
A DIGITAL POTENTIOMETER

FOR AN ULTRA STABLE LASER CURRENT DRIVER

by

Marshall van Zijll

A senior thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Bachelor of Science

Department of Physics and Astronomy

Brigham Young University

April 2007

Copyright c© 2007 Marshall van Zijll

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

DEPARTMENT APPROVAL

of a senior thesis submitted by

Marshall van Zijll

This thesis has been reviewed by the research advisor, research coordinator,
and department chair and has been found to be satisfactory.

Date Dallin Durfee, Advisor

Date Eric Hintz, Research Coordinator

Date Scott Sommerfeldt, Chair

ABSTRACT

A DIGITAL POTENTIOMETER

FOR AN ULTRA STABLE LASER CURRENT DRIVER

Marshall van Zijll

Department of Physics and Astronomy

Bachelor of Science

I created a digital potentiometer to be used for the stable control of the cur-

rent in a laser current controller. This digital potentiometer consists of a

microcontroller used in conjunction with a digital to analog converter (DAC).

I selected a DAC that is appropriate for our design, I programmed a micro-

controller to manage the DAC, and I designed the digital circuit board for

the microcontroller. Our digital potentiometer is more stable, more accurate,

has better repeatability, and picks up considerably less noise than a manual

potentiometer.

ACKNOWLEDGMENTS

Thanks to Dallin Durfee and Christopher Erickson.

Contents

Table of Contents vii

List of Figures ix

1 Introduction 1

2 The Current Driver 3

3 The Digital Potentiometer 7

3.1 The DAC . 7
3.2 The Microcontroller . 9

4 Uploading the Bootloader 11

4.1 Download and Install Relevant Software 12
4.2 Modify Code . 12
4.3 Upload and Run the Bootloader . 13
4.4 Upload Programs through the USB 16

5 Programming the Microcontroller 17

6 Conclusion 21

Bibliography 23

A Microprocessor Code 25

vii

List of Figures

2.1 Current Driver Schematic . 4

3.1 DAC linearity and repeatability . 8
3.2 Digital Circuit Diagram . 10

4.1 Bootloader schematic . 14
4.2 Minimal USB schematic . 15

ix

Chapter 1

Introduction

I created a digital potentiometer to be used for the stable control of the current in

a laser current controller. This digital potentiometer consists of a digital to analog

converter (DAC) which is programmed by a microcontroller. I selected a DAC that is

appropriate for our design, I programmed a microcontroller to manage the DAC, and

I designed the digital circuit board for the microcontroller. I also programmed the

microcontroller to perform multiple other functions including displaying information

on an LCD screen. Our digital potentiometer is more stable, more accurate, has better

repeatability, and picks up considerably less noise than a manual potentiometer.

This laser current driver is an integral part of a larger project; that of building

an atom interferometer. The concepts associated with this project are similar to

those of an optical interferometer, but with several advantages provided by the use of

atoms rather than photons. The extremely small wavelengths of atoms will allow us

to make more precise measurements than an optical interferometer, and their inertial

structure and mass will allow measurements that are otherwise impossible.

We plan to use this interferometer for multiple measurements. We will look for

variations in fundamental constants, and make measurements regarding the validity

1

2 Chapter 1 Introduction

of General and Special Relativity. Our interferometer should also provide an optical

frequency standard with precision comparable to the best atomic clocks. We will

also be able to use our device as a precision accelerometer and implement it as a

gyroscope. Due to the precision necessary for these uses, the individual components

within our project must be very accurate and stable.

A key component of the interferometer is the diode laser. In our application, diode

lasers are used to split and recombine the atomic beam, as well as to measure the

state of the atoms after they have passed through the interferometer. Our diode laser

needs stability better than can be provided by commercial diode laser systems, so our

group designed a system of our own.

The stability of the laser is directly dependant on the stability of its current driver,

and for this reason we have made our current driver as stable and quiet as we can.

Our driver is based on the Hall-Libbrecht [1] design, and with our improvements

it performs better than any other systems that we know of. It is also relatively

inexpensive which allows us to use it in our lab for every application, even those that

don’t require the high precision our current driver offers.

In Chapter 2 I’ll explain the entire current driver, including its design and its

advantages over other current drivers. In Chapter 3 I’ll discuss the digital portion

of our circuit, including the specific microcontroller that we chose. In chapter 4 I’ll

explain the preparatory necessities for using the microcontroller, with emphasis on

uploading a bootloader. In Chapter 5 I’ll describe specifics in the code I wrote to

program the microcontroller. Finally, in Chapter 6, I’ll summarize the advantages of

implementing of our device.

Chapter 2

The Current Driver

Our current driver is based on the Hall-Libbrecht design [1], with a few important

improvements. The schematic for our design is shown in Figure 2.1. One improvement

for our board is the use of the AD8671 op-amps rather than the ones specified in the

original design. The AD8671 has a higher input impedance and doesn’t oscillate when

driving the gate capacitance of a high current transistor, as the original op-amps did.

We are also using surface mount components, which are quieter since they are closer

to the board. The original Hall-Libbrecht design called for higher quality op-amps in

some parts of the circuit, yet lower-quality ones in the modulation input portion of

the driver. This was undesirable since the modulation input is connected directly to

the driver output, and we want as little noise here as possible. To fix this we used

the same high-quality op-amp throughout the circuit. As I describe the individual

portions of the circuit, I will refer to them by the names shown in bold in Figure 2.1.

