj*","HJD",yes,>"datalistHJID"")

hselect ('obj*","ST,RA",yes,>"datalistLSTRA™)

joinlines (“datalistfiles,datalistHJD,datalistLSTRA,datalistfilenames",>"datalisttotal")
tsort (“'datalisttotal™,2)
listl="datalisttotal"
while (fscan(listl,sl,s2,s3,s4,s5)1=EOF){
files=(sl)

o6

ST=real (s3)

RA=real (s4)

names=(s5)

if(t==0){
imgets(files,param="EXPTIME™)
exp = real(imgets.value)

= (exp*10)/60/60

t<0.33){

1imit=0.33
3
t=1
3
if (ST<STCheck){
ST=ST+24
HA=ST-RA

if (HA<-limit){
hedit (files,"HA",HA,add+,ver-)
hedit (files,"PIER","E",add+,ver-)
rename (files,names//"-east",field="root")

if (n==1){
disp (names//"-east.fits",1)
n=n+1

}

hedit (files,"HA",HA,add+,ver-)
hedit (files,"PIER","W", add+,ver-)
rename (files,names//"-west",field="root")

cont=0
3
i (HA>=-limiteeHA<=limitégcont!=1){
if (n1=1){
clear
print ("Image in frame 1 is in East orientation)
H
if (n==1){
disp (“"*obj*-""//numimg//"*",1)
clear
print ("Image in frame 1 is in West orientation’™)
disp (Files,2)
print (")
EastWest=East_or_West
hedit (files,"HA",HA,add+,ver-)
hedit (files,"PIER",EastWest,add+,ver-)
if (EastWest == "E"){
rename (files,names//"-east"”,field="root)
3
if (EastWest == "W"){
rename (files,names//"-west",field="root)
cont = 1
3

if (cont==1){
hedit (files,"HA" ,HA,add+,ver-)
hedit (files,"PIER","W",add+,ver-)
rename (files,names//"-west",field="root")

3

STCheck=ST

o7

if (ST>STCheck){
HA=ST-RA

if (HA<-limit){
hedit (files,"HA" ,HA,add+,ver-)
hedit (files,"PIER","E",add+,ver-)
rename (files,names//"-east"”,field="root")

if (n==1){
disp (names//"-east.fits",1)
n=n+1

H

3

it (HASTimit){
hedit (files,"HA",HA,add+,ver-)
hedit (files,"PIER","W",add+,ver-)
rename (files,names//"-west",field="root")

cont=0

¥

iT (HA>=-limit&&HA<=limit&&cont!=1){
it (n1=1){
clear
print ("Image in frame 1 is in East

¥

if (n==1){
disp ("*obj*-"//numimg//"*",1)
clear
print ("Image in frame 1 is in West

disp (files,2)
print (")
EastWest=East_or_West

hedit (files,"HA",HA,add+,ver-)

hedit (files,"PIER",EastWest,add+,ver-)
if (EastWest == "E"

3

if (EastWest ==

E"){
rename (files,names//"-east"”,field="

rename (files,names//"-west"”,field="

cont = 1

3

if(cont==1){
hedit (files,"HA" ,HA,add+,ver-)
hedit (files,"PIER","W",add+,ver-)
rename (Files,names//"-west",field="root")

3
STCheck=ST
3
3
#deletes possibly incompatible datalists
del data*
beep

o8

orientation')

orientation’™)

‘root™)

‘root™)

A.1.6 ap_proc

#DOCUMENTATION: ap_proc_v_3.cl
ap_proc_v_3.cl by Paul lverson

ap_proc_v_3.cl is a script designed to process bias, dark, flat, and image
frames rfits"ed with the ap_rfits_v_2.cl script.

This script packages the entire reduction process performed previously by
hand. Whereas previous versions of this script had interactive modules, this
version eliminates interaction in order to increase processing speed. The
user is still able to decide which reduction algorithm will be utilized;
however, a review of results is no longer supplied within the script. For an
interactive version see ap_proc_v_2.cl.

IRAF packages required
imutil
astutil

Linux commands required
date

Possible sources of error:
Inaccurate filenames or filter entries in header -> no data in datalists

HHHEHB R T

procedure ap_proc_v_3 (reduction_alg,flat_alg)

string reduction_alg {prompt=""Reduction algorithm”,enum="minmax|ccdcliplavsigclip™}
string flat_alg {prompt="Flat algorithm",enum="Calibration|Object"}

begin
string algorithm
string falgorithm

algorithm=reduction_alg
falgorithm=Fflat_alg
end

#variable declarations

int n=1

int m=1

int numimg

int high, low, keep
real highsigma, lowsigma
string s1="""

string s2

string s3:

string s4

string files=""

string names="""

string filter=""
string

string

string

string

string timestring=
struct *listl

struct *list2

struct *list3

#deletes possibly incompatible datalists and proc files
del data*

del *_proc*

del Flat*

del Zero*

del Dark*

del 11lum*

sections (“"zero*.fits")
numimg=sections.nimages

#determines high and low number of bias pixels to reject
high=nint(sections.nimages*0.25)
low=nint(sections.nimages*0.25)

highsigma=1.5
lowsigma=1.5

#determines the number of bias pixels to keep

29

keep=nint(sections.nimages*0.5)

#combines bias frames

zerocombine
("zero*.fits",reject=algorithm,nlow=low,nhigh=high,nkeep=keep, Isigma=lowsigma, hsigma=highsigma, rdnoise=""RDNOISE
", gain="GAIN")

#processes dark frames with combined Zero.fits frame
sections (“dark*.fits",opt="fullname",>"datalistdark')
listl="datalistdark"
while (fscan(listl,sl1)!=EOF){

files=(sl)

ccdproc (Ffiles,output=(files)//" .proc”,ccdtype="dark", fixpix-,overscan-, trim-,zerocor+,darkcor-,flatcor-
,zero="Zero.fits")

3

del data*

sections (“dark*proc.fits")

#determines high and_low number of dark pixels to reject

high=nint(sections.nimages*0.25)
low=nint(sections.nimages*0.25)

#determines the number of dark pixels to keep
keep=nint(sections.nimages*0.5)

#combines dark frames

darkcombine

(“'dark*proc.fits",reject=algorithm,nlow=low,nhigh=high,nkeep=keep, Isigma=lowsigma,hsigma=highsigma, rdnoise="RDN
OISE",gain="GAIN")

if (falgorithm=="Calibration){
#processes flat frames with combined zero-corrected Dark.fits; combines flats by filter
hselect ('flat*","$1,FILTER",yes,>"datalistflat’)
tsort (“datalistflat”,2)
listl="datalistflat"
while (fscan(listl,sl,s2)!=EOF){
filter=(s2)

if (checkfilter!=Ffilter){
print (filter,>>"datalistfilter™)

sections ('flat"//filter//"* . fits",opt="fullname",>"datalistflat"//filter)
list2="datalistflat"//filter
while (fscan(list2,s3)!1=EOF){

files=(s3)

ccdproc (files,output=(files)//" .proc",ccdtype="flat",fixpix-,overscan-,trim-
,zerocor+,darkcor+,flatcor-,zero="Zero.fits",dark="Dark.fits")
sections ("flat"//filter//"*proc.fits™)
#determines high and low number of flat pixels to reject

high=nint(sections.nimages*0.25)
low=nint(sections.nimages*0.25)

#determines the number of flat pixels to keep
keep=nint(sections.nimages*0.5)

flatcombine
flat”//filter//"*proc.fits",r
ighsigma, rdnoise="RDNOISE",gain=

ject=algorithm,subsets+,nlow=low,nhigh=high,nkeep=keep, Isigna=lowsigma, hsigma=h
"GAIN'™)

mkillumcor (flat"//filter//"*proc.fits","11lum"//Ffilter)

checkfi lter=Ffilter
¥

#processes object frames by filter with combined zero-corrected, dark-corrected
#flat frames
sections (“obj*.fits",opt="fullname",>"datalistobj"')
listl=""datalistobj"
while (fscan(listl,s1)!=EOF){
files=(sl)

60

ccdproc (files,output=(files)//" _proc",ccdtype="object", fixpix-,overscan-,trim-
,zerocor+,darkcor+, flatcor+, i llumco+,zero="Zero.fits" ,dark="Dark.fits",flat="Flat*_.fits", il lum="11lum*_fits")
3
3
if (falgorithm=="Object"){
#processes flat frames with combined zero-corrected Dark.fits; combines flats by filter
hselect ('obj*","$I1,FILTER,PIER",yes,>"datalistobjflat™)
tsort (“datalistobjflat”,3)
listl="datalistobjflat"
while (fscan(listl,sl,s2,s3)1=E0F){
pier=(s3)
if (checkpier!=pier){
print (pier,>>"datalistpier™)
3

éheckpier:pier

tsort (“datalistobjflat”,2)
listl="datalistobjflat"
while (fscan(listl,sl,s2,s3)1=E0F){
filter=(s2)
if (checkfilter!=Filter){
print (filter,>>"datalistfilter")
3

checkfilter=Ffilter

checkfilter=""
filter=""

listl="datalistpier”
while (fscan(listl,sl1)!=EOF){
pier=(sl)
st2="datalistobjflat"
while (fscan(list2,s2,s3,s4)!1=EOF){
Files=(s2)
filter=(s3)
iT ((sd)==pier){
print (files,>>"datalist"//pier//"files")
print (filter,>>"datalist"//pier//"filter™)

} ;
joinlines (“datalist”//pier//"files,datalist"//pier// filter”, >"datalist"//pier//"total’")

list2="datalist"//pier//"total”
while (fscan(list2,s2,s3)!=EOF){
files=(s2)
filter=(s3)
it (m==4){
m=1
3

if (m==1){

copy (s2,"flat"//filter//"_obj-"//pier//"-"
hedit (“flat"//filter//"_obj-"//pier//"
hedit ("flat"// j i ',

hedit (“flat"//filter//"_obj-"//pier//"-""//n//" _fits", "OBJECT","

©,"flat™,add+,ver-)
Iter,add+,ver-)
lat

“//filter,add+,ver-)
H

m=m+1

n=n+1

ER=R

1
1
list2="datalistfilter"”

while (fscan(list2,s2)!1=EOF){
filter=(s2)

sections ('flat"//filter//"_obj-"//pier//"* _fits",>"datalistflat"//filter//"_"//pier)

61

list2="datalistflat"//filter//"_"//pier
while (fscan(list2,s3)!=EOF){
files=(s3)
ccdproc (Ffiles,output=(files)//" .proc",ccdtype="flat",fixpix-,overscan-,trim-
,zerocor+,darkcor+, flatcor-,zero="Zero.fits",dark="Dark.fits")

sections (“flat"//filter//"*proc.fits")
#determines high and low number of flat pixels to reject

high=nint(sections.nimages*0.25)
low=nint(sections.nimages*0.25)

#determines the number of flat pixels to keep
keep=nint(sections.nimages*0.5)

flatcombine
(flat"//filter//"*proc.fits",output="FlatObj"//filter//"_"//pier,reject=algorithm,subsets+,nlow=low,nhigh=high
,nkeep=keep, Isigma=lowsigma, hsigma=highsigma, rdnoise="RDNOISE",gain="GAIN"")

mkillumcor (“flat"//filter//"*proc.fits","11lum"//Filter//"_"//pier)

}

#processes object frames by filter with combined zero-corrected, dark-corrected
#flat frames
sections (obj*.fits",opt="fullname",>"datalistobj'")
listl="datalistobjflat"
while (fscan(listl,sl,s2,s3)1=E0F){
files=(sl)
pier=(s3)

ccdproc (files,output=(files)//" _proc",ccdtype="object", fixpix-,overscan-,trim-
,zerocor+,darkcor+, flatcor+, i llumco+,zero="Zero.fits",dark="Dark.fits",flat="FlatObj*"//pier//"* _fits", il lum="1
Hlum*"//pier//" . fits")
3

}

#deletes possibly incompatible datalists and log files
del data*
del log*

#creates pre-processed frames folder

if(access('filespreproc'™)!=yes){
mkdir filespreproc

3

if(access('filespreproc™)==yes){
cd filespreproc
del *.*
cd ..

