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ABSTRACT

Simulations of Electron Trajectories in an Intense Laser Focus
for Photon Scattering Experiments

Grayson J. Tarbox
Department of Physics and Astronomy, BYU

Master of Science

An experiment currently underway at BYU is designed to test whether the size of a free electron
wave packet affects the character of scattered radiation. Using a semi-classical argument wherein
the wave packet is treated as a diffuse charge distribution, one would expect strong suppression of
radiation in the direction perpendicular to the propagating field as the wave packet grows in size to
be comparable to the wavelength of the driving field. If one disallows the interaction of the wave
packet with itself, as is the case when calculating the rate of emission using QED, then regardless
of size, the electron wave packet radiates with the strength of a point-like emitter. In support of this
experiment, we explore a variety of physical parameters that impact the rate of scattered photons.
We employ a classical model to characterize the exposure of electrons to high-intensity laser light
in a situation where the electrons are driven by strong ponderomotive gradients. Free electrons are
modeled as being donated by low-density helium, which undergoes strong-field ionization early
on in the pulse or during a pre-pulse. When exposed to relativistic intensities (i.e. intensities
sufficient to cause a Lorentz drift at a significant fraction of c), free electrons experience a Lorentz
drift that causes redshifting of the scattered 800 nm laser light. This redshift can be used as a key
signature to discern light scattered from the more intense regions of the focus. We characterize
the focal volume of initial positions leading to significant redshifting, given a peak intensity of
2× 1018 W/cm2, which is sufficient to cause a redshift in scattered light of approximately 100
nm. Under this scenario, the beam waist needs to be larger than several wavelengths for a pulse
duration of 35 fs in order to ensure free electrons remain in the focus sufficiently long to experience
intensities near the peak pulse intensity despite strong ponderomotive gradients. We compute the
rate of redshifted scattered photons from an ensemble of electrons distributed throughout the focus
and relate the result to the scattered-photon rate of a single electron. We also estimate to what
extent the ionization process may produce unwanted light in the redshifted spectral region that
may confound the measurement of light scattered from electrons experiencing intensities greater
than 1.5×1018 W/cm2.

Keywords: high-intensity laser, photon scattering, radiation, relativistic electron, classical and
quantum physics
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Chapter 1

Introduction

At intensities around and above 1018W/cm2, free electrons inside a laser focus undergo relativistic

motion for optical frequencies. The availability of high-intensity lasers during the past two decades

has spurred a number of investigations into the behavior of electrons in such an environment.

This includes ponderomotive acceleration, Lorentz drift, and plasma wakefield generation [1–7].

In addition, there have been efforts to observe Thomson scattering from relativistically excited

plasmas [8–10]. Significant effort has also been made to develop theories and models that explain

the dynamics of individual free-electrons in intense laser fields [11–15], as well as the associated

scattered radiation [16–18]. In this thesis, we investigate how individual electrons radiate as they

interact with a laser field.

1.1 Free Electrons in a Laser Focus

Classical electrodynamics teaches that accelerated charges emit electromagnetic radiation. In this

paradigm, an electron is treated as a classical point particle. In quantum mechanics, however, the

electron is represented by a wave function that forms a wave packet, which is extended in nature.

As long as the wave function remains relatively small in comparison to the wavelength of light

1
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Figure 1.1 Depiction of a Volkov state solution for an electron in an intense laser field
after (a) 0 cycles, (b) 50 cycles, and (c) 100 cycles as calculated in Ref. [15].

that may scatter from it, these two descriptions do not differ significantly from each other. High

intensity lasers available today can easily achieve fields in excess of 1018 W/cm2, where relativistic

effects take place. In such intense fields, atoms such as helium quickly ionize, and the liberated

electrons oscillate in the field at relativistic speeds, experiencing accelerations above 1022 m/s2.

An electron wave packet can quickly spread from an initially compact state to one that measures

microns across or larger. Thus, in the presence of an intense laser field, an electron wave packet

can easily spread to become comparable in size to the laser wavelength. Different parts of the same

electron wave packet then oscillate out of phase. In such cases, it is natural to ask how the electron

wave packet radiates. An example of such spreading is depicted in Fig. 1.1.

One might be tempted to treat the electron wave packet as a diffuse, classical extended charge

distribution. From this perspective, the evolution of the wave packet is governed by quantum me-

chanics (in the limit of weak radiative feedback) while its photoemission is governed by classical

electrodynamics. Under this (incorrect) viewpoint, different portions of the wave packet interfere,

resulting in strong suppression of light scattered out the side of the focus. Conceptually, this view-

point is difficult to maintain because it requires different portions of the same electron wave packet

to perform work on other parts, as demonstrated in the next section.



1.2 Example: Oscillating Classical Current Distribution 3

z 

y 

x 

r 

r' 

Figure 1.2 A Gaussian current distribution defined by Eq.(1.1). The direction of the
current alternates with each stripe and is polarized in the z-direction. Internal waves
propagate in the x-direction at c while the distribution remains centered at the origin.

1.2 Example: Oscillating Classical Current Distribution

Consider interference within the context of far-field radiation from classical current distributions in

order to build better intuition for quantum radiation scattering [19]. We examine a classical current

distribution designed to mimic a free quantum wave packet for a charged particle stimulated by a

laser field. If such a wave packet is sufficiently diffuse to make quantum spreading slow and if an

applied laser field avoids the relativistic regime such that we may neglect geometrical distortions

to the shape, then we may contemplate a current distribution with the following form:

J
(
r′, t
)
= ẑJ0e−r′2/r2

0 sin
(
kx′−ωt

)
. (1.1)

This scenario arises when a Gaussian charge distribution is stimulated by an external electric field

polarized in the z-direction and traveling in the x-direction with frequency ω = ck. This current

distribution is depicted in Fig. 1.2.
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When Eq. (1.1) is inserted into Jefimenko’s equation [20] for the electric field, we obtain

E(r, t) =
J0

4πε0ω

∫
e−r′2/r2

0

[
(3(ẑ · r̂ret) r̂ret− ẑ)

[
cos(kx′−ωt + krret)

r3
ret

+
k sin(kx′−ωt + krret)

r2
ret

]
−((ẑ · r̂ret) r̂ret− ẑ)

k2 cos(kx′−ωt + krret)

rret

]
d3r′+

1
4πε0

∫
d3r′

ρstatic (r′)
r2

ret
r̂ret

.

(1.2)

Aside from the electrostatic term, this field is identical to the field arising from a distribution of

oscillating dipoles. J0/ω may be thought of as the peak medium polarization (in units of dipoles

per volume).

