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ABSTRACT

SIMULATION AND MANUFACTURE OF A QUADRUPOLE MASS FILTER

FOR A 7BE ION PLASMA

Kellen M. Giraud

Department of Physics and Astronomy

Bachelor of Science

A quadrupole mass filter (QMF) has been simulated and manufactured. The

quadrupole is part of an ion trap system that will isolate a plasma of ionized

beryllium-7 (7Be) for months at a time. Through this experiment, the half-

life of ionized 7Be will be measured. The function of the QMF is to filter

out unwanted ions and allow wanted ions to penetrate into the region of high

magnetic field. Voltages are applied to the conducting rods of the QMF based

on the stability curve generated by the Mathieu equations. The motion of 7Be

ions in an ideal QMF has been simulated. Our QMF has been altered from

the ideal QMF, and the motion of ions in the modified QMF has also been

simulated. A quadrupole was built based on the results of the simulations,

and was installed into the experimental system. Tests on the manufactured

quadrupole have indicated that significant changes must yet be made for the

experimental QMF to match the simulations.
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Chapter 1

Introduction

1.1 Why Beryllium-7 Is Interesting

Beryllium, the fourth element in the periodic table, occupies a place of interest as one

of the lightest metals. It is found in many mineral compounds. Beryllium has only

one stable isotope, 9Be. Unstable isotopes of beryllium include 10Be, with a half-life

of about 1.5 million years and 7Be, with a half-life of about 53 days. The remaining

isotopes of beryllium have half-lives in the range of seconds or a small fraction of a

second. The isotope of interest in this paper is 7Be.

7Be is found in various locations. It is part of the fusion cycle in stellar cores.[1] It

is also created in cosmic ray reactions in earth’s atmosphere. From the region of peak

production at an altitude of about 20 km, 7Be makes its way to earth’s surface.[2]

7Be is of interest in studies ranging from soil erosion[3] to sheep droppings.[4]

In every study dealing with 7Be, its half-life is an important factor. However, 7Be

does not have a straightforward constant half-life like most isotopes. The decay rate

of 7Be significantly depends on its chemical environment. This is because 7Be decays

1
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Table 1.1: Half-life of 7Be in various environments

Environment Half-life (days) Percent change

“Accepted value” 53.29 0

Buckyball 52.68 -1.14%

BeO 54.226 +1.76%

Be(OH)2 at 442 kbar 52.884 -0.76%

exclusively by electron capture,

7Be+ e− → 7Li+ ν (1.1)

into lithium-7 and a neutrino. Because the nucleus must capture an electron to decay,

the decay rate is dependent on electron density at the nucleus. In most elements that

have isotopes that decay exclusively by electron capture, it is difficult to influence

electron density at the nucleus because these elements have high atomic numbers. In

elements with higher atomic numbers, electrons on the outer shells of the atom shield

inner electrons from any chemical changes that might influence electron density at

the nucleus. However, since 7Be only has four electrons, the chemical environment of

7Be can significantly influence the electron density at the nucleus, and thus influence

the availability of electrons for capture to the nucleus. For this reason, the chemical

environment of 7Be can influence its half-life.

Various research groups exploring the variable half-life of 7Be in a variety of sit-

uations have observed a 1 to 2 % change from the usual half-life of about 53 days,

as shown in Table 1.1. Previously used methods to observe a change in decay rate

of 7Be include placing 7Be inside a buckyball (C60),[5] placing it in the compound

BeO,[6] and exposing the compound Be(OH)2 to extreme pressures.[7]

In spite of success in manipulating the half-life of 7Be, no group has measured

the half-life of 7Be in an ionized state. In such a state, the half-life is expected to
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change by as much as 5%. This is a significant change in any half-life considering the

great accuracy with which half-life values are usually measured and reported. Among

all the possible experiments that could be done to measure the half-life of 7Be in a

variety of environments, it is particularly important to determine the half-life in an

ionized state. This is because 7Be is ionized in many cases in nature, including the

places of most interest to science, in earth’s upper atmosphere and in nuclear fusion

cycles in stellar cores.

Measuring the decay rate of ionized 7Be requires a very specific set of conditions.

First, the ions must be isolated in a system in which they can remain in a plasma

state. Second, they must be isolated for an amount of time comparable to the half-life

of 53 days. Third, there must be enough ions in the system for statistics to be taken

that determine the half-life to the desired accuracy. Since decay is a random process,

gathering enough statistics is important. Combining these conditions, there must be

a system that holds an isolated plasma of about 109 ions of 7Be for months at a time.

The plasma research group at BYU has devised a process to measure the half-life

of ionized 7Be. The process will take place in the system shown schematically in Fig.

1.1. For the process to be initiated, first a sample must be prepared for placement in

the system. To obtain a sample containing 7Be, a small boron carbide (B4C) disk of

radius 0.75 in. is bombarded with protons in a Van de Graff accelerator. The protons

have an average energy of approximately 400 kV. A trace amount of 7Be is produced

in nuclear reactions,

10B + p+ → 7Be+ α (1.2)

When high-energy protons strike boron-10, the most abundant of boron’s isotopes,

an alpha particle is ejected from the nucleus and beryllium-7 remains in the sample.

Next, the boron carbide sample infused with traces of 7Be is placed in a modified

metal vapor vacuum arc (MEVVA) ion source[8] that ejects ions into a quadrupole
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Ion Source

Ground Plate

Quadrupole

Ion Trap

Magnet Coils
Vacuum Pump

Charge 
Collector

Figure 1.1: A simplified schematic of the ion trapping system. See appendix D for an

actual picture of the system.

mass filter (QMF). The quadrupole filters out all ions except 7Be which is then chan-

neled into a Malmberg-Penning ion trap.[9] Once the ions are in the trap, they will

be kept isolated inside for up to two months. During this time, measurements of

the ratio of 7Be to 7Li will be performed using the Fourier Transform Ion Cyclotron

Resonance Mass Spectrometry (FTICR-MS) method.

The process of firing the ion source and channeling ions into the trap can be

repeated as many times as necessary to build up a sufficient number of ions in the

trap. In order to calibrate the experiment, charge collectors are located at the far

end of the system. These charge collectors measure the amount of charge on metal

disks of various radii so that we can tell the radial profile of ions in our system. That

is, we will know the amount of ions in the center of the trap and near the edges.

After the boron carbide sample is placed in the MEVVA ion source, the entire

system is pumped down to ultra-high vacuum levels. The quadrupole bridges the gap

from where the ion plasma is produced in the ion source to where it is isolated in the
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ion trap.

1.2 The Quadrupole Mass Filter

In our experiment to determine the half-life of ionized 7Be, a quadrupole mass filter

will be used to isolate and channel 7Be ions into the ion trap. Because a boron carbide

sample is used in the experiment, the ions produced by the ion source will have an

overwhelming concentration of boron-10, boron-11, and carbon-12. We predict that

7Be ions will actually make up only about one in 105 ions from the ion source. The

quadrupole must be able to filter out everything except the small number of 7Be ions.

A quadrupole mass filter is a device that selects ions with a specific charge-to-mass

ratio or range of charge-to-mass ratios. A QMF consists of four conducting rods to

which a specific combination of direct and alternating voltages are applied. As shown

in Fig. 1.2, opposing voltages are applied to adjacent rods. At any particular time,

if a certain rod is at a voltage V , the two rods nearest it are at a voltage negative

V . These voltages generate electric fields around the rods, which produce forces on

charged particles in the region. The voltages on the rods determine the forces that

drive the motion of ions in the QMF. Thus, a certain combination of voltages drives

out unwanted ions while allowing wanted ions to pass through the quadrupole.

The quadrupole also serves the purpose of guiding the 7Be ions into a region of

strong magnetic field. The Malmberg-Penning trap confines the ions by means of a

magnetic field that reaches a peak strength of 0.43 T. However, the ion source lies

outside the region of the magnetic coils. The field strength at the ion source is only

about 4×10−3 T, about one hundredth of the peak value. Charged particles that enter

a region of high magnetic field from a region of low magnetic field often encounter the

magnetic mirror effect.[10] The quadrupole serves the function of breaking this effect
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U+Vcos(ωt) -[U+Vcos(ωt)]

-[U+Vcos(ωt)]
U+Vcos(ωt)

Figure 1.2: Voltages applied to the rods of a quadrupole that allow for selection of

ions with a specified charge-to-mass ratio. U is direct voltage while V is alternating

voltage.

and allowing ions to penetrate the high magnetic field. In our experiment, however,

we have found that this effect is of minimal importance, as will be shown.

1.3 Summary of Methods

I have modeled the motion of ions in a quadrupole mass filter. This included solving

the Mathieu equations to simulate motion in an ideal quadrupole, solving for electric

potential in grids using Poisson’s equation in two and three dimensions, and solving

for ion motion in electric and magnetic fields using a differential equation solver. This

involved many hours of coding in Matlab (see appendix B for Matlab code). In

chapter two I outline my work on computer simulations of the QMF.

Using the results of the simulations, I helped to design the QMF and support

structure for the experimental system. Graduate student David Olson and I designed

the parts for the quadrupole and support structure in SolidWorks, and the pieces were
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manufactured in October 2007 (see appendix C for machining drawings of parts).

Since the quadrupole was put together and placed in the experimental system, I

have been involved in many tests run for the purpose of characterizing the behavior

of the QMF. The ion source has been fired hundreds of times with the voltages of the

quadrupole and strength of the magnetic field set to various values while data has

been taken for analysis.