}

#moves pre-processed frames to folder "filespreproc”
sections ("*.*",opt="fullname",>"datalistfiles")

match "datalistfiles",stop+,>>"datalistnonprocA™)

match "datalistnonprocA",stop+,>>"datalistnonprocB™)
match "datal istnonprocB",stop+,>>"datalistnonprocC™)
match “datalistnonprocC",stop+,>>"datalistnonprocD")

atalistnonprocD",stop+,>>"datal istnonprocE™)
match ,""datalistnonprocE",stop+,>>"datal istnonprocF')
match ,""datalistnonprocF",stop+,>>"datal istnonprocfiles')
listl = "datalistnonprocfiles”
while (fscan(listl,s1)!=EOF){

files=(sl)

match

move (Ffiles,"filespreproc™)

¥

#deletes possibly incompatible datalists
del data*

sections ("*.proc*",>"datalistl)
sed -e "s/._fits//g" "datalistl" >"datalist2"
joinlines (“"datalistl,datalist2",>"datalistfilenames')

62

listl="datalistfilenames"
while (fscan(listl,sl,s2)!=EOF){
files=(sl)
name=(s2)
rename (files,name//"_fits",field="all"")

#deletes possibly incompatible datalists
del data*

#adds date and time of when script was applied to frames to headers
date "+DATE:%m/%d/%y%nTIME:%H:%M:%S" > “datalist”

tabpar (“datalist”,1,1)

datestring=tabpar.value

tabpar (‘“‘datalist",1,2)

timestring=tabpar.value

hedit ('*.fits","AP_PROC",datestring//" "//timestring,add+,ver-)
hedit ("*_fits","PROC_ALG",algorithm,add+,ver-)

#deletes possibly incompatible datalists
del data*
del subsets

beep

63

A.1.7 ap_skynoise

#DOCUMENTATION: ap_skynoise_obhead_v_2.cl

ap_skynoise_obhead_v_2.cl by Paul Iverson
#

ap_skynoise_obhead_v_2.cl is a script designed to modify the headers of object frames rfits“ed with
the ap_rfits_v_2.cl script.

#

This script adds the header fields SKYAVG and SKYDEV.
#

IRAF packages required

imutil

astutil

#

Linux commands required

date

#

Possible sources of error:

Inaccurate filenames or filter entries in header -> no data in datalists
#variable declarations

int x1=0

int x2=0

int y1=0

int y2=0

int xlen=0

int ylen=0

int n=3

real skyvalue=0.0

real skydev=0.0

string sl=""

string files=""

string datestring="""

string timestring="""

struct *listl

#deletes possibly incompatible datalists
del data*

del *trim*

del *mag*

del skydao.reg

sections ("*obj*.fits",opt="fullname",>"datalistl")
listl="datalistl"
while (fscan(listl,s1)!=EOF){

files = (s1)

if (access(*'sky.reg™)==yes){
del sky.reg
3

imgets (files,param="i_naxisl")
xlen=int(imgets.value)
imgets (Files,param="i_naxis2")
ylen=int(imgets.value)

x1=10
x2=xlen-10
y1=10
y2=ylen-10

#copies smaller field of frame to remove possible overscan areas
imcopy (Files// [//xXL//" " 1/x2/7" " //yL /72" 1/y2/ /"], Files//" trim™)

findpars.threshold=10
datapars.sigma=20
datapars.datami
datapars.datama: NDEF
fitskypars.annulus=10
fitskypars.dannulu=4

INDEF

findpars.threshold.p_mode =
datapars. fwhmpsf.p_mode
datapars.sigma.p_mode =
datapars.datamin.p_mode
datapars.datamax.p_mode = "h"
phot.output.p_mode = "h"

64

A.1.8 ap_fwhm_obhead

#DOCUMENTATION: ap_fwhm_obhead_v_4.cl

ap_fwhm_obhead_v_4.cl by Paul lverson

#

ap_fwhm_obhead_v_4.cl is a script designed to modify the headers of object
frames rfits"ed with the ap_rfits_v_2.cl script.
#

This script adds the header field FWHM.

#

IRAF packages required

imutil

astutil

#

Linux commands required

date

#

Possible sources of error:

Inaccurate filenames or filter entries in header -> no data in datalists
#variable declarations

int i

int n=1

int m=1

int xlen

int ylen

int x1,x2

int yl,y2

real num

real avg,dev

real per=1

real standdev

real skydev

real flux

real fwhmxA=0
real fwhmxB=0
real fwhmyA=0
real fwhmyB=0
real temp3

string sl=

string

string

string

string

string files,trimfiles
string temp

string temp2

string tempd

string datestring="""
string timestring=""
struct *listl

struct *list2

#deletes possibly incompatible datalists and other files
del data*
del fwhm*
del nomo*
del *trim*

#adds date and time of when script was applied to frames to headers
date "+DATE:%m/%d/%y%nTIME:%H:%M:%S" > "datalist”

tabpar (‘“‘datalist",1,1)

datestring=tabpar.value

tabpar (“datalist",1,2)

timestring=tabpar.value

hedit (obj*.fits","AP_FWHM_OBHEAD",datestring//'" ''//timestring,add+,ver-)

#deletes possibly incompatible datalists
del data*

hselect ("*obj*.fits","$1,SKYDEV",yes,>"datalistfilenames')
listl = “datalistfilenames"
while (fscan(listl,sl,s2)!=EOF){

files=(sl)

skydev=real (s2)

imgets (files,param="i_naxisl")
xlen=int(imgets.value)

65

imgets (Files,param="i_naxis2"™)
ylen=int(imgets.value)

x1=10
x2=xlen-10
y1=10
y2=ylen-10

#copies smaller field of frame to remove possible overscan areas
imcopy ((Files)//"[//x1//":"1/x2//" " //y1//" "/ /y2/7")", (Files)//" . trim™)

trimfiles=(files)//" . trim_fits"

if (access("fwhm.reg™)==yes){
del fwhm.reg
3

findpars.threshold=2*skydev

centerpars.calg=""centroid"
centerpars.chox=10

#cthreshold setting from Hintz"s newton
centerpars.cthreshold=0.75
centerpars.cmaxiter=20
centerpars.maxshift=8.5

Fitskypars.salgorithm="mode"
fitskypars.annulus=16

fitskypars.dannulu=4

#sloclip and sh ip setting from Hintz"s newton
fitskypars.sloc
fitskypars.shiclip=10.

photpars.weighting="constant"
photpars.apertures=12
photpars.zmag=30

datapars. fwhmpsf=4
datapars.sigma=skydev
datapars.datamin=INDEF
datapars.datamax=INDEF
datapars.ccdread=""RDNOISE"
datapars.gain="GAIN"
datapars.exposure="EXPTIME"
datapars.airmass="AIRMASS"
datapars.
datapars.

psfmeasure.radius=5
psfmeasure.sbuffer=5
psfmeasure.swidth=5

#creates coordinate file for fwhm determination
daofind (trimfiles,output="fwhmphot.reg",verif-)
phot (trimfiles,coords="fwhmphot.reg",interac-,verif-)

del fwhmphot.reg

txdump (trimfiles//".mag.1","flux,xcenter,ycenter"”,yes,>"datalistphot')
list2="datalistphot"
while (fscan(list2,s3,s4,s5)1=E0F){
flux=real (s3)
if (Flux>15000.0&&m<=50){
print (s4,>>"datalistx)
print (s5,>>"datalisty")
m=m+1

3
m=1
del "datalistphot™

Joinlines (“datalistx,datalisty",>"datalistphot™)
del "datalistx"
del "datalisty"”

66

tsort (“datalistphot™,"1™)

list2=""datalistphot"

while (fscan(list2,s3,s4)1=EOF){
fwhmxA=real (s3)
fwhmyA=real (s4)

it (fwhmxA>fwhmxB+10){
print (fwhmxA,>>"datalistx")
print (fwhmyA,>>"datalisty')
3

if (fwhmxA<fwhmxB+10){
if (fwhmyA>fwhmyB+10| | fwhmyA<fwhmyB-10){
print (fwhmxA,>>"datalistx’)
print (fwhmyA,>>"datalisty')

3

TwhmxB=fwhmxA
FfwhmyB=fwhmyA
3

tempd=access('datalistx™)
it (temp4=="no""){
del (Files//"*™)
del "datalistphot"

del "datalistphot™

sections @fwhm.reg
if (sections.nimages>0){
print ('g",>>"nomoregs')

psfmeasure.radius=10
psfmeasure.iterati=5

#determines psf fwhm of coordniate file objects
psfmeasure (trimfiles,display-,imagecur="fwhm.reg",graphcur="nomoreqs",>(trimfiles)//"_fwhm')

del "nomoreqgs"

copy ((trimfiles)//" . .fwhm","datafwhmA™)
sed -e "/NOAO/d" -e "/Image/d" -e "/Average/d" -e "s/" "/d/g" -e "s/obj-
........... /ddddddddddddddd/g*® *‘datafwhmA™ >> *“datafwhmB™

sections @datafwhmB
clear

list2 = "datafwhmB"
while (fscan(list2,s3) != EOF){
temp=(s3)
i=strlen(temp)
if (n!'=1&&n<=sections.nimages+1){
temp=substr(temp,41,i-15)
print(temp,>>"datafwhmC')

6=n+l
n=1
sed -e "s/d//g" “"datafwhmC" >> "datafwhmD"

#calculates fwhm average and standard deviation
type “datafwhmD" | average > "datafwhmE"

tabpar ('datafwhmE™,1,1)

avg=real (tabpar.value)
tabpar ('datafwhmg™,2,1)

67

standdev=real (tabpar.value)

#removes outlying data points until minimum standdev of 0.477*avg; this represents 95.449% of
data within 2 sigma
while (standdev>=0.477*avg){
list2="datafwhmD"
while (fscan(list2,s4)!1=EOF){
num=real (s4)
dev=per*avg
it (num>=avg&&num<=avg+dev){
print (num,>>"datafwhmF'")
3

if (num<=avg&&num>=avg-dev){
print (num,>>"datafwhmF')
3

}

del "datafwhmD™
del “‘datafwhmg™

type “datafwhmF" | average > "datafwhmE™

tabpar (“'datafwhmg™,1,1)
avg=real (tabpar.value)
tabpar (“'datafwhmg™,2,1)
standdev=real (tabpar.value)

rename (“‘datafwhmF","datafwhmD™)

sections @datafwhmD

if (sections.nimages<=4){
break

}

éer=per—0_01
3
per=1

#cuts fwhm average values to less than 6 digits
tabpar ('datafwhmg™,1,1)
temp=tabpar.value
i=strilen(temp)
if (i>6){
avg=real (substr(temp,1,6))

if (i<=6){
avg=real (temp)
3

#edits header field "FWHM™
hedit (files,"FWHM",avg,add+,ver-)

#deletes possibly incompatible datalists
del datafwhm*
3

#deletes file if unable to determine fwhm
if (sections.nimages==0){

del (files)

del (trimfiles//"*™)

3

#deletes possibly incompatible datalists
del *mag*

del *trim*

del fwhm*

#extracts filename and fwhm value from object frames

68

hselect (“obj*proc*.fits","$l,FWHM",yes,>>"datalistl™)

fields (datalistl™,1,>"datalistnames™)
fields (“datalistl",2,>"datalistFWHVM™)

#calculates non-INDEF-included fwhm
match (INDEF","datal istFWHM",stop+,>>"datal istnoINDEFFWHM™)
type “"datalistnolINDEFFWHM" | average > “datalistaverageFWHM"
tabpar (“'datalistaverageFWHV",1,1)
temp2=tabpar.value
i=int(strlen(temp2))
if (i>6){
avg=real (substr(temp2,1,6))

if (i<=6){
avg=real (temp2)
#removes INDEFs from fwhm values and replaces them with group average
listl=""datal istFWHM"
while (fscan(listl,sl1)!=EOF){

temp2=(sl)
temp3=5*avg

if (temp2!="INDEF""){
if (real(temp2)>temp3){
temp2=avg

print (temp2,>>"datalistcorrected™)

if (temp2=="INDEF"){
temp2=avg
print (temp2,>>"datalistcorrected™)

3
joinlines (“datalistnames,datalistcorrected”,>> "datalisttotal’)
listl="datalisttotal"
while (fscan(listl,sl,s2) !=EOF){
files=(sl)
avg=real (s2)

#edits header field "FWHW"
hedit (Ffiles,"FWHM",avg,add+,ver-)
3

#deletes possibly incompatible datalists
del data*

beep

69

A.1.9 ap_rotate

#DOCUMENTATION: ap_rotate_v_1.cl
ap_rotate_v_1.cl by Paul Iverson

ap_rotate_v_1.cl is a script designed to rotate object frames rfits"ed with
the ap_rfits_v_2.cl script.

This script rotates frames a user defined degree.
IRAF packages required

imutil

astutil

Linux commands required
date

Possible sources of error:
Inaccurate filenames or filter entries in header -> no data in datalists

HHBE BT T

procedure ap_rotate_v_1 (object_name,rotation_degree)

string object_name {prompt=
string rotation_degree {prompt=

"Enter search parameters for the files you wish to rotate (i.e. star*B)"}
‘Enter the degree of desire rotation"}

begin
string search
string rot
search=object_name
rot=rotation_degree
end

#variable declarations

files=""
g datest
string
struct *listl

#deletes possibly incompatible datalists
del data*

#adds date and time of when script was applied to frames to headers
date "+DATE:%m/%d/%y%nTIME:%H:%M:%S" > “datalist”

tabpar (“datalist”,1,1)

datestring=tabpar.value

tabpar (“datalist",1,2)

timestring=tabpar.value

sections ((search)//"*",>"datalistrotate)
listl="datalistrotate"
while (fscan(listl,sl) != EOF){
Ffiles=(sl)
rotate (files,files,int(rot))

hedit (files,"AP_ROTATE",datestring//" '"//timestring,add+,ver-)
hedit (files,"ROTATION_DEGREE",rot, ,add+,ver-)
3

#deletes possibly incompatible datalists
del data*

beep

70

A.1.10 ap_trim

#DOCUMENTATION: ap_trim_v_2.cl

ap_trim_v_2.cl by Paul lverson

#

ap_trim_v_2.cl is a script designed to trim object frames rfits“ed with
the ap_rfits_v_2.cl script.

