TRANSMISSION ELECTRON DIFFRACTION

IN TE MODIFIED TIO_2

by

Ian James

A senior thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Bachelor of Science

Department of Physics and Astronomy

Brigham Young University

April 2008

Copyright © 2008 Ian James

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

DEPARTMENT APPROVAL

of a senior thesis submitted by

Ian James

This thesis has been reviewed by the research advisor, research coordinator, and department chair and has been found to be satisfactory.

Date

Bret Hess, Advisor

Date

Eric Hintz, Research Coordinator

Date

Ross L. Spencer, Chair

ABSTRACT

TRANSMISSION ELECTRON DIFFRACTION IN TE MODIFIED TIO₂

Ian James

Department of Physics and Astronomy Bachelor of Science

Photodarkening tellurium modified TiO₂ nanoparticles exhibit TiO₂ phase change from anatase and brookite when annealed below 700°C, to rutile when annealed at or above 700°C. An increase in size accompanies the phase change and causes smaller nanocrystals to become visible which cling to the surface of the larger rutile crystals. The smaller crystals are composed of TeO₂, as identified by diffraction, and disappear when exposed to the electron beam (observed by TEM) for brief amounts of time. Anatase, brookite and rutile forms of TiO₂ are compared by diffraction. A possible cause of photodarkening in samples annealed at 600°C is the occurrence of surface interactions between Te and anatase or brookite. These surface interactions may be energetically allowed by annealing samples at temperatures near the TiO₂ phase change temperature.

ACKNOWLEDGMENTS

I would like to thank Jeffery Farrer for his endless help in keeping the Technai TF20 up and running, and for answering any questions about TEM that I posed to him. I would like to thank Dr. Hess as well for his patience and good attitude while I worked through things. Also, I would like to acknowledge Steven Philips and all of the great work he did both in researching and presenting about Te modified TiO_2 photodarkening.

Contents

Ta	ble o	of Contents	vi
\mathbf{Li}	st of	Figures	vii
1	Intr	oduction	1
	1.1	Hydrogen fuel and semiconductors	1
	1.2	Principles of TEM	2
		1.2.1 TEM	2
		1.2.2 Diffraction Microscopy	4
		1.2.3 Image Selected Transform Diffraction	7
		1.2.4 XEDS	8
2	Exp	perimental Setup	10
	2.1	Preparing the Samples	10
3	Res	ults	12
	3.1	Macro Characteristics	12
	3.2	Phase Change of TiO_2	13
	3.3	Change in TiO_2 Crystal Size	15
	3.4	Finding the Tellurium	15
	3.5	Conclusions	18
Bi	bliog	graphy	19
A	App	pendix A:Sample Data from the Powder Diffraction File	21

List of Figures

1.1	The layout of a Transmission Electron Microscope	4
1.2	Bragg's Law	5
1.3	TEM Imaging and Diffraction [5]	6
3.1	The combined diffraction patterns of many similar crystals produces	
	concentric rings	13
3.2	Anatase (tetragonal) and brookite (orthorhombic) diffraction patterns	
	showing their different structures	14
3.3	Anatase and brookite nanocrystals are on average 5 - 10 nm while	
	rutile ones are around 50nm	15
3.4	A TeO_2 nanocrystal hanging to the surface of a larger rutile TiO_2 crystal	16
3.5	TeO_2 nanocrystals spotting the surface of a rutile TiO_2 crystal which	
	burn away under the beam	17

Chapter 1

Introduction

1.1 Hydrogen fuel and semiconductors

Hydrogen fuel technology is a promising field of research that has attracted much attention in the end of the 20th century. Hydrogen fuel has many properties that make it a strong candidate for succeeding fossil fuels as a global primary fuel source. It is environmentally clean, producing pure water when burned. It is also an effective way of storing energy, and can be readily converted to heat or electricity. Finally, as a fuel source, it is inexhaustible. The challenge lies in finding a cheap and effective way of producing hydrogen. Presently, the use of semiconductors in photoelectrolysis is under heavy research.

Photo-electrolysis hinges on the science of semiconductor liquid interfaces, which began with A. E. Becquerel, a French physicist. In 1839, Becquerel noticed that a silver chloride electrode in an electrochemical cell had a photovoltaic effect when illuminated [4]. This became known as the Becquerel Effect.

Little research was done in the field, however, until more was known about solid state physics. Between 1950 and 1970 semiconductor research grew impressively with investigations into many semiconductors including titanium dioxide. In 1970, TiO_2 was successfully used as a photocatalyst to convert water into hydrogen and oxygen by illumination. This sparked interest in powering electrolysis with sunlight, and led to the investigation of photo-electrolysis.

