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ABSTRACT

SURFACE-ROUGHNESS CORRECTIONS TO EXTREME ULTRAVIOLET

THIN-FILM REFLECTANCE MEASUREMENTS

Elise Martin

Department of Physics and Astronomy

Bachelor of Science

There are several traditional methods of accounting for the way that the rough-

ness of a surface changes how light reflects. This paper introduces a new

method based on arbitrarily exact solutions of Maxwell’s equations solved

computationally for reflectance from rough surfaces. This method leads to a

correction factor for the changed reflectance and is compared to the oft-used

Debye-Waller factor. Where the Debye-Waller factor contains only a quadratic

factor in the exponential, the computational fitting of reflectance data demon-

strates the need for cubic and linear terms in addition to a quadratic term.
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Chapter 1

Introduction

1.1 Applications of Optics in the Extreme Ultra-

violet

The extreme ultraviolet (EUV) wavelength range is becoming increasingly important

to many areas of science and technology, such as space-based astronomy and pho-

tolithography. Various celestial objects, such as the sun, emit light in the extreme

ultraviolet wavelength range. In order to observe these emissions, optical instruments

are needed that work well in the EUV. The importance of EUV astronomy was shown

when an observation satellite exclusively for EUV astronomy was launched by NASA

in 1992. The mission completed an all-sky survey as well as the first EUV detec-

tion of extragalactic objects [1]. Astronomical observations in the EUV, specifically

magnetosphere imaging of the Earth, were also performed by the 2000 IMAGE mis-

sion. The satellite that made these observations contained an EUV mirror created

by researchers at BYU [2].

EUV wavelengths are also important to photolithographic processes. Photolithog-

raphy is used to create computer chips. Patterns are etched on wafers by reflecting

1



1.2 Finding Optical Constants of Thin Films 2

light off of a larger mask and through reducing optics onto the wafer. EUV lithog-

raphy is beneficial because its smaller wavelength size results in the capability of

producing smaller patterns. This involves the use of multilayer mirrors and other

optics that must work well with EUV light [3].

In order to make the special EUV optics that are needed for these applications,

the optical constants of the materials must be known. The problem with making

effective optics in the EUV is that most materials are extremely absorptive at these

wavelengths. To reflect well, multilayer mirrors are needed so that the reflection of

each layer will be constructively added. To optimize the reflectivity of these mirrors,

both the real and the imaginary parts of the index of refraction must be known for

the material that comprises each layer.

1.2 Finding Optical Constants of Thin Films

The optical constants of materials are found through reflectance and transmission of

light incident on a surface. Reflectance and transmission are related to the Fresnel

coefficients which, in turn, can be used to find the real and imaginary parts of the

index of refraction.

For s-polarized light reflecting from a single interface,

R = |F |2 (1.1)

F =
Er

Ei

=
ni sin θi − nt sin θt

ni sin θi + nt sin θt

. (1.2)

where R is reflectance, F is the Fresnel coefficient, ni is the index of refraction of the

incident material (vacuum in this case), nt is the index of refraction of the material

in question, Er is the reflected electric field, Ei is the incident electric field, θi is the

angle of incidence, and θt is the transmitted angle.
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�i

Incident wave Reflected wave

�rinterface

�t

Figure 1.1 Reflection and Transmission Diagram. This is a diagram

of an electromagnetic wave interacting with an interface where θi is the angle
of incidence, θr is the angle of reflection and θt is the angle of transmission

Eq. (1.2), which has been taken from Ref. [4] and modified for angles taken

from grazing, can be solved for nt, the complex index of refraction, which affects

the wavelength and the attenuation of the wave in the material. Once the index

of refraction is known, it can be used to see if the material would be useful for

building multilayer mirrors or other optical components that are used in the extreme

ultraviolet.

Effective multilayer mirrors must reflect very well EUV wavelengths. To do this,

the mirror must not be very absorptive, there must be a large difference between the

indices of refraction of the alternating layers, and the phases must be matched so that

the waves will interfere constructively.