1.4 Summary of Conclusions

While much data has been taken to analyze the motion of ions in the fields of our

quadrupole, there remains much work to be done before 7Be can be successfully

isolated in the ion trap. In some aspects, the physical QMF produces results that

parallel the computer simulations, while in other respects, the behavior of the ions in

the QMF is not yet well understood. There are many complexities to the experiment

that complicate the analysis of the quadrupole. In chapter three I discuss the data

that have been generated by experimentation, the successes and shortcomings of my

simulations to predict the behavior of the experimental quadrupole, and possible

improvements that can be made to the QMF.

One obvious result from tests on the quadrupole was that the magnetic field of the

ion trap has a significantly greater influence on the motion of ions in the quadrupole

than was expected based on computer simulations. We found that when the magnetic

field is on, an average of 100 times more charge accumulates at the charge collectors

than when the field is off. This probably means that the magnetic field focuses ions

in the system significantly more than was expected.

We also found a problem in our original design of the QMF. In our tests, we

found that after only a few tests of the quadrupole the data became completely
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unpredictable and unrepeatable. This was attributed to the fact that a layer of the

insulator aluminum oxide built up on all aluminum surfaces. Thus, ions from the

ion source striking the aluminum oxide surface remained on the insulator as a surface

charge. This distorted the fields of the QMF and prevented ions from getting through

the quadrupole. In order to fix this problem, we replaced the some of the aluminum

parts of the quadrupole with copper parts. Copper oxide is a semiconductor which

allows any charge buildup on the quadrupole surfaces to discharge in a reasonable

amount of time.

As of current testing, the quadrupole shows little evidence of being able to filter

out ions of unwanted mass to charge ratio to the degree of precision required for

our experiment. There are many possible solutions to this problem. Many other

groups [15-19] have worked with QMFs to enhance the filtration properties by mod-

ifications of the QMF design. It may be possible to employ modifications to enable

our quadrupole to function as required in the experiment to measure the half-life of

ionized 7Be.



Chapter 2

Methods

2.1 The Ideal Quadrupole

This chapter outlines my methods for simulating and manufacturing the quadrupole

mass filter (QMF). The quadrupole is an important piece in the system, shown in Fig.

1.1, that will confine a 7Be plasma for months at a time. Through this experiment,

the half-life of ionized 7Be will be measured.

Building a quadrupole for our experiment that selectively allows 7Be into the

ion trap required starting from basic quadrupole theory. This section analyzes the

ideal QMF. The ideal QMF is very different than the quadrupole used in our experi-

ment; however, it outlines the basic theory required for understanding any QMF. All

quadrupoles use conducting surfaces with voltages applied in a specific way to achieve

mass filtration, as show in in Fig. 1.2. The most essential ingredient in understanding

any QMF is the stability curve plot, shown in Fig. 2.1. A basic understanding of this

plot comes from the ideal quadrupole.

Conceptually, any quadrupole functions as a mass filter because ions with greater

mass than the target ion are ejected in the y direction while ions with lesser mass

9
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Figure 2.1: Stability curves from the Mathieu equations. The left curve separates

stable and unstable motion in the y direction, while the right curve separates stable

and unstable motion in the x direction. The stars are positions in stability space of

the ions plotted in Fig. 2.2.
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are ejected in the x direction. Larger ions are ejected because they have a greater

inertia and do not respond to the oscillating fields of the quadrupole. Smaller ions are

ejected because they respond to the oscillating fields so much that they are thrown into

unstable motion. Stable ions have a balance between the static force caused by the

DC voltage and the ponderomotive force caused by the AC voltage. A ponderomotive

force occurs in rapidly oscillating fields and pushes particles steadily. In effect, stable

ions have a balance between electrostatic forces and ponderomotive forces that enables

them to stay in the QMF despite rapid oscillations.

The ideal quadrupole is the simplest way to examine the behavior of the QMF

theoretically. Physically, the ideal quadrupole is an arrangement of four conducting

hyperbolic surfaces that extend out to infinity. This geometry, of course without

extending out to infinity, is shown in Fig. 2.2. In such a geometry, the motion

of charged particles in the quadrupole can be described by a differential equation

known as the Mathieu equation.[11] The details of the Mathieu equation analysis are

provided in Appendix A. The important result of this analysis is the stability curve

diagram.

The stability curves, shown in Fig. 2.1, describe the conditions under which a

particle is stable in a QMF. They are typically plotted based on parameters “q” and

“a.” Here,

q =
4eV

mr2
0Ω2

(2.1)

and

a =
8eU

mr2
0Ω2

(2.2)

In these equations, e is the charge of the ion, m is the mass of the ion, and r0

is the inner radius of the quadrupole (the distance from the center of the QMF to

the closest surface of one of the poles). U is the value of the applied direct current

(DC) voltage and V is the value of the applied zero-to-peak alternating current (AC)
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voltage. The value of Ω is the frequency at which the alternating current oscillates.

The value of r0 is fixed by the geometry of the quadrupole and e and m are fixed

according to the experiment parameters. The values of U , V , and Ω can be adjusted

and applied to the quadrupole.

(a) Stable motion. Here, q = 0.7

and a = 0.15.

(b) Unstable motion in y direction.

Here, q = 0.5 and a = 0.15.

(c) Unstable motion in x direction.

Here, q = 0.78 and a = 0.15.

Figure 2.2: Ion trajectories for ions in the ideal quadrupole with various values for

the parameters q and a. These values determine where the ion lies in stability space,

and thus whether the ion will have motion that stays fixed in some boundary or that

grows exponentially away from the origin.

Fundamentally, the stability curves tell us what DC and AC voltages to apply to

the quadrupole to obtain stable ion motion. If we define the values of e, m, r0, and
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Ω in an experiment, then the parameters q and a give a direct relationship between

DC and AC voltage.

The stability curves separate regions of stability and instability in the quadrupole.

The stable region is the area under both curves in Fig. 2.1. Ions with parameters

that produce values of q and a that fit in this stability region can remain indefinitely

in the quadrupole, as shown in the trajectory in Fig. 2.2(a). The curve on the left

in Fig. 2.1 is the line separating stable motion from motion that is unstable in the y

direction, as shown in the trajectory in Fig. 2.2(b). The curve on the right is the line

separating stable motion from motion that is unstable in the x direction, as shown in

the trajectory in Fig. 2.2(c).

In our experiment, e and m are the values for singly ionized 7Be. That is, e = +1

electron charge or 1.602× 10−19 Coulombs and m = 7.017 amu or 1.165× 10−26 kg.

We will be using AC voltage with a frequency in the range of 500-600 kHz. When

we apply these parameters to the stability curves, the stability curve plot becomes

a more concrete way to understand how we need to operate the quadrupole. Figure

2.3 shows the stability curve for 7Be as compared to the stability curves for boron-10,

boron-11, and carbon-12 as a function of AC and DC voltage.

2.2 The Modified Quadrupole

Ideally, hyperbolic surfaces are used in a quadrupole. Hyperbolic surfaces yield the

greatest mass resolution for the least amount of power.[12] However, cylindrical sur-

faces typically suffice for most applications and are widely used. Metal rods are much

easier to obtain than hyperbolic surfaces.

It is often convenient to use cylindrical surfaces that best approximate hyperbolic

surfaces. Rods with a radius equal to 1.1487 times the inner radius of the QMF
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Figure 2.3: Stability curves for 7Be, 10B, 11B, and 12C as a function of AC and DC

voltage. The values here are for a quadrupole with r0 = 2 cm and a frequency of 550

kHz. The white regions are regions stable for only one mass, while the darkest region

is stable for all masses, with regions stable for two and three masses in between. We

can operate the quadrupole at the voltages indicated by the star so that only 7Be is

stable.
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r0

r

Figure 2.4: The hyperbolic curves that define the ideal quadrupole are overlaid with

the best-fit cylindrical curves. The value r0 is the distance from the origin to the

point of closest approach for the hyperbolic or cylindrical surfaces. The value r is the

radius of the cylindrical rod.

best approximate hyperbolic surfaces.[13] As shown in Fig. 2.4, this radius yields

cylindrical surfaces that very closely match the hyperbolic surfaces in the region

closest to the origin.

In our experiment, we modified the quadrupole further by reducing the ratio of

rod size to inner radius below the best-fit ratio. Instead of the best fit r = 1.1487r0,

we used r = 0.5r0. Specifically, our QMF has an inner radius of 2.0475 cm and a rod

radius of 0.9525 cm. This additional modification was made to enhance the vacuum

capability of the ion-trapping system as a whole.

Our experiment requires vacuum levels on the order of 10−9 torr. In this range

of vacuum, the density of gas becomes so low that gas molecules move by molecular

flow. That is, they randomly bounce off of walls until eventually entering and being

trapped by the vacuum pump. As shown in Fig. 1.1, the quadrupole is located

between the ion trap and the vacuum pump. In order for gas molecules in molecular

flow to get to the vacuum pump, they must pass through the quadrupole. Therefore,

the quadrupole rod size was reduced to allow for the maximum amount of free space
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(a) Ideal quadrupole
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(b) Best-fit quadrupole
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(c) Modified quadrupole

Figure 2.5: Equipotential contours for the ideal quadrupole, the best-fit cylindrical

quadrupole, and the modified cylindrical quadrupole. Dark lines represent positive

voltage, while light lines represent negative voltage. The lines crossing at the origin

are at 0 V for all three geometries.

for particles to get to the vacuum pump.