Photo-electrolysis works around the semiconductor-liquid interface. When photons impinge on the semiconductor, electrons in the valence band are excited to the conduction band and create an electron hole base pair. In the presence of water, the hole accepts electrons from the oxygen in water, while the free electron in the conduction band reduces the hydrogen in water, thus disrupting the molecule. A more detailed description of the process is given by Nozik and Memming [4] [3].

Doping TiO₂ with carbon narrows the band gap, thereby increasing the spectrum of radiation that would create an electron hole base pair. Other elements are being investigated for use as doping substances to create a semiconductor that absorbs visible light. [1]. Our research group noticed that Te modified TiO₂ exhibited photodarkening from an eggshell white to an orange/brown color when exposed to visible light. Steven Philips, a member of our research group, is studying the mechanism of the photodarkening in his thesis. In this thesis I have studied the structure of the Te modified TiO₂ using transmission electron microscopy.

1.2 Principles of TEM

1.2.1 TEM

Electron microscopy allows us to study objects that are smaller than the wavelengths of visible light. In the study of atomic crystal structure, subatomic resolution becomes necessary, and electron microscopes become essential. In a transmission electron microscope, electrons are typically accelerated across a 200 KV potential and emitted from a field emission gun (FEG) at the top of the scope. This gives the electrons a certain velocity as shown by

$$eV = 1/2 * m * v^2 \tag{1.1}$$

Where e is the charge of an electron and V is the accelerating potential. This velocity is directly related to the wavelength of the electrons by the de Broglie equation:

$$\lambda = h/(m * v) \tag{1.2}$$

Where h is Plank's constant. By reconciling these two equations, we see that

$$\lambda = h/\sqrt{2 * meV} \tag{1.3}$$

Therefore the electrons being emitted by the FEG gun of the Technai TF20 microscope (which are accelerated across a 200KV potential) have a wavelength of about 2.74 pm. This is about one tenth the width of a helium atom, meaning that the electrons are capable of resolving most atoms. Unfortunately the microscope's optics are not perfect, and lens abberations and astigmatism prevent it from reaching such high resolutions. However, the microscope can can still easily resolve nanocrystals that are several nanometers across [5].

After being emitted from the gun, the electrons pass through a series of condenser lenses and apertures that focus them into a moderately uniform beam, which illuminates the sample. After passing through the sample, the electrons are focused by the objective lens. They then pass through two apertures, the diffraction lens, and a series of projector lenses which focus the electrons to form an image on the viewing screen. Because the lenses are magnetic fields, their focal lengths can be changed by changing the amount of current in the coils generating them.

Figure 1.1 The layout of a Transmission Electron Microscope

1.2.2 Diffraction Microscopy

Each spot in a diffraction pattern contains information about the entire grating that created it, making a diffraction pattern a very useful tool for crystallographers. The direction and distance from the center of the screen at which each diffraction spot appears is determined by Bragg's Law as shown in Figure 1.2. The electrons can be considered as waves that reflect off of the atoms in the crystal and then interfere as they propagate to the viewing screen. In order to get constructive interference and produce a diffraction spot,

$$2dsin(\theta) = n\lambda \tag{1.4}$$

Bragg's Law - see Figure 1.2

Figure 1.2 Bragg's Law

If we let n = 1, and consider the small angle approximation that holds for the case of electron diffraction, Bragg's Law simplifies to

$$2\theta = \lambda/d \tag{1.5}$$

Next, we consider the angle that the diffracted beam makes with the undeviated beam, and see that it is in fact, 2θ . This angle, in addition with the height of the specimen above the viewing screen will determine the distance of the diffraction spot from the center of the screen by the following relation:

$$\tan(2\theta) = R/L \tag{1.6}$$

Where L is a constant called the camera constant that takes into account the multiple focusing effects of the post-specimen lens system, and R is the distance from the center of the screen to the diffraction spot.

Again employing the small angle approximation and reconciling Equation 1.6 with Equation 1.5 above, we see that

$$R/L = \lambda/d \tag{1.7}$$

While our model so far has only considered a few atomic planes in two dimensions, actual nanocrystals constitute many atomic planes in 3 dimensions. When the electron beam looks down an axis that is parallel to several planes so that the atoms in the crystal appear as columns, the crystal is called "in zone." This creates a lattice of spots on the viewing screen that has a reciprocal relationship to the crystal lattice. This is why the diffraction pattern is often called the "reciprocal lattice." Each diffraction spot represents a group of atomic planes in the crystal and contains information about the distance between atomic planes. The Technai TF20 has built into it the algorithms necessary for considering the effects of the projection lenses, and can measure the d-spacings of a crystal from the spacing of spots in the diffraction pattern.