1.3 Effects of Roughness on Reflectance Measure-

ments

Unfortunately, the thin films used to find optical constants are not ideal. One trait

of thin films that affects reflection, which affects the optical constants that are solved
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Figure 1.2 TEM Image of a Scandium Film. This TEM cross-sectional

image of a scandium oxide film, taken at BYU, shows the roughness of the
film. The top layer seen residue from preparing the surface for the TEM. The
actual surface is the dark layer beneath the top layer, which shows significant
roughness.

from reflectance, is the surface roughness of the film. Stearns notes that roughness

reduces reflectivity and creates non-specular scattering [5]. When the incident wave

has a wavelength that is small compared to the dominant spatial frequency, then

the reflection can be traced using geometric optics. If the surface is anything but

completely smooth, then light rays will reflect off at different angles due to the differing

angles on the surface. This is called non-specular scattering. When this happens,

some of the light does not enter the finite detector, and the perceived intensity is less

than what is actually reflected. Also, when the wavelength is large compared to the

dominant spatial frequency, then the light can be treated as a plane wave. If this plane

wave is incident on a rough surface, where it impinges on atoms at different heights,

then each part of the plane wave will be reflected at a different phase. See Fig. 1.3.

This will also cause the reflected intensity to be less because the reflected wave will

interfere destructively. Both of these effects inhibit the measurements needed for

finding the index of refraction . In order to calculate reliable optical constants from

measured reflectance data, a correction factor must be found that compensates for
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Figure 1.3 Plane Wave Reflection. A plane wave will reflect from a

rough surface with different phases.

the roughness of the film. This paper shows a new method of correcting for roughness

that is an improvement on previously used correction factors.



Chapter 2

Finding a Correction Factor

2.1 Standard Correction Factors

There are several standard correction factors that take into account the affect of

surface roughness on reflectance. The Debye-Waller factor attempts to correct for

the roughness of a single interface through the following equation,

R = R0 exp

[
−
(

4πσ

λ
n sin θ

)2
]

(2.1)

where R0 is the reflectance without roughness, σ is the RMS roughness, n is the

complex index of refraction, and θ is measured from grazing (see Fig. 1.1). The

Debye-Waller factor [6] assumes a Gaussian distribution of roughness heights on the

surface.

The Nevot-Croce factor [6] is similar to Debye-Waller, however it takes into ac-

count the difference in index of refraction between the two layers by taking an average

of the wave vectors on either side of the interface.

R = R0 exp

[
−nint sin θ1 sin θ2

(
4πσ

λ

)2
]

(2.2)

In her Honors Thesis [7], Niki Farnsworth shows that the Debye-Waller factor

6
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Figure 2.1 Fitted Reflectance. Fitted reflectance measurement using the

finite differences approximation. Taken from reference [7].

improves fits of reflectance data at low angles and the Nevot-Croce factor improves

the fits at low and high angles. She then uses a method of finite differences to account

for oxidation, roughness, and linearly varying index of refraction. This improves the

fits at the low and middle angles. See Fig. 2.1.

In his 1992 paper, D.G. Stearns describes a method of finding the nonspecular

scattering of x-rays from rough multilayers [8]. Stearns’ theory uses the first Born

approximation and unfortunately is valid only for small roughness, when scattering

is weak (usually at x-ray wavelengths), and at angles greater than the critical angle

for total external reflection (as measured from grazing).
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2.2 Creating a Computational Model of Rough Sur-

faces

As part of my project I used a program written by Jed Johnson [9] to find the

relationship between surface roughness and reflectance. The program uses a spline to

create the rough surface. In this process evenly spaced points are smoothly connected

by cubic polynomials. See Fig. 2.2. This accounts for the effects of neighboring atoms

on each other, which the Debye-Waller and Nevot-Croce factors do not include. Both

Debye-Waller and Nevot-Croce assume a Gaussian distribution of roughness, however

if the atoms affect the height of their neighbors, which they do in physical reality,

then the roughness height frequency and the roughness spatial frequency will not be

completely Gaussian. Therefore, a new factor is needed in order to more accurately

adjust for roughness, and this factor can be found by using Johnson’s program and

solving for the arbitrarily exact reflectance of light from rough surfaces.