Figure 2.5 is a comparison of voltage contours in three geometries of QMFs. The

voltage values near the origin are most important for ion mass selection. As can be

seen here, the voltage values near the origin for the modified quadrupole, Fig. 2.5(c),

are very similar to the voltages in the best-fit quadrupole, Fig. 2.5(b), and the ideal

quadrupole, Fig. 2.5(a).

While it is convenient in our experiment to make the change from the ideal
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quadrupole to the cylindrical quadrupole with rods smaller than the best fit size,

this change modifies the function of the quadrupole. Therefore, additional simula-

tions were needed to ensure that we could achieve the desired mass filtration with

our modified quadrupole. Though the fields produced by the modified QMF closely

resemble the fields of the ideal QMF, there must be a significant change in the way the

QMF is analyzed computationally. With the ideal quadrupole, the Mathieu equation

alone accurately describe ion motion. When we depart from the ideal case, we can no

longer rely on the equations, but must enter the realm of numerical calculation. This

shift required a significant increase in computational work which will be explored in

the next section.

2.3 Computer Modeling of the Quadrupole

In order to ensure that our modified quadrupole design would work as expected, I

simulated ion motion in quadrupole fields. This included solving differential equations

for the ideal quadrupole case and solving ion motion in fields generated from potential

grids.

I began my computer simulations by solving the Mathieu equation to produce

trajectories for ions in an ideal quadrupole. I used Matlab’s ordinary differential

equation solver, ode45, to solve the Mathieu equation in each direction in time. Ex-

amples of ion trajectories are shown in Fig. 2.2.

The next step in simulation was the transition from solving ion motion in the ideal

quadrupole to solving ion motion in fields generated by a cylindrical quadrupole. The

first step in this process was to create a two-dimensional grid on which I could solve

Poisson’s equation

∇2V = − ρ
ε0

(2.3)
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Figure 2.6: Contour lines for the electric field values in the x and y directions in the

modified quadrupole. Dark lines represent low electric field values, while light lines

represent high values.

to calculate voltages at each point on the grid. I used the method of successive over-

relaxation (SOR)[14] (see Appendix B for Matlab code). This code produced fields

shown in Fig. 2.5.

After generating the voltage grids for the modified quadrupole, I solved for the

electric fields by taking the spatial gradient of the voltage grid. Unlike voltage, a scalar

quantity, electric field is a vector quantity and thus I needed to solve for the electric

field in both the x and y directions. Figure 2.6 shows contour lines for the values of

the electric field in the x and y directions. The electric fields gain extreme amplitudes

near the surfaces of the quadrupole rods, but near the center of the quadrupole the

change in electric field strength is nearly linear. Because of the symmetry of the

quadrupole, the electric fields in the y direction exactly parallel the behavior of the

fields in the x direction. The contours are not the electric field lines, and ions in these

fields travel in a direction perpendicular to the superposition of the two contours.
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Next I applied the electric field grids to a code to solve for ion motion in the

new fields. I put the electric fields into differential equations for the forces on the

ions, and solved the differential equations with ode45. After obtaining solutions

for a two-dimensional quadrupole, I generalized to a three-dimensional quadrupole

using three-dimensional grids for voltage and electric fields. With solutions for ion

trajectories in the three-dimensional case, I was able to compare the ideal quadrupole

to our modified quadrupole and make predictions about how we would need to build

and operate the QMF in our experiment.

Before I could calculate the motion of ions in the QMF using the electric fields

in differential equations, I needed to have initial conditions in the equations. In my

simulations I used initial conditions based on data collected from experimentation of

the ion source. The ion source[8] ejects ions from a point on the surface of a sample.

The ions spray outward in a cone with most of their momentum being perpendicular

to the sample surface. Thus, the initial conditions of a particular ion can be expressed

with the parameters of initial position in the x and y directions, total initial velocity,

ratio of radial velocity to longitudinal velocity, and angle of initial motion with respect

to the x axis. In simulations, I converted these parameters to initial position and

velocity in the x, y, and z directions. See appendix B for Matlab code.

2.4 The Magnetic Field

In order to accurately represent the physical experiment, my simulations needed to

incorporate the magnetic field generated by the ion trap (see Fig. 1.1). A conceptual

picture of the magnetic field lines emerging from the ion trap is presented in Fig.

2.7. The strength of the magnetic field is represented by the density of magnetic field

lines. The quadrupole and ion source share a concentric axis with the ion trap. On
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Figure 2.7: A conceptual schematic of magnetic field lines as they exit the ion trap-

ping region. The magnetic field line can be separated into radial and longitudinal

components, as shown here.

the axis of the trap the magnetic field points mostly in the longitudinal direction, and

grows weaker with distance away from the trap.

The values for the longitudinal component of the magnetic field, Bz in Fig. 2.7,

are plotted as a function of distance in Fig. 2.8(a). These values were obtained

by direct measurement. The magnetic field in the radial direction arises because

of the change in the field in the longitudinal direction. That is, any change in the

longitudinal magnetic field means the field escaped in the radial direction, so the field

in the radial direction is proportional to the derivative of the field in the longitudinal

direction. The radial field is also proportional to distance from the axis in the region

near the axis. Thus, the values of the magnetic field in the radial direction can

be obtained by taking the derivative of the field in the longitudinal direction and

multiplying by the distance from the axis. These values are shown in Fig. 2.8(b) for

a point 2.5 cm off axis.

In order to apply the magnetic field to the simulations, I created grids of magnetic
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Figure 2.8: The magnetic field values in the longitudinal and radial directions as a

function of distance from a point slightly beyond the ion source into the ion trap.

The bold lines are the magnetic field values, and the labels show the locations of the

sample, the quadrupole, and the near side of the ion trap, as placed in the grid I used

in my simulations.
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field values in three directions with the same size as the grids of electric field values.

To create the grids for the magnetic field in the longitudinal direction, I assumed that

radial distance from the axis has a negligible effect on the value of the magnetic field.

That is, the value of the field in the longitudinal direction is the same on the axis as

it is at any point off of the axis.

After obtaining grids for the magnetic field, I simply incorporated the effect of the

magnetic fields in my previous simulations in accordance with the Lorentz equation

for electric and magnetic forces,

~F = q( ~E + ~v × ~B) (2.4)

Once the magnetic field was incorporated into the simulation in this way, its effects

could be observed on the motion of the simulated ions.

In the simulations, the magnetic field has a negligible effect on charged particles

until they have penetrated about 20 cm into the QMF. At a some point in the

trajectory of an ion the influence of the magnetic field overpowers the influence of the

electric field, resulting in cyclotron motion. The transition from motion dominated

by the electric field to motion dominated by the magnetic field can be observed in Fig.

2.9. In motion in the magnetic field, the ion circles with a Larmor radius governed

by the equation

r =
mv⊥
qB

(2.5)

while the frequency of this motion is

f =
eB

2πm
(2.6)

Many QMFs serve the purpose of breaking the magnetic mirror effect.[10] The

magnetic mirror effect is that charged particles entering a region of high magnetic field

tend to reflect back in the opposite direction. This is because particles entering the
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region with any component of velocity perpendicular to the direction of the magnetic

field lines begin cyclotron motion. When the particle enters cyclotron motion, the

kinetic energy of the particle converts from longitudinal energy that drives the particle

into the magnetic field to radial energy. If the initial perpendicular velocity of the

particle is great enough, its longitudinal momentum will become entirely converted

to radial momentum at some point, and the particle reverses direction to travel away

from the magnetic field. A quadrupole can break this effect by randomizing the

perpendicular velocity of the particle as it approaches the region of high magnetic

field.

While the magnetic mirror effect is important in many experiments involving

charged particles entering regions of high magnetic field, we have determined that this

effect is of minimal importance in our experiment. This is because even without our

QMF, ions entering the magnetic field will not encounter the magnetic mirror effect

due to the geometry of our system. Ions that have enough perpendicular velocity

to become subject to the magnetic mirror effect hit the walls of our system before

having a chance to do so. Thus, in our experiment, we determined that it was safe

to ignore the magnetic mirror effect in building the QMF.

We found that the greatest influence that the magnetic field has on the function

of the QMF is the condition of resonance. When the cyclotron frequency (Eq. 2.6)

of an ion in the QMF is near the frequency of the AC voltage applied to the QMF,

resonance occurs and the ion is driven into circular motion with increasing radius.

When resonance occurs, there is a high probability of the ion being ejected from the

quadrupole.

For singly ionized 7Be in a magnetic field of 0.43 T (maximum magnetic field in

the trap), the cyclotron frequency, calculated using Eq. 2.6, is 941 kHz. However,

as the ion approaches the trap, it has a cyclotron frequency that is proportional
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Figure 2.9: The figure at left shows ion motion in the x-y plane for a QMF 40 cm

long. This is the length that is shown in Fig. 2.8. Note that the QMF does not reach

the half-field value. The figure at right shows ion motion for a QMF 44 cm long.

At the far end of this QMF, the value of the magnetic field is 0.17 T, and resonance

occurs driving the ion out if the system.

to the magnetic field strength. For example, when the ion reaches the point where

the magnetic field is half its maximum value (at about 0.56 m in Fig. 2.8(a)), the

cyclotron frequency is 470 kHz. Since we desire to operate the quadrupole with an

AC frequency of about 550 kHz, the quadrupole must not penetrate to where the

magnetic field is at half-strength to avoid the effects of resonance.