Only the term involving 1/rret in Eq. (1.2) survives in the far-field limit. In this limit we make

the approximation rret ≈ r except in the cosine argument where we write rret ∼= r− r′ · r̂. Eq. (1.2)

then reduces to

E(r, t)∼=−
kJ0

4πε0cr
((ẑ · r̂) r̂− ẑ)

∫
e−r′2/r2

0 cos
(

kx′−ωt + kr− k
x′x+ y′y+ z′z

r

)
d3r′

=−θ̂
kJ0 sinθ

4πε0c
Re

ei(kr−ωt)

r

∞∫
−∞

dx′e
− x′2

r2
0 e−ik( x

r−1)x′
∞∫
−∞

dy′e
− y′2

r2
0 e−ik y

r y′
∞∫
−∞

dz′e
− z′2

r2
0 e−ik z

r z′
(1.3)

After performing the Gaussian integrals, the electric field simplifies to

E(r, t)∼=−θ̂J0
k
√

πr3
0

4ε0c
sinθ

cos(kr−ωt)
r

e−
k2r2

0
2 (1−sinθ cosφ) (1.4)

with x/r = sinθ cosφ .

The average Poynting flux (directed along r̂) is given by the expression

〈S〉t = ε0c
〈
|E|2

〉
t
=

k2πJ2
0 r6

0
32ε0c

sin2
θe−k2r2

0(1−sinθ cosφ)

r2 . (1.5)

This expression is shown in Fig. 1.3 for various distribution sizes. As the size of the source current

distribution grows, interferences cause the emitted radiation to be suppressed in every direction

except along the x-axis, the direction of the traveling wave responsible for stimulating the current.

This constructive interference in a preferred direction is commonly referred to as phase matching.
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To compute the average power radiated into the far field, we insert Eq. (1.5) into 〈P〉t =

r2
2π∫
0

dφ

π∫
0

dθ sinθ 〈S〉t which after integration yields

〈P〉t =
π2J2

0 r4
0

16ε0c

[
1− e−2(kr0)

2
− 1+ e−2(kr0)

2

(kr0)
2 +

1− e−2(kr0)
2

(kr0)
4

]
. (1.6)

A graph showing the total radiated power is given in Fig. 1.4. As the size kr0 of the (normalized)

current distribution increases, the relative overall power drops off as the emission into directions

other than the x-axis is suppressed.

Poynting’s theorem guarantees that on average the radiated power precisely balances the power

necessary to maintain the current, as described by

P =−
∫

E(r, t) ·J(r, t)d3r. (1.7)

When we explicitly install Eqs. (1.1) and (1.2) in Eq. (1.7), we generate the following six-

dimensional integral:

〈P〉t =
J2

0 k2

8πε0c

∫
d3re−r2/r2

0

∫
d3r′e−r′2/r2

0

×

[(
3(ẑ · r̂ret)

2−1

(krret)
3 − (ẑ · r̂ret)

2−1
krret

)
sin(krret− krret,x)−

3(ẑ · r̂ret)
2−1

(krret)
2 cos(krret− krret,x)

]
,

(1.8)

where we have used 〈sin(kx−ωt)cos(kx′−ωt + krret)〉t =−sin(krret− krret,x)/2 and

〈sin(kx−ωt)sin(kx′−ωt + krret)〉t = cos(krret− krret,x)/2 with rret,x ≡ x− x′. When we carry

out this integration, the result agrees precisely with Eq. (1.6), as expected. It is interesting that the

near-field terms play an important role in computing Eq. (1.8), whereas only the far-field portion

is needed to compute Eq. (1.6). The near-field work actually accounts for the diminished radiated

power.

To summarize, we analyzed radiation emitted by a Gaussian-shaped current distribution with

propagating internal oscillations using the framework of classical electrodynamics. The overall

radiated power, as well as the radiation’s spatial distribution, depends strongly on the extent of the
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Figure 1.3 The far-field average Poynting flux for a Gaussian current distribution with
distribution sizes (a) kr0 = 0, (b) kr0 = 2π/3, (c) kr0 = 4π/3, and (d) kr0 = 2π .

Gaussian distribution producing it. We demonstrated explicitly the connection between interfer-

ence in the far field and the near-field work between different source components.

1.3 Quantum Electrodynamics and Pointlike Emission

The essential role of near-field work, particularly as it relates to far-field radiation, can provide

insight into the behavior of a quantum system. A Gaussian current distribution is a classical analog

that mimics the distribution of a Gaussian quantum wave packet for a charged particle in a laser

field. A single-electron quantum wave packet with initial wave function ψ(r, t) and charge e, how-

ever, must radiate quite differently than a classical charge density given by ρ(r, t) = e |ψ(r, t)|2.

At the most basic level, a classical charge density may perform work on itself via Coulomb self-

repulsion. In contrast, accurate quantum mechanical results for the hydrogen atom are derived by

excluding electron self-repulsion from the Hamiltonian. The removal of interferences in the scat-
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Figure 1.4 The total average power emitted from a Gaussian current distribution as a
function of the distribution size with separations as given in Fig. 1.3. Power is expressed
in units of the effective radiated dipole power for small kr0.

tered radiation from a single quantum electron is as natural (and critical) as the omission of the

classical Coulomb self-repulsion.

In a careful treatment of this problem using quantum electrodynamics Corson et al. demon-

strated that, regardless of size, an electron wave packet radiates with the strength of a point-like

emitter [21, 22]. In their analysis, they showed that the spatial size of a laser-driven electron wave

packet does not affect the strength of the radiation, assuming the driving field is unidirectional.

With coherent light sources, they also showed that energy-momentum conservation forbids inter-

ference in the scattered light to all orders of perturbation in QED. Then, working with the Furry

picture of QED, interference was considered in the high-intensity limit. In this analysis, the matter

fields were quantized using Volkov functions to treat the incident fields non-perturbatively. Within

this high-intensity regime, they found a similar kinematic structure forbidding radiative interfer-

ence.

The conclusion drawn from Corson’s results is that, in contrast with classical electrodynamics

where emissions from different regions of a charge current add coherently, the emission from
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a quantum wave packet exhibits no interference. Quantum electrodynamics, with its subtleties,

requires a different type of intuition; the spatial extent of a wave packet does not affect its radiation.

This second quantized description eliminates the possibility of the wave function performing

work on itself. Under plausible experimental conditions, the difference in expected radiated in-

tensity between the (incorrect) classical extended-charge picture and the correct QED treatment

is approximately two orders of magnitude [18]. Such a difference should be testable, and so the

group of Dr. Peatross and Dr. Ware have built an experiment to measure the intensity of light

radiated out the side of a laser focus to distinguish between the two scenarios. My thesis work

analyzes what might be expected in such a measurement. While I did not work on the apparatus

myself, my work is important for the interpretation of the results.

1.4 Experimental Test of Laser Scattering from a Free Electron

1.4.1 Basic Design

An experiment is underway in our group at BYU, which is designed to measure photons emitted

by free electrons out the side of a high-intensity laser focus, perpendicular to the direction of beam

propagation. A titanium-sapphire laser system produces 75 mJ pulses of 800 nm light. The pulses

enter the first of two large vacuum chambers where they are compressed temporally to 35 fs by

diffraction gratings while preserving about 35 mJ of pulse energy. The compressed pulses are

focused through a pinhole that separates the compression chamber from an interaction chamber.