2.3 Finding a Correction Factor for a Perfect Con-

ductor

Johnson’s program finds arbitrarily exact solutions to Maxwell’s equations for rough

surfaces and then solves for the reflection. To do this he derives the Helmholtz

equation from Maxwell’s equations in source-free material. He solves the Helmoltz

equation for the electric field by using the definition of the Green’s function at a

point on the boundary. He then integrates over the entire boundary to find the

scattered electric field. Unlike Stearns’, this program can be used with any amount

of roughness, and range of angles, any wavelength, and total reflection (as in the case

of a perfect conductor).
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Figure 2.2 Roughness frequency. The graph of interpolated roughness

shows Gaussian random points connected by a cubic spline. The accompany-
ing amplitude spectrum shows that there is very little high spatial frequency.
However, the Gaussian surface is just Gaussian random points connected
directly. The accompanying amplitude spectrum shows that there is much
more high spatial frequency.
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From this program I can find the ratio of the electric field of a rough surface to

a smooth surface of an s-polarized perfectly conducting surface, and then take the

square to find the reflectance. Then I can vary the roughness height and roughness

spacial frequency and fit the data to obtain a factor that corrects for roughness.



Chapter 3

Conclusions

3.1 Comparison of the Debye-Waller Correction

Factor to Computational Data

To find a correction factor and compare it to Debye-Waller, I use Johnson’s program

and find the electric fields of s-polarized light reflecting off of a perfect conductor. I

input the starting angle, the angle range, the frequency of the roughness, the height

of the roughness, the length of the mirror and the number of patches. Wavelength is

set at one. By running this program I get the electric field reflected off of the surface.

I ran ten surfaces at five roughness heights and ten roughness frequencies and 16

angles to find the electric fields reflected from the rough and smooth surfaces. I then

found the Fresnel coefficients by taking the ratio of the maximums of the electric

fields from the rough and smooth surfaces.

F =
max |Er|
max |Es|

(3.1)

Fig. 3.3 shows these electric fields. The maximum peaks are used to avoid the diffrac-

tion peaks caused by reflecting from a finite surface.

11



3.1 Comparison of the Debye-Waller Correction Factor to Computational Data 12

10 20 30 40 50 60 70 80 90
0.8

0.85

0.9

0.95

1

1.05

1.1

angle from grazing

R
ef

le
ct

an
ce

Reflectance from a surface with .02 rheight and 13 rfreq
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Figure 3.2 Rough Surface. This is the surface used to generate the data

in the previous figure. It has a roughness height of .02 wavelengths and a
roughness frequency of 13 wavelengths.
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Figure 3.3 Electric Field Reflected from a Rough Surface. The left

graph shows the electric field reflected from a surface with .1 roughness height
and 1 roughness frequency. The right graph shows the electric field reflected
from a perfectly smooth surface. The ratio of the peaks of these two is the
Fresnel coefficient. The nonspecular peaks on the graph of the smooth surface
are due to diffraction from the ends of the finite surface.
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By squaring these Fresnel coefficients I find the reflectance of each roughness at

each angle. I take the negative natural logarithm of each of these reflectances and find

the mean across the ten surfaces. I also find the standard deviation of the negative

natural logarithm given by:

σ =

(
1

n− 1

n∑
1

(xi − x)2

)1/2

, (3.2)

where x represents −ln(R). From this I can find the weights to use for fitting the

reflectance.

w =
1

σ2
(3.3)

The Debye-Waller factor is exp(−σq)2 where

q = 2

(
2π

λ
n sin θ

)
(3.4)

and h is the roughness height. 2π
λ

is the wave vector and sin θ puts it in the perpen-

dicular direction. In this case, λ is one because the program uses a wavelength of

one, and n is one because that is the index of refraction of vacuum. So, to see if the

reflectance data is well-modeled by Debye-Waller, I plot the −ln(R) against qh to

see if a polynomial in qh fits the data better than Debye-Waller’s single term of q2h2.

See Fig. 3.4. The different roughness heights lie on the same curve, which indicates

that the −ln(R) is a function of qh, and not a function of the other permutations of

q and h, such as q2h3. Figs. (3.5-3.14) show that Debye-Waller is not the closest fit

to the data, although it lies within the error bars except for roughness frequency of

one. The error bars result from averaging five different surfaces for these fits. The

constant term on the cubic polynomial fit has been suppressed because at a grazing

angle of zero the reflectance should be 1, or complete reflectance, and −ln(1) = 0.