This effect is illustrated in Fig. 2.9. When the QMF is 40 cm long (Fig. 2.9(a)),

it extends to where the magnetic field is 0.10 T. At this point the cyclotron radius of

7Be is 218 kHz, well below 550 kHz. Thus, resonance is avoided. With the same initial

conditions applied when the QMF is 44 cm long (Fig. 2.9(b)), resonance occurs. Here,

the QMF extends to where the magnetic field is 0.17 T and the cyclotron frequency
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is 371 kHz, which is only a factor of 1.5 away from the frequency of the AC voltage.

As a result of these simulations, our quadrupole was built 40 cm long to avoid the

effects of resonance.

2.5 The Modified Stability Curve

One of the most important results of my simulations was knowledge about how mod-

ifying the geometry of the quadrupole changes how it functions. I used computer

simulations to test the stability of ions in the modified quadrupole. Based on these

tests, I empirically found where the stability curves lie for the modified QMF. The

result is shown in Fig. 2.10. As in seen in the figure, the modification to the geometry

of the quadrupole results in an extended region of stability to the right of the stable

region for the ideal quadrupole. This means that more AC and DC voltage is required

to operate the QMF in the region of greatest mass resolution. However, the peak of

the modified stability region is plagued by instability in the magnetic field. This is

because even stable ions gain large amplitudes away from the axis of the quadrupole

when it is operated at higher voltages. The region of instability in the magnetic field

is somewhat arbitrary, since it depends on the initial conditions of ions entering the

QMF.

To avoid the problem of instability in the magnetic field, it is recommended that

the QMF be operated at close to q = 0.65 and a = 0.175 in our experiment. This

works because the stable region for 7Be is to the left of the stable regions for the other

isotopes in our experiment, as shown in Fig. 2.3.
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Figure 2.10: The final stability curve as empirically determined in my simulations.

Using a modified quadrupole extends the normal region of stability to the right.

However, the peak of the stable region is actually unstable in the magnetic field.

2.6 Quadrupole Fabrication

Based on the data from the simulations, a quadrupole was manufactured to fit the

criteria required for filtering out all ions except 7Be. Graduate student David Olson

and I worked together to design a system in the program SolidWorks that could

provide support for the ion source as well as incorporate the QMF into the system.

The necessary features of our design were that it include only materials that would

not compromise our ultra-high vacuum system, that the ion source and quadrupole

be electrically isolated from all other parts, and that the system maintain a stable

position when undergoing mechanical perturbations.

The final design is shown in Fig. 2.11. Two brackets clamp on the insulating ring

of the ion source. The clamp on the left in Fig. 2.11 has a hole in the top for a bolt to

extend out from to stabilize the structure against the inner ceiling of the system. The

support plates for the QMF are fabricated with as little material as possible to allow

for maximum transmission of gas molecules to the vacuum pump. The quadrupole
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Figure 2.11: An image of the ion source and QMF with the support structure, as

designed in SolidWorks.

is electrically isolated from the support structure by glass beads. This is shown in

picture in Appendix D. Drawings of each of the pieces in Fig. 2.11 are included in

Appendix C.



Chapter 3

Results and Conclusions

3.1 Comparison of Simulation and Experiment

In this chapter I will discuss the data that has been generated by the quadrupole since

it has been incorporated into the system that will measure the half-life of 7Be (see

Fig. 1.1). While most of the results in my project have been computer-generated, the

manufactured quadrupole has also generated a significant amount of data. While we

are far from understanding all of the data, we have been able to draw some conclusions

about the experiment.

The experiment has far greater complexity than my computer simulations. In my

simulations, I only modeled the motion of one ion at a time. I could always put the

desired voltages on the rods exactly how I wanted them. I ignored any influences of

any other pieces of equipment in the system. In my simulations, I had one ion with

a set of well-defined initial conditions, traversing a region of well-defined fields.

The actual experiment is far more complex than my simulations, which makes

the data difficult to analyze and compare with simulation. Part of the complexity

comes from the fact that the experimental data is produced by all of the pieces of

28
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the experimental setup acting together, each with their own complex behavior. The

ion source is one of the complex pieces of equipment. When the ion source is fired it

produces a complicated signal of noise and charges that varies somewhat with each

firing. The quadrupole itself is complex in that it is sometimes difficult to specify

the voltages on the rods exactly. In our experiments to this point, we have noticed

inconsistencies in our application of both the AC and DC components of the voltage

that we apply to the QMF.

Another source of complexity is the charge collectors. A good deal of electric

circuitry is involved in obtaining the data signal from the collectors. The only thing

the charge collector can measure is charge. It is possible that some of the measured

charge is actually induced by stray electric fields produced by the ion source, and has

nothing to do with the amount of ions striking the charge collectors. In addition,

it is difficult to determine exactly when and how many ions hit the charge collector

because of the effects of secondary electrons. Secondary electrons are electrons that

get ejected from the charge collectors when high-energy ions strike them. As a result,

one ion is measured as being two or more charges. The ion source, the QMF itself,

and the charge collectors are each individually complex parts, and each must be

understood separately in order for the data to be understood as a whole.

The experiment is more complex than my simulations aside from the complexities

and inconsistencies of the equipment. Additional complication comes from the fact

that in the experiment billions of ions all interact together as a plasma. When the

density of plasma in a QMF is low enough, the analysis I used in my simulations

accurately predicts the behavior of ions in the quadrupole because the interactions

between ions is minimal. However, when the plasma has a high density, plasma

effects become important. Estimating that the quadrupole region has a volume of

about one liter and there are about 1010 ions in the QMF during the experiment,
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we calculated that the density of the plasma in the quadrupole is about 107 ions per

cubic centimeter. This means that the Debye length of the plasma is about 0.25 cm.

The Debye length is the approximate depth to which electric fields can penetrate into

the plasma. This means that aside from equipment inconsistency, the QMF probably

still will not work as a mass filter as is because it cannot reach all of the ions that it

is supposed to filter.

While the experiment has much greater complexity than was included in my sim-

ulations, there are some things that can be done in the future to make the quadrupole

operate effectively in our experiment. One option is to somehow incorporate the com-

plexities of the experiment into a simulation of the QMF. With more powerful and

accurate simulations, we can better understand how the quadrupole can be success-

fully operated. A particle-in-cell code might be used to simulate the behavior of the

ion plasma in the QMF. Monte Carlo simulations may give insight into how the ions

behave in the QMF.

Another option to adjust the quadrupole so that it works as a mass filter is to

modify the experiment so that it matches my simulations. It may be possible to

reduce the density of plasma by passing the ions through a screen near the ion source

that only allows a percentage of the ions to pass into the quadrupole. Once this was

accomplished, each individual part of the experiment would need to be understood

well enough that we could produce conditions exactly like the conditions of the sim-

ulation. This method has the downside of limiting the number of particles that are

allowed into the trap at one time. Since we want to trap as many 7Be ions as possible,

this method is not preferable.

The last option to obtain a working QMF is to modify it to apply to plasma

conditions. I will explain some potential procedures to do this later in this chapter.
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3.2 Materials in the Quadrupole

Stepping aside from the experimental complexities of our setup, I will show some of

the data and conclusions that have been generated in tests of the QMF. We have

discovered that the composition of the quadrupole pieces was part of the problem

with the performance of the original QMF. The entire structure of the quadrupole

and support system was originally constructed of aluminum. The aluminum rods

have since been replaced with copper rods.

Aluminum is perfectly suitable as an electrical conductor, and can hold voltages

that are needed in a QMF. However, aluminum has the problem that a layer of

aluminum oxide (Al2O3) approximately 35 nanometers thick forms on the its surface

if left in atmosphere for any significant amount of time. Aluminum oxide is an

electrical insulator, so any charge that builds up on the Al2O3 surface stays for an

appreciable amount of time, especially in ultra high vacuum conditions.

The problem with using aluminum for the quadrupole rods was discovered as we

tested our experiment repeatedly in succession. We found that after an initial test, we

could run the test again with the exact same parameters and entirely different results

were produced. On the initial test we often recorded on the order of 108 Coulombs

on the charge collector, but on the next test we would get almost no charge collected.

If we ran the test again after waiting a sufficient amount of time (5-10 minutes), an

amount of charge comparable to the original amount would again be collected. We

attributed this effect to a surface charge building up somewhere in the quadrupole

system. We believe this occurred as ions struck parts of the quadrupole and built up

a surface charge on the Al2O3. The most likely spot for a charge buildup to occur is

at the support plate at the far end of the quadrupole (see Appendix C for drawings).

I modeled the effect of the surface charge on the support plate, and found that the
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Figure 3.1: A contour plot of voltages produced by a support plate (shown at far

right in Fig. 2.11) charged with 1 × 10−9 Coulombs. Light lines are higher voltages

(with a maximum of 250 V) while dark lines are lower voltages (with a minimum of

150 V).

simulation confirms our hypothesis about charge buildup. Figure 3.1 shows a contour

plot of voltage caused by a charge buildup of one nanocoulomb on a simulated support

plate. Such a charged plate would cause fields that are capable of ejecting all ions

from the QMF. This demonstrates the debilitating effect of using an insulator capable

of holding a surface charge in the quadrupole.