The interaction chamber is evacuated to less than 10−8 torr and then backfilled with helium,

which donates free electrons through ionization. An elliptical mirror images the focus at the pin-

hole into a much smaller spot with waist w0 ∼= 5µm. This gives an estimated peak intensity of

I =
0.035J

(35fs) π

2 (5µm)2
∼= 2×1018 W

cm2 (1.9)



1.4 Experimental Test of Laser Scattering from a Free Electron 9
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focusing
mirror

lens tube
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spectral
filters

achromatic lenses
f = 50 mm

photon
counter

Figure 1.5 A schematic of the one-to-one imaging system used in the collection system
for the electron radiation experiment.

With each laser pulse, the helium atoms in the laser focus become doubly ionized, and their

electrons are accelerated in the intense laser field, causing them to radiate. A lens collects light

emitted out the side of the laser focus. This light is collected using a one-to-one imaging system

and is coupled into a gold-clad multi-mode fiber, which sends the collected photons to a spec-

trally filtered detector. The collection system is shown in Fig. 1.5 and subtends a solid angle of

approximately 0.2 steradian.

1.4.2 Spectral and Temporal Filtering

An avalanche photodiode at the end of the fiber records single-photon events. An important feature

of the experiment is the high intensity, which causes the free electrons in the most intense part of

the focus to drift in the forward direction at a significant fraction of the speed of light. This

effect, called the Lorentz drift because it originates from the ev×B force, causes the scattered

photons, when viewed from the side of the focus, to be red shifted. This enables one to distinguish

between the background laser light and photons of interest, which are scattered from electrons in

the most intense part of the focus. The photons from the high-intensity interaction region possess

both temporal and spectral characteristics that help differentiate them from background photons
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Figure 1.6 Manufacturer specified transmission as a function of wavelength for (a) the
bandpass filter, and (b) the high-pass filter [23].

(noise). This is crucial since the scattered events must be distinguished from the approximately

1017 photons in each laser pulse.

A spectral filtering system consisting of a bandpass and a long-pass filter is installed in front

of the avalanche photodiode to block light near 800 nm while passing light in the 900 nm ± 25

nm range. Each filter allows approximately 70–80% of the 900 nm light to pass through while

reducing the fundamental laser light by several orders of magnitude. The transmission profiles of

the filters can be seen in Fig. 1.6.

The avalanche photodiode used to detect the collected photons, unfortunately, has a decreasing

efficiency as the wavelength of light increases. Fig. 1.7 shows the specified detection efficiency,

which should be taken into account as a factor when interpreting experimental data. The photons of

interest also arrive at the detector within a certain time window, which allows us to distinguish them

(with 0.1 ns instrument resolution) from other confounding noise sources such as light scattered

from the chamber wall.
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Figure 1.7 The manufacturer specified avalanche photodiode efficiency as a function of
the incident light wavelength.

1.5 Simulations

I performed a series of numerical simulations to help determine an ideal set of parameters for the

BYU experiment. An estimate of the intensity required to generate a redshift into the bandpass

region was found to be 1.5×1018W/cm2 per electron. We determined that the laser focus should

have a waist greater than about 6 laser wavelengths in order to avoid overly strong ponderomotive

gradients that tend to push electrons out of the focus prior to experiencing high intensities. The

simulations show that in-band radiation output by electrons that experience 1.5× 1018 W/cm2 is

several orders of magnitude greater than the radiation output from electrons that experience an

intensity only just sufficient for ionization. This compensates for the fact that there are vastly more

electrons experiencing low intensity that might emit photons (in band to the detector) during the

ionization process.

Within the high intensity region of the focus, the average spectral intensity in the direction of a

detector is approximately 1×10−5 eV
Ω·nm . The spectral window of interest is approximately 50 nm
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wide, and the collection system subtends a solid angle of about 0.2 steradians. Using these values,

the expected energy per electron in the focus is approximately 1× 10−4 eV. Given the detector

efficiency for single photon events is only 5%, it is expected that a large number of atoms are

needed in order to achieve a detectable signal, requiring a backfill pressure of around 5× 10−5

Torr.

Chapter 2 provides an overview of the model used to simulate electron trajectories in a laser

focus. The equations of motion are outlined, including a vector representation for the laser fields.

Calculations are performed that determine which intensity is required for the mildly relativistic

redshift sought in our experiment. The effects of beam waist size on the time an electron spends

inside the high intensity region of a focus are explored. The parameters for the beam waist and

intensity are used to determine the portion of the focus where start positions for an electron generate

the desired redshift in emitted radiation. An examination of how the signal scales with the number

of electrons is also performed. A simple model for helium ionization is used to determine the

correlation of trajectories for the pair of electrons ionized from the same helium atom over the

timescales in the experiment. A calculation is also performed to estimate the radiation emitted

during the ionization process.

Chapter 3 determines the average radiation spectrum for an electron in the ionized region for

comparison with an electron in a continuous plane-wave field. An estimate of the photon count

rate in the experiment is determined as a function of the intensity of the incident laser pulse. A

summary of the results is provided, along with an outlook of the feasibility of the electron radiation

experiment.



Chapter 2

Electron Simulation Model

2.1 Electron Trajectories in an Intense Laser Focus

Using quantized models to simulate electron dynamics at relativistic intensities is a numerically in-

tensive endeavor [24,25]. To make the calculations more manageable, Chowdhury et al. examined

the behavior of an electron wave packet ionizing in ultra high intensity laser fields using a hybrid

quantum/classical model [16]. First, they used a tunneling-ionization rate model to promote an

increasing fraction of the electron probability into the continuum. Once in the continuum, each

tiny portion of the wave packet was propagated as a classical point-like trajectory. Many point-like

elements taken together represented the free electron wave, and these different elements spread out

under the influence of the strong laser field. This approach is quite reasonable since the influence

of quantum spreading is tiny in comparison to the extreme forces of the laser field.

Taking the approach used by Chowdury et al. as inspiration for our model, we decided to

model the electron more crudely as a single classical point-like trajectory in the laser focus. In

our case, we seek only order-of-magnitude accuracy and can afford to model electron dynamics

and emission based on classical point-like electrons. In addition, this approach is consistent with

13
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the strength of emission based on QED, which is one of the two viewpoints to be distinguished by

the experiment at BYU. A much lower scattering rate (i.e. two orders of magnitude) would align

with the (incorrect) first-quantized perspective where scattering in the direction perpendicular to

the propagating laser field is strongly suppressed, owing to interference between different portions

of the large wave packet.

We use classical electrodynamics in the interaction of the laser field with the electron, allowing

for simulations to be performed conveniently on a desktop computer. The laboratory-frame accel-

eration of an electron in the presence of electric and magnetic fields (in MKS units) is given by the

expression [20]

a =
d2r
dt2 =− e

γm
[EL +v×BL−

v(v ·EL)

c2 ]. (2.1)

where e, m, and v are the charge, mass, and velocity of the electron, γ = 1/
√

1− v2/c2 is the

standard relativistic factor, and EL and BL are the electric and magnetic fields of the laser.

For the purposes of programming this equation, it is convenient to use a set of scaled units.