The central part of our circuit is the “Current Regulation” portion, specifically the

NDS0605 mosfet transistor. This transistor throttles the current, fixing the amount

that passes through to the laser diode. An AD8671 op-amp controls the transistor.

The op-amp monitors and adjusts the current by measuring the voltage drop across

3

4 Chapter 2 The Current Driver

Figure 2.1 Schematic of the laser diode current driver circuit. The circuit

is divided into separate functions for clarification and easy referencing.

5

the resistor Rs. By changing the set-point voltage on the op-amps non-inverting

input, the amount of current passing through the transistor changes, and we’re able

to control the current that passes to the diode laser.

To keep the current passing through the transistor stable it is necessary to have a

very stable voltage, labeled Vreg in Figure 2.1. To produce this voltage, we filter the

power in the “Power Filter” portion of the circuit with capacitors and inductors. In

this first portion of filtering we obtain a voltage stable enough to power our op-amps,

but we need to regulate it even more to provide the stability necessary for the rest

of the circuit. In the “Voltage Regulation” portion of the circuit we use an LM317

voltage regulator along with additional capacitors and inductors. After the power

passes through this section, we have a voltage supply adequate for the rest of the

circuit.

To control the current flowing through the transistor, we set the voltage at the

positive end of the op-amp in the “Current Regulation” portion of the circuit. Con-

ventionally, a design would call for a potentiometer at this point, but we have chosen

instead to set this value digitally by use of a DAC. The DAC value is controlled by

a microcontroller, which we have placed on a separate board. The microcontroller

board and the current driver board have different grounds, so in the “Differential

Buffers” section we reference the values to each other, and isolate the current driver

board from external noise.

The “Modulation Input” section of the circuit allows us to modulate our laser

current. The upper op-amp creates a voltage of 2Vout, while the lower op-amp creates

a voltage of -2Vout. If ModIn is connected to a voltage source, then the voltage drop

across Rmod from Vout to ModIn is different from the drop from 2Vout to Vout. This

forces a current of Imod = 2V out−V out

Rmod
− V out−ModIn

Rmod
= ModIn

Rmod
to flow to the output. On

6 Chapter 2 The Current Driver

the other hand, if there is nothing connected to the ModIn connection, ModIn floats

naturally to 0V and Imod is 0A.

Chapter 3

The Digital Potentiometer

3.1 The DAC

The DAC we use is the AD5541. This is a 16-bit serial input DAC that runs on a 5V

power supply. It has a low temperature coefficient of ±0.2 ppm/◦C. It also has a 25

MHz, 3 wire serial interface, through which the microcontroller controls it. [2]

Using a DAC to control our current driver offers many advantages over using a

manual potentiometer. The DAC allows for exceptional repeatability. If I am working

on an experiment with a laser and wish to change my setup, it is necessary to turn

off the current driver. With a manual potentiometer it proves to be very difficult to

return the laser to the exact value as before the change, due to the physical inaccuracy

in turning a knob. With the DAC, on the other hand, it’s just a matter of setting it

to the same value digitally and I return to precisely the same value every time.

The lower portion of Figure 3.1 shows the repeatability of the current driver. This

repeatability is dependent on the repeatability of the DAC used to set the current.

To obtain this graph we went to each value, stepped away from that value, and then

returned to the value multiple times measuring the deviation from the other values

7

8 Chapter 3 The Digital Potentiometer

−4

−2

0

2

4

∆
I [

µ
A

]

20 30 40 50 60 70 80 90
0

0.05

0.1

∆
I rm

s [
µ

A
]

I
set

 [mA]

Figure 3.1 The upper graph shows the deviation from linearity over the

values of the current driver. The grey bars are the specifications listed for
our DAC. The lower graph shows the deviation of the output of the current
driver when we stepped away from each value and returned to it multiple
times.

obtained. Our current driver has repeatability accurate to within 50nA.

The top portion of Figure 3.1 shows the deviation of the current driver from

linearity. We obtained this by reading the output values of the current driver for

different digital programming values, and plotting the deviation of the data from a

straight line. The grey lines show the limits of the current’s deviation according to

the DAC’s specifications. As can be seen, the DAC is within spec.

Previously, in order to have the potentiometer easily accessible, we had to run long

cables from the laser to wherever the potentiometer was. Through testing, we have

found that even a small length of cable introduces a significant amount of noise. With

the DAC, this problem doesn’t exist. The DAC is placed on the same board as the

rest of the driver, and the entire setup is placed next to the laser. Since the current

driver board is so close to the laser, there are no long cables introducing extra noise.

The lines controlling the value of the DAC from the microcontroller are unaffected

by small amounts of noise since they are digital values.

3.2 The Microcontroller 9

3.2 The Microcontroller

The microcontroller we use is the PIC18F4550. This is a USB 2.0 programmable

microcontroller. This makes it extremely simple to make software changes. All that

is necessary is to connect the microcontroller to the computer through a USB port

which allows updates to take place in about one second. The microcontroller has

35 pins which can be used as inputs or outputs, and three of them can be used as

external interrupts. It has a 10bit Analog to Digital Converter (ADC) built in. It can

run on an external clock up to 48 MHz. It also uses flash memory, which is reliable

through millions of changes [3].