#

This script trims possible overscan areas from frames. Default trim value is 10 pixels.
#

IRAF packages required

imutil

astutil

#

Linux commands required

date

#

Possible sources of error:

Inaccurate filenames or filter entries in header -> no data in datalists
#variable declarations

int n=1

int xlen

int ylen

int x1,x2

int yl,y2

string

string

string

string

struct *listl

#deletes possibly incompatible datalists
del data*

#copies smaller field of frame to remove possible overscan areas
sections (“"*obj*.fits",opt="fullname",>"datalistfile")
sed -e "s/.fits//g" "datalistfile" >"datalistfilenames"
listl="datalistfilenames"
while (fscan(listl,s1)!=EOF){

files=(sl)

imgets (files,param="i_naxisl")
xlen=int(imgets.value)
imgets (files,param="i_naxis2")
ylen=int(imgets.value)

x1=10
x2=xlen-10
y1=10
y2=ylen-10

imcopy ((Files)//"['//x1//" " 1/x2//" "/ /yl/ /"= /y2/ /)", (Files)//"-trim™)
}

#moves non-trimmed files into filescomp folder
sections ("*.*",opt="fullname",>>"datalistl™)
match (“trim","datalistl"”,stop+,>>"datalist2")
match (“info™,"datalist2",stop+,>>"datalist3")
match (“'reg","datalist3",stop+,>>"datalist4")
listl = "datalist4"”
while (fscan(listl,sl) = EOF){
if(access('filescomp™) && n == 1){

cd filescomp

del *

cd ..

movefiles (s1,'"filescomp™)

if(access(“"filescomp™) && n != 1){
movefiles (s1,"filescomp™)
3

if(access('filescomp™)!=yes){

mkdir
movefiles (s1,"filescomp™)

71

n=n+1

}

#deletes possibly incompatible datalists
del data*

#adds date and time of when script was applied to frames to headers
date "+DATE:%m/%d/%y%nTIME:%H:%M:%S" > "datalist”

tabpar (“datalist™”,1,1)

datestring=tabpar.value

tabpar (“datalist”,1,2)

timestring=tabpar.value

hedit (“obj*.fits","AP_TRIM",datestring//" "//timestring,add+,ver-)

#deletes possibly incompatible datalists
del data*

beep

72

A.1.11

ap_align

#ap_align.cl by Paul Iverson
#simplifies call to Eran Ofek"s autoalign.cl

procedure ap_align_v_1 (align)
string align {prompt = "Enter search parameters for the files to align (i.e. star*B)"}

begin
string alignment
alignment=align
end

#variable declarations
string sl
string s2
string s3

del data*

#autoalign ("ilist”, “prefix", fwhm, readnoise, gain, xytol, objectn, "bug_log™)
sections ((alignment)//"*'")
if (sections.nimages>0){
hselect ((alignment)//"*","$1,FWHM,RDNOISE,GAIN,HJID",yes, > "datalistl')
3

fields (“datalistl™,1,>"datalistfile™)
fields (datalistl™,5,>"datalistHJID')

joinlines (‘“'datalistfile,datalistHID",>>"datalistfilesort")
tsort (“datalistfilesort™,2)

fields (datalistfilesort”,1,>"datalistfiles™)

fields (“datalistl™,2,>"datalist2a'™)

fields (“datalistl”,3,>"datalist3a")

fields ("datalistl™,4,>"datalist4a™)

type “datalist2a™ | average >> "datalist2b"
t3a" | average >> "datalist3b"
type “"datalist4a™ | average >> "datalist4b”
fields ('datalist2b™,1,>"datalistFWHVM'")
t3b™,1,>"datal iStRDNOISE™)
fields ("datalist4b™,1,>"datalistGAIN™)

joinlines (“'datalistFWHM,datalistRDNOISE,datalistGAIN", >>"datatotal')

list = "datatotal"
while (fscan(list,sl1,s2,s3)!=EOF){

autoalign (“'datalistfiles”,"a-",real(sl),real(s2),real(s3),1.5,50,"bug_log™)
3

del data*

del input_shift

del tmp*

del obj*.fits_*afnl*
del obj*.fits.*coo*
del obj*.fits.*smag*
del obj*.fits.*rmag*
del bug_log

beep

73

A.1.12 autoalign

procedure autoalign (ilist, prefix, fwhm, readnoise, gain, xytol, objectn, bug_log, succeed)

autoalign.cl -

Documentation

the list:

#Field name, and list of images in the following lines, etc.
Example:

#GRB990316

990316.015

990316.016

990316.017

#AD Leo

990316.018

990316.019

INSTALL: edit and add the following lines to the login.cl
task $xyshift = $/home/wise-cdr/eran/iraf/bin/xyshift
task autodaofind = /home/wise-cdr/eran/iraf/script/autodaofind.cl

Written By Eran Ofek, October 1998, Last update: 061098

HEHHHHE BT EEEEE®

string ilist {",prompt="list of images to align"}

string prefix {a",prompt="prefix for shifted output images"}

real fwhm {1.5,prompt="PSF FWHM in pixels"}

real readnoise {29.0609,prompt=""CCD read out noise in electrons"}
real gain {4.0364,prompt="CCD gain in electrons per count"}
real xytol {1.5, min=0.0,prompt="matching tolerance for pgshift"}
int objectn {50, prompt="Max. Number of stars to match"}

string bug_log {"buglog”,prompt="logfile name"}

bool succeed {no,prompt="succeeded to find astrometric solution"}
real shiftx

real shifty

struct *lisl
struct *lis2
struct *1is3
struct *lis4

begin
string imname

string refimage
string magfile

real avshiftx # shift in X axis.

real avshifty # shift in Y axis.

real pershift # number of stars used to shift the image.
bool last_ast

int match_n # number of stars matched

string images
images = ilist

end

delete (bug_log,verify=no,>>&"/dev/null")

#.

#create list without “#°

.

#delete (“tmp_ilist®,verify=no,>>&"/dev/null™)
#1is2 = ilist

#while (fscan(lis2, imname)!=EOF)

#:

if (substr(imname,1,1) == "#7)
{
#jump to next line

else

{

HHHHHEH
~

74

print (imname, >> "tmp_ilist")
#

#}

call autodaofind

#lisl = "tmp_ilist”

lisl = ilist

while (fscan(lisl, imname)!= EOF)

autodaofind(imname=imname,out_file="default”, fwhm=fwhm, readnoise=readnoise,gain=gain,threshold_sig=10)

find shifts between images
lis3 = ilist

last_ast = yes

while (fscan(lis3, imname)!=EOF)

print (* D)
print (* Field Line : ",imname)

print (* D)
if (substr(imname,1,1) == "#")

next field
last_ast = yes

}

else

if (last_ast==yes)

{
last_ast = no
set image to be reference image
refimage = imname

print D]
print (“Reference Image : ", refimage)
print (D]

magfile = imname // *.coo.1"
#

Prepare the image list file for pgshift
.

print(“Prepare catalog for findshift')
delete (“tmp_object”,verify=no,>>&"/dev/null™)

print(imname, > "tmp_object")

#creating the .smag file
delete (imname//".smag.1",verify=no,>>&"/dev/null™)
txdump(textfile=magfile,fields="1D,XCENTER, YCENTER,MAG,MERR,MSKY ,NITER, SHARPNESS,CHI"*,expr="MAG[1]
I1=INDEF",headers=yes,
>>imname//" .smag.1")

delete (imname//".rmag.1",verify=no,>>&"/dev/null™)
txdump(textfile=magfile, fields="1D,XCENTER, YCENTER,MAG,MERR ,MSKY,NITER, SHARPNESS,CHI",expr="MAG[1]
I1=INDEF" ,headers=no, >>imname//".rmag.1%)

print(" sorting "//imname//".rmag.1%)
delete (imname//*.afnl.1%,verify=no,>>&"/dev/null")

creating the .afnl file
sort the rls file by decreasing magnitude
sort(input_fi=imname//" .rmag.1",column=4,numeric=yes, >> imname//".afnl.1%)

imcopy (input=imname, output=prefix//imname)

shiftx
shifty

0
0

hedit (prefix//imname,"X_PIXEL_SHIFT",shiftx)
hedit (prefix//imname,"Y_PIXEL_SHIFT",shifty)
3
else

{

magfile = imname // " .coo.1"

5

Prepare the image catalog file for pgshift

* 3

print(“Prepare catalog for findshift')
delete (“tmp_object”,verify=no,>>&"/dev/null™)

print(imname, > "tmp_object”)

#creating the .smag file

delete (imname//".smag.1",verify=no,>>&"/dev/null™)

txdump(textfile=magfile,fields="1D,XCENTER, YCENTER,MAG,MERR ,MSKY,NITER, SHARPNESS,CHI ", expr="MAG[1]
I1=INDEF",headers=yes,
>imname//" .smag.1")

delete (imname//".rmag.1",verify=no,>>&"/dev/null")
txdump(textfile=magfile, field 1D, XCENTER, YCENTER ,MAG ,MERR ,MSKY ,NITER, SHARPNESS,CHI"" ,expr="MAG[1]
I1=INDEF",headers=no, >>imname//".rmag.1")

print(" sorting "//imname//".rmag.1%)
delete (imname//".afnl.1",verify=no,>>&"/dev/null™)

creating the .afnl file
sort the rls file by decreasing magnitude
sort(input_fi=imname//" .rmag.1",column=4,numeric=yes, >> imname//"_.afnl.1")

print (* Computing Shifts for image : ~,imname)
delete ("input_shift",verify=no,>>&"/dev/null’)
print (imname//*.afnl.1", >> "input_shift")
print (refimage//".afnl.1", >> “input_shift")
print (xytol, >> "input_shift")

print(imname//" .afnl.1","\n" ,refimage//" .afnl.1","\n" ,xytol, "\n",objectn) | xyshift | scan(avshiftx,
avshifty, pershift, match_n)

print("---—--——————- shift in pixels ———-———————————— ™)

print(" X =", avshiftx)

print(" Y = ", avshifty)

print(" % = ', pershift)

print(” n = ", match_n)

print(“Image : ", imname,” shifth *,pershift, >> bug_log)
shift the image

print (° > Shifting image : ", imname)
imshift(input=imname, output=prefix//imname, xshift=-avshiftx, yshift=-avshifty)

shiftx = 0 - avshiftx
shifty = 0 - avshifty

hedit (prefix//imname," X_PIXEL_SHIFT",shiftx)
hedit (prefix//imname,"Y_PIXEL_SHIFT",shifty)
}
}

succeed = yes

print(End... Bye.™)
beep
beep

76

A.1.13 autodaofind

procedure autodaofind

autodaofind.cl - Automatic daofind for image.

#

#

#

#

By : Eran 0. Ofek

Written: August 1998, Last Update: Aug 10th, 1998

.

string imname {"",prompt="image name"}

string out_file {"default”,prompt="output file name"}

real fwhm {3.0,prompt="PSF FWHM in pixels"}

#real readnoise {6.50,prompt="CCD read out noise in electrons"}
#real gain {8.42,prompt=""CCD gain in electrons per count"}
#real threshold_sig {4.0,prompt="threshold on sigma above background"}
real readnoise {30,prompt="CCD read out noise in electrons"}
real gain {5,prompt="CCD gain in electrons per count"}

real threshold_sig {10,prompt="threshold on sigma above background"}

struct *lisl

begin
real sky_noise
real im_sigma

hselect ((imname),"SKYDEV",yes,>>"datalistSKYDEV')

tabpar (“datalistSKYDEV'",1,1)

sky_noise = real(tabpar.value)

#findthresh (images=imname, gain=gain, readnoi=readnoise, ,coaddtype="average", nframes=1, center="mode",
verbose=no) | scan(sky_noise, im_sigma)

print (* Find stars using Daofind*)

delete (imname//*".coo.*",verify=no,>>&"/dev/null™)

daofind(image=imname,output=out_fFile,verify=no, verbose=yes, sigma=sky_noise, scale=1, fwhmpsf=fwhm,
readnoi=readnoise, epadu=gain, thresho=threshold_sig)

print("END autodaofind™)

end

7

A.1.14 xyshift.f

c this program calculate the shift between two coordinate-files
c written By Uri Giveon
c modified Eran Ofek

program xyshift
Cc23456789 123456789 123456789 123456789 123456789 123456789 123456789
IMPLICIT NONE

integer MaxN
parameter (MaxN=250)

integer id,i,j,k,1,m,n
character*70 ImName
character*70 ImRef

integer ObjectN

real x1(MaxN)

real yl(MaxN)

real x2(MaxN)

real y2(MaxN)

real shiftx

real deltax(MaxN,MaxN)

real deltay(MaxN,MaxN)

real shifty

real numl

real num(MaxN, MaxN)

real objectl

real object2

real sumx(MaxN, MaxN)

real sumy(MaxN, MaxN)

real sumx1

real sumy1

real avshiftx

real avshifty

real pershift

real Tolerance
C——-——- read data from line

read (5,7(a70)") ImName
read (5,(a70)") ImRef
read (5,*) Tolerance
read (5,*) ObjectN

open(2, Ffile=ImName, status="old")
open(3, Ffile=ImRef, status="old")

objectl=1.
object2=1.
50 continue
read(2,*,end=100)id,x1(objectl),yl(objectl)
if(objectl.eq.-ObjectN)then

goto 110
endif
objectl=objectl+1
goto 50
100 objectl=objectl-1
110 continue

read(3,*,end=200)id,x2(object2),y2(object2)
if(object2.eq.ObjectN)then
goto 210
endif
object2=object2+1
goto 110
200 object2=object2-1

