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ABSTRACT

NUMERICAL MODEL OF NON-COLLINEAR

PARAMETRIC DOWN-CONVERSION

Dustin Shipp

Department of Physics and Astronomy

Bachelor of Science

We used a numerical model to study spontaneous parametric down-conversion,

a process in which a single photon splits into two “daughter” photons. The

model predicts the location of daughter photons based on phase matching

conditions. The user can vary parameters such as crystal type, pump and

signal photon wavelength, and geometries of the system. Varying these pa-

rameters allows properties of down-conversion to be tested and optimized. We

experimentally confirmed several features included in the model for Type I

down-conversion in a BBO crystal. We found that the diameter of the down-

conversion ring is well modeled by our numerical approach. We experimentally

measured the total down-conversion output over all angles at a single wave-

length to remain roughly constant as the size of the ring varied. Our model

does not predict this well due to its incompleteness.
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Chapter 1

Introduction

1.1 Introduction to Down-conversion

Many nonlinear crystals exhibit a phenomenon known as spontaneous parametric

down-conversion (SPDC). In this process, an incoming photon is absorbed by atoms

of the crystal. The energy from this photon is re-emitted in a pair of photons [1].

These “daughter” photons have lower frequencies than the original, or “pump” pho-

ton. Conservation of energy and Plank’s formula E = h̄ω requires that the frequencies

of the daughter photons must add up to the frequency of the pump. In addition, the

emission directions of the daughter photons are governed by conservation of momen-

tum [2]. From these laws, the frequency and location of down-converted photons can

be predicted mathematically in a process known as phase matching.

By convention, the daughter photons are given the names “signal” and “idler.”

By placing detectors at appropriate angles, one can detect the signal and idler pho-

tons. Because the photons are always created in pairs, when one of these photons is

detected, it signals the existence of the other with absolute certainty. The detection

of both signal and idler photons within a specified time window is referred to as a

1



1.1 Introduction to Down-conversion 2

Figure 1.1 Type I parametric
down-conversion

Figure 1.2 Type II parametric
down-conversion

“coincidence.” [1]

There are two types of SPDC. In Type I down-conversion, both the signal and idler

photon are polarized such that they experience the extraordinary index of refraction.

If the energy is shared equally between signal and idler photons (i.e. they have the

same wavelength), then by E = cp, the signal and idler photons must also have the

same magnitude of momentum. This means that the photons will propagate along a

single cone, 180◦ apart in azimuthal angle. If the energy is not equally split between

the two photons, then the more energetic photon also has more momentum. In order

to preserve conservation of momentum, the less energetic photon will propagate at

a greater angle away from the pump beam. Thus, its lateral contribution to the

momentum of the system can match that of the more energetic photon.

In Type II down-conversion, one photon is polarized along the ordinary axis of

the crystal and the other along the extraordinary. This causes daughter photons with

degenerate wavelengths to propagate in separate cones. These cones are offset equal

distances from the propagation axis of the pump beam [3]. The cones for degenerate

SPDC are shown in Figs. 1.1 and 1.2.
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Because of the phase matching conditions, the daughter photons are highly cor-

related in many parameters such as frequency, geometry, polarization, and emission

time [4, 5]. Because of this correlation, information about the pump and one of the

daughter photons can be used to deduce the properties of the other daughter [6].

Thus, when daughter photons are detected, the timing and location of the detector

reveals the existence and properties of the idler photon. This provides a great deal

of information about the idler photon without having to observe it.

The correlation properties of daughter photons from SPDC lead to a number of

useful applications. The daughter photons can be entangled in a number of properties

such as emission time and polarization. This allows the daughter photons to be

used to test Bell’s inequalities [3]. SPDC also has important applications as a single

photon source in quantum cryptography [1]. The signal photon can be detected

to herald the arrival of the idler photon, which can then be used for encrypting

data in such a way that any attempts to eavesdrop will change the message itself.