The microprocessor is programmed to read the signal from a digital encoder, and

subsequently output a value to the DAC. 1 While many electronics have continuously

running high-frequency clocks that create noise, our microprocessor is careful to only

output values to the DAC when changes are made. This eliminates unnecessary noise.

In fact, we can completely disconnect and reconnect the microprocessor board from

the current driver board in the middle of an experiment, if we wish, and everything

continues to run. (The user would only be unable to change values on the DAC while

the microprocessor board is disconnected).

We have also used the ADC included in the microcontroller to read back a volt-

age proportional to the current output of the driver. The microprocessor displays

the set current on an LCD display along with other relevant information from the

microprocessor. A functional diagram of the digital circuit is shown in Figure 3.2.

The ease of updating this microcontroller, along with the many functions it can

perform, make it ideal for remotely controlling the current driver. This microcon-

1A digital encoder is just a knob that drives a two-bit clock upon being turned.

10 Chapter 3 The Digital Potentiometer

Figure 3.2 A simplified diagram of the digital circuit, showing the main

components and their relations to one another

troller is truly an experimenter’s microcontroller, because it not only allows for flexi-

bility but also is simple to use.

Chapter 4

Uploading the Bootloader

The microcontroller’s memory is initially empty and it does not yet know how to

communicate with a computer through a USB, or do anything at all. Before a program

can be written to the microcontroller using the USB capability, a bootloader must

be put on the microcontroller. The bootloader is a basic program that allows the

microcontroller to communicate through its USB channel.

The company that provides us with the microcontroller also provides us with code

for a bootloader, along with an advertised “2-pin programming” feature for uploading

the bootloader through a standard RS232 port. Three main steps are necessary for

uploading a bootloader onto the microcontroller: 1. Download and install the relevant

software. 2. Modify the bootloader code. 3. Upload the code to the microcontroller.

I will explain each of these steps in detail, and then I will explain how to program

the device after the bootloader is installed.

11

12 Chapter 4 Uploading the Bootloader

4.1 Download and Install Relevant Software

The first necessary step is to download the pertinent software from Microchip, the

microprocessor’s developer. First begin by downloading and installing MPLAB IDE

from www.microchip.com/ide/. MPLAB is a free development environment specifi-

cally designed for programming microchip’s microcontrollers. Next go to www.micro

chip.com/c18/ and download MPLAB C18. This is the compiler associated with the

IDE, and allows the user to write their code in C language rather than assembly.

The student edition of MPLAB C18 is the only free edition, but it offers every-

thing needed. During installation it is important to check all the checkbox options.

This automatically causes the IDE to use this compiler so you won’t have to specify

it every time you compile your code. Finally, download the actual bootloader pro-

gram. Go to www.microchip.com/stellent/idcplus?IdeService=SS GET PAGE&node

Id=2124¶m=en022627 to download and install “USB Bootloader Setup.EXE”.

This not only includes a bootloader for the microcontroller, but also provides a simple

user interface for microsoft windows to help upload programs to the microcontroller

through the USB port once the bootloader is installed. [4]

4.2 Modify Code

At the same time the USB bootloader is uploaded to the microcontroller, the micro-

controller’s configuration bits will also be set. These configuration bits determine the

internal clock speed, external clock source, brown out voltage, memory protection,

the programming voltage and other important information. Most of this information

is defaulted to the correct value, but some values will have to be modified.

First run MPLAB. In the menu choose Project/Open, and assuming the “USB

Bootloader Setup.EXE” is installed in the C directory, choose C:\MCHPFSUSB\fw\Bo

4.3 Upload and Run the Bootloader 13

ot\MCHPUSB.mcp. Also, make sure that MPLAB is running for the correct micro-

controller. In the menu, choose Configure/Select Device, and choose PIC18F4550 as

the device.

In the menu choose Configure/Configuration Bits. This will open a screen allowing

the user to choose the configuration bits. Set “Low Voltage Program” to “Enabled”,

and also check the other information for accuracy. The low voltage option allows us to

program the microcontroller using just 5V rather than 13V. This allows a much sim-

pler hardware design, since we don’t have to worry about ruining the microcontroller

during programming.

Once the configuration bits are set, save the bootloader code to a HEX file. In the

menu choose File/Export, ensure that the configuration bits are included, and click

OK. Save this file with whatever name you choose; it will be used later once we have

set up the hardware for the microcontroller.

4.3 Upload and Run the Bootloader

In searching online, there are hundreds of different schematics of bootloader devices

for PIC microcontrollers, but sadly there were no simple plans for our specific micro-

controller. By looking at all the other circuits I noticed certain similarities in their

design. Through much trial and error I was finally successful in uploading the boot-

loader onto our device. The schematic in Figure 4.1 shows all that is necessary to put

a bootloader on the microcontroller.

The software used in conjunction with this setup is called WinPic. This can

be downloaded from many sites by searching for “winpic programmer.” I, personally,

downloaded from the site www.qsl.new/dl4yhf/winpicpr.html . After this is installed,

run the program. In the “Device, Config” tab, choose the PIC18F4550 as the mi-

14 Chapter 4 Uploading the Bootloader

Figure 4.1 A schematic for uploading the bootloader onto the microcon-

troller from a 9pin Sub-D connector

crocontroller. Once the microcontroller is connected to the 9-pin COM port of the

computer, go to the “Interface” tab, select “COM84 programmer for serial port” as

the interface type, and press “Initialize”. If the software states that initialization was

successful, then the program is ready to upload the bootloader onto the microcon-

troller. In order to upload, select File/Load&ProgramDevice from the menu and then

select the bootloader HEX file that was saved earlier. In the “Messages” tab, it will

tell you information regarding the programming of the microcontroller.