Beginning with the time and position variables, we let

t ′ ≡ νt, r′ ≡ r/λ (2.2)

where ν is the laser frequency, and λ is the laser wavelength in MKS units. The velocity in this

system works out to be

v =
dr
dt

= λν
dr′

dt ′
= cv′⇒ v′ =

v
c
, (2.3)

and the corresponding acceleration

a = νc
dv′

dt ′
= νca′⇒ a′ =

a
νc

. (2.4)

When the electric and magnetic fields are scaled according to

E′L =
eλ

mc2 EL and B′L =
eλ

mc
BL (2.5)
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where e is the magnitude of the charge of an electron, and m is the mass of an electron in MKS

units, Eq. (2.1) simplifies to

a′ =−
√

1−v′2
[
E′L +v′×B′L−v′(v′ ·E′L)

]
. (2.6)

An adequate single-frequency representation for the vector fields in an intense laser focus can

be found in work by Salamin [1], which is summarized in Appendix A. For the purposes of this

analysis, a moving time envelope with wavefront curvature was appended ad hoc to Salamin’s

result rather than using the more correct method of superposing a range of single frequency so-

lutions. These vector fields are the fields EL and BL that are substituted into Eq. (2.5) in order

to determine the scaled electric and magnetic fields in Eq. (2.6). This equation can be solved to

determine the electron’s path in the laser field using standard Runge-Kutta methods. We employ

the built in ode45 solver in MATLABr. An initial state vector comprising the electron’s initial

position and velocity, in addition to the start and stop times of the simulation, are provided to the

ODE solver along with a subroutine containing Eq. 2.6. With these tools in place, we can examine

the impact of laser parameters on electron trajectories as well as proceed to determine the expected

radiation scattered from such electrons.

2.2 Electron Radiation Spectrum Calculation

The trajectories calculated using Eq. (2.6) can be used to determine the fields radiated by a classical

electron [20]:

Ee =−
e

4πε0

rret

(rret ·u)3

[
(c2− v2)u+ rret× (u×a)

]
(2.7)

Be =
1
c

r̂ret×Ee. (2.8)

Here u ≡ cr̂ret − v and rret ≡ r−w(tr), where w is the position of the electron and tr = rret/c is

the retarded time. The self-force of the electron due to this radiated field is neglected in Eq. (2.1);
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Figure 2.1 Oscillations of an electron near the peak of a plane-wave pulse with a Gaussian
temporal window (FWHM) 35fs and λL = 800 nm. The phases of oscillation associated
with the various peak intensities are shifted to align at t = 0 for easier comparison.

for optical driving fields, the radiation reaction force is approximately seven orders of magnitude

below the force of the laser field. The spectrum of the scattered light, in a given location and with

a given polarization direction, can be calculated by performing a Fourier transform on these fields.

For comparison with light scattered from a focused laser, we first show the results of simula-

tions of light scattered by an unfocused plane-wave pulse propagating in the z direction having a

Gaussian temporal envelope with duration 35 fs (FWHM). Figure 2.1 shows several transverse os-

cillations of a free electron as it interacts with such a plane-wave pulse near its peak for a variety of

intensities. Note that the period of oscillations decreases as the Lorentz force causes the electron

to drift with the propagating laser field at a significant fraction of c. Since the moving electron

oscillates at a slower rate than the incident laser pulse, scattered light is red-shifted compared to

the incident laser light. This effect becomes more pronounced as the laser intensity increases into

the relativistic regime; as the drift velocity becomes an increasingly significant fraction of c, the

amount of redshift in the scattered radiation increases. The trajectory of an electron interacting
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Figure 2.2 Trajectory of an electron experiencing a pulse with peak intensity I0 = 2×
1018W/cm2.

with a laser pulse of peak intensity 2× 1018 W/cm2 over the course of a laser cycle can be seen

in Fig. 2.2. During the course of the pulse, the electron drifts forward approximately three laser

wavelengths in the direction of pulse propagation, and undergoes nonlinear motion (as noted by

the trajectory no longer having a smooth, sinuous shape) before coming to rest again. The far-field

intensity spectrum computed using Eqs. (2.7) – (2.8) for different peak intensities can be seen in

Fig. 2.3. These spectra are calculated assuming a detector located in the direction perpendicular

to both the pulse-propagation direction and the direction of the linear polarization. As seen in the

figure, the spectrum undergoes an increasing amount of redshift and stronger emission as the laser

pulse intensity increases. At the lowest intensity examined, I0 = 1× 1017 W/cm2, the spectrum

mostly resembles the spectrum of the incident pulse, being only slightly shifted from the spectral

center of 800 nm. The ideal intensity for this experiment appears to be I0 = 1.5× 1018W/cm2.

This spectrum has the optimal amount of redshift for the experiment, keying in on the bandpass

window of 875–925 nm.
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Figure 2.3 Far-field radiation spectrum in the direction perpendicular to both pulse prop-
agation and the linear polarization generated by a free electron experiencing the various
plane-wave pulses used in Fig. 2.1.

2.3 Determination of Minimum Beam Waist Size

Given finite laser pulse energy, we need a tight focus to achieve the desired relativistic intensities.

Electrons in such a tight laser focus experience strong ponderomotive forces that tend to push them

out the side of the focus, perhaps even before experiencing the maximum pulse intensity. The

ponderomotive force is a nonlinear force experienced by charged particles in an inhomogeneous

oscillating electromagnetic field, such as a laser field. The mechanism of the ponderomotive force

can be thought of by considering the motion of the electron over the course of a laser cycle. In the

case of a homogenous field (i.e. a plane wave field), the electron returns to its initial position in

the x dimension after one laser cycle as shown in Figs. 2.1 and 2.2. When in an inhomogeneous

field, such as a focused laser field, the force exerted on the electron during the half-cycle spent

in the region with higher field amplitude points towards the region with lower amplitude. The

force exerted on the electron during the half-cycle spent in the region with lower field amplitude

points toward the region with higher amplitude, but is weaker. Over a full laser cycle, the net force
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thus drives the electron toward regions with lower field amplitudes. Since it is proportional to the

gradient of the magnitude squared of the electric field |E|2, the more rapidly E varies spatially,

as when a laser beam focuses tightly, the stronger the force pushing charged particles outside the

focus. In addition, as a focus becomes smaller, electrons inside the high intensity region have a

smaller distance to travel before escaping that region. Thus, it is important to characterize how

tight the laser focus can be while still allowing the electrons sufficient time to experience the high

intensity region.

For this simulation, we use a realistic representation of focused vector fields found in Appendix

A. The peak intensity was fixed at I0 = 2× 1018 W/cm2 with the same pulse duration used pre-

viously, 35 fs FWHM. With these parameters, the laser focus experiences about 10 laser cycles

with an intensity above 1.5× 1018 W/cm2. These parameters, in fact, match those accessible in

our laboratory with available equipment.