210 close (2)
close (3)

C—————- calculate all the possible differences
do i=1,objectl
do j=1,object2
deltax(i,j)=x1(i)-x2()
deltay(i,J)=y1(i)-y2(4)
enddo
enddo

78

find the shift

numl=1.
do k=1,objectl
do I=1,object2

[—
>
>

600

[

[—

num(k, D=1.
sumx(k,)=deltax(k, 1)
sumy(k, D=deltay(k,)
do m=k,objectl
if(m.eq.k)then
goto 600
endif
do n=1,object2
if(deltax(m,n).le.deltax(k,)+Tolerance.and.deltax(m,n)
.ge.deltax(k, 1)-Tolerance)then
if(deltay(m,n).le.deltay(k, 1)+Tolerance.and.deltay(m,n)
.ge.deltay(k, I)-Tolerance)then
num(k, D)=num(k, 1)+1
sumx(k, D)=sumx(k, I)+deltax(m,n)
sumy(k, D)=sumy(k, I)+deltay(m,n)
goto 600
endif
endif
enddo
enddo
if(num(k, 1) .gt.numl)then
numl=num(k, I)
sumx1=sumx(k, 1)
sumyl=sumy(k,)
shiftx=deltax(k, 1)
shifty=deltay(k, 1)
endif
enddo
enddo

compute the average shifts & the star percent contributing to it
avshiftx=sumx1/numl

avshifty=sumyl/numl

pershift=100*numl/objectl

output data

write(6,"(f8.2,3x,8.2,5x,18.2,5x,f6.1)")
avshiftx,avshifty,pershift,numl

end

79

A.1.15

ap_apphot

#DOCUMENTATION:ap_apphot_v_4.cl
ap_apphot_v_4_clbyPaul lIverson

procedure ap_apphot_v_4(search_align_phot,coordinate_file,phot_method,pier_side_method, flux_per, fwhm_mult)

string search_align_phot {prompt="Enter
string coordinate_file {prompt:

search parameters for the aligned frames to phot (i.e. a-*star*B)"}
the name of the coordinatefile (i.e. ds9.reg)"}

string phot_method {promp the phot method to be used™,enum="Flux]FWHM"}
string flux_per {promp the percentage of flux to use for each star™,enum="80]85]90]95]98"}
string fwhm_mult {promp the multiple of fwhm to use for each star",enum="1.0|1.5]2.0]2.5]3.0"}
string pier_side_method {prompt="Phot frames by pier side",enum="Yes|No"}
begin

string searchalignphotometry

string coordinate

string phot_meth

string flux_percent

string fwhm_multiple

string pier_side
end

#variable declarations

int
int
int
int
int
int
real
real
real
real
real
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string
struct
struct
struct

i=1

n=1

m=1

1=1
xlen,ylen
cont=0
skypix
xloc,yloc
dann=1
xshift,yshift
xstar,ystar
s1=""

files
filter
checkfilter=""

inttime=
checkinttime=""
Istfiles=""
star="""
checkstar=""
magnitude="""
HJID="""
airmass=
pier=""
checkpier=
datestring
timestring=""
Xzt

#deletes possibly incompatible datalists
delete (“'data*')

delete (onframe*')

delete (“'nomo*")

delete (“radius.*")

delete (““fwhm.*")

delete ("*temp*'")

delete (“star-*"")

searchalignphotometry=search_align_phot
coordinate=coordinate_file
phot_meth=phot_method

80

if (phot_meth=="Flux"){
Flux_percent=Flux_per
3

it (phot_meth=="FWHM"){
ple=fwhm_mult

pier_side=pier_side_method

sections ((searchalignphotometry)//"*_fits",opt="fullname",>>"datalistfile)
if (sections.nimages>0){

hselect
((searchalignphotometry)//"*_fits","$1,FWHM,GAIN, SKYDEV,HJID,RDNOISE , X_PIXEL_,Y_PIXEL_,PIER,SUBSET",yes,>>"datat
otal™)

tsort (“'datatotal’,5)

hselect ((searchalignphotometry)//"*_fits","PIER",yes,>>"datapier™)
tsort (“datapier’,1)
list2=""datapier”
while (fscan(list2,s1)!=EOF){

pier=(sl)

if (pier!=checkpier){

print (pier,>>"datalistpier™)
3

éheckpier:pier

}

#datalist contains files, fwhmpsf, epadu, sigma, HJD, rdnoise, pixel shifts, pier, subset
sections (“@datatotal'™)
if (sections.nimages>0){

listl="datatotal"

while (fscan(listl,sl,s2,s3,s4,s5,s6,s7,s8,s9,s10) 1=EOF){

clear

print C'Fi ",sl)
print ("HJD:",s5)
print (")

print (“'Subset:",s10)
print (

print (Pier:",s9)
print (

print ("FWHM:",s2)
print (

print (“Gain:",s3)
print (“"RDNoise:",s6)
print ('Sky Deviation:",s4)
print (')

print ("X Pixel Shift:",s7)
print ('Y Pixel Shift:",s8)

sleep (1)

centerpars.calg="centroid"
centerpars.cbox=3*real (s2)
#cthresholdsettingfromHintz™snewton
centerpars.cthreshold=0.75
centerpars.cmaxiter=20
centerpars.maxshift=8.5

fitskypars.salgorithm="mode"
fitskypars.annulus=10*real (s2)
fitskypars.dannulu=dann
#sloclipandshiclipsettingfromHintz"snewton
Fitskypars.sloclip=0.

fitskypars.shic

photpars.weighting=""constant"
photpars.apertur=3*real (s2)
photpars.zmag=30

datapars. fwhmpsf=real (s2)
datapars.sigma=real (s4)

81

datapars.
datapars.
datapars.ccdread="RDNOISE"
datapars.gain=""GAIN"
datapars.readnoise=real (s6)
datapars.epadu=real (s3)
datapars.exposure="EXPTIME"
datapars.airmass="AIRMASS"
datapars.filter="SUBSET"
datapars.obstime="HJD"

psfmeasure.radius=5
psfmeasure.sbuffer=5
psfmeasure.swidth=5

files=(sl)
xshift=real (s7)
yshift=real (s8)

pier=(s9)
if (m==1){

imgets (Ffiles,param="i_naxisl"™)
xlen=int (imgets.value)
imgets (Ffiles,param=""i_naxis2")
ylen=int (imgets.value)

list2=(coordinate)

while (fscan(list2,X,Y)!=EOF){
print (X,>"datalistx")
print (Y,>"datalisty")
joinlines (“datalistx,datalisty”,>"star-""//n//".reg")

delete (“'datalistx™)
delete (“'datalisty™)

n=n+1

T (xshift<0 && xshift<0-0.5*xlen){
delete (files)
next

f (xshift>0 && xshift>0.5*xlen){
delete (files)
next

T (yshift<0 && yshift<0-0.5*ylen){
delete (files)
next

[

T (yshift>0 && yshift>0.5*ylen){
delete (files)
next

T (phot_meth=="Flux"){
print (3*real (s2),>>"temp_frame_fwhm_aperture_flux"//flux_percent//".info")
print (real(s2),>>"temp_frame_fwhm_flux//flux_percent//"_info'")
print ((s10),>>"temp_frame_subset_flux"//flux_percent//".info")
print ((s5),>>"temp_HJD.info'"")

-

f (phot_meth=="FWHM""){
print (3*real(s2),>>"temp_frame_fwhm_aperture_FWHM"//fwhm_multi
print (real(s2),>>"temp_frame_fwhm_FWHM"//fwhm_multiple//*_info')
print ((s10),>>"temp_frame_subset_FWHM"//fwhm_multiple// . info'")

le//".info™)

82

print ((s5),>>"temp_HJD.info"")

sections ('@"'//(coordinate))

for (n=1;n<=sections.nimages;n+=1){
tabpar ((coordinate),1,n)
xstar=real (tabpar.value)
tabpar ((coordinate),2,n)
ystar=real (tabpar.value)

if (phot_meth=="Flux™){
if (xshift<=0&&xstar>xlen+xshift-10){
print (3*real(s2),>"star_radi-"//n)
cont=1
print (3*real(s2),>>"temp_radii_star-"//n//"_flux"//flux_percent//".info")
print ((s5),>>"temp_star-"//n//"_HJID.info")

-

T (xshift>=08&8&xstar<0+xshift+10&&cont!=1){
print (3*real(s2),>"star_radi-"//n)
cont=1
print (3*real(s2),>>"temp_radii_star-"//n//"_flux"//flux_percent//"_info™)
print ((s5),>>"temp_star-"//n//"_HJID.info")

3
if (xstar>xlen-10&&cont!=1){
print (3*real(s2),>"star_radi-"//n)
cont=1
print (3*real(s2),>>"temp_radii_star-"//n//"_flux"//flux_percent//"_info")
print ((s5),>>"temp_star-'"//n//"_HJID.info")
3

T (xstar<10&&cont!=1){
print (3*real(s2),>"star_radi-"//n)
cont=1
print (3*real(s2),>>"temp_radii_star-"//n//"_flux"//flux_percent//".info")
print ((s5),>>"temp_star-"//n//"_HJID.info™)

-

T (yshift<=0&&ystar>ylen+yshift-10&&cont!=1){
print (3*real(s2),>"star_radi-"//n)
cont=1
print (3*real(s2),>>"temp_radii_star-"//n//"_flux"//flux_percent//".info")
print ((s5),>>"temp_star-"//n//"_HJID.info™)

-

f (yshift>=0&&ystar<0+yshift+10&&cont!=1){
print (3*real(s2),>"star_radi-"//n)
cont=1
print (3*real(s2),>>"temp_radii_star-"//n//"_flux"//flux_percent//".info")
print ((s5),>>"temp_star-""//n//"_HJID.info™)

-

f (ystar>ylen-10&&cont!=1){
print (3*real(s2),>"star_radi-"//n)
cont=1
print (3*real(s2),>>"temp_radii_star-"//n//"_flux"//flux_percent//".info™)
print ((s5),>>"temp_star-"//n//"_HJID.info"")

f (ystar<10&&cont!=1){
print (3*real(s2),>"star_radi-"//n)
cont=1
print (3*real(s2),>>"temp_radii_star-"//n//"_flux"//flux_percent//"_info")
print ((s5),>>"temp_star-"//n//"_HJID.info")

T (cont==0){
print ('g",>>"nomoregs")
clear
print (Current file",files)
print (“Calculating PSF Flux of star: star-",n,".reg")

psfmeasure (files,disp-,level=int (flux_percent),size="Radius", imagecur="star-
"//n//" .reg",graphcur="nomoreqgs",>"dataradA")

83

sed -e "/NOAO/d" -e "/Image/d" -e "/Average/d" -e "/flux/d* -e "s/" '"/d/g" -e

/ddddddddddddddd/g* “dataradA™ >> “dataradB™

3

list2="dataradB"
while (fscan(list2,s3)!=E0F){
temp=(s3)
i=strlen(temp)
if (11=1&&1<=2){
temp=substr (temp,41,i-15)
print (temp,>>"dataradC')

sed -e "s/d//g" "dataradC" >> "dataradD"
rename (“'dataradD","star_radi-""//n)

print (xstar,>>"onframexstar')
print (ystar,>>"onframeystar')

tabpar (“star_radi-"//n,1,1)

temp=tabpar .value

print (temp,>>"temp_radii_star-""//n//"_flux"//flux_percent//".info")
print ((s5),>>"temp_star-"//n//"_HJID.info™)

3
if (n==1){
rename (“'star_radi-1","radius.info™)
3
if (n1=1){
concat (“radius.info"//","//"star_radi-"//n,>"tempradii'’)
delete (“radius.info")
rename (“tempradii’,”radius.info'")
3
delete (“'datarad*'")
cont=0

if (phot_meth=="FWHM""){
if (xshift<=0&&xstar>xlen+xshift-10){

}

print (3*real(s2),>"star_fwhm-"//n)

cont=1

print (3*real(s2),>>"temp_fwhm_star-"//n//"_FWHM"//fwhm_multiple//"_info™)
print ((s5),>>"temp_star-'""//n//"_HJID.info")

if (xshift>=08&&xstar<0+xshift+10&&cont!=1){

}

print (3*real(s2),>"star_fwhm-"//n)

cont=1

print (3*real(s2),>>"temp_fwhm_star-"//n//"_FWHM"//fwhm_multiple//" _info™)
print ((s5),>>"temp_star-"//n//"_HJID.info")

if (xstar>xlen-10&&cont!=1){

}

print (3*real(s2),>"star_fwhm-"//n)

cont=1

print (3*real(s2),>>"temp_fwhm_star-"//n//"_FWHM"//fwhm_multiple//" . info™)
print ((s5),>>"temp_star-"//n//"_HJID.info")

if (xstar<10&&cont!=1){

}

print (38*real(s2),>"star_fwhm-"//n)

cont=1

print (3*real(s2),>>"temp_fwhm_star-"//n//"_FWHM"//fwhm_multiple//".info")
print ((s5),>>"temp_star-"//n//"_HJID.info™)

if (yshift<=0&&ystar>ylen+yshift-10&&cont!=1){

print (3*real(s2),>"star_fwhm-"//n)