Those sending and receiving the message can detect this before any information is

compromised. Applications in quantum teleportation have also been considered [1].

The entanglement of the daughter photons and the simple process of generating SPDC

provide many possibly convenient experiments to test these and other basic laws of

quantum information and quantum mechanics [2].

1.2 Computational Modeling

To study the process of SPDC and its daughter photons, researchers must usually

know the location, frequency, and polarization of daughter photons. Due to the high

correlation between daughter photons and the pump, it is possible to predict the

location and properties of daughter photons. Because SPDC is a random process,
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only the probabilities can be predicted. Still, with enough photons in the pump

beam, these probabilities correspond to observable quantities of photons. This enables

researchers to confirm theoretical models with experiments.

The conditions for phase matching are very sensitive to a number of parameters.

Changing the type, length, or cut angle of the crystal can change the trajectories of the

daughter photons. Altering the frequency, beam waist, or incident angle of the pump

beam will also change the properties of down-converted photons. We have developed

a computational model to predict the outcome of an experiment with various crystal

and pump beam configurations.

Our model uses the phase matching conditions to predict the location of signal and

idler photons at a detector. Predictions can be made for various pump wavelengths,

crystals, and geometries. Predictions of idler photon detection can be plotted for

either specific signal photon wavelengths or over a range of wavelengths, simulating

the effect of a bandpass filter. Plots made over a range of wavelengths give an accurate

model of what can be seen in SPDC. The relationship between these photons can also

be seen in these plots. These results are confirmed by experiment in the Type I case.



Chapter 2

Methods

2.1 Theoretical Model

The core of the computational model is the phase matching condition. After the down-

conversion process, the energy and momentum of the pump photon must be conserved

in the daughter photons. We approximate the pump beam to be monochromatic.

This means that every photon has a clearly defined energy. In this case, the energy

conserving phase matching equation is

Epump = Esignal + Eidler. (2.1)

By Plank’s formula, E = h̄ω, it follows that

h̄ωp = h̄ωs + h̄ωi (2.2)

ωp = ωs + ωi. (2.3)

So the idler frequency is

ωi = ωp − ωs (2.4)

Conservation of momentum for a simple case is satisfied by

ppump = psignal + pidler. (2.5)

5
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. Since p = h̄k, where k is the wave-vector specifying the direction of travel for the

wave,

kpump = ksignal + kidler. (2.6)

. Although it is a fairly good approximation that our pump beam is monochromatic,

the same approximation cannot be made with its direction. Because of finite size, our

laser beam consists of a superposition of plane waves traveling in different directions.

To incorporate the superposition of k vectors into our model, we used the result

published by Hong and Mandel [7]. They derive their result by starting with an

interaction Hamiltonian for the pump and daughter photons. This result is written

for a superposition of plane-wave propagation modes which are then used to find the

equations of motion. These are then integrated over the volume of the crystal and

over the time photons spend inside it. The result is a detection probability which is

dependent on the orientation and wavelengths of the pump, signal, and idler photons,

the width of the pump beam, and the properties of the crystal. This result is

Φ = e−
1
2
w2

0(∆k2
x+∆k2

y)sinc2( 1
2

∆kzL), (2.7)

where

∆kx = 2π(
ns sin(θs) cos(φs)

λs
+
ni sin(θi) cos(φi)

λi
), (2.8)

∆ky = 2π(
ns sin(θs) sin(φs)

λs
+
ni sin(θi) sin(φi)

λi
), (2.9)

and

∆kz = 2π(
ns cos(θs)

λs
+
ni cos(θi)

λi
− np
λp

). (2.10)

A visual interpretation of ∆kx, ∆ky, and ∆kz is shown in Fig. 2.1. In these equations,

w0 is the width of the pump beam waist, L is the length of the crystal, n is the index

of refraction, sinc(x) is defined as sin(x)
x

, λ is the wavelength, θ is the angle of the

trajectory with respect to the pump beam, φ is the azimuthal angle, and p, s, and i

are subscripts that refer to the pump, signal, and idler photons, respectively.
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Figure 2.1 Conservation of momentum. Visualization of ∆kx, ∆ky, and
∆kz.