We consider first a laser focus with an extremely small beam waist w0 = λL. With such a

small focus, the ponderomotive gradient is very strong, causing electrons to leave the focus rapidly

prior to experiencing the peak intensity of the pulse. Figure 2.4 depicts the trajectories of twenty

different electrons positioned randomly within the most intense region of this laser focus. These

electrons leave the focus rapidly before the pulse peak arrives, typically experiencing a maximum

intensity a factor of 5 below the 2× 1018 W/cm2 peak. This laser focus is thus clearly too small

for the proposed experiment since most electrons will never experience the intensity required to

generate the desired redshift in the scattered radiation. Since it would be ideal to maximize the

time spent within the high intensity region of the laser focus, this raises the question of what is

the minimum focal size that is adequate for the experiment. It is also important to determine not

just the size of the high-intensity region within a laser focus (as derived in Appendix B), but more

specifically the volume of the region wherein the initial location of the electron gives rise to a

trajectory that does not leave the focus prior to experiencing relativistic intensities.
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Figure 2.4 Simulated trajectories for 20 electrons starting within a laser pulse focused
with a waist w0 = λL. The laser pulse has a peak intensity of 2× 1018 W/cm2 and a du-
ration of 35 fs FWHM. The electron initial positions are randomly distributed within the
volume where the intensity is greater than 1× 1018 W/cm2. Due to strong ponderomo-
tive forces, most are rapidly forced out of the focus prior to experiencing the pulse peak
intensity.
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In order to characterize the region wherein an electron’s initial position gives rise to a trajectory

that experiences relativistic intensities for a suitable duration, we ran a simulation in which elec-

trons were released from various initial positions inside the focus. We computed their trajectories

under the influence of the laser field, and monitored the intensity experienced by the electrons in

order to determine how long they experience intensities above 1.5× 1018 W/cm2. The results of

these simulations are shown in Fig. 2.5, indicating the average length of time that a free electron

experiences at least 1.5×1018 W/cm2 as a function of the beam waist w0 while varying the initial

position x0, y0, and z0. In generating these plots, the electron was released from rest at its initial

position when the laser field first exceeded the threshold for second ionization for helium, which

is I = 8.7×1015 W/cm2. The phase of the carrier-envelope can significantly affect the time spent

within the high intensity region, so these simulations are also averaged over the carrier-envelope

phase to account for this effect, which smooths out the resulting plots.

Figure 2.5 (a) depicts the duration of exposure to high intensity (≥ 1.5× 1018 W/cm2) for an

electron that originates along the line y0 = 0, z0 = 0 for various values of x0. Similarly, Fig. 2.5

(b) plots the duration of exposure to high intensity for an electron that originates along the line

x0 = 0, z0 = 0 for various values of y0. The laser pulse in the simulation is linearly polarized

in the x-dimension. As the beam waist becomes large, an electron that begins near the center of

the focus may experience the maximum 10 cycles of high intensity. However, if the beam waist

narrows to less than 3 λL, the variety of positions that experience the requisite high intensity for

any amount of time becomes extremely small. In this case, the tightly focused laser pulse produces

ponderomotive gradients that pushes the electron outside the central portion of the focus before

the highest intensity portion of the pulse arrives. Clearly, such a tight focus is undesirable for the

proposed experiment. By increasing the size of the beam waist to w0≈ 6 λL, there is a much greater

variety of starting positions that experienced high intensities, and for an appreciable fraction of the

maximum 10 laser cycles. More importantly, such a waist parameter is achievable with the laser



2.3 Determination of Minimum Beam Waist Size 22

Figure 2.5 Time an electron experiences intensities ≥ 1.5×1018 W/cm2 as a function of
the beam waist w0 and the initial position (x0,y0,z0). The electron was released from rest
when the intensity first exceeded the second ionization threshold for helium. The peak
intensity of the pulse was held at 2×1018 W/cm2 with a duration of 35 fs FWHM. In (a)
the initial position was y0 = 0, z0 = 0, while x0 was varied. In (b) the initial postion was
x0 = 0, z0 = 0, while y0 was varied.
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Figure 2.6 This is an image captured using a CCD camera of the focused laser beam in the
electron radiation experiment taken at the pinhole. Pixels are square and 9.8µm×9.8µm.

facility at BYU. To expose electrons to the desired high intensity for significantly longer times

would require either a wider focus, or a special ponderomotive trapping scheme such as the one

developed by Chaloupka et al. [26].

For the BYU experiment, the beam waist is about 5 µm, or approximately 6 laser wavelengths.

A magnified image captured of the laser focus is shown in Fig. 2.6. The demagnification to the

subsequent final focus is approximately a factor of 9, suggesting a beam waist of approximately 5

µm.

2.4 Effective Size of High-Intensity Region

To answer the question regarding the effective size of the high intensity focus, simulations were

performed where electrons started from a variety of initial positions. Their trajectories were cal-
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culated using the procedure outlined in Sec. 2.1. These electrons were then tracked to determine

the intensities experienced along their individual trajectories. The results of these simulations are

depicted in Fig. 2.7, showing both horizontal and vertical cross sections of the volume wherein the

initial position enabled an electron to experience an intensity above 1.5× 1018 W/cm2. The col-

oring indicates the length of time an average electron experiences above that intensity, in units of

laser cycles. For comparison, the laser intensity reaches an intensity greater than 1.5×1018 W/cm2

within a radius of
√

x2 + y2 = 0.38 w0, and within a longitudinal range of |z| < 82 λL, which is a

volume approximately six times the effective volume depicted in Fig. 2.7. Since electrons drift in

the forward direction, note that initial positions located before the focus have an advantage. Also,

since the linear polarization is in the x-dimension, initial positions that are offset from the axis in

the y-dimension are preferable to positions that are offset from the axis in the x-dimension, noted

by the thicker profile in the y-dimension.

2.5 Signal Scaling with Number of Electrons

While it would be conceptually ideal for the electron scattering experiment to have only one elec-

tron in the focus at a time, their location and number in the focus at any given time cannot be

completely controlled. Moreover, efficiencies in the detector setup dictate that there needs to be

many electrons in the focus to obtain a detectable signal for any practical experiment. It is impor-

tant to understand how emissions from neighboring electrons interact. In particular, it is important

to describe how the scattered radiation signal scales with the number of electrons and the density

of helium atoms inside the laser focus.

The trajectories of the two electrons released from the same helium atom are initially corre-

lated, so the pair radiates coherently, thus increasing the signal by a factor of two compared to the

radiation from two separate and uncorrelated electrons. However, as will be discussed in Sec. 2.6,
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Figure 2.7 Two-dimensional slices in the (a) x− z and (b) y− z planes depicting the time
an average electron experiences intensities greater than 1.5×1018 W/cm2 plotted versus
its initial position. Note that the positions offset from the axis in the y-dimension are
preferable to positions offset in the x-dimension due to the linear polarization of the laser
field in the x-dimension. Also, note that positions located before the focus are prefer-
able since electrons drift in the upstream direction. The pulse parameters chosen for the
simulations were I0 = 2×1018 W/cm2, w0 = 6λL, λL = 800 nm, and τL = 35 fs FWHM.
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a pre-pulse can be employed in the experiment to pre-ionize the helium atoms prior to the arrival of

the primary high intensity laser pulse. This allows some spreading and separation of the electrons

to occur, limiting the coherence effect. In this case, the enhancement of the signal due to coherence

effects should be negligible.