Once the bootloader is installed on the microcontroller, the USB functionality is

available. Figure 4.2 shows the minimal schematic necessary to use the USB con-

nection with the microcontroller. If the capacitor value between VCC and ground

is changed, the circuit will oscillate undesirably. The crystal can be chosen to be a

different speed, but it must be specified in the configuration bits.

When the circuit is connected using a USB cable, hold down the button S2 (Boot),

4.3 Upload and Run the Bootloader 15

Figure 4.2 The minimal schematic for a working USB connection [4]

16 Chapter 4 Uploading the Bootloader

and press S1 (Reset) with S2 still held down. This will cause the bootloader program

to run on the microcontroller, and windows should automatically detect it as a new

device. When Windows asks for a driver, include the following location in its search:

C:\MCHPFSUSB\Pc\MCHPUSB Driver\Release\.

At this point the microcontroller is fully able to communicate with the computer

through a USB cable. The great advantages of using a USB port to upload programs

are the speed of uploading, and the fact that programs can be changed while the

microcontroller remains in its functioning circuit.

4.4 Upload Programs through the USB

Now that Windows is able to recognize the microcontroller, I will explain the simple

process of uploading a program through the USB port. The first step is to write

a program using MPLAB. The easiest method of doing this is by modifying one

of the demo programs provided. Once a program is written, in the menu choose

Project/Build All. This will store your program as a HEX file in the same directory

as your project is kept.

After your HEX file is saved, open up an explorer to C:\MCHPFSUSB\Pc\Pdfsusb

and run the PDFSUSB executable. This is an interface used to upload programs to

the microcontroller. With the USB cable connected, hold down the S2 button, and

press button S1. After doing this, your specific microcontroller should appear as an

option in the drop down list. To upload your program onto the microcontroller, press

the “Load HEX File” button, and choose the HEX file you wish to load. Next press

“Program Device”. To run the program you can either press the “Execute” button

on the program, or button S1 (Reset) connected to the microcontroller.

Chapter 5

Programming the Microcontroller

Programming of the microcontroller is done in the C language, with a few points that

are specific to the microcontroller. Microchip provides a few samples of code for their

microprocessors (see [5]), and these are good places to start in writing your own code.

I will explain the code that I have written for my project, and describe the aspects

of coding that are specific to the microcontroller.

Most of the pins on the microcontroller can be used as either an input or an

output, and the datasheet tells the specifics regarding each pin. In the code, a few

steps are necessary in initializing a pin for either input or output. Each pin has three

registers: 1. the PORT register, which is basically the input to the pin. 2. the LAT

register, which is the output value of the pin. 3. the TRIS register, which tells the

direction I want to use the pin for. In each case I must set the TRIS value to 0 if it’s

an output, and 1 if it’s an input. I can either set an entire collection of bits at one

time, or each bit individually. See lines 56 through 103 of the code in appendix A for

specific examples of how this is done.

The main purpose of the microprocessor is to update the DAC, and for this reason

the code continually polls the inputs from the digital encoder to see if any values have

17

18 Chapter 5 Programming the Microcontroller

changed. The digital encoder has four possible states (since it acts as a 2-bit binary

clock). The code I wrote checks to see what state the encoder is in, and waits for a

change. Once the state changes, it checks to see what the new state is, and updates the

DAC accordingly. As the code is polling the digital encoder pins, it also continually

checks each of the buttons to see if one is being pressed. If a button is pressed, it

enters the respective function, and then returns to the main loop.

When the digital encoder is changed, the values on the pins do not go directly

from their initial value to their final value. Rather, they quickly bounce between

the two values before settling on the final value. A simple fix for this is to connect

a capacitor from the pin to ground. Since we had originally purchased the boards

without this capacitor, I made a fix in the code that checks to make sure the pin is

stable. The fix is to check the pins status multiple times in succession in order to

ensure that the value has settled.

Another specific portion of the code deals with reading the ADC. See the function

“ReadADC()” (line 245) in appendix A to see how to update the ADC registers.

Once the registers are updated, the user can address them directly by referring to

ADRESH and ADRESL, for the high bits and the low bits respectively.

A clock signal must be generated to communicate with the DAC and the LCD

display. To generate this signal there must exist some sort of wait function, because

this function helps determine the speed of the clock. The compiler doesn’t recognize

any type of pause or wait function, therefore I created my own with just a couple for

loops (see wait(int time) (line 468) in App. A). For examples of clock functions see

clock() (line 497) and LCDclock() (line 489) in App. A.

One of the most useful aspects of the microprocessor is the ability to use an LCD

display. In order to obtain a datasheet go to www.crystalfontz.com and search for

one for a 16x2 character display. [6] For examples of initializing the LCD screen and

19

writing values to the screen refer to the datasheet, and to the functions initLCD()

(line 407) and writeLCD() (line 343) in App. A.

The LCD display has proven to be a time consuming, yet extremely valuable part

of this project. Since we are able to display information related to the microprocessor,

we have been granted much more functionality. Because of the LCD display I have

been able to add many functions to the microcontroller. One function allows the

user to set a maximum value for the current driver to reach. Other functions allow

changing views between the voltage and current. The user can also use a function to

increase and decrease the rate of change that takes place in turning the digital encoder.