If the pump beam has an infinite radius and the crystal is infinitely long, then

the simple approximations hold for conservation of momentum. This phase matching

condition reduces to the much simpler Eq. (2.6).

Images are produced by varying the frequency of signal photon and calculating the

maximum possible phase match function Φ at each location. This maximum value is

related to an integration over all possible idler directions. We then create our images

using Φ2, which is proportional to signal strength corresponding to the experimental

observations.

Since SPDC occurs in non-linear crystals, the indexes of refraction can differ for

all three photons. The indexes vary depending on the properties of the crystal and

the orientation of the pump, signal, and idler beams with respect to the crystal axis.

In Type I down-conversion, signal and idler photons both share the same index of

refraction. In Type II down-conversion, the signal and idler photons have ordinary

and extraordinary indexes of refraction. Since the naming of signal and idler photons

is arbitrary, either photon can have either index.

To account for these geometric effects, our model accepts parameters of crystal

type, Type I or Type II (if applicable), and angle (both zenith and azimuthal) of the

pump beam with respect to the crystal axis. This is generally known from the cut of

the crystal. These parameters are used to transform the beam into the crystal frame

of reference, where the phase matching conditions are applied. For details on this

coordinate transformation, see Ref. [5].



2.2 Experimental Setup 8

With the user-provided input of crystal type, crystal length, pump beam waist,

incident angles of the pump beam, and pump wavelength, our model can create an

image of the daughter photons as they would be seen at an image plane. This image

can be based on a single signal wavelength or vary over several wavelengths, adding

the images on top of each other. In both cases, the idler wavelength is given by

Eq. (2.4), rewritten as

λi =
c

c
λp
− c

λs

=
1

1
λp
− 1

λs

, (2.11)

where c is the speed of light in a vacuum. The model then tests each point on the

grid for the phase matching conditions at each wavelength and plots the probability

of photon detection at that point. We ignore pump photons continuing through the

crystal in these plots. Some Fortran code of this process is included in Appendix A.1.

Plots are included in Section 3.1.

2.2 Experimental Setup

To confirm the model’s predictions experimentally, we observed the down-converted

photons using a standard CCD camera. The pump laser produced a beam of 351

nm light which we directed through a BBO crystal. The cut of the crystal gave us

the capability to observe only the Type I case. The majority of the pump beam

passes through the crystal without being down-converted, so we inserted a small

beam-stopper to remove it. The down-converted photons propagated at angles al-

lowing them to pass the beam-stopper and continue. The daughter photons were

then directed into parallel paths down the table through a lens. We then used band-

pass filters to isolate various wavelengths and observe their individual rings with the

camera.

Several pictures were taken at various crystal angles. At each angle, half of these
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Figure 2.2 Experimental layout.

pictures were taken with a 400 mm focal length lens, placed 466 mm in front of the

crystal. This spacing produced a focus at the down-conversion crystal. The beam

waist was then smaller. Samples of these pictures are included in Section 3.1.

2.3 Study of Down-conversion Rings

We analyzed the data from our CCD camera in Matlab. We looked at an average over

nine horizontal and nine vertical slices from the center of the ring. We then isolated

Figure 2.3 Method used for data analysis. The data was analyzed as hori-
zontal and vertical slices. The strength of the down-conversion ring at each
peak was fit to a Gaussian curve.
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the left, right, top, and bottom peaks and fit them to Gaussian curves. This is shown

visually in Fig. 2.3.

The parameters of the curve give the width and center of each peak as well as the

level of background. The distance between the centers of the left and right peaks was

taken to be the horizontal ring diameter. A vertical ring diameter was found using

the top and bottom peaks. The ring diameter was found by averaging the horizontal

and vertical ring diameters. The width of the ring was found by averaging the width

of all four peaks. After subtracting the background, the total signal strength is found

by adding the value of each pixel. The Matlab code for these calculations is included

in Appendix A.2.