Figure 1.3 TEM Imaging and Diffraction [5]

The objective aperture is much larger than a single nanocrystal, making it necessary to use a second aperture to obtain a diffraction pattern from the crystal without contaminating the pattern with information from its neighbors. For this reason, the diffraction aperture can be inserted to block diffracted rays except those coming from a limited area around the direct beam. This process is called selected area diffraction (SAD), and is very useful to isolate the diffraction pattern from a small group of crystals, or in some cases, a single large crystal.

SAD is prone to error though. The diffraction aperture must be inserted directly into the image plane, otherwise stray beams still make it to the imagining system and skew the data. Similar problems occur if the specimen of interest is not directly in the eucentric plane - the image occurs at a point before or after the diffraction aperture (see Figure 1.3). Also, selecting an area small enough to isolate one nanocrystal is moderately difficult using the aperture. And as if this wasn't enough, SAD is also particularly sensitive to lens aberrations and astigmatism. Thus, while being none the less useful, for obtaining d-spacing information from a single nanocrystal, SAD leaves something to be desired.

1.2.3 Image Selected Transform Diffraction

Fortunately, there is a way of doing SAD that doesn't rely on the diffraction aperture, and in turn can easily isolate the diffraction patterns from single crystals. Crystals are frequently found in the state of being "in zone," meaning that an axis of the crystal lines up with the axis of the microscope. In this state, the crystal lattice appears as a two dimensional grating to the impinging electrons, which causes electron interference. When viewing a single crystal that is in zone in imaging mode, a series of lattice fringes appear as dark and light bands. These fringe patterns can be described by the two-dimensional Fresnel-Kirchhoff diffraction formula:

$$E(x, y, z = d) = -\frac{i}{\lambda} \int \int_{aperture} E(x', y', z = 0) \frac{e^{ikR}}{R} \left[\frac{(1 + \cos(\mathbf{r}, \hat{z}))}{2} \right] dx' dy' \quad (1.8)$$

The image screen is far enough away from the crystal that it lies in the far-field,

and thereby the Fraunhofer approximation can be applied,

$$E(x, y, d) = -\frac{ie^{ikd}e^{i\frac{k}{2d}(x^2 + y^2)}}{\lambda d} \int \int_{aperture} E(x', y', 0)e^{-i\frac{k}{d}(xx' + yy')}dx'dy'$$
(1.9)

Because the crystal appears as a two dimensional grating when it is "in zone," the diffraction integral is a two dimensional Fourier transform of the crystal lattice at the specimen plane. Therefore, by performing an inverse Fourier transform on the image of a crystal with a fringe pattern, we can produce a diffraction pattern that is limited to the contents of the image. Thus we remove the need for a selection aperture, and instead select information using the area of the image that illuminates the CCD camera. Through this process it becomes not only possible but easy to isolate the diffraction pattern from a single crystal only a few nanometers wide.

Additionally, this technique is less prone to error. Instead of moving apertures and switching viewing modes, one only needs to capture a quality image on the viewing screen and take its Fourier transform. While overlapping crystals can produce 'false' fringe patterns, these can be avoided by a discerning eye in the selection process.

With a good diffraction pattern, known crystals can be identified by comparison to tabulated values in the Powder Diffraction File (PDF). This way, rutile, anatase, and brookite forms of TiO_2 can be identified, as well as Tellurium metal and its oxides.

1.2.4 XEDS

The TF20 is also capable of X-ray Energy Dispersive Spectroscopy (XEDS). This technique is useful because it can do elemental analysis on the sample and show relative amounts of materials present. XEDS focuses all of the electrons in the beam through a waist about 5 nanometers across which is then called a probe. With so many electrons coming through such a small area, the probe is great for knocking orbital electrons out of atoms in a specific place in the sample. As higher energy orbital electrons then fall into the holes made, they release an X-ray. The TF20 detects this X-ray and its energy, which information is then compared against known emission spectra until the element that produced the X-ray is identified. Using this method, we can detect and locate materials of interest in our samples.

Chapter 2

Experimental Setup

2.1 Preparing the Samples

Samples are synthesized by a hydrothermal technique. First a solution of $TiCl_4$ and water is made, Tellurium precursor (Te + NaBH₄) is added, and the solution is annealed at a fixed temperature between 200°C and 800°C. The result is a powder of tellurium modified TiO₂ nanocrystals. Preparing samples for inspection with the Technai TF20 electron microscope is moderately simple. Because the sample material is a powder of nanocrystals, they can be loaded onto a micro-grid copper sample holder by moving the copper mesh through the powder. This causes enough nanocrystals to get stuck in the mesh that they can be loaded into the microscope and viewed. For samples composed of larger granules, they may have to be crushed using a flat piece of metal. A clean metal surface and the clean back end of some lab tweezers were used to crush these samples. It is important that hydro-carbons are not introduced to the sample as they are attracted to the electron beam and can form carbon pillars on the sample, so the grinding surfaces were thoroughly cleaned before each use.