Another function allows the user to tell the program the value of the resistor Rs in

Figure 2.1. With this resistor value, the microcontroller can correctly calculate the

current at the diode laser from the voltage output by the DAC.

One final aspect concerning the code is the importance of parameter checking.

Since the DAC can only recieve a certain range of values, it is essential to check that

each value sent to the DAC falls within this range. See the function paramAdd(long

value, long change) (line 442) in App. A for an example of how I check the parameters

in changing the value from the digital encoder.

20 Chapter 5 Programming the Microcontroller

Chapter 6

Conclusion

Our implementation of a microcontroller and a DAC in our current driver has proven

to be a significant improvement over a manual potentiometer. This digital poten-

tiometer is more stable, more accurate, has better repeatability, and picks up consid-

erably less noise than a manual potentiometer.

As a result of our improvements, this current driver has better specifications than

any others we know of. This current driver is of high quality, and it is relatively

inexpensive allowing it to be implemented as a standard throughout the lab.

The flexibility of the microcontroller also allows room for further improvements

and new implementations. Currently we are working on using a digital potentiometer

to drive a PID controller. In this project we plan to use the microcontroller to

automatically scan and lock a laser. With such implications, the microcontroller has

found a permanent place in our lab.

21

22 Chapter 6 Conclusion

Bibliography

[1] K. G. Libbrecht, J. L. Hall, Rev. Sci. Instrum., 64, 2133-2135 (1993).

[2] “AD5541 Datasheet,” http://www.analog.com/UploadedFiles/Data Sheets/AD5

541 5542.pdf

[3] “PIC18F4550 Datasheet,” http://ww1.microchip.com/downloads/en/DeviceDoc/3963

2D.pdf

[4] PIC18Fusb.online.fr, “How to use Microchip USB Bootloader,” http://pic18

fusb.online.fr/wiki/wikka.php?wakka=UsbBootload&show comments=0

[5] Rawin Rojvanit, ”Demo02.c”, Microchip Technology, Inc. 11/15/04.

[6] “LCD Datasheet,” http://www.crystalfontz.com/products/1602a-color/CFA

H1602ARGHJP.pdf

23

24 BIBLIOGRAPHY

Appendix A

Microprocessor Code

1 /** I N C L U D E S **/

2 #include <p18cxxx.h>

3

4 /** V A R I A B L E S **/

5 #pragma udata

6

7 /** P R I V A T E P R O T O T Y P E S ***************************************/

8 char currentWord[9] = {’h’,’e’,’l’,’l’,’o’,’!’,’ ’,’ ’,0};

9 char wordSetDig[9] = {’D’,’i’,’g’,’.’,’ ’,’V’,’a’,’l’,0};

10 char wordSetMax[9] = {’S’,’e’,’t’,’ ’,’M’,’a’,’x’,’ ’,0};

11 char wordSetCur[9] = {’S’,’e’,’t’,’ ’,’I’,’ ’,’ ’,’ ’,0};

12 int adder = 1; // adder is a weighing factor for the inc/dec.

It is changed by a button

13 int currentFunc = 0, currentFuncChanger = 0, currentShowValue = 0,

adcDiv = 0, adcDivNum = 0;

14 long digiVal = 0x0000, minVal=0x0001, prevNum = 0xFFFF, mainResistor = 1000;

15 void wait(int wait);

16 void initDAC(void);

17 void initLCD(void);

18 void test(void);

19 void clock(void);

20 void LCDclock(void);

21 void writeDAC(long value);

22 long paramAdd(long value, long change);

23 void writeToLCD(long value);

24 void writeWord(char* thisWord);

25 void writeLong(long thisLong);

26 void copyWord();

27 void changeAdderVal(long thisLong);

28 void ReadADCF(void);

29 void changeFunction(long thisLong);

30 /** V E C T O R R E M A P P I N G ***/

31

25

26 Chapter A Microprocessor Code

32 extern void _startup (void);

33 #pragma code _RESET_INTERRUPT_VECTOR = 0x000800

34 void _reset (void)

35 {

36 _asm goto _startup _endasm

37 }

38 #pragma code

39

40 #pragma code _HIGH_INTERRUPT_VECTOR = 0x000808

41 void _high_ISR (void)

42 {

43 ;

44 }

45

46 #pragma code _LOW_INTERRUPT_VECTOR = 0x000818

47 void _low_ISR (void)

48 {

49 ;

50 }

51 #pragma code

52

53 /** D E C L A R A T I O N S **/

54 #pragma code

55

56 /** L E D ***/

57 /** set bin to 0 if used as output, 1 if used as input **/

58 #define mInitAllLEDs() LATD &= 0x8C; TRISD &= 0x8C; LATA &= 0xC1; TRISA &= 0xC1;

LATE &= 0xF8; TRISE &= 0x 8; LATB &= 0x0E; TRISB &= 0x0E;