Chapter 3

Results and Conclusion

3.1 Comparison of Theory to Experiment

Using our model, we created images of down-conversion rings at ten different angles

ranging from 33.14◦ to 34.19◦ with respect to the crystal axis. Images were of daughter

photons with wavelengths in the range 690±5 nm. The pump beam radius had no

effect on the images. Exploiting the radial symmetry of the system, we used our

model to calculate Φ2 along the radial axis. Some of these images are included in Fig.

3.1.

Figure 3.1 Sample figures of Computational Data. Plots are of Φ2 along a
radius taken from the center of the down-conversion ring.

11



3.1 Comparison of Theory to Experiment 12

Using a CCD camera, we took pictures of the 690nm down-conversion ring at

ten different crystal angles ranging from 0.262◦ to 0.786◦ with respect to the crystal

face. These correspond to the same angles as the computational data. At each angle,

pictures were taken both without a lens and with a 400 mm lens placed 466 mm in

front of the crystal. This lens focused the pump beam. Sample pictures from each

set of CCD measurements are displayed in Fig. 3.2.

Figure 3.2 Sample of Experimental Pictures taken using a CCD camera.
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Using the data analysis discussed in Sec. 2.3, we could fit the down-conversion

rings to Gaussian curves to quantify the diameter and width of the down-conversion

rings. The trends in these quantities are shown in Fig. 3.3.

Analysis of these data confirms the agreement of our computational model with

experiment with regards to ring diameter. The data from the computational model

match the observed data assuming a 0.2◦ error in the measurement of the crystal axis

with respect to the crystal face. Such error is not uncommon in such manufactured

crystals. This 0.2◦ error can be seen in the plot of Ring Diameter vs. Crystal Angle

in Fig. 3.3. If each point of the experimental data is moved 0.2◦ to the right, the

data line correspond almost exactly with the predictions of our model.

Experimentally, our system with its particular crystal and wavelength showed

linearly decreasing trends in the width of the down-conversion ring. The decrease

of the pump beam radius from the lens also caused the ring to be sharper and less

wide. The computational model does not model this well, as is shown in the plot

of Ring Width vs. Crystal Angle in Fig. 3.3. This is due to the incompleteness of

the model. The model does not include the effects of pump beam radius and crystal

tilt. Currently, changing the angle in the PMATCH program changes the angle of

the pump beam with respect to the crystal axis. Experimentally, we change the angle

with respect to the crystal face. The non-normal angle of the crystal face creates

geometric effects causing the trends we see in the ring width.

The signal strength, the total down-conversion production at a single wavelength

summed over all idler angles, was not affected by the crystal angle. This is shown in

the plot of Fractional Signal Strength vs. Crystal Angle in Fig. 3.3. The effect of the

focusing lens on the intensity was another important trend to study. Visual analysis

of the pictures shows that the down-conversion ring is dimmer but more spread out

without the lens present. After adjusting for reflection off the lens, the total signal



3.2 Conclusions 14

Figure 3.3 Plots of results comparing Computational Model to Observed
Data.

was calculated to be stronger without the lens. This is shown in the plot of Fractional

Signal Strength Difference vs. Crystal Angle in Fig. 3.3. Our model failed to predict

any of these effects on the signal strength.

3.2 Conclusions

The theoretical studies and experiments agree with each other in predicting the loca-

tion of the down-conversion rings. The diameter of the down-conversion ring increases

linearly with the crystal angle. The signal strength of the ring is unaffected by the

crystal angle. The lens focusing the pump beam appears to reflect enough of the

pump beam away to decrease the production of down-converted photons.

The computational model does not correctly predict observed trends in ring width.
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This is a consequence of our model being incomplete. Future work will incorporate

the crystal tilt and pump radius effects into the computational model to correct this.