84

cont=1
print (3*real(s2),>>"temp_fwhm_star-"//n//"_FWHM"//fwhm_multiple//".info")
print ((s5),>>"temp_star-"//n//"_HJID.info™)

3

if (yshift>=0&&ystar<0+yshift+10&&cont!=1){
print (3*real(s2),>"star_fwhm-"//n)
cont=1
print (3*real(s2),>>"temp_fwhm_star-"//n//"_FWHM"//fwhm_multiple//"_info™)
print ((s5),>>"temp_star-""//n//"_HJID.info")
by
if (ystar>ylen-10&&cont!=1){
print (3*real(s2),>"star_fwhm-"//n)
cont=1
print (3*real(s2),>>"temp_fwhm_star-"//n//"_FWHM"//fwhm_multiple//"_info™)
print ((s5),>>"temp_star-"//n//"_HJID.info")
3

if (ystar<10&&cont!=1){
print (3*real(s2),>"star_fwhm-"//n)
cont=1
print (3*real(s2),>>"temp_fwhm_star-"//n//"_FWHM"//fwhm_multiple//" _info™)
print ((s5),>>"temp_star-"//n//"_HJID.info")

if (cont==0){
print ('q",>>"nomoregs')
clear
print ("Current file",files)
print (“Calculating PSF FWHM of star: star-",n,".reg")

psfmeasure (files,disp-,level=0.5,size="FWHM", imagecur="star-

"//n//" .reg",graphcur="nomoregs",>"datafwhmA™)

sed -e "/NOAO/d" -e "/Image/d" -e "/Average/d" -e "s/'" ''/d/g" -e "s/obj-

/ddddddddddddddd/g*® *‘datafwhmA™ >> *‘datafwhmB™

list2="datafwhmB"
while (fscan(list2,s3)!=E0F){
temp=(s3)
i=strlen(temp)
it (1'=1&&1<=2){
temp=substr (temp,41,i-15)
print (temp,>>"datafwhmC'")

3
1=1

sed -e "s/d//g" “datafwhmC" >> *‘datafwhmD"
rename (“datafwhmD","star_fwhm-"//n)

print (xstar,>>"onframexstar')
print (ystar,>>"onframeystar')

tabpar (‘“star_fwhm-"//n,1,1)

temp=tabpar .value

print (temp,>>"temp_fwhm_star-"//n//"_FWHM"//fwhm_multiple//" _info™)
print ((s5),>>"temp_star-"//n//"_HJID.info™)

if (n==1){
rename (“star_fwhm-1","fwhm.info'")
3
if (n1=1){
concat (“fwhm.info"//","//"star_fwhm-""//n,>"tempfwhm')
delete (fwhm.info')
rename (tempfwhm™,"fwhm.info'")
3

delete (“'datafwhm*')

85

cont=0

n=1
joinlines (“onframexstar,onframeystar',>"onframe.reg")
phot (files,coords="onframe.reg", interac-,verif-)

txdump (Files//"_mag.1","nsky",yes,>>"nsky.info")
type nsky.info" | average > "sky.info"

tabpar (“'sky.info",1,1)
skypix=real (tabpar.value)

delete (“*sky*')
while (skypix<500){

dann=dann+1
Fitskypars.dannulu=dann

clear
print ('Determining proper annulus and dannulus™
print (')

delete (files//".mag.1")
phot (files,coords="onframe.reg", interac-,verif-)

txdump (Files//".mag.1","nsky",yes,>>"nsky. info")
type "nsky.info" | average > ''sky.info"

tabpar (“'sky.info",1,1)
skypix=real (tabpar.value)

delete (“"*sky*'")
3
while (skypix>505){

dann=dann-0.1
Fitskypars.dannulu=dann

clear
print (Determining proper annulus and dannulus™
print (")

delete (files//".mag.1")
phot (Ffiles,coords="onframe.reg", interac-,verif-)

txdump (Files//" _mag.1","nsky",yes,>"nsky.info")
type "nsky.info" | average > *sky.info"

tabpar (“'sky.info",1,1)
skypix=real (tabpar.value)

delete ("*sky*'")
3
delete (Files//".mag.1")

if (phot_meth=="Flux"™){
list2="radius. info"

¥

if (phot_meth=="FWHI'"){
list2="fwhm. info"

}

while (fscan(list2,s1)1=EOF){
photpars.apertur=real (sl)
clear
print (Photting: star-"//n//".reg")
phot (Files,output=Ffiles//*" _mag."//n,coords="star-"//n//".reg", interac-,verif-)

if (n==1){
rename (files//" _mag.1","magfile')
3

86

if (n1=1){
pconcat (“'magfile"//","//files//" .mag."//n,""tempmag")
delete ('magfile™)
rename (‘"tempmag","magfile’)
3
ﬁ=n+l
n=1
delete (files//".mag*")
prenumber (“'magfile’™)
iT (phot_meth=="Flux"&&pier_side=="Yes"){
rename ('magfile”,files//"_"//pier//"_flux"//flux_percent//".mag.1")
}

i (phot_meth=="Flux"&&pier_side=="No"){
rename (“'magfile”,files//"_NA_flux"//flux_percent//" _mag.1")
3

if (phot_meth=="FWHM"&&pier_side=="Yes"
rename (“'magfile”,files//"_"//pier//"_FWHM"//fwhm_multiple//" .mag.1")
3

if (phot_meth==""FWHM"&&pier_sid ""No™"){
rename (“'magfile”,files//"_NA_FWHM"//fwhm_multiple//* _mag.1")
3

delete (“onframe*star™)
delete (“star_*")

if (phot_meth==
delete (
3

it (phot_meth=="FWHM"){
delete ('fwhm.info™)
3

Flux'™){
radius.info™)

delete (“onframe.reg™)
dann=1

}

if (pier_side=="Yes"){
listl="datalistpier"”
while (fscan(listl,sl1)!=EOF){
pier=(sl)
if (phot_meth=="Flux"){
sections
¢>*"//pier//"_Fflux"//flux_percent//" _mag*",opt="ful Iname",>>"datalist_"//pier//"_magfiles')
3

if (phot_meth=="FWHM"){
sections
"//pier//"_FWHM"//fwhm_multiple//" .mag",opt="ful Iname",>>"datalist_"//pier//"_magfiles™)
3

iist2:"datalistﬁ"//pier//"fmagfiIes"
while (fscan(list2,s2)!1=EOF){
Files=(s2)

txdump (Files,"id,mag,otime,xairmass,ifilter,itime”,yes,>>"star.lIst")
}
#changes INDEFs to 30.0 since photpars.zmag = 30
clear
print (“'Changing INDEFs to zmag = 30 in .Ist files")
sleep (1)

sed -e "s/INDEF/30.0/g" “star.lIst" > "startemp.lIst"

87

delete (“star.lIst™)
rename (“startemp.lst”,"star.lIst")

fields (“star.lst",5,>"datalist_"//pier//"_filter"™)
tsort (“datalist_//pier//"_filter”,1)
list2="datalist_'"//pier//"_filter"
while (fscan(list2,s2)!1=EOF){

filter=(s2)

if (checkfilter!=Ffilter){
print (filter,>>"datalist_"//pier//"_filtertable™)

checkfi lter=Ffilter

checkfilter=""

fields (star.Ist"”,6,>"datalist_"//pier//"_inttime")
tsort (“datalist_"//pier//"_inttime",1)
list2="datalist_"//pier//"_inttime"
while (fscan(list2,s2)!1=EOF){

inttime=(s2)

if (checkinttime!=inttime){
print (inttime,>>"datalist_"//pier//"_inttimetable'™)

checkinttime=inttime
3
checkinttime=""

list2="datalist_"//pier//"_filtertable"
while (fscan(list2,s2)!1=EOF){
filter=(s2)
list3="datalist_"//pier//"_inttimetable"
while (fscan(list3,s3)1=EOF){
inttime=(s3)

if (phot_meth Tux'){
match (Filter,"star.lIst",>"startemp.lIst™)
match (inttime,"startemp.lIst",>"startemp2.Ist™)
fields ('startemp2.lst”,"1-
5",>"star"//filter//"_"//inttime//"_"//pier//"_flux"//flux_percent//" _Ist™)
sections
(@star”//fFilter//" " //inttime//" "/ /pier//"_Flux'//flux_percent//" _Ist™)
if (sections.nimages==0){
delete
//pier//"_flux'//flux_percent//" . 1st™)

('star//Tilter//"_"//inttime//"
}

}
i

T (phot_meth=="FWHM"){
match (Filter,"star.lIst”,>"startemp.lIst™)
Ist",>"startemp2.Ist™)

5",>"star"//fiIter//"_"//inttime//"_"//pier//"_FWHM"//fwhm_muItiple//"_Ist")

(@star//filter//"_"//inttime//"_"//pier//" _FWHM"//fwhm_multiple//" . Ist™)
if (sections.nimages==0){
delete
('star//filter//"_"//inttime//"_"//pier//"_FWHM"//fwhm_multiple//” _Ist™)
3

}

delete (“startemp.lIst™)
delete (‘“startemp2.lst")

¥

delete (“star.lIst")

if (phot_meth=="Flux"){
tsort ("*_"//pier//"_flux'//flux_percent//" . 1st","3,1")
sections ("*_"//pier//"_flux"//flux_percent//" _Ist"” ,>>"datalistlstfiles™)

88

if (phot_meth=="FWHM"){
tsort ("*_"//pier//"_FWHM"//fwhm_multiple//” _Ist”,"3,1™)
sections ("*_"//pier//"_FWHM"//fwhm_multiple//" . Ist",>>"datalistlstfiles™)

}
it (pier_side=="No"){
if (phot_meth=="Flux"){
sections ("*NA_flux"//flux_percent//" .mag*",opt="ful Iname",>>"datalistmagfiles™)
3

it (phot_meth=="FWHM"){
sections ("*NA_FWHM"//fwhm_multiple//" _mag*",opt="ful Iname",>>"datal istmagfiles')
3

listl="datalistmagfiles"
while (fscan(listl,sl1)!=EOF){
files=(sl)

txdump (Files,"id,mag,otime,xairmass,ifilter,itime",yes,>>"star.lIst")

}

#changes INDEFs to 30.0 since photpars.zmag = 30
clear

print ('Changing INDEFs to zmag = 30 in .Ist files™)
sleep (1)

sed -e "s/INDEF/30.0/g" “star.lIst" > "startemp.lst"
delete (“star.lst'™)
rename (“startemp.lst”,"star.lIst’™)

fields ('star.lIst”,5,>"datalistfilter™)

tsort (“datalistfilter”,1)

listl="datalistfilter”

while (fscan(listl,sl1)!=EOF){
filter=(sl)

if (checkfilter!=Filter){
print (filter,>>"datalistfiltertable™)

checkfilter=Ffilter
3

fields (star.lIst”,6,>"datalist_inttime™)

tsort (“'datalist_inttime”,1)

listl="data i i

while (fscan(listl,s1)!=EOF){
inttime=(sl)

if (checkinttime!=inttime){
print (inttime,>>"datalist_inttimetable™)

checkinttime=inttime
checkinttime="""

listl="datalistfiltertable"”
while (fscan(listl,sl1)!=EOF){
filter=(sl)
list2="datalist_inttimetable"
while (fscan(list2,s2)!1=EOF){
inttime=(s2)
if (phot_meth=="Flux™){
match (Ffilter,"star.lIst"
match (inttime,"startem
fields (“startemp2.lst’ -
5" ,>"star"//filter//"_"//inttime//"_NA_Fflux"//flux_percent//"_Ist")
sections (“@star"//filter//"_"//inttime//"_NA_flux"//flux_percent//".Ist")
if (sections.nimages==0){
delete (“star"//filter//"_"//inttime//"_NA_flux"//flux_percent//" . Ist")
by

>"startemp. Ist™)
t",>"startemp2. Ist™)

89

3

if (phot_meth=="FWHM"){
match (filter,"star.lIst",>"startemp.lIst’)
match (inttime,"startemp.lIst",>"startemp2.Ist")
fields ('startemp2.lst”,"1-
5",>"star"//filter//"_"//inttime//"_NA_FWHM"//fwhm_multiple//" _Ist™)
sections (“@star"//filter//"_"//inttime//"_NA_FWHM"//fwhm_multiple//"_Ist™")
if (sections.nimages==0){
delete ('star"//filter//"_"//inttime//"_NA_FWHM"//fwhm_multiple//".1st™)
3