Using TEM, several particles from each sample were closely inspected for fringe

patterns and crystal size information. Diffraction information was taken using the image capture technique, and elemental information was taken using XEDS. Using XEDS requires going into STEM (Scanning TEM), where the probe is made very small and scanned over the sample. Thus we discovered the presence and location of Te in the samples.

Chapter 3

Results

3.1 Macro Characteristics

The following table describes the color and appearance of the samples made:

nperature		5% Te	10% Te	15% Te		
	200 C	White	White/Blue	Dark Blue		
	300 C	Off white	Light Tan 0	Dark Blue		
	400 C	Lt Orange	Lt Yellow	Blue/Orange		
ng Tei	500 C	Lt Orange	Lt Orange	Yellow		
Baki	600 C	Orange 2	Orange	Lt Orange		
	700 C	Brown 0	Brown 0	Orange 0		
	800 C	Red/Brown	Red/Brown	Orange 0		

Amount of TE present

0 = no photodarkening 3 = strong photodarkening

 Table 3.1 Macroscopic appearance of samples

Pure ${\rm TiO}_2$ is white (the reason it has been used as a base for paint for hundreds

of years). Samples baked at cooler temperatures and higher concentrations of Te produced a dark blue color, almost black. Samples baked at lower temperatures and with less Te were almost white. Higher temperatures produced red to brown powders in samples with more Te, and orange powders in samples with less Te.

3.2 Phase Change of TiO₂

A distinct shift in phase of TiO₂ from the anatase and brookite forms to the rutile form occurs at about 700°C. For all samples annealed at temperatures cooler than 700°C, anatase and brookite are the predominant forms of TiO₂. These two forms produce very similar diffraction patterns when encountered en masse: brookite has it's brightest spot for the 120 plane with a d-spacing of 3.51 Å, while anatase has its brightest spot for the 101 plane with a d-spacing of 3.52 Å. Because of the typical size and abundance of these crystals, it's quite difficult to isolate a single crystal and get a clean diffraction pattern. Instead the pattern usually appears as a series of rings, representing the "signature d-spacings" for those crystals:

Figure 3.1 The combined diffraction patterns of many similar crystals produces concentric rings.

However, when anatase and brookite can be isolated, it quickly becomes apparent that their underlying structure is quite different. Namely, anatase is a tetragonal structure while brookite is orthorhombic.

Orthorhombic

Tetragonal

Figure 3.2 Anatase (tetragonal) and brookite (orthorhombic) diffraction patterns showing their different structures.

By comparison with the Powder Diffraction File (see Appendix A), the anatase and brookite forms can be grouped together and identified by their signature d-spacings. The Rutile form, which is tetragonal like anatase, has its brightest spot at 3.25 Å, and subsequent dimmer spots that differ noticeably from those of brookite and anatase. Thus the rutile is easily recognized, and can be identified by comparison with the PDF.

While brookite and anatase are predominant below 700°C, rutile is strongly predominant above 700°C. We concluded that rutile with it's tighter spacings is a more stable form of TiO₂ at higher temperatures.

3.3 Change in TiO₂ Crystal Size

Accompanying the phase change to rutile at 700° C is a dramatic change in size of TiO₂ crystals. Anatase and brookite crystals that form at cooler temperatures are typically 5 to 10 nm in diameter, while the smallest rutile crystals are around 30 to 50 nm across. This leads to somewhat different appearances of the nanoparticles themselves, as well as helps to reveal Te compounds in the higher temperature samples (Figure 3.4).

TiO₂ - Te 500C

TiO2 - Te 800C

Figure 3.3 Anatase and brookite nanocrystals are on average 5 - 10 nm while rutile ones are around 50nm.

3.4 Finding the Tellurium

XEDS consistently showed the Te is present in roughly the same proportion everywhere in each sample. In high temperature annealed samples where rutile TiO_2 is the predominant form, 10-15 nm diameter particles can still be seen attached to the surfaces of larger crystals. XEDS and diffraction show that these smaller particles are primarily composed of TeO₂. It's possible that these TeO₂ particles are dispersed throughout every sample and are only revealed when the TiO_2 undergoes the phase change to its rutile form (TeO₂ isn't recorded in the PDF as having multiple phases, therefore it's assumed that it doesn't undergo a phase change similar to that of TiO_2 in this range of temperatures). In low temperature annealed samples, the TeO_2 diffraction pattern is hidden by the strong TiO_2 patterns due to the prevalence of TiO_2 . Also, the similarity in size makes TeO_2 nanocrystals visually indistinguishable from TiO_2 nanocrystals. In these high temperature annealed samples though, it can be isolated and identified.