For electrons from separate atoms, the emission directed perpendicular to the direction of laser

pulse propagation is incoherent if the electrons are distributed randomly throughout the focus, as

demonstrated in Appendix C. Although there is a coherent buildup of emission in the forward

direction, phase matching in the perpendicular direction is sufficiently poor to avoid coherence

effects (except between electron pairs released from the same atom as discussed in the previous

paragraph). In other words, the phases of emission from the various electrons may be treated as

random since they are randomly located throughout the focus. In this case, the emission intensities

for the individual electrons released from different atoms sum, on average, giving an expected total

signal.

In order to confirm this intensity addition rule for the perpendicular direction, a simulation

was performed to compute the emission from many electron pairs released from atoms positioned

randomly throughout the focus. As anticipated, it was found that the overall emission fluctuates

around an intensity equal to the single-atom intensity scaled by the number of atoms in the ensem-

ble. Thus, for the purposes of interpreting experimental results, it is straightforward to connect the

emission behavior of an ensemble including many free electrons to the single-electron emission

behavior desired. However, it is crucial during the experiment that the density of helium backfilled

into the interaction chamber be sufficiently low in order to avoid cooperative effects [27]. This

mandates the electron spacing be greater than half a wavelength, limiting the donor-atom pressure

to below 10−4 Torr.



2.6 Ionization and Spreading 27

2.6 Ionization and Spreading

Although hydrogen possesses a single electron in its monatomic state, it is found naturally in a

diatomic state, and is highly reactive in its monatomic state. Helium, on the other hand, is inert

and has just two electrons, making it the best donor atom available. In addition, the electrons

in helium are liberated at higher intensities (≈ 1016 W
cm2 ) than the first two electrons of any other

potential donor atom or molecule.

The electrons in the scattering experiment are initially bound to a helium atom before quickly

ionizing in the strong electromagnetic fields of a high intensity laser pulse. For our purposes,

we use a strong-field ionization approximation to determine the intensities necessary to ionize

helium [28, 29]. We model the two electrons by abruptly releasing the first one when an intensity

of 1.3×1015W/cm2 is reached and releasing the second when an intensity of 8.7×1015W/cm2 is

reached. We ignore the motion of the parent ion and focus attention on the two liberated electrons.

An explanation of these intensities as well as a calculation of the volume inside the laser focus

that experiences those intensities can be found in Appendix B. Figure 2.8 depicts the focal regions

where first and second ionization of helium takes place along with the high intensity volume found

in Sec. 2.4. For comparison, the first ionization volume is approximately 105 times larger, and the

second ionization volume is approximately 104 times larger than the volume depicted in Fig. 2.7.

Figure 2.9 gives an example of such electron-pair trajectories in a focus. Even though the two

electrons are released from the same position, they separate somewhat because of field forces

since they are released at different times. Because the two electrons are released at different

intensities and at potentially different laser oscillation phases, their subsequent trajectories tend

to separate somewhat. Ionization at these intensities for helium can result in drift velocities of

v = 0.007 µm
fs sinφ for first ionization and v = 0.019 µm

fs sinφ for second ionization, where φ rep-

resents the break-away phase (with φ = 0 corresponding to the peak of the field). A reasonable

range for the break-away phase turns out to be φ = ±π/6, which generates drift velocity ranges
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Figure 2.8 A cross section of the laser focus (side profile) showing the regions where first
and second ionization of helium occurs, as well as the comparatively small high intensity
region from Fig. 2.7(b) where free electrons experience the desired high intensity and
their emission is redshifted. The laser parameters are I0 = 2× 1018 W/cm2, w0 = 6 λL,
λL = 800 nm, and τL = 35 fs FWHM.

of v = ±0.004 µm
fs and v = ±0.010 µm

fs respectively along the direction of polarization. With such

modest velocities, the trajectories of the electron pairs from doubly-ionized helium atoms remain

correlated in the laser field over a period spanning several tens of femtoseconds. If the timescale

that the electrons are free from their parent atom exceeds hundreds of femtoseconds, they tend to

separate by distances greater than a wavelength.

Another relevant consideration is the quantum spreading of electrons as they interact with the

laser field. Since an electron undergoes ionization over several laser cycles, a portion of the wave

function bleeds away near the peak of each oscillation, but over a range of phases φ . This results

in different portions of the same electron wave packet being released with different drift velocities,

similar to the discussion in the previous paragraph where electrons from the same helium atom

acquire different drift velocities. The net result is that the different electron wave functions each

end up incorporating the full range of available break-away phases. The natural quantum spreading
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Figure 2.9 Trajectory of electrons ejected from a helium atom located at the center of
the laser focus. The red outline shows the beam waist for a laser pulse with parameters
I0 = 2×1018 W/cm2, w0 = 6λL, λL = 800 nm, and τL = 35 fs FWHM.
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for a free electron wave packet initially the size of a helium atom occurs at a rate of ±0.003 µm
fs ,

which is remarkably close to the spreading due to the variety of break-away phases. Since the

goal of the experiment is to measure photon scattering from large electrons, a pre-pulse arriving

100–200 fs prior to the main relativistic laser pulse may be used first to liberate the electrons from

their donor atoms, and then to give the free electron wave packets time to spread to the scale of a

laser wavelength.

The question of whether electron pairs from the same helium atom remain correlated during

emission impacts the rate of scattered radiation by at most a factor of two. The difference in

predicted signals between the first-quantized and QED viewpoints, is a range of over two orders of

magnitude. Thus, the two different outcomes should be clearly distinguishable.

2.7 Radiation from the Ionization Process

In this section, we estimate the level of unwanted photoemission that might arise during the ion-

ization of helium. In order to estimate the strength of this potential noise, the ionization process

of helium was simulated using a pair of classical electrons caught in a smoothed potential well,

subject to the oscillating laser field. This model has been used by Ho et al. [30] to describe nonse-

quential double ionization. It allows the use of an entirely classical description of the interactions

between the electrons and laser field to be used. This model also allows the electrons to break free

from the core naturally at the appropriate intensities for the first and second ionization of helium,

and to interact with the long-range Coulomb tail of the parent ion while oscillating in the laser field.

After including the softened potential interaction and computing trajectories for the electrons, we

then use Eqs. (2.7)–(2.8) to estimate the electron radiation, both before and after each electron

detaches from the core, while still under the influence of the Coulomb potential.

By employing this model, we find that any spectral components overlapping the redshift band-
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pass region of interest arise almost entirely from the fact that the electron suddenly breaks free

from the nucleus, irrespective of the specific features in the electron trajectory as it exits the atom.