¥

delete (“'startemp.lst™)
delete (“startemp2.lst™)

3
delete (“star.lst™)
it (phot_meth= Tux'

)
tsort ("*_NA_flux"//flux_percent//" .1st","3,1")
sections ("*_NA_flux"//flux_percent//".Ist",>>"datalistlstfiles™)

}

it (phot_meth=="FWHM"){
tsort ("*_NA_FWHM"//fwhm_multiple//" _Ist”,"3,1")
sections ("*_NA_FWHM"//fwhm_multiple//" . Ist",>>"datalistlstfiles™)

}

clear

print (“Removing possible duplicates in .Ist files")
sleep (1)

listl="datalistlstfiles"
while (fscan(listl,s1)!=EOF){
Istfiles=(s1)
list2=Istfiles
while (fscan(list2,s2,s3,s4,s5,s6)1=EOF){
star=(s2)
magnitude=(s3)
HJD=(s4)
airmass=(s5)
filter=(s6)

if (star!=checkstar){
print (star,>>"dataliststar™)
print (magnitude,>>"datalistmag')
print (HJD,>>"datalistHJID")
print (airmass,>>"datalistairmass™)
print (filter,>>"datalistfilter™)
}

checkstar=star

joinlines (“dataliststar,datalistmag,datalistHJD,datalistairmass,datalistfilter”, >Istfiles//" corr')

delete (“dataliststar™)
delete (“'datalistmag'™)
delete (“datalistHJD™)
delete (“'datalistairmass™)
delete (“datalistfilter™)

delete (Istfiles)
rename (Istfiles//"._corr”,Istfiles)

}

clear

print (“Creating .info files")
print (")

sleep (1)

90

sections ("@"//(coordinate))
for (n=1;n<=sections.nimages;n+=1){
it (phot_meth=="Flux"&&pier_side=="Yes"){
print (“"Creating radii_star-"//n//"_EW_flux"//flux_percent//".info")
joinlines ("temp_star-"//n//"_HJD.info,temp_radii_star-
“//n//"_Flux"//Flux_percent//" . info",>"radii_star-"//n//"_EW_flux"//flux_percent//".info")

if (phot_meth==""FWHM"&&pier_side=="Yes"){
print (“Creating fwhm_star-"//n//"_EW_FWHM"//fwhm_multiple//*"_info™)
joinlines ("temp_star-"//n//"_HJID.info,temp_fwhm_star-
“//n//"_FWHM"//fwhm_multiple//* . info™,>"fwhm_star-"//n//"_EW_FWHM"//fwhm_multiple//"_info™)
3

if (phot_meth=="Flux"&&pier_side=="No"){
print (“Creating radii_star-"//n//"_NA_flux"//flux_percent//"_info™)
joinlines (“temp_star-"//n//"_HJID.info,temp_radii_star-
“//n//"_Flux"//Flux_percent//" . info" ,>"radii_star-"//n//"_NA_flux"//flux_percent//"_info")
3

it (phot_meth=="FWHM"&&pier_side=="No""){
print (“Creating fwhm_star-"//n//"_NA_FWHM"//fwhm_multiple//"_info™)
joinlines (“temp_star-"//n//"_HJID.info,temp_fwhm_star-
“//n//"_FWHM"//fwhm_multiple//" . info",>"fwhm_star-"//n//"_NA_FWHM"//fwhm_multiple//".info")
3

3

if (phot_meth=="Flux"&&pier_side=="Yes"){
print (")
print (Creating avg frame fwhm aperture and frame fwhm .info file™)
joinlines

(""temp_HJD. info, temp_frame_fwhm_aperture_flux"//flux_percent//".info,temp_frame_subset_flux"//flux_percent//".i
nfo",>"avg_frame_fwhm_aperture_EW_flux"//flux_percent//".info™)

joinlines
("temp_HJD. info, temp_frame_fwhm_flux"//flux_percent//" .info,temp_frame_subset_flux"//flux_percent//".info",>"av
g_frame_fwhm_EW_flux"//flux_percent//".info"")

3

it (phot_meth=="FWHM"&&pier_side=="Yes"){
print (')
print (“Creating avg frame fwhm aperture and frame fwhm .info file™)
joinlines

("temp_HJD. info, temp_frame_fwhm_aperture_FWHM"//fwhm_multi

.info",>"avg_frame_fwhm_aperture_EW_FWHM"//fwhm_multiple//’
joinlines

("temp_HJD. info, temp_frame_fwhm_FWHM"//fwhm_multiple//".info, temp_frame_subset_FWHM"//fwhm_multiple//*" info",>"

avg_frame_fwhm_EW_FWHM"//fwhm_multiple//".info'™")

}

" _info,temp_frame_subset_FWHM"//fwhm_multiple//"
info')

it (phot_meth
print (')
print (“Creating avg frame fwhm aperture and frame fwhm .info file™)
joinlines
("temp_HJD. info, temp_frame_fwhm_aperture_flux"//flux_percent//".info,temp_frame_subset_flux"//flux_percent//".i
nfo",>"avg_frame_fwhm_aperture_NA_flux"//flux_percent//".info")
joinlines
(""temp_HJD. info, temp_frame_fwhm_flux"//flux_percent//".info,temp_frame_subset flux'//flux_percent//".info",>"av
g_Fframe_fwhm_NA_flux"//flux_percent//".info'")
}

Flux"&&pier_side=="No"){

it (phot_met
print (
print (“Creating avg frame fwhm aperture and frame fwhm .info file™)
joinlines

("temp_HJD. info, temp_frame_fwhm_aperture_FWHM"//fwhm_multi

-info",>"avg_frame_fwhm_aperture_NA_FWHM"//fwhm_multiple//
joinlines

("temp_HJD. info, temp_frame_fwhm_FWHM"//fwhm_multiple//".info, temp_frame_subset_FWHM"//fwhm_multiple//* info", >"

avg_frame_fwhm_NA_FWHM"//fwhm_multiple//" . info'")

3

h=="FWHM"&&pier_side=="No"){

le//" . info,temp_frame_subset_FWHM"//fwhm_multiple//*
info™)

#deletes possibly incompatible datalists and other files
delete (“"*temp*'")
delete (“'star-*")

91

delete ("*.comp'™)
delete (“'nomoregs')

#adds date and time of when script was applied to frame headers
date "+DATE:%m/%d/%y%nTIME:%H:%M:%S" > "datalist”

tabpar (“datalist”,1,1)

datestring=tabpar.value

tabpar (“‘datalist",1,2)

timestring=tabpar.value

hedit ('*"//searchalignphotometry//"*_fits",""AP_APPHOT",datestring//""//timestring,add+,ver-)

#deletes possibly incompatible datalists
delete (“'data*'")

beep

92

A.2 Additional Scripts

A.2.1 ap_reg_apphot

#DOCUMENTATION: ap_reg_apphot_v_1.cl
ap_reg_apphot_v_1.cl by Paul Iverson

procedure ap_reg_apphot_v_1
(search_align_phot,coordinate_file,para_method,phot_method,pier_side_method, phot_aperture, fwhm_mult)

string search_align_phot {prompt=
string coordinate_file {promp
string para_method {promp
string phot_method {promp
string pier_side_method {promp
string phot_aperture {promp
string fwhm_mult {prompt="Enter the multiple of fwhm to be used as the phot
aperture”,enum="1.0]1.5]2.0]2.5]3.0"}

""Enter search parameters for the aligned frames to phot (i.e. a-*star*B)"}
Enter the name of the coordinate file (i.e. ds9.reg)"}

Enter the parameter method to be used",enum="Trad|New"}

Enter the phot method to be used",enum="SetAP|FWHM"}

Phot frames by pier side",enum="Yes|No"}

begin
string searchalignphotometry
i coordinate
para_meth
phot_meth
phot_apert
string pier_side
string fwhm_multiple

end

#variable declarations
int n=1

real
real
string
string
string
string
string
string
string
string
string
string
string
string
string checkfilter=""
string inttime=""
string checkintt
string
string
string checkstar="
string magnitude="
string HJD=""""
string airmass
string pier=""
string checkpier=
string X="
string
struct
struct
struct

#deletes possibly incompatible datalists
delete (“'data*')

searchalignphotometry=search_align_phot

coordinate=coordinate_file

para_meth=para_method

phot_meth=phot_method

if (phot_meth=="SetAP"){
phot_apert=phot_aperture

if (phot_meth=="FWHM"){
fwhm_multiple=fwhm_mult
3

5ier_side:pier_side_method

if (pier_side=="Yes"){
sections ((searchalignphotometry)//"*_fits",opt="fullname”,>>"datalistfile)

93

if (sections.nimages>0){
hselect
((searchalignphotometry)//"*_fits","$1,FWHM,GAIN, SKYDEV,HJID,RDNOISE,,X_PIXEL_,Y_PIXEL_,PIER,SUBSET",yes,>>"datat
otal™)

}

tsort (“'datatotal™,5)

hselect ((searchalignphotometry)//"*_fits","PIER",yes,>>"datapier™)
tsort (“datapier’,1)
listl=""datapier”
while (fscan(listl,sl1)!=EOF){

pier=(sl)

if (pier!=checkpier){

print (pier,>>"datalistpier™)
3

éheckpier:pier

}

#datalist contains files, fwhmpsf, epadu, sigma, HJD, rdnoise, pixel shifts, pier, subset

sections @datatotal

if (sections.nimages>0){

listl="datatotal"
while (fscan(listl,sl,s2,s3,s4,s5,s6,s7,s8,s9,s10) 1= EOF){

clear
print ("File:
print (“HJD: ™
print (™
print (“Subset: ",s10)
print
print (
print
print
print
print
print ("RDNoise: ',s6)
print ('Sky Deviation: *,s4)
print (")
print ("X Pixel Shift:
print ('Y Pixel Shift: ",s8)

sleep (1)

if (para_meth=="Trad"){

centerpars.calgorithm="centroid"
centerpars.chox=13.
centerpars.cthresho
centerpars.minsnrat
centerpars.cmaxiter=10
centerpars.maxshift=8.5
centerpars.clean=no
centerpars.rclean=1.0
centerpars.rclip=2.0
centerpars.kclean=3.0
centerpars.mkcenter=no

fitskypars.salgorithm="ofilter"
fitskypars.annulus=13.0
fitskypars.dannulus=4.0
fitskypars.skyvalue=0.0
fitskypars.smaxiter=10
fitskypars.
fitskypars.shiclip=10.0
fitskypars.snreject=50
fitskypars.
fitskypars.
fitskypars.
fitskypars.binsize=0.1
fitskypars.smooth=no
fitskypars.rgrow=0.0
fitskypars.mksky=no

datapars.scale = 1.0
datapars.fwhmpsf = 3.0
datapars.emission = yes
datapars.sigma = INDEF

94

datapars.datamin = INDEF
datapars.datamax = INDEF
datapars.noise = "poisson”
datapars.ccdread = "rdnoise"
datapars.gain = "'gain”
datapars.readnoise = INDEF
datapars.epadu = 1.0
datapars.exposure = “exptime"
datapars.airmass = "airmass"

datapars.filter =

ubset™

datapars.obstime = "hjd"
datapars.itime = INDEF
datapars.xairmass = INDEF
datapars.ifilter = "INDEF"
datapars.otime = "INDEF"
photpars.weighting = "constant™

photpars.mkapert = no

3

if (para_meth=="New"){

centerpars.
centerpars.
centerpars.
centerpars.
centerpars.
centerpars.
centerpars.
centerpars.
centerpars.
centerpars.
centerpars.

fitskypars.
-annulus=10*real (s2)
fitskypars.
fitskypars.
fitskypars.

fitskypars.
fitskypars.
fitskypars.

fitskypars.
fitskypars.
fitskypars.
itskypars.
fitskypars.

calg=""centroid"
chox=3*real (s2)
cthreshold=0.75

maxshift=8.5
clean=no
rclean=1.0
rclip=2.0
kclean=3.0
mkcenter=no

salgorithm="mode"

dannul
skyvalue=0.0
smaxiter=10

binsize=0.1
smooth=no

rgrow=0.0
mksky=no

datapars.scale = 1.0
datapars. fwhmpsf=real (s2)
datapars.emission = yes
datapars.sigma=real (s4)
datapars.datamin=INDEF
datapars.datamax=INDEF
datapars.noise “poisson™
datapars.ccdread=""RDNOISE"
datapars.gain="GAIN"
datapars.readnoise=real (s6)
datapars.epadu=real (s3)
datapars.exposure="EXPTIME"
datapars.airmass="AIRMASS"

datapars.obstime="HJD"
datapars.itime = INDEF
datapars.xairmass = INDEF

datapars.ifilter = "INDEF"
datapars.otime = "INDEF"
photpars.weighting = "constant™

photpars.mkapert = no
3
photpars.weighting="constant"

if (phot_meth==""SetAP"){
photpars.apertures=real (phot_apert)