Fitting the data with cubic polynomials for five roughness frequencies results

in three coefficients that must also be fit because they depend on the roughness



3.1 Comparison of the Debye-Waller Correction Factor to Computational Data 15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

1.2

1.4
rfreq=9

q*h

-ln
(R

)

 

 

rheight=.02
rheight=.04
rheight=.06
rheight=.08
rheight=.1

Figure 3.4 −ln(R) as a function of qh. This graph shows the negative

natural logarithm of the reflectance as a function of q times the roughness
height. The different colors are data points from different roughness heights.
The different roughness heights lie on the same curve, which indicates that
the −ln(R) is a function of qh.

frequency. Figs. (3.15-3.17) show the fits of the coefficients. The error bars result

from the fit uncertainties of the reflectance fits. Error bars are obtained from the

95% confidence bounds that Matlab produces automatically by taking the difference

between the maximum and minimum bounds and dividing by 4.2. This factor of 4.2

is needed because it converts the confidence bounds from the Student T distribution

that Matlab automatically generates to the more useful standard deviation [10].
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Figure 3.5 Fit for Roughness Frequency of 1. A cubic polynomial fit

to reflectance data for a roughness frequency of 1.
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Figure 3.6 Fit for Roughness Frequency of 3. A cubic polynomial fit

to reflectance data for a roughness frequency of 3.
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Figure 3.7 Fit for Roughness Frequency of 5. A cubic polynomial fit

to reflectance data for a roughness frequency of 5.
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Figure 3.8 Fit for Roughness Frequency of 7. A cubic polynomial fit

to reflectance data for a roughness frequency of 7.
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Figure 3.9 Fit for Roughness Frequency of 9. A cubic polynomial fit

to reflectance data for a roughness frequency of 9.
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Figure 3.10 Fit for Roughness Frequency of 11. A cubic polynomial

fit to reflectance data for a roughness frequency of 11.
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Figure 3.11 Fit for Roughness Frequency of 13. A cubic polynomial

fit to reflectance data for a roughness frequency of 13.
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Figure 3.12 Fit for Roughness Frequency of 15. A cubic polynomial

fit to reflectance data for a roughness frequency of 15.
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Figure 3.13 Fit for Roughness Frequency of 17. A cubic polynomial

fit to reflectance data for a roughness frequency of 17.
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Figure 3.14 Fit for Roughness Frequency of 19. A cubic polynomial

fit to reflectance data for a roughness frequency of 19.
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Figure 3.15 Fit of the Cubic Coefficient. This is the fit of the cubic

coefficient from the cubic polynomial that resulted from fitting the −ln(R).
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Figure 3.16 Fit of the Quadratic Coefficient. This is the fit of the

quadratic coefficient from the cubic polynomial that resulted from fitting the
−ln(R).
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Figure 3.17 Fit of the Linear Coefficient. This is the fit of the linear

coefficient from the cubic polynomial that resulted from fitting the −ln(R).



3.2 Future Research 29

quadratic term linear term constant term

α 0.01 0.1935 0.7212

β 0 0.0285 1.0116

γ 0.0027 0.202 -0.0017

Table 3.1 Error of Coefficient Fits

The resulting correction factor is

exp
(
αq3h3 + βq2h2 + γqh

)
(3.5)

and

α = 0.01131r2 − 0.4315r + 1.644 (3.6)

β = 0.04435r + 2.842 (3.7)

γ = 0.0005273r2 − 0.01074r + 0.04171 (3.8)

where r is the roughness frequency. Table 3.1 shows the error in the fits of the

coefficients. The quadratic and linear terms in γ are consistent with zero, due to the

fact that the error is larger than the actual value.

This correction factor shows that the correction factor has cubic, quadratic, and

linear terms, unlike Debye-Waller, which only has the quadratic term. It also shows

that the correction factor depends on the roughness frequency of the surface, and not

just the roughness height.

3.2 Future Research

More surfaces should be used to see what holds for a variety of random surfaces.

More roughness frequencies should be used to better see how the correction factor



3.2 Future Research 30

will change with the roughness frequency. Of particular interest is the deviations in

data trends and linear coefficient fits when the roughness frequency is 17. In addition,

the Debye-Waller factor uses the RMS roughness height, so where just the roughness

heights are used in the fitting, the RMS roughness heights should be computed and

used.