Figure 3.4 A TeO₂ nanocrystal hanging to the surface of a larger rutile TiO_2 crystal

TeO₂ nanocrystals such as the one shown in Figure 3.5 are scattered throughout the nanoparticle, adhering to the surfaces of larger rutile TiO₂ crystals. These particles are very sensitive to the electron beam, however, and disappear if observed for too long. One possible explanation for this is that the smaller particles are only loosely attached to the larger crystals, and the energy delivered by the electron beam, especially when the beam is sharply focused, is enough to knock them loose (Figure 3.5).

Figure 3.5 TeO₂ nanocrystals spotting the surface of a rutile TiO_2 crystal which burn away under the beam

It's possible that that these small TeO₂ crystals have to do with the photodarkening observed. In the samples where photodarkening did occur, individual TiO₂ crystals did not show Te doping. However, the photodarkening samples were some of those in which anatase and brookite were formed at the upper edge of their temperature range. Also, it was observed that after photodarkening had occurred, these anatase and brookite samples were similar in color to the 700°C and 800°C rutile samples. It's possible that some sort of surface doping, or surface interaction between the TiO₂ and Te or TeO₂ was made possible by the high energy present when these hotter anatase and brookite samples were annealed, and that this surface interaction causes the photodarkening. The high temperature annealed samples where rutile TiO₂ crystals are covered with smaller TeO₂ crystals, may be the permanent version of photodarkened crystals. The permanent color change for the high temperature samples certainly suggests so. Unfortunately, in the photodarkening samples, the similar size of TiO₂ crystals and TeO₂ crystals makes any sort of surface interaction or adhering nearly impossible to observe. The ideal would be to find an anatase or brookite TiO_2 crystal that had fused at one side with a crystal of TeO_2 , or maybe even a clump of fused crystals of both species. Unfortunately, none such structures were found.

While TeO₂ appears in high temperature annealed samples, it should be noted that the Te in cooler samples may not be in a TeO₂ compound, but may simply exist as Te metal, or as a combination of both forms. Unfortunately, the data gathered at present can't tell us if this is the case. Other oxides of Te were not found.

In addition to TeO_2 , Te metal was also found in the 700°C - 15% sample, forming relatively large crystals which didn't appear in any other observed samples.

3.5 Conclusions

TEM and XEDS revealed Te as both Te metal and TeO₂ in our samples. We also saw the distinct shift of TiO₂ from anatase and brookite forms to rutile at about 700°C. Because the only samples that displayed photodarkening were those synthesized just below this transition temperature, we think that surface interactions between TiO₂ and Te or TeO₂, made possible by higher annealing temperatures, may play a role in the photodarkening.

Bibliography

- P. R. F.Barnes, et. al. "TiO₂ photoelectrodes for water splitting: Carbon doping by flame pyrolysis?," Dev.Chem.Eng.Mineral Process 14(1/2), 51–70 (2006).
- [2] S. U. M.Khan, M. Al-Shahry, W. B.Ingler.Jr "Efficient Photochemical Water Splitting by a Chemically Modified n-TiO₂," Science. **297**, 2243–2245 (2002).
- [3] K. Hashimoto, H. Irie, A. Fujishima "TiO₂ Photocatalysis: A Historical Overview and Future Prospects," Jap. Journ. App. Phys. 44, 8269–8285 (2005).
- [4] A. J.Nozik, R. Memming, "Physical chemistry of Semiconductor Liquid interfaces," Journ. Phys. Chem. 100, 3061–3078 (1996).
- [5] P.E. Champness, Electron Diffraction in the Transmission Electron Microscope, (BIOS Scientific Publisher Limited, Oxford, 2001), ch. 1 - 2.
- [6] J. Peatross, M. Ware, *Physics of Light and Optics*, (Brigham Young University, Utah, 2006), ch. 10.
- Joint Committee on Powder Diffraction Standards, Mineral Powder Diffraction File Data Book, (International Centre for Diffraction Data, Pennsylvania, 1980), ppg 30, 133, 734, 837, 961, 962.
- [8] W. Borchardt-Ott Crystallography, (Springer-Verlag Berlin Heidelberg, Germany, 1993), ch. 1 - 2

 [9] S. Philips, I. James, B. Hess, "Visible Light Absorbtion and Photo-darkening in Te-modified TiO₂ Nanocrystals," Brigham Young University, 2007 Appendix A