95

3
if (phot_meth=="FWHM"){
photpars.apertures=real (fwhm_multiple)*real (s2)
3
ﬁhotpars.zmag:SO
psfmeasure.radius=5
psfmeasure.sbuffer=5
psfmeasure.swidth=5
files=(sl)

clear
print ('Photting file: ", files)

if (phot_meth==""SetAP"){

phot
(files,coords=coordinate,output=Ffiles//"_"//s9//"_aperture'//phot_apert//" .mag.1l",interac-,verif-)
3
if (phot_meth=="FWHII"){
phot
(files,coords=coordinate,output=Files//"_"//s9//"_apFWHM"//fwhm_multiple//" _.mag.1",interac-,verif-)
3

if (para_meth==""New'){
if (phot_meth==""SetAP"){
txdump
(Files//"_"//s9//" _aperture”//phot_apert//" .mag.1","nsky",yes,>>"nsky. info')
3

if (phot_meth=="FWHM"){
txdump
(Files//"_"//s9//" _apFWHM"//fwhm_multiple//" .mag.1",""nsky",yes,>>"nsky. info"")
3

iype "nsky.info" | average > "sky.info"

tabpar (“'sky.info",1,1)
skypix=real (tabpar.value)

delete ("*sky*'")
while (skypix<500){

dann=dann+1
fitskypars.dannulu=dann

clear
print (“Determining proper annulus and dannulus*
print (")

if (phot_meth=="SetAP"){
delete (Files//"_"//s9//" _aperture'//phot_apert//" .mag.1")
hot
(files,coords=coordinate,output=Ffiles//"_""//s9//"_aperture'//phot_apert//" _mag.1l",interac-,verif-)
txdump
(Files//"_"//s9//" _aperture”//phot_apert//".mag.1","nsky",yes,>>"nsky. info')
}

if (phot_meth=="FWHI'"){
delete (Files//"_""//s9//"_apFWHM"//fwhm_multiple//" .mag.-1'"")
phot
(files,coords=coordinate,output=Ffiles//"_"//s9//"_apFWHM"//fwhm_multiple//" .mag.-1",interac-,verif-)
txdump
(Files//"_"//s9//" _apFWHM"//fwhm_multiple//" .mag.1",""nsky",yes,>>"nsky. info"")
3

iype "nsky.info" | average > "sky.info"

tabpar (“'sky.info",1,1)
skypix=real (tabpar.value)

delete (“"*sky*')

96

while (skypix>505){
dann=dann-0.1
fitskypars.dannulu=dann

clear
print (“"Determining proper annulus and dannulus*
print (")

if (phot_meth=="SetAP"){

delete (Files//"_"//s9//" _aperture'//phot_apert//" .mag.1")
phot

(files,coords=coordinate,output=Ffiles//"_""//s9//"_aperture'//phot_apert//" _mag.1l",interac-,verif-)
txdump
(Files//"_"//s9//" _aperture”//phot_apert//".mag.1","nsky",yes,>>"nsky. info')
}

it (phot_meth=="FWHM"){
delete (Files//"_""//s9//"_apFWHM"//fwhm_multiple//" .mag.1'"")
phot
(files,coords=coordinate,output=Files//"_"//s9//"_apFWHM"//fwhm_multiple//" .mag.1",interac-,verif-)
txdump
(Files//"_"//s9//" _apFWHM"//fwhm_multiple//" .mag.1","nsky",yes,>>"nsky. info'")
3

iype “nsky.info" | average > "sky.info"

tabpar (“'sky.info",1,1)
skypix=real (tabpar.value)

delete (“"*sky*'")

}

listl="datalistpier”
while (fscan(listl,sl1)!=EOF){
pier=(sl)

if (phot_meth==""SetAP""){
sections
("*"//pier//"_aperture"//phot_apert//" .mag.1",opt:
3

ullname",>>"datalist_"//pier//"_magfiles™)

it (phot_meth=="FWHI"){
sections
"/ /pier//"_apFWHM"//fwhm_multiple//*" .mag.1",opt="ful Iname",>>"datalist_"//pier//"_magfiles™)
3

list2="datalist_"//pier//"_magfiles"
while (fscan(list2,s2) != EOF){
files=(s2)

txdump (Files,"id,mag,otime,xairmass, ifilter,itime",yes,>>"star.Ist")

3

#changes INDEFs to 30.0 since photpars.zmag = 30
clear

print ('Changing INDEFs to zmag = 30 in .Ist files™)
sleep (1)

sed -e "s/INDEF/30.0/g" “star.lIst" > "startemp.lst"
delete (“star.lIst™)

rename (“startemp.lst”,"star.lIst™)

fields (star.lst”,5,>"datalist_""//pier//"_filter™)
tsort (“'datalist_*'//pier//"
list2="datalist_"//pier//"_fi
while (fscan(list2,s2)1=EOF){
filter=(s2)

if (checkfilter!=Ffilter){
print (filter,>>"datalist_"//pier//"_filtertable™)

97

éheckfilter:filter

checkfilter=""

fields (star.Ist”,6,>"datalist_""//pier//"_inttime")

tsort (“datalist_"//pier//"_inttime"

list2="datalist_"//pier//"_inttime"

while (fscan(list2,s2)1=EOF){
inttime=(s2)

if (checkinttime!=inttime){
print (inttime,>>"datalist_"//pier//"_inttimetable™)

checkinttime=inttime
checkinttime=""

list2="datalist_"//pier//"_filtertable"
while (fscan(list2,s2)!1=EOF){
filter=(s2)
list3="datalist_"//pier//"_inttimetable"
while (fscan(list3,s3)1=EOF){
inttime=(s3)

match (filter,"star.lIst",>"startemp.Ist")
match (inttime,"startemp.lst”,>"startemp2.Ist'")
if (phot_meth SetAP"){
fields ("startemp2.lst”,"1-
5",>"star"//filter//"_"//inttime//"_""//pier//"_ap"//phot_apert//"
sections (“@star"//filter//"_"//i
if (sections.nimages==0){
delete
('star//filter//"_"//inttime//"_"//pier//"_ap"//phot_apert//"_Ist™)
3

_Ist™)
time//"_"//pier//"_ap"//phot_apert//".1Ist")

}

if (phot_meth=="FWHM"){

fields (“startemp2.lst”,"1-
5",>"star"//filter//"_"//inttime//"_""//pier//"_apFWHM"//fwhm_multiple//"_ Ist")

sections
(@star”//fFilter//" " //inttime//" "/ /pier//" _apFWHM"//fwhm_multiple//” _Ist™)

if (sections.nimages==0){

delete

('star//filter//"_"//inttime//"_"//pier//" _apFWHM"//fwhm_multiple//" . Ist™)

3

delete (“'startemp.lIst™)
delete (“'startemp2.lst™)

3
delete (“star.lIst")

if (phot_meth=="SetAP"){
tsort ("*_"//pier//"_ap"//phot_apert//"_ Ist”,"3,1"

D
sections ("'*_""//pier//"_ap"//phot_apert//". Ist",>>"datalistlstfiles™)
3
if (phot_meth=="FWHM"){
tsort ("*_"//pier//"_apFWHM"//fwhm_multiple//" _ Ist","3,1")
sections ('*_"//pier//"_apFWHM"//fwhm_multiple//" . Ist",>>"datalistlstfiles")
3

}
if (pier_side=="No"){

sections ((searchalignphotometry)//"*_fits",opt="fullname",>>"datalistfile")
if (sections.nimages>0){

98

hselect
((searchalignphotometry)//"*_fits","$1,FWHM,GAIN,SKYDEV,HJD,RDNOISE,X_PIXEL_,Y_PIXEL_,SUBSET",yes,>>"datatotal"
)

tsort (“'datatotal™,5)

#datalist contains files, fwhmpsf, epadu, sigma, HJD, rdnoise, pixel shifts, subset
sections (“@datatotal™)
if (sections.nimages>0){
listl="datatotal"
while (fscan(listl,sl,s2,s3,s4,s5,s6,s7,s8,s9) 1= EOF){
clear
print ("File: ",sl)
print ("HJD: “,s5)

print (')

print (“Subset: ",s9)
print (')

print ("FWHM: **,s2)
print (')

print (“Gain: ",s3)

print (“RDNoise: ",s6)

print ('Sky Deviation: ",s4)
print (')

print ("X Pixel shift: ",s7)
print ('Y Pixel shift: ",s8)

sleep (1)

if (para_meth=="Trad"){
centerpars.calgorithm="centroid"
centerpars.chox=13.
centerpars.cthreshold=0.75
centerpars.minsnra .0
centerpars.cmaxite
centerpars.maxshift:
centerpars.clean=no
centerpars.rclean=1.0
centerpars. p=2.0
centerpars.kclean=3.0
centerpars.mkcenter=no

=8.5

=

fitskypars.salgorithm="ofilter"
fitskypars.annulus=13.0
fitskypars.dannulus=4.0
fitskypars.skyvalue=0.0
skypars.smaxiter=10
fitskypars.
fitskypars.
fitskypars.
skypars.sloreject=3.0
fitskypars. eject=3.0
fitskypars._khist=3.0
fitskypars._binsize=0.1
itskypars.smooth=no
fitskypars.rgrow=0.0
fitskypars.mksky=no

datapars.scale = 1.0
datapars.fwhmpsf = 3.0
datapars.emission = yes
datapars.sigma = INDEF
datapars.datamin = INDEF
datapars.datamax = INDEF

datapars.noise = '"poisson”
datapars.ccdread = "rdnoise"
datapars.gain = “‘gain”

datapars.readnoise = INDEF
datapars.epadu = 1.0
datapars.exposure = “exptime"
datapars.airmass = "airmass"
datapars.filter = "subset”
datapars.obstime = "hjd"
datapars.itime = INDEF
datapars.xairmass = INDEF
datapars.ifilter = "INDEF"
datapars.otime = "INDEF"

99

photpars.weighting = “constant"
photpars.mkapert = no

3

if (para_meth==""New'"){
centerpars.calg="centroid"
centerpars.chox=3*real (s2)
centerpars.cthreshold=0.75
centerpars.minsnratio=1.0
centerpars.cmaxiter=20
centerpars.maxshift=8.5
centerpars.clean=no
centerpars.rclean=1.0
centerpars.rclip=2.0
centerpars.kclean=3.0
centerpars.mkcenter=no

fitskypars.salgorithm="mode"
fitskypars.annulus=10*real (s2)
fitskypars.dannulu=1
fitskypars.skyvalue=0.0
fitskypars.smaxiter=10
fitskypars.
fitskypars.
fitskypars.snreject=50
fitskypars.sloreject=3.0
fitskypars.shireject=3.0
fitskypars._khist=3.0
fitskypars._binsize=0.1
fitskypars.smooth=no
fitskypars.rgrow=0.0
fitskypars.mksky=no

1%

datapars.scale = 1.0
datapars. fwhmpsf=real (s2)

datapars.noise =
datapars.ccdread="RDNOISE"
datapars.gain="GAIN"
datapars.readnoise=real (s6)
datapars.epadu=real (s3)
datapars.exposure="EXPTIME"
datapars.ai

datapars.filter:
datapars.obstim
datapars.itime = INDEF

datapars.xairmass = INDEF
datapars.ifilter = "INDEF"
datapars.otime = "INDEF"
photpars.weighting = "constant™

photpars.mkapert = no
3
photpars.weighting="constant"

if (phot_meth=="SetAP"){
photpars.apertures=real (phot_apert)

if (phot_meth=="FWHM"){
photpars.apertures=real (fwhm_multiple)*real (s2)
H
6hotpars.zmag=30
psfmeasure.radius=5
psfmeasure.sbuffer=5
psfmeasure.swidth=5
files=(sl)

clear

100

print ("Photting file: ", files)

if (phot_meth==""SetAP"){
phot
(files,coords=coordinate,output=Ffiles//"_NA_aperture'//phot_apert//" _mag.1l", interac-,verif-)

it (phot_meth=="FWHM"){
phot
(files,coords=coordinate,output=Ffiles//"_NA_apFWHM"//fwhm_multiple//" .mag.1",interac-,verif-)
H

if (para_meth=="New'){

if (phot_meth==""SetAP"){
txdump (Files//"_NA_aperture'//phot_apert//" _mag.1"," " nsky",yes,>>"nsky.info™)
3

if (phot_meth=="FWHW"){

txdump (Files//"_NA_apFWHM"//fwhm_multiple//"_.mag.1","nsky",yes,>>"nsky. info'")
3
iype “nsky.info" | average > "sky.info"

tabpar (“'sky.info",1,1)
skypix=real (tabpar.value)

delete (“"*sky*")
while (skypix<500){

dann=dann+1
fitskypars.dannulu=dann

clear
print (“'Determining proper annulus and dannulus™
print (')

if (phot_meth==""SetAP"){
delete (Ffiles//"_NA_aperture™//phot_apert//" _mag.1")
phot
(files,coords=coordinate,output=Ffiles//"_NA_aperture'//phot_apert//" _mag.1l", interac-,verif-)
txdump
(files//"_NA_aperture'//phot_apert//" .mag.1","nsky",yes,>>"nsky. info™)
3

if (phot_meth=="FWHM"){
delete (Files//"_NA_apFWHM"//fwhm_multiple//" .mag.1")
phot
(files,coords=coordinate,output=Ffiles//"_NA_apFWHM"//fwhm_multiple//" .mag.1",interac-,verif-)
txdump
(files//"_NA_apFWHM"//fwhm_multiple//" .mag.1","nsky",yes,>>"nsky. info'")
3

iype “nsky.info" | average > "sky.info"

tabpar ('sky.info,1,1)
skypix=real (tabpar.value)

delete (“"*sky*')
by
while (skypix>505){

dann=dann-0.1
fitskypars.dannulu=dann

clear
print (“'Determining proper annulus and dannulus™
print (")

if (phot_meth==""SetAP"){
delete (files//"_NA_aperture™//phot_apert//"_mag.1")
phot
(files,coords=coordinate,output=Ffiles//"_NA_aperture'//phot_apert//".mag.1", interac-,verif-)
txdump
(Files//"_NA_aperture'//phot_apert//*" .mag.1",""nsky",yes,>>"nsky. info')
3

if (phot_meth=="FWHM"){

101

delete (Files//"_NA_apFWHM"//fwhm_multiple//" .mag.1")
phot
(files,coords=coordinate,output=Ffiles//"_NA_apFWHM"//fwhm_multiple//" .mag.1",interac-,verif-)
txdump
(files//"_NA_apFWHM"//fwhm_multiple//" .mag.1","nsky",yes,>>"nsky. info'")
3

type "nsky.info" | average > "sky.info"

tabpar (“'sky.info",1,1)
skypix=real (tabpar.value)

delete (""*sky*')