This research should be extended to include dielectric multilayers with both s-

and p- polarized light. When the dielectrics are involved in the calculations then

the Nevot-Croce can also be compared to the results. Nevot-Croce is unusable with

the present data because it requires two indices of refraction, and in this case it is

a perfect conductor and so there is only one non-zero index of refraction. Also, to

remove the diffraction effects of the finite surface, experimenting with a larger surface

or a finite beam shape would be helpful. Data that includes these new parameters can

be fitted to find a factor that is more exact than the Debye-Waller and other current

factors that correct for roughness. Once this factor is found, it can be used to correct

reflectance measurements for the roughness of the film. This will help calculations of

optical constants to become more accurate.
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Appendix A

Matlab Codes

The following are the Matlab codes used to compute the −ln(R), plot the data, and

do the fitting.

% fromE.m

%finding R from E

%lnR=zeros(16,5,5);

% sigma=zeros(16,5,5);

j=1;

for h=2:2:10

i=1;

for f=10:20:190

prefix=’Randsurf_’;

fname=[prefix num2str(h) ’_’ num2str(f)]

load(fname)

for nr=1:16

for inpstate=1:10

33
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%E=mean(Er,3);

F1(nr,inpstate)=max(abs(Er(350:650,nr,inpstate)))

&./max(abs(Es(350:650,nr)));

R=F1.^2;

%theta=15:5:90;

end

lnR(nr,i,j)=mean(-log(R(nr,:)’));

%lnR(nr,i,j)=-log(meanR(nr));

sigma(nr,i,j)=std(-log(R(nr,:)’));

w(nr,i,j)=1./(sigma(nr,i,j)).^2;

end

i=i+1;

end

j=j+1;

end

% plots.m

%making plots

close all

%for rfreq=1

theta=15:5:90; q=2*pi*sind(theta);

plot(q*.02,lnR(:,1,1),’bo’,q*.04,lnR(:,1,2),’ro’,q*.06,lnR(:,1,3),’go’,

&q*.08,lnR(:,1,4),’yo’,q*.1,lnR(:,1,5),’mo’)

title(’rfreq=1’) xlabel(’q*h’) ylabel(’-ln(R)’)
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lnR1=[lnR(:,1,1) lnR(:,1,2) lnR(:,1,3) lnR(:,1,4) lnR(:,1,5)];

lnR1=reshape(lnR1,1,16*5); q1=[q*.02 q*.04 q*.06 q*.08 q*.1];

q1=reshape(q1,1,16*5); sigma1=[sigma(:,1,1) sigma(:,1,2)

sigma(:,1,3) sigma(:,1,4) sigma(:,1,5)];

sigma1=reshape(sigma1,1,16*5); A1=[q1;lnR1;sigma1];

A1=sortrows(A1’); A1=A1’; lnR1=A1(2,:); q1=A1(1,:); sigma1=A1(3,:);

%for rfreq=3

figure theta=15:5:90; q=2*pi*sind(theta);

plot(q*.02,lnR(:,2,1),’bo’,q*.04,lnR(:,2,2),’ro’,q*.06,lnR(:,2,3),’go’,

&q*.08,lnR(:,2,4),’yo’,q*.1,lnR(:,2,5),’mo’)

title(’rfreq=3’) xlabel(’q*h’) ylabel(’-ln(R)’)

lnR3=[lnR(:,2,1) lnR(:,2,2) lnR(:,2,3) lnR(:,2,4) lnR(:,2,5)];

lnR3=reshape(lnR3,1,16*5); q3=[q*.02 q*.04 q*.06 q*.08 q*.1];

q31=reshape(q3,1,16*5); sigma3=[sigma(:,2,1) sigma(:,2,2)

sigma(:,2,3) sigma(:,2,4) sigma(:,2,5)];

sigma3=reshape(sigma3,1,16*5); A3=[q3;lnR3;sigma3];

A3=sortrows(A3’); A3=A3’; lnR3=A3(2,:); q3=A3(1,:); sigma3=A3(3,:);

%for rfreq=5
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figure theta=15:5:90; q=2*pi*sind(theta);

plot(q*.02,lnR(:,3,1),’bo’,q*.04,lnR(:,3,2),’ro’,q*.06,lnR(:,3,3),’go’,

&q*.08,lnR(:,3,4),’yo’,q*.1,lnR(:,3,5),’mo’)

title(’rfreq=5’) xlabel(’q*h’) ylabel(’-ln(R)’)

lnR5=[lnR(:,3,1) lnR(:,3,2) lnR(:,3,3) lnR(:,3,4) lnR(:,3,5)];

lnR5=reshape(lnR5,1,16*5); q5=[q*.02 q*.04 q*.06 q*.08 q*.1];

q5=reshape(q5,1,16*5); sigma5=[sigma(:,3,1) sigma(:,3,2)

sigma(:,3,3) sigma(:,3,4) sigma(:,3,5)];

sigma5=reshape(sigma5,1,16*5); A5=[q5;lnR5;sigma5];