To fix this problem, we replaced the aluminum rods and support plate on the

far end of the quadrupole with parts of the exact same dimensions fabricated out of

copper. Copper can form a copper oxide layer, but this layer is much thinner than

an aluminum oxide layer and is a semi-conductor rather than an insulator. Surface

charge that may build up on the copper oxide decays within a few milliseconds. By

using copper parts in the QMF, we can run repeated tests without charge buildup

causing distorted fields.
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3.3 The Effect of the Magnetic Field

One obvious result of our tests was that the magnetic field has a greater effect on the

ions moving through the quadrupole than was expected from my simulations. Figure

3.2 shows the charge collected at the different components of the charge collector

for tests with the magnetic field off (Fig. 3.2(a)) and on (Fig. 3.2(b)). When the

magnetic field is off, a total of only about 6 nanocoulombs of charge is collected among

the four charge collectors, concentrated on the outer edge of the collectors. When

the magnetic field is on, a total of about 150 nanocoulombs of charge is collected,

concentrated in the center of the collectors. Note the use of the prefix nano. It is

essential in any physics research to include this prefix where possible. Physics projects

that include the prefix “nano” are much more likely to get funding and recognition.

The data in Fig. 3.2 were taken with the magnetic field value at 40% strength.

When the magnetic field is on at full strength, approximately 100 times more charge

is collected than a test without the magnetic field. Whether the magnetic field is

on or off has far more influence on whether ions pass through the quadrupole than

whether the quadrupole is turned on or not.

The results generated from tests on the actual experimental setup are very different

from what we expected to see based on data generated in my simulations of the

quadrupole. Based on simulations of the quadrupole, the amount of ions that get

through the quadrupole should not be influenced much by whether the magnetic field

is on or off. We may be able to fix this problem by placing the start of the QMF

farther back in the system, away from the strong magnetic field. We may need to

make another measurement of the magnetic field to ensure that the values are what

I have applied in my simulations.
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Figure 3.2: The charge collected at the charge collector in time changes drastically

based on whether or not the magnetic field is on.

3.4 Reduction of Fringing Fields

Another possible source of error in the experimental quadrupole is the effect of fringing

fields produced by the ion source. During ion source operation, high voltage arcing

releases ions from the sample. Electric fields produced in this process can leak into the

QMF causing distortion of the desired fields and reduced quadrupole performance.

The effects of this occurrence are extremely difficult to predict, the ion source yields

a slightly different pattern of high voltage release each time it is fired.

Figure 3.3 shows the effect of a DC voltage being applied to the ion source while

in operation. When the front piece of the ion source is at a voltage of only 15 V,

the path of the ion is significantly affected, and even more so when 30 V is applied.

While this is only a simulation of the influence of voltage on the ion source, it shows

that the voltage can make a significant difference in the function of the QMF.

It may be possible to reduce the effect of fringing fields by installing a grounded
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Figure 3.3: Plots of the first 7 microseconds of ions exiting the ion source with initial

conditions x0 = 1 mm, y0 = 1 mm, vr/vz = 0.05. Changing the voltage applied to

the ion source significantly changes the trajectories.
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copper mesh across the hole in the ground plate through which ions pass from the

ion source into the QMF. An additional effect of this approach would be a slight

reduction in ion current, as some would strike the mesh.

3.5 Potential QMF Modifications

As mentioned in section 3.1, though the QMF has produced much data and some

conclusions have been drawn, we are still far from being able to use the quadrupole in

our experiment to isolate a 7Be ion plasma. It is my purpose in this section to outline

possible ways of improving the function of the quadrupole so that mass resolution

can be achieved. I will cite the research that other groups have performed employing

the use of a QMF. I will not delve into the full details of the research, but leave it to

the reader to consult the sources mentioned.

Wexler [15](experimental) and Wagner [16](theory) used a quadrupole in an ex-

periment with a cesium-uranium-fluoride plasma. Their work may be useful in our

experiment because their plasma also had a high density, so they modeled the function

of a QMF with a high density plasma. To improve the function of the quadrupole,

Wexler and Wagner used a superimposed dipole field in conjunction with the nor-

mal quadrupole fields. It may be possible for something similar to be done in our

experiment.

Konenkov et al. added auxiliary quadrupole excitation to improve performance

of their QMF. [17] They used an additional AC voltage applied to the quadrupole

to alter the shape of the stability curves, obtaining very precise regions of stability.

Takahashi et al. used a Bessel-box type energy analyzer in a quadrupole. By altering

the way that the ions enter the QMF from the ion source, they eliminated distracting

noise from their experiment. [18] Tsukakoshi et al. used a zero-method control circuit
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to apply voltages to their QMF. [19] Using this circuit, the voltages applied to the

quadrupole could be specified with increased accuracy.

The important result of all this research is that it is possible to use a QMF in

experiments similar to ours to obtain the desired results. Using previous research as

a guide, it may be possible for us to modify our quadrupole to enable it to isolate a

7Be plasma.

3.6 Conclusion

While the QMF has been simulated and manufactured, we are still far from under-

standing it. We cannot yet operate the quadrupole accurately enough to use it in the

experiment of measuring the half-life of ionized 7Be.

In future research of the QMF, it will be important to gain a good understanding

of each component that contributes to the function of the quadrupole. The ion source

must be analyzed so that its inconsistencies are understood. The DC and AC com-

ponents of the voltages on the quadrupole must be made so that they can be applied

without error. The magnetic field must be measured accurately and completely, and

its effects on ions independent of the QMF must be understood.

There are a number of ways that the QMF may be understood enough to be used in

the experiment. It may be possible to create simulations that more accurately reflect

the behavior of the experimental quadrupole. It may also be possible to modify the

experiment so that it more closely matches the conditions of my simulations. One

method to accomplish this is reducing the current from the ion source to reduce the

density of plasma in the quadrupole. Another option is to alter the function of the

QMF as outlined in the previous section to make mass filtration possible.

It is hoped that understanding of the quadrupole will be obtained and the quadrupole
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will be an essential part of the system that will measure the half-life of ionized 7Be.

The measurement of this half-life will yield a better understanding of the variable

decay rate of this isotope and the studies of which it is a part.
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Appendix A

The Mathieu Equation

The Mathieu equation is of great importance to the function of the quadrupole mass

filter. Knowledge about how to operate the QMF is obtained from this equation.

Much of this appendix is a summary of the analysis of March and Hughes. [11]

To arrive at the Mathieu equation for ion motion in a quadrupole field, we start

with the potential experienced by an ion in a quadrupole field. The potential is

φ =
φ0

r2
0

(λx2 + σy2 + γz2) (A.1)

in which λ, σ, and γ are weighting constants for the respective coordinates, φ0 is the

applied electric potential, and r0 is the inner radius of the quadrupole as shown in

Fig. 2.4. The applied potential on the QMF is

φ0 = U − V cos(Ωt) (A.2)

When the potential experienced by the ion (Eq. A.1) is put in Poisson’s equation

(Eq. 2.3) with ρ = 0, the condition

λ+ σ + γ = 0 (A.3)

is obtained. In the two-dimensional quadrupole case, the potential in the z direction

is zero. Thus, γ = 0 and the limitations on the weighting constants can be satisfied
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if

λ = −σ = 1 (A.4)

Thus, the field expression becomes

φ(x, y) =
φ0

r2
0

(x2 − y2) (A.5)

We can put the expression for φ0 (Eq. A.2) into Eq. A.5 and differentiate with respect

to x and y to obtain a potential gradient in each direction,

∂φ

∂x
=

2x

r2
0

(U − V cosΩt) (A.6)

∂φ

∂y
=

2y

r2
0

(U − V cosΩt) (A.7)

The electrical force on the ion in each direction is the potential gradient multiplied

by the charge. Force also equals mass times acceleration. Equating the expressions

for the forces, we obtain

Fx = m
d2x

dt2
=

2ex

r2
0

(U − V cosΩt) (A.8)

Fy = m
d2y

dt2
=

2ey

r2
0

(U − V cosΩt) (A.9)

Thus, the equations of motion for a singly charged positive ion in a two-dimensional

quadrupole field are

d2x

dt2
+

2e

mr2
0

(U − V cosΩt)x = 0 (A.10)

d2y

dt2
+

2e

mr2
0

(U − V cosΩt) y = 0 (A.11)

d2z

dt2
= 0 (A.12)
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The equations in the x and y directions resemble the second-order linear differ-

ential equation known as the Mathieu equation. Mathieu originally developed this

equation while investigating the motions of a vibrating membrane. The canonical

form of the equation is

d2u

dξ2
+ (au − 2qucos2ξ)u = 0 (A.13)

with u representing one of the coordinate axes. If we change variables in Eq. A.10

and Eq. A.11 so that

ξ =
Ωt

2
(A.14)

we can obtain

d2x

dξ2
= − 8exU

mr2
0Ω2

+
8exV cos2ξ

mr2
0Ω2

(A.15)

and the same for the y direction. If we define ax and qx such that

ax =
8eU

mr2
0Ω2

(A.16)

and

qx =
4eV

mr2
0Ω2

(A.17)

we obtain

d2x

dξ2
+ (ax − 2qxcos2ξ)x = 0 (A.18)

and the same equation in the y direction. Note that the values for a and q are the

same as those in Eq. 2.1 and Eq. 2.2. Equation A.18 is the canonical form of the

Mathieu equation. Thus, we can consult the knowledge of this historically important

equation which has been studied extensively to learn about the function of the QMF.

The stable, bounded solutions for the Mathieu equation are well known. Stable

solutions in the x direction fit under the curve

ax0 = 1− q − 1

8
q2 +

1

64
q3 +

1

1536
q4 + ... (A.19)
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This curve, plotted for a = 0.7 to a = 0.9, is on the right in Fig. 2.1. Meanwhile,

stable solutions in the y direction fit under the curve

ay0 =
1

2
q2 − 7

128
q4 +

29

2304
q6 + ... (A.20)

This curve, plotted for a = 0 to a = 0.7, is on the left in Fig. 2.1.