}

it (phot_meth=="SetAP"){
sections ("*_NA_aperture"//phot_apert//".mag.1",opt="ful Iname",>>"datalist_magfiles')
3

if (phot_meth=="FWHM"){
sections (""*_NA_apFWHM"//fwhm_multiple//* _mag.1",opt="fullname",>>"datalist_magfiles')
3

list2="datalist_magfiles"
while (fscan(list2,s2) = EOF){
files=(s2)

txdump (Files,"id,mag,otime,xairmass,ifilter,itime",yes,>>"star.lIst")

}

#changes INDEFs to 30.0 since photpars.zmag = 30
clear

print ("Changing INDEFs to zmag = 30 in .Ist files")
sleep (1)

sed -e "s/INDEF/30.0/g" “star.lIst" > "startemp.lst"
delete (“star.lst™)
rename (“startemp.lst”,”star.Ist)

fields ('star.Ist"”,5,>"datalist_filter™)

tsort (“datalist_filter”,1)

list2="datalist_filter"

while (fscan(list2,s2)!=EOF){
filter=(s2)

it (checkfilter!=Ffilter){
print (filter,>>"datalist_filtertable™)
¥

checkfi lter=Ffilter

checkfilter=""

fields (“star.lIst",6,>"datalist_inttime")

tsort (“datalist_inttime™,1)

list2="datalist_inttime"

while (fscan(list2,s2)!=EO0F){
inttime=(s2)

if (checkinttime!=inttime){
print (inttime,>>"datalist_inttimetable)
3
éheckinttime:inttime
checkinttime="""
list2=""datalist_filtertable"
while (fscan(list2,s2)!=E0F){
filter=(s2)

list3="datalist_inttimetable"
while (fscan(list3,s3)!1=EOF){

102

inttime=(s3)

match (Ffilter,"star.lIst”,>"startemp.lIst’")
match (inttime,"startemp.lIst",>"startemp2.Ist™)
if (phot_meth==""SetAP""){

fields (“startemp2.lst”,"1-

5",>"star"//filter//"_"//inttime//"_NA_ap"//phot_apert//" _Ist™)

sections (“@star//filter//"_"//inttime//"_NA_ap"//phot_apert//"_Ist™)
if (sections.nimages==0){

delete (“star"//filter//"_"//inttime//"_NA_ap"//phot_apert//"_Ist")
by

3

it (phot_meth=="FWHM"){
fields (“startemp2.lst"”,"1-

5",>"star"//filter//"_"//inttime//"_NA_apFWHM"//fwhm_multiple//".Ist™)

}

sections (“@star"//filter//"_"//inttime//"_NA_apFWHM"//fwhm_multiple//" . 1Ist™)
if (sections.nimages==0){

delete (“'star"//filter//"_"//inttime//"_NA_apFWHM"//fwhm_multiple//".Ist™)
3

delete (“'startemp.lst™)
delete (“startemp2.lst™)

delete (“star.lst')

if (phot_meth=="SetAP"){

}

tsort ("*_NA_ap'//phot_apert//"_Ist”,"3,1™)
sections ("*_NA_ap"//phot_apert//" . 1st" >>"datalistlstfiles")

if (phot_meth=="FWHM"){

clear

tsort ("*_NA_apFWHM"//fwhm_multiple//".Ist","3,1")
sections ("*_NA_apFWHM"//fwhm_multiple//”_Ist"” ,>>"datalistlstfiles™)

print (“Removing possible duplicates in .Ist files")

sleep (1)

listl="datalistlstfiles"
while (fscan(listl,s1)!=EOF){
Istfiles=(sl1)
list2=Istfiles
while (fscan(list2,s2,s3,s4,s5,s6)1=EOF){

star=(s2)
magnitude=(s3)
HJD=(s4)
airmass=(s5)
filter=(s6)

if (star!=checkstar){
print (star,>>"dataliststar™)
print (magnitude,>>"datalistmag')
print (HJD,>>"datalistHJID")
print (airmass,>>"datalistairmass™)
print (filter,>>"datalistfilter™)

}

checkstar=star

joinlines (“dataliststar,datalistmag,datalistHJD,datalistairmass,datalistfilter”,>Istfiles//".corr')

delete
delete
delete
delete

('dataliststar™)
("datalistmag’™)
(“"datalistHJID™)
(""datalistairmass™)

103

delete (“datalistfilter™)

delete (Istfiles)

rename (Istfiles//"._corr”,Istfiles)
3
#deletes possibly incompatible datalists
delete (“'data*")
delete ("*fits.mag*")

beep

104

A.2.2 ap_imagecheck

#apimagecheck.cl by Paul lverson

walks through image frames and asks if image is wanted for photometry
works with both aligned and unaligned images; suggested to use both
before and after alignment

procedure ap_imagecheck (search_method,search_parameters,delete_file,delete_file_num)

string search_method {prompt="Enter search method to use",enum="Single|Multiple"}
string search_parameters {prompt="Enter search parameters for the files to review (i.e. star*B)"}
string delete_file {prompt="Delete file",enum="Yes|No|Finish"}

string delete _num {prompt="Enter the number of the file to
delete”,enum="1]2]3]41516]71819]110]11]12]13]14]15]|16|No|Finish"}

begin
string search_meth
string search_par
string del_file=""
string del_num
search_meth=search_method
search_par=search_parameters

end

int m=1

int n=1

int 1=1

int totalnumimages
int ds9loc=1
string s

string s

string s

string s4=

string image=
string imagenum=""
struct *listl
struct *list2

#deletes possibly incompatible datalists
del data*

if (search_meth=="Single"){
clear
sections ((search_par)//"*.fits",>"datalistsearch™)
if (sections.nimages>0){
totalnumimages=sections.nimages
for (n=1;n<=totalnumimages;n+=1){
tabpar (“'datalistsearch™,1,n)
image=tabpar.value
disp (image,1)

del_file=delete_file
if (del_file=="Yes"){
del (image)

3
if (del_file=="Finish"){
break
3
3
}
3
if (search_meth=="Multiple"){
clear
print ('Set ds9 to tile images (Frame -> Tile)™)
sleep (2)
clear

sections ((search_par)//"*.fits",>"datalistsearch™)
if (sections.nimages>0){
totalnumimages=sections.nimages
for (n=1;n<=totalnumimages;n+=1){
tabpar (“'datalistsearch™,1,n)
image=tabpar.value

print (1,>>"datalistnum™)

105

1=1+1
print (image,>>"datalistimg')

disp (image,ds9loc)

ds9loc=ds9loc+1

if (ds9loc==17] |n==totalnumimages){
clear
del_file=delete_file

joinlines (“'datalistnum,datalistimg",>"datalistcheck')
del “datalistnum®
del "datalistimg"

while (del_fi
clear
listl="datalistcheck"
while (fscan(listl,sl,s2)!=EOF){
print ('["//s1//"] "//s2)

"Yes'™){

print (")
del_num=delete_file_num
listl="datalistcheck"
while (fscan(listl,sl,s2)!=EOF){
imagenum=(s1)
image=(s2)
if (del_num!="Finish"&&del_num!="No"){
if (imagenum==del_num){
del (image)
ap_imagecheck.delete_file_num=""

if (si'=del_num){
print (s1,>>"datalistnum'™)
print (s2,>>"datalistimg")

}

del "datalistcheck"
joinlines (“datalistnum,datalistimg",>"datalistcheck™)

if (del_num=="No"){
del_file="No"
3

if (del_num=="Finish™){
del_file="Finish"

3
3
1=1
ds9loc=1

del "datalistimg’
del "datalistcheck"
3
if (del_file=="Finish"){
break
3
3
3
3
del data*

106

A.2.3 ap_subtrim

#DOCUMENTATION: ap_subtrim_v_2.cl
ap_subtrim_v_2.cl by Paul Iverson

ap_subtrim_v_2.cl is a script designed to trim object frames rfits“ed with
the ap_rfits_v_2.cl script.

This script trims frames to user defined dimensions. Used primarily to remove large unusable
saturated stars.

IRAF packages required
imutil
astutil

Linux commands required
date

Possible sources of error:
Inaccurate filenames or filter entries in header -> no data in datalists

HHEUHFHBFHE TR TR

procedure ap_subtrim_v_2 (xsmall,xlarge,ysmall,ylarge)

string xsmall {prompt="Minimum x value"}
string xlarge aximum x value"}
string ysmall inimum y value™}
string ylarge {prompt=""Maximum y value"}

begin
string x1,x2,yl,y2
end

#variable declarations

int n=1

int xlen,ylen
string

string

struct *listl

#deletes possibly incompatible datalists
del data*

sections ("*obj*fits",opt="ful lname",>"datalistl)
match (“'sub™,"datalistl",stop+,>"datalistfile™)
del datalistl

tabpar (“datalistfile”,1,1)
dimfile=tabpar.value

imgets (dimfile,param=""i_naxisl™)
xlen=int(imgets.value)

imgets (dimfile,param=""i_naxis2")
ylen=int(imgets.value)

print ('Maximum x value of frame "
x1=xsmall

x2=xlarge

,xlen)

print (")

print ("Maximum y value of frame ",ylen)
yl=ysmall

y2=ylarge

#copies smaller field of frame to remove non-desired areas
imcopy (“obj-*["//x1//" " 1/x2//" 1yl /y2/ /) fobj-*// . sub™)

#deletes possibly incompatible datalists
del data*

#adds date and time of when script was applied to frames to headers
date "+DATE:%m/%d/%y%nTIME:%H:%M:%S" > “datalist”

tabpar (“‘datalist",1,1)

datestring=tabpar.value

tabpar (“datalist”,1,2)

timestring=tabpar.value

hedit ("*.fits","AP_SUBTRIM",datestring//" *//timestring,add+,ver-)

#deletes possibly incompatible datalists

del data*
beep

107

	Title Page
	Copyright
	Department Approval
	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 IRAF Reduction Process
	1.1.1 Bias Reduction
	1.1.2 Dark Reduction
	1.1.3 Flat Reduction

	1.2 Purposes for Writing Automated Scripts

	2 Automated IRAF Scripts
	2.1 General Description of Scripts
	2.2 Detailed Description of Scripts
	2.2.1 ap_rfits
	2.2.2 ap_calhead
	2.2.3 ()_obhead
	2.2.4 ap_gain_rdnoise_()
	2.2.5 ap_pierside
	2.2.6 ap_proc
	2.2.7 ap_skynoise
	2.2.8 ap_fwhm_obhead
	2.2.9 ap_rotate
	2.2.10 ap_trim
	2.2.11 ap_align
	2.2.12 ap_apphot
	2.2.13 ap_reg_apphot
	2.2.14 ap_imagecheck
	2.2.15 ap_subtrim

	3 Application of Scripts to Data
	3.1 Comparison of Reduction Methods on WMO .31m and DDT Data
	3.2 Comparison of SIDAP and Traditional Method on DY Pegasi

	4 Conclusions and Suggestions
	References
	A Automated IRAF Scripts
	A.1 SIDAP Scripts
	A.1.1 ap_rfits
	A.1.2 ap_calhead
	A.1.3 ()_obhead
	A.1.4 ap_gain_rdnoise_()
	A.1.5 ap_pierside
	A.1.6 ap_proc
	A.1.7 ap_skynoise
	A.1.8 ap_fwhm_obhead
	A.1.9 ap_rotate
	A.1.10 ap_trim
	A.1.11 ap_align
	A.1.12 autoalign
	A.1.13 autodaofind
	A.1.14 xyshift.f
	A.1.15 ap_apphot

	A.2 Additional Scripts
	A.2.1 ap_reg_apphot
	A.2.2 ap_imagecheck
	A.2.3 ap_subtrim