Appendix A:Sample Data from the Powder Diffraction File

4 - 5	54				<u></u>						
d	3.23	2.35	2.23	3,86	Те						*
1/11	100	37	31	20	Tellurium				(Tellur	ium)
Pad	Cuka 1	1 54050	F:1			d A	I/I 1	hk1	d A	· 1/11	hkl
Cut of	ff A	1/1, D	iffractom	eter 1/1	0.T	3.86	20	100	1.1740	8	204,213
Ref. S	Swanson a	nd Tatge,	NBS Circu	ular 539,	Vol. 1, 26	3.230	100	101	1.1334	3	105
	(1953)					2.351	37	102	1.0951	2	221
	Invergent					2.228	31	110	1.0784	<1	303
Sys. I	4577 L		S.G.	*	C 1 371	2.087	11	111	1.0705	<1	310
a0 4.	B		C0 5.92	7 1	C 1,331	1.980	8	003	1.0535	3	311
Ref 1	p Ibid		y	1	DX 0.2255	1.930	4	200	1.0432	2	115
Mer.						1.835	20	201	1.0399	3	222
						1.781		112	1.0104	2	214
(a		nωβ		Y	Sign	1.750	2	103	1.00/1	5	203,312
2V	D		nap	Color	Gray	1.616	12	202	0.9889	<1	006
Ref. 1	D1d.	D2 21 (154) [0	DL 11	14 40	1.479	13	113	.9714	2	304
177 00	(152) 0	r P3221 (154) [Brad	iley, Phil	. Mag., 40	1.459	8	210	.9650	1	223
Sample	obtaine	from Iol	hnson Mat	they and	Company.	1.41/	8	211	.9413	1 1	313
Ground	and anne	ealed in y	vacuum fui	mance at	400°C for 15	1.383		104,203	.9201	2	215
minute	s. Spect	trographic	c analysis	s shows Si	, Fe, Mg, and	1.309	6	212	.9032	2	224
Al pre	sent at l	0.001% or	less.			1.287	1	300	8858	1	320
At 26	-2/ C.	th Ed n	1017			1.25/	4	501	8760	1	206
See fo	llowing	card p.	. 1017.			1.234	1	302	.8719	i	321
	and the					1.1002	1 3	502			

4 - 5	54A	1	1 1								
d	3.23	2.35	2.23	3.86	Те						*
1/11	100	37	31	20	Tellurium					Tellur	ium)
Rad. Cut off Ref.	λ	1/11	Filter	Dia. I/I c	or.	d A .8675 .8485 .8339	1/I ₁ 4 <1 2	hkl 305,314+ 322 411	d A	· 1/1 ₁	hkl
Sys. ao Ref.	ь. <i>β</i>		S.G. v	A Z	C Dx	.8270 .8180 .8119 .8102 .8082	1 2 1 2 3	107 216 225 412 404,323			
ea 2V Ref.	D	nωβ	«) mp	Color	Sign	.7945	1	315			
2V Ref.			тр	Color							
pr	eceding c	card									

9-4	33	and the									
d	3.28	3.72	3.01	6.01	TEO2						*
I/I,	100	95	50	5	TELLURIUM ()	(I DE		Te	LURITE		
Rad. (UKa 1 A 1	.5405	Filter N	I Dia		dÅ	I/I_1	hkl	dÅ	I/I ₁	hkl
Cut off Ref. N	NAT. BUR.	I/I, DIF Standards	FRACTOMET CIRC: 53	er 9 <u>9</u> 57-58	(1960)	6.01 4.05 3.723	6 12 95	020 021 111	1.666 1.6168 1.5903	10 8 8	123 062,331 133
Sys.	ORTHORHOM	IBIC	S.G.	D ¹⁵ — Рвс А.О.	A (61)	3.280	50	040	1.5734	4 12	171 252,213
a Ref. B	B	10.001	γ	Z 8	Dx 5.75	2.800 2.730 2.636 2.453	800 25 730 45 636 6 453 10	5 131,200 5 002,210 6 041 0 102	1.5021 1.4662 1.4246	1.5021 4 1.4662 10 1.4246 6 1.4093 8	080,143 270 351
8 a 2V	D	nωβ m	10	Color C	Sign	2.298	25 20	221,230	1.4093	8	173 181 261
Ref.						2.023	20 25	042	1.3184	8 12	082
SAMP CANAN	LE (U.S.N	.M. # R 88 A, MEXICO	61) ORIGI . SPECTR	NALLY OBT	AINED FROM ANALYSIS FROM	1.883	4	061 250	1.2885	6 8	253,281
U.S. SI, 0 0.089 AND 0	GEOLOGICA .3% CU; O % FE; 0.05 .004% AG.	L SURVEY 2 % EACH % EACH OF PATTER	SHOWED FO OF AL, BA BI, SN; N MADE AT	LLOWING 1 ; 0.1% EA 0.02% EAC 25°C. IS	MPURITIES: 0.5% CH OF CA, MG; H OF PB, MN, SR; DSTRUCTURAL	1.785 1.759 1.750 1.714	10 20 18	161 232 311 113	1.2650 1.2489 1.2434	4 8 6	191 402 044
WITH	ROGKUITE	(TIC2).	NERCK IN	DEX. 8TH	CD., P. 1017.	1.696	18	321	1.1504	8	1.10.1