The stability curves for the ideal QMF come from the analysis of the well-known

Mathieu equation.



Appendix B

Matlab Code

My project required a significant amount of coding in Matlab. Only the most
important programs from my simulations are included here. With all of these files in
a directory, ion motion in our quadrupole field can be simulated.

B.1 Solving the Voltage Grid

This program creates a grid of voltages for a quadrupole with rods of a specified
radius and length.

%Solve LaPlace’s equation to obtain a grid of voltage values
clear;
close all;

%Input the grid points for the three-dimensional grid
%Include more points in the z direction because it is longer
N=25;
Nx=N;
Ny=N;
Nz=3*Nx;

%Define the radii of the necessary parameters
%In our QMF, the central region has radius 2cm, and the radius of the
%rods is half of that
r0=0.02;
r1=.5*r0;
l0=0.1; %The length from z=0 to the beginning of the quadrupole
l=.4; %The length of the quadrupole
lengthz=.567; %The length between the ion source and the ion trap

46



APPENDIX B. MATLAB CODE 47

ltot=lengthz+.3; %Add 30 cm for wiggle room for computation

%Define the length (diameter) of computation
Lx=.1; %Length in x of the computation region
Ly=.1; %Length in y of the computation region
Lz=ltot; %Length in z of the computation region

% Define the grids
dx=Lx/(Nx-1); %X-grid spacing
dy=Ly/(Ny-1); %Y-grid spacing
dz=Lz/(Nz-1); %Z-grid spacing
x=(0:dx:Lx)-.5*Lx; %X-grid, centered at x=0
y=(0:dy:Ly)-.5*Ly; %Y-grid, centered at y=0
z=(0:dz:Lz); %Z-grid, starting at one end of the quadrupole

%Determine the approximate best omega: parameter in SOR
omega=1.72;

%Set the error criterion
errortest=1e-6;

%Define the voltages
U1=1; %Direct current potential
P1=U1; %Potential for two of the poles
P2=-U1; %Potential for the other two poles

%Define boundary conditions
%Put the boundary conditions in a matrix U
%Grounded around the outside edge
U=zeros(Nx,Ny,Nz);

%Define the mask
mask=zeros(Nx,Ny,Nz);
%Make the grounded border around the outside
for i=1:Nx

for j=1:Ny
r=sqrt(x(i)^2+y(j)^2);
if r<(r0+2*r1)

mask(i,j,:)=1;
else mask(i,j,:)=0;
end

end
end

%Make the poles of the quadrupole
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%Start with the left pole
%The center or the pole is r0 to the left
%of the center of the region
for i=1:Nx

for j=1:Ny
r=sqrt((x(i)+(r0+r1))^2+y(j)^2);
if r<r1

mask(i,j,:)=0;
U(i,j,:)=P1;

end
end

end
%Now for the right pole
for i=1:Nx

for j=1:Ny
r=sqrt((x(i)-(r0+r1))^2+y(j)^2);
if r<r1

mask(i,j,:)=0;
U(i,j,:)=P1;

end
end

end
%Now for the bottom pole
for i=1:Nx

for j=1:Ny
r=sqrt((y(j)+(r0+r1))^2+x(i)^2);
if r<r1

mask(i,j,:)=0;
U(i,j,:)=P2;

end
end

end
%Now for the top pole
for i=1:Nx

for j=1:Ny
r=sqrt((y(j)-(r0+r1))^2+x(i)^2);
if r<r1

mask(i,j,:)=0;
U(i,j,:)=P2;

end
end

end

%Now define the boundary conditions at the ends of the quadrupole
U(:,:,1)=0;
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U(:,:,Nz)=0;
mask(:,:,1)=0;
mask(:,:,Nz)=0;

%The quadrupole itself is only defined at the center of the region of
%computation: we are solving the fields for free space outside the
%quadrupole in the z direction
%Thus, we can limit U to be zero anywhere outside the middle 30cm of the
%computation region
%First, define the limits in the index region
%Also fix the mask so that it iterates all the regions without poles
Nz1=l0;
Nz2=l0+l;

for n=1:Nz
if z(n)<Nz1

U(:,:,n)=0;
mask(:,:,n)=1;

end
if z(n)>Nz2

U(:,:,n)=0;
mask(:,:,n)=1;

end
end

%Define the scale of the voltage, to be used to check the error in the
%iterations
Uscale=max(max(max(abs(U))));

%Now plug the initial condition matrix U into V
%to be manipulated by iteration to determine the fields
V=U;

%Set a maximum iteration count
Niter=Nx*Ny*Nz;

%Set factors used repeatedly in the algorithm
facyz=dy^2*dz^2;
facxz=dx^2*dz^2;
facxy=dx^2*dy^2;

for n=1:Niter
err(n)=0; %initialize the error at iteration n to zero
for i=2:(Nx-1) %Loop over interior points only

for j=2:(Ny-1)
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for k=2:(Nz-1)
if (mask(i,j,k))==1

rhs=(facyz*(V(i+1,j,k)+V(i-1,j,k))+facxz*...
(V(i,j+1,k)+V(i,j-1,k))+facxy*...
(V(i,j,k+1)+V(i,j,k-1)))/...
(2*(facyz+facxz+facxy));

err(n)=max(err(n),abs(V(i,j,k)-rhs)/Uscale);
V(i,j,k)=omega*rhs+(1-omega)*V(i,j,k);

end
end

end
end
if (abs(err(n)) < errortest)

fprintf(’After %g iterations, error= %g\n’,n,err(n));
disp(’Desired accuracy achieved; breaking out of loop’);
break;

end
end

%make a surface plot
figure
surf(x,y,V(:,:,round(Nz/2))’);
xlabel(’x’);ylabel(’y’);
title(’Fields in the middle of the quadrupole’)

%Make an animation of the fields as the z direction moves past the
%ends of the quadrupole
for m=1:Nz

if z(m)>(l0+l-l0/2)
break

end
end
for s=1:Nz

if z(s)>(l0+l+l0/2)
break

end
end
figure
for n=m:s

surf(x,y,V(:,:,n)’);
zlim([-1 1])
p=z(n)-(.3+3*(r0+2*r1));
title([’Fields at ’,num2str(p),’ outside the quadrupole’])
pause

end
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%Display the maximum voltage at three points outside the quadrupole
v1=max(max(V(:,:,s-3)));
q=100*(z(s-3)-(z(s)+z(m))/2);
fprintf(’Voltage %1.4gcm outside the quadrupole - %1.4g \n’,q,v1)
v1=max(max(V(:,:,s)));
q=100*(z(s)-(z(s)+z(m))/2);
fprintf(’Voltage %1.4gcm outside the quadrupole - %1.4g \n’,q,v1)
v1=max(max(V(:,:,s+3)));
q=100*(z(s+3)-(z(s)+z(m))/2);
fprintf(’Voltage %1.4gcm outside the quadrupole - %1.4g \n’,q,v1)

%Make a one-dimensional cross section of the voltage
vt1=round(Nx/4);
vt2=round(Ny/2);
Vline=reshape(V(vt1,vt2,:),1,Nz);
figure
plot(z,Vline)

%Make a slice across the quadrupole
Vslice=V((Nx/2)+.5,:,round(Nz/2));
figure
plot(x,Vslice,’b-’);
hold on
plot(r0,-1,’r*’)
plot(r0+dx,-1,’r*’)
plot(-r0,-1,’r*’)
plot(-r0-dx,-1,’r*’)

%Define the error in the radius measurement
for n2=round(Nx/6):round(Nx/2)

if Vslice(n2)>-.99
break

end
end
xspecial=x(n2-1);
diff=abs(r0+xspecial);

%Save the data to be loaded in setup.m to solve for electric fields
save potential3coarse V x y z diff

B.2 Solving the Electric Fields

This program is to be run after the previous program to solve for the electric fields
in the quadrupole.
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%Calculate the electric field from the potential in the x and y directions
%and load it into matrices Ex and Ey
clear;
close all;

load potential3coarse
xpot=x;
ypot=y;
zpot=z;

%Establish matrices for Ex, Ey, and Ez
Ex=zeros(length(x),length(y),length(z));
Ey=zeros(length(x),length(y),length(z));
Ez=zeros(length(x),length(y),length(z));

for n=2:length(x)-1
for m=2:length(y)-1

for k=2:length(z)-1
Ex(n,m,k)=(V(n-1,m,k)-V(n+1,m,k))/(2*(x(n+1)-x(n)));
Ey(n,m,k)=(V(n,m-1,k)-V(n,m+1,k))/(2*(y(m+1)-y(m)));
Ez(n,m,k)=(V(n,m,k-1)-V(n,m,k+1))/(2*(z(k+1)-z(k)));
end

end
end

%Save the electric fields
save setupvar Ex Ey Ez xpot ypot zpot diff

B.3 The Magnetic Field Values

This program gives the values for the magnetic field which were measured directly
from the experimental system.

% This will define the axial magnetic field and necessary info to
% calculate the axial and radial field (near the axis)

global Zvalues Bzvalues dBzvalues;

% These values are the Bz calculated with a fully-corrected magnet using
% the experimental values for the flattest central field.