A5=sortrows(A5’); A5=A5’; lnR5=A5(2,:); q5=A5(1,:); sigma5=A5(3,:);

%for rfreq=7

figure theta=15:5:90; q=2*pi*sind(theta);

plot(q*.02,lnR(:,4,1),’bo’,q*.04,lnR(:,4,2),’ro’,q*.06,lnR(:,4,3),’go’,

&q*.08,lnR(:,4,4),’yo’,q*.1,lnR(:,4,5),’mo’)

title(’rfreq=7’) xlabel(’q*h’) ylabel(’-ln(R)’)

lnR7=[lnR(:,4,1) lnR(:,4,2) lnR(:,4,3) lnR(:,4,4) lnR(:,4,5)];

lnR7=reshape(lnR7,1,16*5); q7=[q*.02 q*.04 q*.06 q*.08 q*.1];

q7=reshape(q7,1,16*5); sigma7=[sigma(:,4,1) sigma(:,4,2)

sigma(:,4,3) sigma(:,4,4) sigma(:,4,5)];

sigma7=reshape(sigma7,1,16*5); A7=[q7;lnR7;sigma7];
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A7=sortrows(A7’); A7=A7’; lnR7=A7(2,:); q7=A7(1,:); sigma7=A7(3,:);

%for rfreq=9

figure theta=15:5:90; q=2*pi*sind(theta);

plot(q*.02,lnR(:,5,1),’bo’,q*.04,lnR(:,5,2),’ro’,q*.06,lnR(:,5,3),’go’,

&q*.08,lnR(:,5,4),’yo’,q*.1,lnR(:,5,5),’mo’)

title(’rfreq=9’) xlabel(’q*h’) ylabel(’-ln(R)’)

lnR9=[lnR(:,5,1) lnR(:,5,2) lnR(:,5,3) lnR(:,5,4) lnR(:,5,5)];

lnR9=reshape(lnR9,1,16*5); q9=[q*.02 q*.04 q*.06 q*.08 q*.1];

q9=reshape(q9,1,16*5); sigma9=[sigma(:,5,1) sigma(:,5,2)

sigma(:,5,3) sigma(:,5,4) sigma(:,5,5)];

sigma9=reshape(sigma9,1,16*5); A9=[q9;lnR9;sigma9];

A9=sortrows(A9’); A9=A9’; lnR9=A9(2,:); q9=A9(1,:); sigma9=A9(3,:);

%for rfreq=11

figure theta=15:5:90; q=2*pi*sind(theta);

plot(q*.02,lnR(:,6,1),’bo’,q*.04,lnR(:,6,2),’ro’,q*.06,lnR(:,6,3),’go’,

&q*.08,lnR(:,6,4),’yo’,q*.1,lnR(:,6,5),’mo’)

title(’rfreq=11’) xlabel(’q*h’) ylabel(’-ln(R)’)

lnR11=[lnR(:,6,1) lnR(:,6,2) lnR(:,6,3) lnR(:,6,4) lnR(:,6,5)];
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lnR11=reshape(lnR11,1,16*5); q11=[q*.02 q*.04 q*.06 q*.08 q*.1];

q11=reshape(q11,1,16*5); sigma11=[sigma(:,6,1) sigma(:,6,2)

sigma(:,6,3) sigma(:,6,4) sigma(:,6,5)];

sigma11=reshape(sigma11,1,16*5); A11=[q11;lnR11;sigma11];

A11=sortrows(A11’); A11=A11’; lnR11=A11(2,:); q11=A11(1,:);

sigma11=A11(3,:);