To this point, the model is as correct as we would expect it to be.



Bibliography

[1] D. Ljunggren and M. Tengner, “Optimal focusing for maximal collection of entan-

gled narrow-band photon pairs into single-mode fibers,” Phys. Rev. A 72, 062301

(2005).

[2] C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High-efficiency entangled

photon pair collection in type-II parametric fluorescence,” Phys. Rev. A 64,

023802 (2001).

[3] C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “Generation of correlated

photon pairs in type-II parametric down conversion–revisited,” Journal of Modern

Optics 48, 1997–2007 (2001).

[4] M. H. Rubin, “Transverse correlation in optical spontaneous parametric down-

conversion,” Phys. Rev. A 54, 5349–5360 (1996).

[5] N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller,

and A. Migdall, “Calculating characteristics of noncollinear phase matching in

uniaxial and biaxial crystals,” Opt. Eng. 39, 1016–1024 (2000).

[6] A. Migdall, “Correlated-Photon Metrology without Absolute Standards,” Physics

Today 52, 41–46 (1999).

16



BIBLIOGRAPHY 17

[7] C. K. Hong and L. Mandel, “Theory of parametric frequency down conversion of

light,” Phys. Rev. A 31, 2409–2418 (1984).



Appendix A

Programming Code

A.1 PMATCH

Below is the PMATCH code in Fortran that was used to create the computational figures. This
takes input of Crystal Type, Crystal Length, Pump Beam Waist, Pump Beam Wavelength, Signal
Wavelength, and Incident Angles θ and φ. The program then produces and image of Φ2 (see Eq.
2.7) along a radial axis from the center of the down-conversion ring.

SUBROUTINE PLOT_PMF_X_Y(XAxis, PlotData)
USE PM_Data; USE Crystal_Data
IMPLICIT NONE

! Arguments
REAL*8, INTENT(INOUT) :: PlotData(XRes,YRes,ZRes)
REAL*8, INTENT(INOUT) :: XAxis(XRes)
!REAL*8, INTENT(INOUT) :: YAxis(YRes)

! Local variables
INTEGER Info, XIndex, FrequencyRes, FrequencyIndex
REAL*8 Guess, PMF_Value, X, X_Step, Y, Frequency_Step, Theta_Sgnl_Ext
REAL*8 FrequencyMin, FrequencyMax, Frequency_Sgnl,

Frequency_Pump, Frequency_Idlr
LOGICAL WAVELENGTHS_VALID, Success

! Set axis range
IF (AutoRange) THEN

XMin = 0
XMax = 5d0 * Pi / 180

END IF
FrequencyRes = 50
FrequencyMin = (3.0d8/(.690 + .025))
FrequencyMax = (3.0d8/(.690 - .025))

18
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X_Step = (XMax - XMin) / (XRes - 1)
Frequency_Step = (FrequencyMax - FrequencyMin) / (FrequencyRes - 1)

! Perform calculations
Guess = Theta_Idlr_Guess

! Clear PlotData
DO XIndex = 1, XRes, 1

PlotData(XIndex,1,1) = 0
ENDDO

DO FrequencyIndex = 1, FrequencyRes, 1
WRITE(*,"(I3,'% Done')") FLOOR(100.0d0*FrequencyIndex/FrequencyRes)
Frequency_Sgnl = FrequencyMin + (FrequencyIndex - 1)*Frequency_Step
Lambda_Sgnl = 3.0d8/Frequency_Sgnl
Frequency_Pump = 3.0d8 / Lambda_Pump
Frequency_Idlr = Frequency_Pump - Frequency_Sgnl
Lambda_Idlr = 3.0d8 / Frequency_Idlr