Essentially the same result is obtained by simply releasing an electron from rest, once the local

electric field reaches the appropriate strength to cause ionization. This abrupt initiation of oscil-

lations on the timescale of a single laser period produces faint spectral wings, independent of the

model used to decide when to release the electron. This effect, though reversed in time, is similar to

the spectral wings observed when computing instantaneous spectra computed when observing the

interaction between an electromagnetic pulse and a linear dielectric medium [31]. Comparing the

spectral wings overlapping the redshifted region of interest to the signal emitted by electrons that

experience intensities of 1.5×1018 W/cm2, we find that they differ by approximately three orders

of magnitude. Despite this difference in signal level, because the volume undergoing ionization is

enormous compared to the relevant high intensity region as shown in Fig. 2.8, it is necessary to

cut out most of the ionization volume. Since the experimental setup employs a one-to-one imaging

system, indeed only a small fraction of the total ionization region is actually imaged, as will be

discussed in the next section.
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Simulating Expected Signal Levels

3.1 Redshift vs. Intensity

In order to estimate the overall signal coming from the ionization volume, the expected emission

is calculated for an ensemble of free electrons given random initial positions within the double

ionization region of the focus shown in Fig. 2.8. The laser parameters are the same as in Fig.

2.7 (i.e. I0 = 2× 1018 W/cm2, w0 = 6 λL, λL = 800 nm, and τL = 35 fs FWHM), which, again,

are achievable pulse parameters with the current BYU setup. The resulting intensity spectra are

averaged over a large number of randomly chosen individual electron trajectories, and then scaled

to be representative of the total signal per laser shot depending on the density of the donor gas. For

this simulation, a density associated with a helium pressure of 5×10−5 Torr was chosen, involving

some 35,000 electrons. Effects involving possible collisions between electrons and neighboring

ions are ignored. The results are shown in Fig. 3.1. They show several curves for partial volumes

wherein electrons experience at least one oscillation at the various threshold intensities. Note that

as the threshold intensity of the included region decreases below 1× 1017 W/cm2 (while keeping

the peak laser intensity at 2×1018 w/cm2), the signal in the spectral window of 875–925 nm does

32
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Figure 3.1 Total energy per shot for randomly distributed electrons corresponding to a
pressure of 5× 10−5 Torr. The different curves represent the radiation from the set of
electrons that experience at least one laser cycle at an intensity of 15×, 10×, 7.5×, 5×,
2.5×, 1×, or 0.5×1017 W/cm2. The spectrum is measured in the far field in a direction
perpendicular to both the direction of laser propagation and the direction of linear laser
polarization.

not significantly improve.

While the distinct spectral structure seen in Fig. 2.3 washes out in Fig. 3.1, a strong red-

shift from the laser wavelength of 800 nm is clearly visible. Using the results from Fig. 3.1 and

assuming a collection angle of 0.2 steradian, an 875–925 mm bandpass filter, a 5% detection effi-

ciency, and a pressure of 5×10−5 Torr, a total signal for the entire ionization volume calculates to

0.7 eV
Ω·nm×50 nm×0.2 Ω×0.05 = 0.3 eV per shot. With an average photon energy in the spectral

window of about 1.4 eV, this amounts to one photon every five shots being emitted from the entire

ionization volume.
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3.2 Experimental Simulation

As discussed briefly in Sec. 2.7, the in-band radiation emitted from electrons during the ionization

process is several orders of magnitude below the radiation emitted by the electrons exposed to

the high intensities of interest. Without a method to eliminate the radiation from the majority

of the much larger ionization region, the signal from the electrons of interest in the experiment

would be indistinguishable from the unwanted emission from those electrons simply ionizing from

their donor atoms. To remedy this problem, photons can be collected from only a section of the

beam approximately one Rayleigh range z0 in length. This size is selective enough to include the

high intensity region almost completely, while cutting out the vast majority of the first and second

ionization volumes. Figure 3.2 depicts this collection volume. Most of the red-shifted signal from

the high intensity region is imaged into a 105 µm gold-clad multimode optical fiber as shown in

Fig. 1.5. This one-to-one imaging system subtends 0.2 steradians. For comparison, the ionized

volume captured by this imaging system is only 10 times larger than the relevant high intensity

volume.

To simulate the overall expected signal for this experiment, helium atoms were randomly dis-

tributed throughout the imaged region of the focus at the proposed pressure of 5×10−5 Torr. Tra-

jectories for the various electrons were calculated, and then used to calculate the filtered in-band

signal from this distribution. This simulation was repeated and averaged to produce the results

shown in Fig. 3.3. The measured energy as a function of peak laser intensity is shown, assuming a

constant beam waist of w0 = 6 λL, an imaging system that collects a solid angle of 0.2 steradian,

and a 5% detection efficiency.

From these results, it appears that the signal becomes significant or ‘turns on’ at intensities

between 2×1017 W/cm2 and 5×1017 W/cm2. At intensities below 1017 W/cm2, the contribution

from the ionization process in the imaged volume is apparent. At higher intensities, the primary

signal is from the the redshifted electrons of interest, while the signal from other ionized electrons
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Figure 3.2 A zoomed-in portion of Fig. 2.8 showing the small portion of the focus that is
imaged into the fiber. The high-intensity region from Fig. 2.7 is included for reference.
As noted in Sec. 2.4, this region is asymmetrical, preferring positions before the focus,
and positions offset in y from the laser axis rather than those offset in x.

Figure 3.3 Computed total energy per shot collected by the one-to-one imaging system
depicted in Fig. 1.5 for varying peak intensities of a laser pulse with beam waist w0 = 6λL,
wavelength λL = 800 nm, and duration τL = 35 fs FWHM.
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contributes only about 1% of the signal. Increasing the peak laser intensity above 1018 W/cm2 only

gradually improves the radiated energy emitted into the target band, due in part to the tendency for

the radiation to shift spatially towards the forward direction as the laser intensity increases. Using

the proposed peak intensity of 2×1018 W/cm2, the expected energy detected per shot is only 0.1

eV, or about one photon every 14 shots. This estimate is less than the one found in Sec. 3.1 because

the imaging system misses a portion of the high intensity region and clips out the majority of the

ionizing volume.

3.3 Conclusion and Experimental Outlook

We have simulated the classical point-charge electron trajectories in a vector representation of a

focused high intensity laser pulse. These trajectories allowed the Thomson radiation scattered out

the side of the laser focus to be calculated. Electrons that experience intensities near or above

1×1018 W/cm2 drift in the forward direction at a significant fraction of the speed of light, causing

the light scattered in the perpendicular direction to be redshifted from the laser wavelength. The

proposed electron radiation experiment will measure scattered light in the vicinity of 900 nm,

whereas the incident 35 fs laser pulse is centered at 800 nm. The analysis performed in this thesis

suggests that the beam waist should be at least several laser wavelengths wide, perhaps w0 = 6 λL,

to enable electrons sufficient time within the focus to experience the highest intensities without

being pushed out by an overly strong ponderomotive gradient.

We performed calculations to determine the effective volume of initial positions that ensures

exposure to high intensity, which is significantly smaller than the actual volume enclosing that

intensity. Also, this volume is significantly narrower in the dimension of laser polarization and

skewed towards the upstream side of the focus. Using these results, we performed a calculation

to estimate the absolute redshifted emission into the collection system of this experiment based on
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a helium pressure of 5× 10−5 Torr, which donates the free electrons as the helium atoms ionize.