59

60 #define mLED_1 LATDbits.LATD0

61 #define mLED_2 LATDbits.LATD1

62

63 /** These are the LCD screen values **/

64 #define db5 LATBbits.LATB0

65 #define db4 LATAbits.LATA1

66 #define db3 LATAbits.LATA2

67 #define db2 LATAbits.LATA3

68 #define db1 LATAbits.LATA4

69 #define db0 LATAbits.LATA5

70 #define e LATEbits.LATE0

71 #define rw LATEbits.LATE1

72 #define rs LATEbits.LATE2

73 #define db7 LATCbits.LATC1

74 #define db6 LATCbits.LATC2

75

76 /** These are the DAC values **/

77 #define cs LATDbits.LATD4

78 #define sclk LATDbits.LATD5

79 #define din LATDbits.LATD6

80

81

27

82 #define mLED_1_On() mLED_1 = 1;

83 #define mLED_2_On() mLED_2 = 1;

84

85 #define mLED_1_Off() mLED_1 = 0;

86 #define mLED_2_Off() mLED_2 = 0;

87

88 #define mLED_1_Toggle() mLED_1 = !mLED_1;

89 #define mLED_2_Toggle() mLED_2 = !mLED_2;

90

91

92

93 /** S W I T C H E S ***/

94 #define mInitAllSwitches() TRISBbits.TRISB2=1;TRISBbits.TRISB1=1;

TRISBbits.TRISB4=1;TRISDbits.TRISD2=1;

TRISDbits.TRISD3=1;TRISCbits.TRISC0=1;

95 #define mInitSwitch2() TRISBbits.TRISB2=1;

96 #define mInitSwitch3() TRISBbits.TRISB4=1;

97 #define sw3 PORTBbits.RB4

98 #define functionSw PORTCbits.RC0

99 #define allowSwitch PORTBbits.RB2

100 #define changeAdder PORTBbits.RB1

101 #define dial2 PORTDbits.RD2

102 #define dial1 PORTDbits.RD3

103 #define mInitADC() TRISAbits.TRISA0=1;ADCON0=0x01;ADCON2=0x3C;

104 #define funcSetDig 0

105 #define funcSetMax 1

106 #define funcSetRes 2

107 #define funcShowFunc 0

108 #define funcShowValue 1

109 #define funcValueVolt 0

110 #define funcValueCurr 1

111

112 void interrupt()

113 {

114 mLED_2_On();

115 }

116 void main(void)

117 {

118 int d1, d2, i=0;

119 long adcUpdate = 0;

120 prevNum = thisNum;

121 currentFunc = funcSetDig;

122 adder = 1000;

123 ADCON1 |= 0x0F; // Default all pins to digital

124 INTCON2 |= 0xF0;

125 mInitAllSwitches(); // Initializes button and switch and Knob ports

126 mInitAllLEDs(); // initializes LED and DAC ports

127 ADCON2bits.ADFM = 1; // ADC result right justified

128 mInitADC();

129 initDAC();

130 initLCD();

28 Chapter A Microprocessor Code

131 writeDAC(thisNum);

132 // test();while(1); // A good place to test functions and hardware

133 writeLong(thisNum); // initializes Value to LCD

134 // writeWord(currentWord); // writes a Word to LCD (initialized above)

135

136 while(1)

137 {

138 wait(5); // prevents increment from taking place too quickly

(lowers errors due to imprecise knob)

139 if(dial1 == dial2){wait(6);if(dial1 == dial2)

// multiple if’s assure accurate read of state

140 {

141 d1 = dial1; // mutiple while loops prevent mis-change

due to bounce in signal (code fix rather than capacitor fix...)

142 while(dial1 == dial2){while(dial1 == dial2){while(dial1 == dial2)

143 { // this is most often the while state

144 adcUpdate++;

145 if(adcUpdate == 10000)

146 {

147 adcUpdate = 0;

148 updateADC();

149 }

150 if(allowSwitch==0)

151 break;

152 if(changeAdder==0)

153 changeAdderVal(thisNum);

154 if(functionSw==0)

155 changeFunction(thisNum);

156 }wait(1);}wait(1);}

157 if(dial1 != d1) // case increment

158 thisNum = paramAdd(thisNum, 1*adder);

159 else // case decrement

160 thisNum = paramAdd(thisNum, -1*adder);

161

162 if(thisNum != prevNum)

163 {

164 if(currentFunc == funcSetDig)

165 writeDAC(thisNum);

166 writeLCD();

167 prevNum = thisNum;

168 }

169 }}

170 if(changeAdder==0)

171 changeAdderVal(thisNum);

172 if(functionSw==0)

173 changeFunction(thisNum);

174

175

176 if(dial1 != dial2){wait(6);if(dial1 != dial2) // multiple if’s

assure accurate read of state

177 { 178 d1 = dial1; // mutiple while loops prevent mis-change

29

due to bounce in signal (code fix rather than capacitor fix...)

179 while(dial1 != dial2){while(dial1 != dial2){while(dial1 != dial2)

180 { // this is most often the while state

181 adcUpdate++;

182 if(adcUpdate == 10000)

183 {

184 adcUpdate = 0;

185 updateADC();

186 }

187 if(allowSwitch==0)

188 break;

189 if(changeAdder==0)

190 changeAdderVal(thisNum);

191 if(functionSw==0)

192 changeFunction(thisNum);

193 }wait(1);}wait(1);}

194 if(dial1 == d1) // case increment

195 thisNum = paramAdd(thisNum, 1*adder);

196 else // case decrement

197 thisNum = paramAdd(thisNum, -1*adder);

198

199 if(thisNum != prevNum)

200 {

201 if(currentFunc == funcSetDig)

202 writeDAC(thisNum);