%for rfreq=13

figure theta=15:5:90; q=2*pi*sind(theta);

plot(q*.02,lnR(:,7,1),’bo’,q*.04,lnR(:,7,2),’ro’,q*.06,lnR(:,7,3),’go’,

&q*.08,lnR(:,7,4),’yo’,q*.1,lnR(:,7,5),’mo’)

title(’rfreq=13’) xlabel(’q*h’) ylabel(’-ln(R)’)

lnR13=[lnR(:,7,1) lnR(:,7,2) lnR(:,7,3) lnR(:,7,4) lnR(:,7,5)];

lnR13=reshape(lnR13,1,16*5); q13=[q*.02 q*.04 q*.06 q*.08 q*.1];

q13=reshape(q13,1,16*5); sigma13=[sigma(:,7,1) sigma(:,7,2)

sigma(:,7,3) sigma(:,7,4) sigma(:,7,5)];

sigma13=reshape(sigma13,1,16*5); A13=[q13;lnR13;sigma13];

A13=sortrows(A13’); A13=A13’; lnR13=A13(2,:); q13=A13(1,:);

sigma13=A13(3,:);

%for rfreq=15
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figure theta=15:5:90; q=2*pi*sind(theta);

plot(q*.02,lnR(:,8,1),’bo’,q*.04,lnR(:,8,2),’ro’,q*.06,lnR(:,8,3),’go’,

&q*.08,lnR(:,8,4),’yo’,q*.1,lnR(:,8,5),’mo’)

title(’rfreq=15’) xlabel(’q*h’) ylabel(’-ln(R)’)

lnR15=[lnR(:,8,1) lnR(:,8,2) lnR(:,8,3) lnR(:,8,4) lnR(:,8,5)];

lnR15=reshape(lnR15,1,16*5); q15=[q*.02 q*.04 q*.06 q*.08 q*.1];

q15=reshape(q15,1,16*5); sigma15=[sigma(:,8,1) sigma(:,8,2)

sigma(:,8,3) sigma(:,8,4) sigma(:,8,5)];

sigma15=reshape(sigma15,1,16*5); A15=[q15;lnR15;sigma15];

A15=sortrows(A15’); A15=A15’; lnR15=A15(2,:); q15=A15(1,:);

sigma15=A15(3,:);

%for rfreq=17

figure theta=15:5:90; q=2*pi*sind(theta);

plot(q*.02,lnR(:,9,1),’bo’,q*.04,lnR(:,9,2),’ro’,q*.06,lnR(:,9,3),’go’,

&q*.08,lnR(:,9,4),’yo’,q*.1,lnR(:,9,5),’mo’)

title(’rfreq=17’) xlabel(’q*h’) ylabel(’-ln(R)’)

lnR17=[lnR(:,9,1) lnR(:,9,2) lnR(:,9,3) lnR(:,9,4) lnR(:,9,5)];

lnR17=reshape(lnR17,1,16*5); q17=[q*.02 q*.04 q*.06 q*.08 q*.1];

q17=reshape(q17,1,16*5); sigma17=[sigma(:,9,1) sigma(:,9,2)

sigma(:,9,3) sigma(:,9,4) sigma(:,9,5)];

sigma17=reshape(sigma17,1,16*5); A17=[q17;lnR17;sigma17];
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A17=sortrows(A17’); A17=A17’; lnR17=A17(2,:); q17=A17(1,:);

sigma17=A17(3,:);

%for rfreq=19

figure theta=15:5:90; q=2*pi*sind(theta);

plot(q*.02,lnR(:,10,1),’bo’,q*.04,lnR(:,10,2),’ro’,q*.06,lnR(:,10,3),

&’go’,q*.08,lnR(:,10,4),’yo’,q*.1,lnR(:,10,5),’mo’)

title(’rfreq=19’) xlabel(’q*h’) ylabel(’-ln(R)’)

lnR19=[lnR(:,10,1) lnR(:,10,2) lnR(:,10,3) lnR(:,10,4) lnR(:,10,5)];

lnR19=reshape(lnR19,1,16*5); q19=[q*.02 q*.04 q*.06 q*.08 q*.1];

q19=reshape(q19,1,16*5); sigma19=[sigma(:,10,1) sigma(:,10,2)

sigma(:,10,3) sigma(:,10,4) sigma(:,10,5)];

sigma19=reshape(sigma19,1,16*5); A19=[q19;lnR19;sigma19];

A19=sortrows(A19’); A19=A19’; lnR19=A19(2,:); q19=A19(1,:);

sigma19=A19(3,:);