DO XIndex = 1, XRes, 1
X = DTAN(XMin + (XIndex - 1)*X_Step)
Y = 0

IF (Angle_External) THEN
Theta_Sgnl_Ext = DATAN(DSQRT(X**2 + Y**2))
CALL GetThetaInternal(Theta_Sgnl_Ext,Theta_Sgnl)

ELSE
Theta_Sgnl = DATAN(DSQRT(X**2 + Y**2))

ENDIF

Phi_Sgnl = DATAN(Y/X)
! Make Phi_Sgnl between 0 and 2*Pi

IF (X .LT.0d0) THEN
Phi_Sgnl = Phi_Sgnl + Pi

ENDIF

IF (Phi_Sgnl .LT. 0d0) THEN
Phi_Sgnl = Phi_Sgnl + 2d0*Pi

ENDIF

Phi_Idlr = Phi_Sgnl + Pi

CALL FIND_OPT_PMF_1D(Guess, PMF_Value, Info)

PlotData(XIndex,1,1) = PlotData(XIndex,1,1) +
(PMF_Value**2/FrequencyRes)

XAxis(XIndex) = X * 180d0 / Pi
ENDDO

ENDDO

IF ( .NOT. WAVELENGTHS_VALID() ) THEN
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WRITE(*,"('WAVELENGTH VIOLATION - Pump:',F8.4,'; Signal:',F8.4,';
Idler:',F8.4)") Lambda_Pump, Lambda_Sgnl, Lambda_Idlr

Wavelength_Violation = .TRUE.
ENDIF

END SUBROUTINE PLOT_PMF_X_Y

A.2 Data Analysis in Matlab

A.2.1 FindFits.m

This code reads the data from a file, looks at slices from the data (see Fig. 2.3) and fits the data to
Gaussian curves. The parameters of the Gaussian curve are used to determine the properties of the
down-conversion ring.

% FindFits.m
% Extracts data and fits it to a Gaussian curve.

clear; close all;

files = dir('*.mat');
Signal = zeros(ceil(length(files)/2),2);
RingDiameterHorizontal = zeros(ceil(length(files)/2),2);
RingDiameterVertical = zeros(ceil(length(files)/2),2);
RingDiameter = zeros(ceil(length(files)/2),2);
PeakWidthLeft = zeros(ceil(length(files)/2),2);
PeakWidthRight = zeros(ceil(length(files)/2),2);
PeakWidthTop = zeros(ceil(length(files)/2),2);
PeakWidthBottom = zeros(ceil(length(files)/2),2);
PeakWidth = zeros(ceil(length(files)/2),2);

angle = zeros(ceil(length(files)/10),1);
angleinternal = zeros(ceil(length(files)/10),1);
index = [1.58,1.5844,1.5908,1.5908,1.5961,1.6089,1.6239,1.6404, ...

1.6529,1.6691,1.6868]; % Calculated for these specific angles

for istep = 1:length(files)
data = load(files(istep).name);

% Scale is 1 cm per 615 pixels
scale = 1/615;

% Distance to focus is 48 mm.
dist = 4.8;

% Name the picture
with = 0;
if istep<19

picturename = strcat('0',int2str(ceil(istep/2)));
else
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picturename = int2str(ceil(istep/2));
end

if isempty(findstr(files(istep).name,'out')) == 1
with = 1;
picturename = strcat(picturename,'a');

end

angle(ceil(istep/10),1)=str2double(files(istep).name(findstr( ...
files(istep).name,'=')+1:findstr(files(istep).name,'W')-2));

ne = 1.577429;
no = 1.705463;
angleinternal(ceil(istep/10),1) = 180/pi * atan(ne * sin(angle(ceil ...