11-6	693										
d	2.99	3.40	1.87	4.07	ΤεΟ2						*
I/I1	100	85	55	14	TELLURIUM O	K I DE			Parate	LURIT	E
Rad (CuKa,)	. 5405	Filter N	l Dia	dÅ	I/I_1	hkl	ÅЬ	I/I ₁	hkl	
Cut off Ref. N	AT. BUR.	I/I, DI STANDARD	FFRACTOMET S CIRC. 53	ER 19 <u>10</u> 55 (4.068 3.404 3.107	.068 14 .404 85	101 110 111	1.3554	4 <2 4	223,312 303 321	
Sys. T			S.G.	P41,3212 A	(92,96) C 1-583	2.988 2.536	100	102 112	1.3048 1.2682	4	313 224
a Ref.	BID.		Ŷ	Ζ4	Dx 6.017	2.407 2.296 2.151	20 4 ¢	200 201 210	1.2590 1.2431 1.2269	8 4 6	322 215 106,304
e a 2V	D	nωβ r	٤٠ np	Y Color G	Sign REVISH TO	2.071 2.033 1.904	6 2 12	211 113,202 004	1.2026 1.1882 1.1812	4 8 6	400 116,314 323
AMPLE	FROM CAN	ANEA, SOI	NORA, MEXI	co (USNM	R8861).	1.873 1.746 1.701	55 4 14	212 203 220	1.1530 1.1339 1.1214	4 <2 2	411 225 331
ATTER HE SA	ANAL. SHO MN; 0.01% N WAS MAD MPLE WAS THORHOMB!	ZR, BA; E AT 250 FOUND AS C POLYMO	AND 0.004	5 GAJ U. 5 PB. TALS CO-E: URITE) ON	(ISTING WITH A MATRIX OF	1.641 1.569 1.5212 1.4925	6 4 10	213 301 310 204	1.1159 1.0929 1.0867 1.0760	4 4 2 <2	412 216,324 403,332 315,240
ATIVE	TELLURIU	M. MERCK	INDEX, 81	ГН ED., P.	1017.	1.4777	10	302	1.0646 PLUS 2	LINES	TO 1.017

21-	1272											
d	3.52	1.89	2.38	3.52	Ti0 ₂						4	
I/I 1	100	35	20	100	Titanium Oxi	Titanium Oxide (Anatase						
		F. 1054	F.1 H	D:		d A	I/I_1	hkl	d A	I/I1	hkl	
Rad. C	$uka_1 \lambda 1$.54056	Filter Mor	10. Dia		3.52	100	101	1.0436	4	321	
Cut of	I Intional I	1/11 D11	Ctonderde	er 1/1	2.431	10	103	1.0182	2	109		
Ret. M	1060)	bureau or	Standards	s, mono.	23, 000. 7, 02	2.378	20	004	1.0070	2	208	
(1909)					2.332	10	112	0.9967	2	323	
Sys. 1	Tetragona	1	S.G.	I41/amd	(141)	1.892	35	200	.9555	4	316	
ao :	3.7852 bo		co 9.51	39 A	C 2,5134	1.6999	20	105	9464	4	400	
a	β		Y	Z 4	Dx 3.893	1.6665	20	211	9246	<2	307	
Ref.	Ibid.					1.4930	4	213	.9192	2	325	
						1.4808	14	204	.9138	2	411	
		0			C	1.3641	6	116	.8966	4	219.11	
ea av	D	nωβ	e	y ci	Sign	1 7770	ć	220	8890	2	228	
Dof T	D		mp	Colo	Coloriess	1.33/8	0	107	8819	<2	413	
ner. 1	D10.					1.2/95	10	215	8793	2	404	
Dattor	- at 250	Tataa		1 14		1.2049	10	215	8464	2	420	
Comple	n at 25 (. Inter	nal stand	ard: W.		1 1804	4	008	.8308	<2	327	
Iampie	UCA	a from Na	tional Les	ad to., S	outh Amboy, New	1,1094	-2	000	.0500		415	
Apate	y, USA.					1.1725	2	303	.8268	4	415	
aracas	anuarted	to mutile	ymorph bro	ookite (o	rthorhombic)	1.1664	6	224	.8102	2	309	
700°C	inverted	to rutile	(tetrago	nal) by h	eating above	1.1608	4	312	.7974	4	424	
Merck	Index 9	+	1054			1.0600	2	217	.7928	2	0012	
HEICK	muex, o	ch Ed., p	. 1054.		REPORT OF STREET	1.0517	4	305				