Zvalues=0:.01:1.1;

Bzvalues=[0.4295466304,0.4295662094,0.4295963200,0.4296345496,...
0.4296763567,0.4297144393,0.4297378389,0.4297307893,...
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0.4296713377,0.4295298046,0.4292671812,0.4288336081,...
0.4281670866,0.4271925686,0.4258215344,0.4239521532,...
0.4214701565,0.4182506079,0.4141605817,0.4090617099,...
0.4028094744,0.3952456023,0.3861851524,0.3754072203,...
0.3626580838,0.3476710715,0.3302084790,0.3101361090,...
0.2875384866,0.2628537666,0.2369436230,0.2109777410,...
0.1861265663,0.1632540784,0.1428023102,0.1248611022,...
0.1093023979,0.9589390572e-1,0.8437070998e-1,0.7447322880e-1,...
0.6596446198e-1,0.5863600761e-1,0.5230847743e-1,...
0.4682936807e-1,0.4206996264e-1,0.3792204876e-1,...
0.3429481525e-1,0.3111207999e-1,0.2830988893e-1,...
0.2583447768e-1,0.2364055984e-1,0.2168990148e-1,...
0.1995013867e-1,0.1839380060e-1,0.1699750108e-1,...
0.1574127219e-1,0.1460801272e-1,0.1358303204e-1,...
0.1265367221e-1,0.1180899351e-1,0.1103951398e-1,...
0.1033699044e-1,0.9694236812e-2,0.9104970776e-2,...
0.8563685486e-2,0.8065540777e-2,0.7606271621e-2,...
0.7182110507e-2,0.6789721112e-2,0.6426142183e-2,...
0.6088739303e-2,0.5775163515e-2,0.5483316050e-2,...
0.5211317625e-2,0.4957482239e-2,0.4720294228e-2,...
0.4498388514e-2,0.4290533437e-2,0.4095615636e-2,...
0.3912627056e-2,0.3740653115e-2,0.3578863421e-2,...
0.3426501954e-2,0.3282880101e-2,0.3147369297e-2,...
0.3019394995e-2,0.2898431358e-2,0.2783996687e-2,...
0.2675648590e-2,0.2572980875e-2,0.2475619731e-2,...
0.2383220755e-2,0.2295466419e-2,0.2212063618e-2,...
0.2132741446e-2,0.2057249063e-2,0.1985354278e-2,...
0.1916841724e-2,0.1851511590e-2,0.1789178204e-2,...
0.1729668832e-2,0.1672822884e-2,0.1618490556e-2,...
0.1566532107e-2,0.1516817414e-2,0.1469224744e-2,...
0.1423640175e-2,0.1379957460e-2,0.1338076844e-2,...
0.1297904846e-2,0.1259354042e-2];

NBvalues=length(Zvalues);

dBzvalues(2:NBvalues-1)=(Bzvalues(3:NBvalues)-Bzvalues(1:NBvalues-2))./...
(Zvalues(3:NBvalues)-Zvalues(1:NBvalues-2));

dBzvalues(1)=3*dBzvalues(2)-3*dBzvalues(3)+dBzvalues(4);
dBzvalues(NBvalues)=3*dBzvalues(NBvalues-1)-3*dBzvalues(NBvalues-2)+...

dBzvalues(NBvalues-3);

plot(Zvalues,Bzvalues);

figure
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plot(Zvalues,dBzvalues);

save Bvalues Bzvalues dBzvalues Zvalues

B.4 The Magnetic Field Grid

This program puts the magnetic field values into a grid that is the same size as the
grid for the electric field.

clear;
close all;

%Load the values for the magnetic fields from Binit.m
load Bvalues
%Also load the variables from the electric field solver so we can get
%similar matrices to compare with the magnetic field matrices
load setupvar

%Start by changing the magnetic field values from Bvalues.m to values that
%correlate with the quadrupole
l0=0.1; %The location of the mouth of the quadrupole
ltot=0.867; %The length of the computation region
N=length(zpot);
dz=ltot/(N-1);
Bzpot=0:dz:ltot;

%Interpolate the magnetic fields onto the values that we need them for and
%plot the new values
Bzvaluesnew=interp1(Zvalues,Bzvalues,Bzpot);
subplot(2,2,1)
plot(Bzpot,Bzvaluesnew)
dBzvaluesnew=interp1(Zvalues,dBzvalues,Bzpot);
subplot(2,2,2)
plot(Bzpot,dBzvaluesnew)

%Reverse the direction of the magnetic fields and make the derivatives
%negative
zB=Bzvaluesnew(N:-1:1);
dzB=-dBzvaluesnew(N:-1:1);
subplot(2,2,3)
plot(Bzpot,zB)
subplot(2,2,4)
plot(Bzpot,dzB)

%Build matrices for the magnetic field values
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Bz=zeros(length(xpot),length(ypot),length(zpot));
Bx=zeros(length(xpot),length(ypot),length(zpot));
By=zeros(length(xpot),length(ypot),length(zpot));

for k=1:N
Bz(:,:,k)=zB(k);
for i=1:length(xpot)

for j=1:length(ypot)
Bx(i,j,k)=-0.5*xpot(i)*dzB(k);
By(i,j,k)=-0.5*ypot(j)*dzB(k);

end
end

end

save Bsetupvar Bx By Bz

B.5 The Mover

This program must be in the same directory as the program in the next section in
order for the motion of ions in the quadrupole to be simulated.

%Define the function for the ion motion
function F=quadfun3D(t,y)

%Declare pertinent variables to be global
global U V omega Ex Ey Ez xpot ypot zpot Bx By Bz ctm;

%Set up the function F
F=zeros(length(y),1);

%Define the system of first order differential equations
%Start with the equation related to the velocity
F(1)=y(2);
F(3)=y(4);
F(5)=y(6);

%Set the position as the result from the ode in the main editor
xpos=y(1);
ypos=y(3);
zpos=y(5);

%Solve for the electric fields at the actual position of the particle
Ex1=interp3(xpot,ypot,zpot,Ex,ypos,xpos,zpos,’linear’,0);
Ey1=interp3(xpot,ypot,zpot,Ey,ypos,xpos,zpos,’linear’,0);
Ez1=interp3(xpot,ypot,zpot,Ez,ypos,xpos,zpos,’linear’,0);
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%Interpolate for the magnetic fields at the actual position of the particle
Bx1=interp3(xpot,ypot,zpot,Bx,ypos,xpos,zpos,’linear’,0);
By1=interp3(xpot,ypot,zpot,By,ypos,xpos,zpos,’linear’,0);
Bz1=interp3(xpot,ypot,zpot,Bz,ypos,xpos,zpos,’linear’,0);

%Now do the equation related to the position
F(2)=ctm*(Ex1*(U+V*cos(omega*t))+y(4)*Bz1-y(6)*By1);
F(4)=ctm*(Ey1*(U+V*cos(omega*t))-y(2)*Bz1+y(6)*Bx1);
F(6)=ctm*(Ez1*(U+V*cos(omega*t))+y(2)*By1-y(4)*Bx1);

B.6 Solving the Ion Motion

This program is the end result file that is used in conjunction with uploaded variables
and a function file to generate ion motion in the three-dimensional quadrupole.

clear; close all;

%declare global variables
global U V omega Ex Ey Ez Exp Eyp Ezp Exc Eyc Ezc ...
xpot ypot zpot Bx By Bz r0 r1 ctm diff;

%Upload the electric fields from where we solved them in setup.m
load setupvar;

%Upload the magnetic fields from where we solved them in Bvars.m
load Bsetupvar;

%Change the magnetic field strength as desired
Bfactor=1;
Badd=0;
Bz=Bfactor*Bz+Badd;
Bx=Bfactor*Bx;
By=Bfactor*By;

%Change the fringing field as desired:
%Efactor=1 is the effect of one volt applied to the ion source
Efactor=30;
Exp=Efactor*Exp;
Eyp=Efactor*Eyp;
Ezp=Efactor*Ezp;

%Change the charged plate field as desired:
%Ecfactor=1 is the effect of 10^-9 Coulombs of charge on the support plate
Ecfactor=.05;
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Exc=Ecfactor*Exc;
Eyc=Ecfactor*Eyc;
Ezc=Ecfactor*Ezc;

%set values for global variables
q=1; %charge of the ion in electron units
m=7.06; %mass of ion: mass of beryllium 7 ion in amu is 7.06
r0=0.02; %inner radius of quadrupole
r0p=r0+diff; %account for the effects of the grid
f=5.5e5; %frequency of the RF voltage
omega=2*pi*f; %angular frequency of the RF voltage
r1=.5*r0; %The radius of individual quadrupole poles
l0=0.1; %the distance from z=0 to where the quadrupole starts
l=.4; %The length of the quadrupole
ltot=.567; %The length between the ion source and the ion trap

%convert to SI units
charge=1.602e-19*q;
q=charge;
m=1.66e-27*m;
ctm=q/m;

%Define adjustable variables for modified stability curve
B=.001;
C=0.089;

%define U and V by the stability curve for a and q
qval=.72;
if qval<=.7624

aval=.5*qval^2-(7/128)*qval^4+(29/2304)*qval^6;
aval=B+aval;

else
aval=1-(qval-C)-.125*(qval-C)^2+(1/64)*(qval-C)^3+(1/1536)*(qval-C)^4;

end

%The following lines are all for adjustments to a and q to test stability
aval=aval-.025;
% qval=qval-.001;
% qval=.65;
% aval=.17;

U=(aval*m*omega^2*r0p^2)/(8*q);
V=(qval*m*omega^2*r0p^2)/(4*q);
% omega=(2/r0p)*sqrt((q*V)/(qval*m));
f=omega/(2*pi);
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%Change the AC, DC fields as desired
Ufactor=1;
Vfactor=1;
U=U*Ufactor;
V=V*Vfactor;