(istep/10),1) * pi/180)./(no * (ne^2 - sin(angle(ceil(istep/10),1) ...
* pi/180)^2)^(1/2)));

xwindow = 301:1300;
ywindow = 1:1000;

cropped = data.data(ywindow,xwindow);

rowout = mean(cropped(496:504,:));
columnout = mean(cropped(:,487:495)');

left = rowout(1:500);
right = rowout(501:1000);
top = columnout(1:500);
bottom = columnout(501:1000);

%**** Left side peak ****

[lmax,lcenter]=max(left);

xl = 1:length(left);
yl = left;
a0l(1) = lcenter;
a0l(2) = 30;
a0l(3) = lmax-40;
a0l(4) = 40;

option=optimset('TolX',1e-2);
al = fminsearch(@leastsq,a0l,option,xl,yl);
if sum((yl-funcfit(al,xl)).^2) > 1e5

fprintf('l');
break;

end

%**** Right side peak ****

[rmax,rcenter]=max(right);
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xr = 1:length(right);
yr = right;
a0r(1) = rcenter;
a0r(2) = 30;
a0r(3) = rmax-40;
a0r(4) = 40;

option=optimset('TolX',1e-2);
ar = fminsearch(@leastsq,a0r,option,xr,yr);
if sum((yr-funcfit(ar,xr)).^2) > 1e5

fprintf('r');
break;

end

RingDiameterHorizontal(ceil(istep/2),with+1) = length(left) - ...
al(1) + ar(1);

%**** Top peak ****

[tmax,tcenter]=max(top);

xt = 1:length(top);
yt = top;
a0t(1) = tcenter;
a0t(2) = 30;
a0t(3) = tmax-40;
a0t(4) = 40;

option=optimset('TolX',1e-2);
at = fminsearch(@leastsq,a0t,option,xt,yt);
if sum((yt-funcfit(at,xt)).^2) > 1e5

fprintf('t');
break;

end

%**** Bottom peak ****

[bmax,bcenter]=max(bottom);

xb = 1:length(bottom);
yb = bottom;
a0b(1) = bcenter;
a0b(2) = 30;
a0b(3) = bmax-40;
a0b(4) = 40;

option=optimset('TolX',1e-2);
ab = fminsearch(@leastsq,a0b,option,xb,yb);
if sum((yb-funcfit(ab,xb)).^2) > 1e5

fprintf('b');
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break;
end

background = (at(4)+ab(4)+al(4)+ar(4))/4;
if with == 0

reflection = (1-(.4767/2.4767)^2)^2 * (1-((cos(pi/180*angle(ceil ...
(istep/10))) - index(ceil(istep/10))*cos(pi/180*angleinternal ...
(ceil(istep/10))))/(cos(pi/180*angle(ceil(istep/10))) + index ...
(ceil(istep/10))*cos(pi/180*angleinternal(ceil(istep/10)))))^2);

else
reflection = 1-((cos(pi/180*angle(ceil(istep/10))) ...

- index(ceil(istep/10))*cos(pi/180*angleinternal(ceil ...
(istep/10))))/(cos(pi/180*angle(ceil(istep/10))) + index ...
(ceil(istep/10))*cos(pi/180*angleinternal(ceil(istep/10)))))^2;

end
Signal(ceil(istep/2),with+1) = sum(sum(cropped - background));%*reflection

RingDiameterVertical(ceil(istep/2),with+1) = length(left) - at(1) + ab(1);
RingDiameter(ceil(istep/2),with+1) = 180/pi*atan(scale* ...

(RingDiameterVertical(ceil(istep/2),with+1) + ...
RingDiameterHorizontal(ceil(istep/2),with+1))/(2*dist));

PeakWidthLeft(ceil(istep/2),with+1) = al(2);
PeakWidthRight(ceil(istep/2),with+1) = ar(2);
PeakWidthTop(ceil(istep/2),with+1) = at(2);
PeakWidthBottom(ceil(istep/2),with+1) = ab(2);
PeakWidth(ceil(istep/2),with+1) = 180/pi*atan(scale*(PeakWidthLeft ...