203 writeLong(thisNum);

204 prevNum = thisNum;

205 }

206 }}

207 }//end while

208

209

210 }//end main

211

212 void changeFunction(long thisLong)

213 {

214 if(currentFuncChanger == 0)

215 {

216 if(currentFunc == funcSetDig){

217 digiVal = thisNum;

218 currentFunc = funcSetMax;

219 thisNum = minVal;}

220 else if(currentFunc == funcSetMax){

221 minVal = thisNum;

222 currentFunc = funcSetRes;

223 thisNum = mainResistor;}

224 else

225 {

226 mainResistor = thisNum;

227 currentFunc = funcSetDig;

228 currentFuncChanger = 1;

30 Chapter A Microprocessor Code

229 thisNum = digiVal;

230 }

231 }

232 if(currentFuncChanger == 1)

233 {

234 if(currentShowValue == funcValueVolt){

235 currentShowValue = funcValueCurr;

236 }

237 else if(currentShowValue == funcValueCurr)

238 {

239 currentShowValue = funcValueVolt;

240 currentFuncChanger = 0;

241 }

242 }

243 }

244

245 void ReadADC(void)

246 {

247 ADCON0bits.GO = 1; // Start AD conversion

248 while(ADCON0bits.NOT_DONE); // Wait for conversion

249 return;

250 }//end ReadADC

251

252 void changeAdderVal(long thisLong)

253 {

254 if(adder = 1000)

255 adder = 1;

256 else

257 adder = adder*10;

258 while(changeAdder == 0);

259 wait(5);

260 }

261 void test() // test funciton

262 {

263 while(1){

264 if(sw3 == 0){

265 din=1;

266 }else{

267 din=0;

268 }

269 }

270 }

271

272 void updateADC()

273 {

274 long restOfLong;

275 double thisNum;

276 int j = 0x230, thisDigit, count; // j is the offset to write to lcd

277

278 ReadADC();

279 thisNum = ADRESH; // there also exists ADRESL

31

280 thisNum = thisNum*2*5000/255; // This makes it millivolts

281 if (currentShowValue == funcValueCurr)

282 {

283 thisNum = thisNum * 1000;

284 thisNum = thisNum/mainResistor;

285 }

286 adcDiv++;

287 adcDivNum += thisNum;

288 if(adcDiv == 5)

289 {

290 thisNum = adcDivNum / 5;

291 adcDiv = 0;

292 adcDivNum = 0;

293 }

294 else

295 return;

296 writeToLCD(0xC7); LCDclock(); // ddram to position f

297 writeToLCD(0x04); LCDclock(); // cursur moves in dec motion

298 restOfLong = 10000;

299 while(restOfLong > 0)

300 {

301 thisDigit = restOfLong % 10;

302 restOfLong = restOfLong - thisDigit;

303 restOfLong = restOfLong/10;

304 writeToLCD(0x2A0); LCDclock();

305 }

306 restOfLong = (int)(thisNum);

307 count=0;

308 writeToLCD(0xC7); LCDclock(); // ddram to position f

309 writeToLCD(0x04); LCDclock(); // cursur moves in dec motion

310 if (currentShowValue == funcValueCurr) // writes an A or a V

311 {

312 writeToLCD(0x241); LCDclock();

313 writeToLCD(0x2A0); LCDclock();

314 }

315 else

316 {

317 writeToLCD(0x256); LCDclock();

318 writeToLCD(0x2A0); LCDclock();

319 }

320 while(restOfLong > 0)

321 {

322 count++;

323 thisDigit = restOfLong % 10;

324 restOfLong = restOfLong - thisDigit;

325 restOfLong = restOfLong/10;

326 writeToLCD(j+thisDigit); LCDclock();

327 if(count==3)

328 {

329 writeToLCD(0x22E); LCDclock();

330 }

32 Chapter A Microprocessor Code

331 }

332 while(count < 3)

333 {

334 count++;

335 writeToLCD(j); LCDclock();

336 if(count==3)

337 {

338 writeToLCD(0x22E); LCDclock();

339 }

340 }

341 }

342

343 void writeLCD() // writes a long to the LCD in decimal form

344 {

345 long restOfLong;

346 int j = 0x230, thisDigit, count; // j is the offset to write to lcd

347 writeToLCD(0x01); LCDclock(); // clears lcd and initalizes ddram

348 if(currentFunc == funcSetDig)

349 writeWord(wordSetDig);

350 else if(currentFunc == funcSetMax)

351 writeWord(wordSetMax);

352 else if(currentFunc == funcSetRes)

353 writeWord(wordSetRes);

354 writeToLCD(0x8F); LCDclock(); // ddram to position f

355 writeToLCD(0x04); LCDclock(); // cursur moves in dec motion

356 restOfLong = thisLong;//*.3425;

357 count=0;

358 while(restOfLong > 0)

359 {

360 count++;

361 thisDigit = restOfLong % 10;

362 restOfLong = restOfLong - thisDigit;

363 restOfLong = restOfLong/10;

364 writeToLCD(j+thisDigit); LCDclock();

365 if(count==3 && currentFunc == funcSetRes)

366 {

367 writeToLCD(0x22E); LCDclock();

368 }

369 }

370 while(count < 3 && currentFunc == funcSetRes)

371 {

372 count++;

373 writeToLCD(j); LCDclock();

374 if(count==3)

375 {

376 writeToLCD(0x22E); LCDclock();