29-1360						29-1361			
d 3.51 2.90 3.47 3.51 TiO2						*			
/I, 100 90 80 100 Titanium Oxi	de	e Br							
L Culton 1 5405 Eller Ni Di	d A	$1/I_1$	hkl	d A	· 1/11	hkl			
ad tural A 1.5405 Filler MI Dia.	3.51	100	120	1.649	5	151			
of Nat Bur, Stand, (U.S.) Monogr. 25, Sec. 3 (1964)	3.47	80	111	1.610	13	113			
ier, nach burt beaner (orbr) inneger bey erer (orbr)	2.900	90	121	1.597	2	232			
E 1 (/1)	2.729	4	200	1.541	7	123			
ys. Orthorhombic S.G. Pcab (61)	2.476	25	012	1.494	10	052			
0 5.4558 b0 9.1819 c0 5.1429 A 0.59419(0.5601)	2.409	18	201	1.473	4	160			
β γ Z 8 Dx 4.120	3 2.370	6	131	1.466	9	312			
et. Ibid.	2.344	4	220	1,461	12	251			
	2.332	4	211	1.452	12	203			
α 2.5831 n ω β 2.5843 εν 2.7004 (Na) Sign +	2.296	5	040	1.442	6	152			
V v28°* D4.14±.06 mp Color Black	2.254	8	112	1.434	10	213			
ef. Dana's System of Mineralogy, 7th Ed., 1 588 (1944)	2.244	18	022	1.417	9	161			
pecimen from Magnet Cove, Arkansas, USA (USNM 97661).	2.133	16	221	1.364	5	400			
2E becomes 0 at 555.5 (25°C).	1.969	16	032	1.336	8	332			
pectrographic analysis: 0.1-1.0% Si; 0.01-0.1% each of	of 1.893	30	231	1.319	3	401			
1, Fe, and V; 0.001-0.01% Mg. Niobian brookite from	1.851	18	132	1.312	2	233			
ozambique [Chem. anal. (%): TiO2 80.7; Nb205 14.1; Fe	1.833	3	212	1.285	2	004			
.53]; Carvalho et al., Rev. Cien. Geol. Ser. A, 7 61	1.757	3	240	1.238	10	024,17			
1974) gives an identical pattern. Pattern was made a	1.691	20	320	1.211	2	431			
5°C. To replace 16-617.	1.662	30	241	10 ref1	ections	to 0.9			

21-	1276										Street,
· d	3.25	1.69	2.49	3.25	Ti02						*
1/11	100	60	50	100	Titanium Oxide (Ružile)						
Rad	CuKa, A	54056	Filter M	ono, Dia		d A	I/I 1	hki	d A	I/I 1	hkl
Cut ol Ref. 1 Sys. 7 ao Ref. 1 ¢a 2V Ref.	$\begin{array}{c} \text{if} \\ \text{National} \\ (1969) \\ \text{retragonal} \\ \text{4.5933 bo} \\ \beta \\ \text{ibid.} \\ \end{array}$	I/I_1 Dif Bureau of	S.G. Standard: S.G. Co 2.9: Y	P42/mnm 592 A Z 2 Y Color	cor. =3.4 25, Sec. 7, 83 (136) C 0.6442 Dx 4.250 Sign	3.247 2.487 2.297 2.188 2.054 1.6874 1.6237 1.4797 1.4528 1.4243 1.3598 1.3465	100 50 8 25 10 60 20 10 10 20 10 20 12	110 101 200 111 210 211 220 002 310 221 301 112	1.0425 1.0364 1.0271 0.9703 .9644 .9438 .9072 .9009 .8892 .8774 .8738 .8437	6 6 4 2 2 2 4 4 8 8 8 8 6	411 312 420 421 103 113 402 510 212 431 332 422
No imp Sample Jersey Patter Two ot (ortho 700°C.	ourity ove obtained , USA. n at 25°C her polym prhombic) Merck	er 0.001% I from Nat . Intern hoiphs ana converted Index, 8t	cional Lea nal scanda ntase (tet l to rutil n Ed., p.	nd Co., So ard: W. Ru cragonal) e on heat 1054.	1.3041 1.2441 1.2006 1.1702 1.1483 1.1143 1.0936 1.0827	2 4 2 6 4 2 8 4	311 202 212 321 400 410 222 330	.8292 .8196 .8120 .7877	8 12 2 2	303 521 440 530	