(ceil(istep/2),with+1) + PeakWidthRight(ceil(istep/2),with+1) + ...
PeakWidthTop(ceil(istep/2),with+1) + PeakWidthBottom(ceil ...
(istep/2),with+1))/(4*dist));

x = (-(RingDiameterHorizontal(ceil(istep/2),with+1)/2 + al(1)): ...
length(xwindow) - 1 -(RingDiameterHorizontal(ceil(istep/2), ...
with+1)/2 + al(1))) * scale;

y = (-(RingDiameterVertical(ceil(istep/2),with+1)/2 + at(1)): ...
length(ywindow)- 1 - (RingDiameterVertical(ceil(istep/2), ...
with+1)/2 + at(1))) * scale;

xangle = atan(x/dist)*180/pi;
yangle = atan(y/dist)*180/pi;

% plot vs angles
picture = pcolor(xangle,yangle,cropped);
shading interp;
axis equal;
colormap(lines);
xlabel('Angle in horizontal plane (degrees)');
ylabel('Angle in vertical plane (degrees)');
saveas(picture,picturename,'jpg');
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end

% Average over trials within each angle
AvgRingDiameter = zeros(ceil(length(files)/10),4);
AvgPeakWidth = zeros(ceil(length(files)/10),4);
AvgSignal = zeros(ceil(length(files)/10),4);
for anglestep = 1:ceil(length(files)/10)

AvgPeakWidth(anglestep,1)=mean(PeakWidth(5 * (anglestep-1) + 1 : 5 * ...
(anglestep-1) + 5, 1));

AvgRingDiameter(anglestep,1)=mean(RingDiameter(5 * (anglestep-1) + ...
1 : 5 * (anglestep-1) + 5, 1));

AvgSignal(anglestep,1)=mean(Signal(5 * (anglestep-1) + 1 : 5 * ...
(anglestep-1) + 5, 1));

AvgPeakWidth(anglestep,2)=mean(PeakWidth(5 * (anglestep-1) + 1 : 5 * ...
(anglestep-1) + 5, 2));

AvgRingDiameter(anglestep,2)=mean(RingDiameter(5 * (anglestep-1) + 1 : ...
5 * (anglestep-1) + 5, 2));

AvgSignal(anglestep,2)=mean(Signal(5 * (anglestep-1) +1 : 5 * ...
(anglestep-1) + 5, 2));

AvgPeakWidth(anglestep,3)=std(PeakWidth(5 * (anglestep-1) + 1 : 5 * ...
(anglestep-1) + 5, 1));

AvgRingDiameter(anglestep,3)=std(RingDiameter(5 * (anglestep-1) + 1 : 5 * ...
(anglestep-1) + 5, 1));

AvgSignal(anglestep,3)=std(Signal(5 * (anglestep-1) + 1 : 5 * ...
(anglestep-1) + 5, 1));

AvgPeakWidth(anglestep,4)=std(PeakWidth(5 * (anglestep-1) + 1 : 5 * ...
(anglestep-1) + 5, 2));

AvgRingDiameter(anglestep,4)=std(RingDiameter(5 * (anglestep-1) + 1 : 5 * ...
(anglestep-1) + 5, 2));

AvgSignal(anglestep,4)=std(Signal(5 * (anglestep-1) + 1 : 5 * ...
(anglestep-1) + 5, 2));

end
save 'Angle.mat' angle;
save 'PeakWidth.mat' AvgPeakWidth;
save 'RingDiameter.mat' AvgRingDiameter;
save 'Signal.mat' AvgSignal;

A.2.2 funcfit.m

This is the Gaussian curve to which the data is being fit.

% funcfit.m

function f=funcfit(a,x)

f=a(3)*exp(-(x-a(1)).^2/(a(2).^2))+a(4);

%a(1) is the center of the peak
%a(2) is the width
%a(3) is a scaling factor
%a(4) is the offset from zero
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A.2.3 leastsq.m

This part of the code minimizes the difference between the data and the Gaussian fit.

% leastsq.m

function s=leastsq(a,x,y)
s=sum((y-funcfit(a,x)).^2);
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