377 }

378 }

379 count=0;

380 restOfLong = adder;

381 writeToLCD(0xCF); LCDclock();

33

382 writeToLCD(0x04); LCDclock(); // cursur moves in dec motion

383 while(restOfLong > 0)

384 {

385 count++;

386 thisDigit = restOfLong % 10;

387 restOfLong = restOfLong - thisDigit;

388 restOfLong = restOfLong/10;

389 writeToLCD(j+thisDigit); LCDclock();

390 if(count==3 && currentFunc == funcSetRes)

391 {

392 writeToLCD(0x22E); LCDclock();

393 }

394 }

395 while(count < 3 && currentFunc == funcSetRes)

396 {

397 count++;

398 writeToLCD(j); LCDclock();

399 if(count==3)

400 {

401 writeToLCD(0x22E); LCDclock();

402 }

403 }

404 writeToLCD(0x278); LCDclock(); // writes an ’x’

405 }

406

407 void initLCD() // inits LCD screen per instructions (datasheet model#:

CFAH1602A-GGB-JP www.crystalfontz.com)

408 {

409 int i;

410 rs = 0;

411 rw = 0;

412 wait(100);

413 e = 0;

414 wait(10);

415 writeToLCD(0x030); LCDclock(); wait(50);

416 writeToLCD(0x030); LCDclock(); wait(10);

417 writeToLCD(0x030); LCDclock();

418 writeToLCD(0x038); LCDclock();

419 writeToLCD(0x008); LCDclock();

420 writeToLCD(0x001); LCDclock();

421 writeToLCD(0x006); LCDclock();

422 writeToLCD(0x00C); LCDclock();

423 }

424

425 void writeWord(char thisWord[9]) // writes characters to LCD screen,

max length 9 (if wanted,can add more params to change starting loc and line#)

426 {

427 char thisChar;

428 int i=0;

429 int j = 0x200;

430 writeToLCD(0x001); LCDclock();

34 Chapter A Microprocessor Code

431 writeToLCD(0x080); LCDclock(); // set ddram to 0

432 writeToLCD(0x006); LCDclock(); // cursur in increment motion

433 thisChar = thisWord[0];

434 while(thisChar != 0)

435 {

436 writeToLCD(j+thisChar); LCDclock();

437 i++;

438 thisChar = *(thisWord+i);

439 }

440 }

441

442 long paramAdd(long value, long change) // does boundary checking before

changing DAC value

443 {

444 long returnVal = 0;

445 if(change < 0)

446 if(value+change < 0 || value+change > value)

447 returnVal = 0;

448 else

449 returnVal = (value + change);

450 else

451 if(value + change < value || value + change > 0xFFFF)

452 returnVal = 0xFFFF;

453 else

454 returnVal = (value + change);

455 if(currentFunc == funcSetDig)

456 {

457 if(returnVal < minVal)

458 returnVal = minVal;

459 }

460 else if(currentFunc == funcSetMax)

461 {

462 if(returnVal > digiVal)

463 digiVal = returnVal;

464 }

465 return returnVal;

466 }

467

468 void wait(int time) // waits approx 10ns per time... though it’s not linear

approx seems sufficient.

469 { // took out linearity to lessen need for large numbers.

470 int i,j;

471 //time=time*3; // slow clock

472 for(i=0; i<10*time; i++)

473 {

474 for(j=0; j<time; j++)

475 {

476 j++;

477 }

478 }

479 }

35

480

481

482 void initDAC() // inits DAC (cs=1 prevents reading values)

483 {

484 cs = 1;

485 sclk = 0;

486 wait(5);

487 }

488

489 void LCDclock() // clock cycle on LCD

490 {

491 wait(3); // 3 is the absolute minimum!!! for lcd...

492 e = 1;

493 wait(3);

494 e = 0;

495 wait(3);

496 }

497 void clock() // clock cycle on DAC

498 {

499 wait(10);

500 sclk = 0;

501 wait(10);

502 sclk = 1;

503 wait(10);

504 }

505

506 void writeDAC(long value)

507 {

508 int x = 0;

509 //mLED_1_On();

510 if(value%2 == 1) // prevents odd numbers, fix would be good

511 {//mLED_1_Off();

512 value = value-1; // plus i have no idea what’s causing this problem!

513 }

514 sclk = 1;

515 wait(5);

516 cs = 0;

517 for(x=15; x>-1; x--) // reads values serially into DAC

518 {

519 din = ((value>>x) & 0x01); clock();

520 }

521 cs = 1;

522 clock();

523 sclk = 0;

524 //mLED_1_Off();

525 }

526 /** EOF Demo02.c ***/

527

528 void writeToLCD(long value) // used by other functions to write to LCD.

codes found on LCD datasheet.

529 {

36 Chapter A Microprocessor Code

530 rs = ((0xFFFF&value)>>9);

531 rw = ((0xFFFF&value)>>8);

532 db7 = ((0xFFFF&value)>>7);

533 db6 = ((0xFFFF&value)>>6);

534 db5 = ((0xFFFF&value)>>5);

535 db4 = ((0xFFFF&value)>>4);

536 db3 = ((0xFFFF&value)>>3);

537 db2 = ((0xFFFF&value)>>2);

538 db1 = ((0xFFFF&value)>>1);

539 db0 = ((0xFFFF&value)>>0);

540 }

[5]