M=[q1;q3;q5;q7;q9;q11;q13;q15;q17;q19];

N=[lnR1;lnR3;lnR5;lnR7;lnR9;lnR11;lnR13;lnR15;lnR17;lnR19];

L=[sigma1;sigma3;sigma5;sigma7;sigma9;sigma11;sigma13;sigma15;sigma17;sigma19];

% Fit the data

p1=zeros(10,1); p2=zeros(10,1); p3=zeros(10,1); bounds=zeros(5,2,4);

for x=1:10;
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options=fitoptions(’poly3’);

options.Lower=[-Inf -Inf -Inf 0];

options.Upper=[Inf Inf Inf 0];

options.Weights=1./(L(x,:)’).^2;

sfit=fit(M(x,:)’,N(x,:)’,’poly3’,options);

p1(x)=sfit.p1;

p2(x)=sfit.p2;

p3(x)=sfit.p3;

bounds(x,:,:)=confint(sfit);

end

% Plot the fitted data

for x=1:10;

figure

errorbar(M(x,:),N(x,:),L(x,:),’b*’)

hold on

t=p1(x).*M(x,:).^3+p2(x).*M(x,:).^2+p3(x).*M(x,:);

plot(M(x,:),t,’r’)

hold on

DW=2.*M(x,:).^2;

plot(M(x,:),DW,’k-’)

xlabel(’q*h’)

ylabel(’-ln(R)’)

title(’Fitted Reflectance’)

end
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% Compute the sigmas from the fits

% Factor of 4.2 is 2 (for half the difference) and 2.1

% to relate the 95% confidence interval from the Student

% T distribution to sigma

e1=(bounds(:,2,1)-bounds(:,1,1))/4.2;

e2=(bounds(:,2,2)-bounds(:,1,2))/4.2;

e3=(bounds(:,2,3)-bounds(:,1,3))/4.2; e=[e1 e2 e3];

rfreq=1:2:19;

figure

options=fitoptions(’poly2’);

options.Lower=[-Inf -Inf -Inf];

options.Upper=[Inf Inf Inf];

options.Weights=1./e1.^2;

[f1,g1]=fit(rfreq’,p1,’poly2’,options);

pred1=f1.p1*rfreq.^2+f1.p2*rfreq+f1.p3; errorbar(rfreq,p1,e1,’b*’)

hold on plot(rfreq,pred1,’r-’) xlabel(’roughness frequency in

wavelengths’) ylabel(’x^3 coefficient’) title(’Fit of x^3

coefficient’) bounds1=confint(f1);

errorp1=(bounds1(2,1)-bounds1(1,1))/4.2;

errorq1=(bounds1(2,2)-bounds1(1,2))/4.2;

errorr1=(bounds1(2,3)-bounds1(1,3))/4.2;

figure
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options=fitoptions(’poly1’);

options.Lower=[-Inf -Inf];

options.Upper=[Inf Inf];

options.Weights=1./e2.^2;

[f2,g2]=fit(rfreq’,p2,’poly1’,options); pred2=f2.p1*rfreq+f2.p2;

errorbar(rfreq,p2,e2,’b*’) hold on plot(rfreq,pred2,’r-’)

xlabel(’roughness frequency in wavelengths’) ylabel(’x^2

coefficient’) title(’Fit of x^2 coefficient’) bounds2=confint(f2);

errorp2=(bounds2(2,1)-bounds1(1,1))/4.2;

errorq2=(bounds2(2,2)-bounds1(1,2))/4.2;

figure

options=fitoptions(’poly2’);

options.Lower=[-Inf -Inf -Inf];

options.Upper=[Inf Inf Inf];

options.Weights=1./e3.^2;

[f3,g3]=fit(rfreq’,p3,’poly2’,options);

pred3=f3.p1*rfreq.^2+f3.p2*rfreq+f3.p3; errorbar(rfreq,p3,e3,’b*’)

hold on plot(rfreq,pred3,’r-’) xlabel(’roughness frequency in

wavelengths’) ylabel(’x coefficient’) title(’Fit of x coefficient’)

bounds3=confint(f3); errorp3=(bounds3(2,1)-bounds1(1,1))/4.2;

errorq3=(bounds3(2,2)-bounds1(1,2))/4.2;

errorr3=(bounds3(2,3)-bounds1(1,3))/4.2;
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