%Define initial conditions by three parameters, ratio of radial velocity to
%longitudinal velocity, azimuthal angle, and distance from quadrupole
vrvz=.053; %ratio of radial velocity to longitudinal velocity
theta=(pi)/4; %initial angle from the x axis
d=.02; %distance the ion source is set back from the quadrupole

%Define the total velocity of the particle
v=2.5e4;

%Define initial conditions vector
y0=zeros(6,1);

%Set initial conditions
x0pos=.001;
y0pos=.001;
z0pos=l0-d;
vx0=(((1/vrvz)^2+1)^(-1/2))*v*cos(theta);
vy0=(((1/vrvz)^2+1)^(-1/2))*v*sin(theta);
vz0=((vrvz^2+1)^(-1/2))*v;

%set the start and end times
tstart=0;
tfinal=25e-6;

y0(1)=x0pos; %initial x position
y0(2)=vx0; %initial x velocity
y0(3)=y0pos; %initial y position
y0(4)=vy0; %initial y velocity
y0(5)=z0pos; %initial z position
y0(6)=vz0; %initial z velocity

%set options for tolerance
options=odeset(’RelTol’,1e-5);

%solve the equations for the ion motion
[t,y]=ode45(@quadfun3D,[tstart,tfinal],y0,options);

%Separate into components
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x1=y(:,1);
vx=y(:,2);
y1=y(:,3);
vy=y(:,4);
z1=y(:,5);
vz=y(:,6);

%separate the components: don’t plot what goes out of the quadrupole
for n=1:length(x1)

xp(n)=y(n,1);
if sqrt(x1(n)^2+y1(n)^2) > (r0+.001)

break
end

end
vxp=vx(1:length(xp));
yp=y1(1:length(xp));
vyp=vy(1:length(xp));
zp=z1(1:length(xp));
vzp=vz(1:length(xp));
xp=xp’;
t1=t(1:length(xp));

%define and plot the quadrupole poles in two dimensions
x2=-r1:r1/100:r1;
y2=real((r1^2-x2.^2).^(1/2)+r0+r1);
y3=-y2;
plot(x2,y2,’r-’,x2,y3,’r-’)
hold on
y4=real((r1^2-x2.^2).^(1/2)-r0-r1);
y5=-y4;
plot(x2,y4,’r-’,x2,y5,’r-’)
x3=-r0-2*r1:r1/100:-r0;
y6=real((r1^2-(x3+r0+r1).^2).^(1/2));
y7=-y6;
plot(x3,y6,’r-’,x3,y7,’r-’)
x4=r0:r1/100:r0+2*r1;
y8=real((r1^2-(x4-r0-r1).^2).^(1/2));
y9=-y8;
plot(x4,y8,’r-’,x4,y9,’r-’)
plot(r0+r1,0,’r*’,-r0-r1,0,’r*’,0,r0+r1,’r*’,0,-r0-r1,’r*’);

%plot x versus y
plot(xp,yp);
xlabel(’x’); ylabel(’y’);
axis equal
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ylim([-.025 .025])

%Find and prepare to plot the point where the B-field is half maximum
Bfieldmax=max(max(max(Bz)));
for n7=1:length(zpot)

Bmaxtemp=max(max(Bz(:,:,n7)));
if Bmaxtemp>.5*Bfieldmax

break
end

end

%define and plot the quadrupole poles in three dimensions
figure
x2=-r1:r1/100:r1;
y2=real((r1^2-x2.^2).^(1/2)+r0+r1);
y3=-y2;
zc1=zeros(1,length(x2));
zc1(:)=l0;
zc2=zeros(1,length(x2));
zc2(:)=(l+2*l0)/2; %Distance to the middle of the quadrupole
zc3=zeros(1,length(x2));
zc3(:)=l0+l; %Distance to the end of the quadrupole
zc4=zeros(1,length(x2));
zc4(:)=ltot;
plot3(x2,y2,zc1,’r-’,x2,y3,zc1,’r-’)
hold on
plot3(x2,y2,zc2,’r-’,x2,y3,zc2,’r-’)
plot3(x2,y2,zc3,’r-’,x2,y3,zc3,’r-’)
plot3(x2,y2,zc4,’r-’,x2,y3,zc4,’r-’)
y4=real((r1^2-x2.^2).^(1/2)-r0-r1);
y5=-y4;
plot3(x2,y4,zc1,’r-’,x2,y5,zc1,’r-’)
plot3(x2,y4,zc2,’r-’,x2,y5,zc2,’r-’)
plot3(x2,y4,zc3,’r-’,x2,y5,zc3,’r-’)
plot3(x2,y4,zc4,’r-’,x2,y5,zc4,’r-’)
x3=-r0-2*r1:r1/100:-r0;
y6=real((r1^2-(x3+r0+r1).^2).^(1/2));
y7=-y6;
plot3(x3,y6,zc1,’r-’,x3,y7,zc1,’r-’)
plot3(x3,y6,zc2,’r-’,x3,y7,zc2,’r-’)
plot3(x3,y6,zc3,’r-’,x3,y7,zc3,’r-’)
plot3(x3,y6,zc4,’r-’,x3,y7,zc4,’r-’)
x4=r0:r1/100:r0+2*r1;
y8=real((r1^2-(x4-r0-r1).^2).^(1/2));
y9=-y8;
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plot3(x4,y8,zc1,’r-’,x4,y9,zc1,’r-’)
plot3(x4,y8,zc2,’r-’,x4,y9,zc2,’r-’)
plot3(x4,y8,zc3,’r-’,x4,y9,zc3,’r-’)
plot3(x4,y8,zc4,’r-’,x4,y9,zc4,’r-’)
rf1=r0+r1;
rf2=-rf1;
plot3([rf1 rf1],[0 0],[l0 l0+l],’r-’,[rf2 rf2],[0 0],[l0 l0+l],’r-’);
plot3([0 0],[rf1 rf1],[l0 l0+l],’r-’,[0 0],[rf2 rf2],[l0 l0+l],’r-’);
%Plot an ’x’ where the B-field is at half maximum
plot3([0 0],[rf1 rf2],[zpot(n7) zpot(n7)],’g-’);
plot3([rf1 rf2],[0 0],[zpot(n7) zpot(n7)],’g-’);
%Plot an ’x’ where the flange is
plot3([0 0],[rf1 rf2],[0.135 0.135],’g-’);
plot3([rf1 rf2],[0 0],[0.135 0.135],’g-’);

%Plot the motion in three dimensions
plot3(xp,yp,zp)
axis equal

%Plot the representative stability curves and region we are testing
figure
q=0:.05:.8;
a=.5*q.^2-(7/128)*q.^4+(29/2304)*q.^6;
q1=.65:.01:.9;
a1=1-q1-.125*q1.^2+(1/64)*q1.^3+(1/1536)*q1.^4;
plot(q,a,’r-’,q1,a1,’r-’)
hold on
plot(qval,aval,’r*’)
xlabel(’q’);ylabel(’a’);
title(’Testing Be-7 for Stability’)
qp=q;
ap=.5*qp.^2-(7/128)*qp.^4+(29/2304)*qp.^6;
ap=B+ap;
q1p=q1+C;
a1p=a1;
plot(qp,ap,’b-’,q1p,a1p,’b-’)
plot(qval,aval,’b*’)
plot([0 qval],[0 aval],’b-’)
plot([qval (1/qval)*qval],[aval (1/qval)*aval],’b-’)
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Machining Drawings

This section includes the drawings which were used to fabricate the parts for the

quadrupole and support structure. Each of these pieces are part of the overall system

shown in Fig. 2.11.

Figure C.1: The plate that sits in the bottom of the system. The holes are where the

bracket for the ion source (Fig. C.2 and Fig. C.3) and ground plate (Fig. C.4) are

attached. All dimensions shown are in units of inches.
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(a) Face view (b) Side view

Figure C.2: The bracket that holds the ion source in place that is furthest from the

QMF. All dimensions shown are in units of inches.
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(a) Face view

(b) Side view

Figure C.3: The bracket that holds the ion source in place that is closest to the QMF.

All dimensions shown are in units of inches.
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(a) Face view (b) Side view

Figure C.4: The ground plate located between the ion source and the QMF. All

dimensions shown are in units of centimeters.
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(a) Face view (b) Side view

Figure C.5: The support at the end of the QMF closest to the ion source. The bottom

radius is larger than the top radius to enable the piece to sit flush to the surface of

the pipe in which it sits, while allowing the piece to be inserted in the pipe past welds

connecting pieces of the pipe. All dimensions shown are in units of centimeters.
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Pictures

This section includes some images of the actual experimental system.
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Figure D.1: Our experimental system. This picture is equivalent to the schematic of

the system, Fig. 1.1. However, the actual picture is inverted left to right from the

schematic. In the picture, the ion source is housed within the “T” on the right. The

quadrupole is in the region between the “T” on the left and the ion trap on the right.

The vacuum pump is the black box on the bottom right. The white plastic tubes are

used to pump water through to cool the coils for the magnet.

Figure D.2: The completed quadrupole. Originally, the poles and the support piece

at the far left in the picture were aluminum.
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Figure D.3: A close up view of the ion source and quadrupole mounted in place. A

photodiode is mounted on the left below the quadrupole. The quadrupole is mounted

so that it is electrically insulated from the ground plate.
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