At this and lower pressures, the spacing between free electrons tends to be greater than half a

wavelength, so the emission of the perpendicular direction sums incoherently (i.e. the intensities

are added rather than the fields). Using an assumed detection efficiency of 5%, this estimate yields

a photon count rate of one photon every 14 laser shots with a peak intensity near 2×1018 W/cm2.

This result was calculated as a function of laser intensity, and it was found that higher intensities

only marginally improve the photon count rate, while intensities as low as 5× 1017 W/cm2 are

also viable. These estimates also suggest that the emission associated with the helium ionization

process redshifted into the bandpass region is sufficiently weak to ignore when only the central

part of the focus is imaged into the detector.

It also seems feasible and desirable to liberate the electrons in the center of the laser focus

using a pre-pulse arriving 100–200 fs prior to the main relativistic pulse to ensure that electron

wave packets have the opportunity to spread to a size on par with the laser wavelength. By varying

the delay of the pre-pulse, an experimental check could be performed to determine if the size of

the wave packet has an impact on the emission rate. A first-quantized analysis (combined with a

classical notion of the extended wave function) would suggest that the scattered emission rate is

intimately connected to the size of the wave packet, with a large wave packet producing emission

rates reduced by a couple orders of magnitude compared to a highly localized wave packet. On

the other hand, the emission rate predicted by QED is similar in strength to classical point emitters

used in the simulations performed here, regardless of the size of the actual quantum wave packet.
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Appendix A

Laser Field Formulae

Assuming a Gaussian laser beam propagating in the ẑ direction, the expressions for the electric

field components derived from a vector potential with amplitude A0 are given by [1]

Ex =E
{
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The magnetic field components are then given by

Bx = 0, (A.4)
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Furthermore, the parameter ε = w0/zr is the diffraction angle with w0 the beam waist at the focus

and zr the Rayleigh range. The parameters ζ = x/w0 and υ = y/w0 are reduced lengths. Also,

letting w(z) = w0
√

1+(z/zr)2 we make the remaining definitions in the field expressions

E = E0
w0

w
exp
[
− r2

w2

]
; E0 = kA0, (A.7)

Sn =
(w0

w

)n
sin(ψ +nψG), (A.8)

Cn =
(w0

w

)n
cos(ψ +nψG) (A.9)

where k = ω/c, ρ = r/w0, and ψ = ψ0 +ψP−ψR +ψG. Finally, we define ψ0 to be the constant

phase, ψP =ωt−kz the plane wave phase, ψR = kr2/(2R) with R(z)= z+z2
r/z the phase associated

with the curvature of the wave fronts, and ψG = tan−1(z/zr) the Guoy phase.



Appendix B

Over Barrier Ionization

In an intense laser field, the potential that an electron feels is a combination of the Coulomb and

laser field which may be written in one-dimension as

V (x, t) =− ne2

4πε0|x|
− eE0xcos(ωLt), (B.1)

where n is the charge state of the ion left behind. An estimate for the laser field necessary for

ionization can be obtained by calculating the field strength needed to suppress the Coulomb barrier

until its peak is the same as the binding energy of the atom or ion [28].

The peak field occurs when cos(ωLt) =±1. The location of the top of the barrier may be found

from
dV
dx

∣∣∣∣
x>0

=
ne2

4πε0x2
peak
− eE0 = 0⇒ xpeak =

√
ne

4πε0E0
. (B.2)

This location can then be substituted into Eq. (B.1) to determine the value of the potential at the

peak which gives

V (xpeak) =−

√
ne3E0

πε0
. (B.3)

Setting this value equal to the binding energy, we can determine the electric field necessary for
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ionization to occur and subsequently the required intensity:

Φ =−

√
ne3E0

πε0
⇒ E0 =

πε0

ne3 Φ
2⇒ IΦ =

1
2

ε0cE2
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π2cε3
0

2e6
Φ4

n2 . (B.4)

The ionization potential for the first and second electrons in helium are 24 and 54.4 eV, respectively.

Using the formula given in Eq. (B.4), the ionization intensities are thus 1.3×1015 and 8.7×1015

W/cm2, respectively.

Next, we compute the volume enclosed by an intensity threshold IΦ within a laser focus. The

intensity distribution in the laser focus is given by [32]

I =
I0

1+ z2/z2
0
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[
− 2ρ2
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0)

]
. (B.5)

We are interested in the volume wherein the intensity exceeds the ionization intensity Eq. (B.4).

The differential volume element is defined as dV = πρ2dz, so setting the intensity in Eq. (B.5)

equal to the threshold intensity in Eq. (B.4), we can invert the equation and define
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Integrating over z, we then obtain an expression for the volume as a function of intensity given by
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This expression gives the volume inside the laser focus wherein the intensity exceeds the ionization

threshold. This is important for determining the number of helium atoms that become ionized in

our experiment. To estimate this value, I use some reasonable experimental parameters where

w0 = 6 λL, I0 = 2×1018W/cm3, and the pressure is 10−5 Torr. With these values, approximately 9

helium atoms will be found in the region of highest intensity where I > 1.5×1018 W/cm2, whereas

approximately 1×106 atoms are found within the region where I > 1.3×1015 W/cm2. Figure B.1

shows the regions within such a focus where first and second ionization of helium occurs, as well

as the comparatively small region where I > 1.5×1018 W/cm2.
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Figure B.1 A cross section of the laser focus (side profile) showing the regions where first
and second ionization of helium occurs, as well as the comparatively small high intensity
region where I > 1.5× 1018 W/cm2. The image in a) shows an overview of the entire
focus while the image in b) is an expanded view of the central part of the focus to show
the much smaller high intensity region. The laser parameters are I0 = 2× 1018 W/cm2,
w0 = 6 λL, λL = 800 nm, and τL = 35 fs FWHM.



Appendix C

Comparison of Emission from a Single

Atom and a Collection of Atoms

It is illustrative to demonstrate some important results comparing emission from a single atom to

that of an ensemble of atoms. To begin, the distinction between continuous media and an ensemble

of randomly distributed discrete emitters is made, the latter being similar to the gas target in the

electron radiation experiment. We contrast a fluid-like electric current model with a Gaussian

spatial distribution to a similar distribution of discrete dipole emitters.

C.1 Emission from a Continuous Distribution

Consider a classical current distribution describing a continuous medium that oscillates with the

form [19]:

J
(
r′, t
)
= ẑJ0e

−
(

x′2
x2
0
+ y′2

y2
0
+ z′2

z2
0

)
sin
(
kx′−ωt

)
. (C.1)
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z!

x!

z!

x!

(a)!

(b)!

Figure C.1 (a) x-z slice of a current distribution defined by Eq. (C.1), at a given instant
in time. The direction of the current alternates with each segment (color coded) and is
polarized in the z-direction. The internal waves propagate in the x-direction at speed c
while the overall Gaussian distribution remains centered on the origin. (b) Randomly
positioned dipoles whose strengths and phases are similar to the pattern in (a). Each
dipole is represented by a line proportional to its instantaneous strength.
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This current distribution is depicted in Fig. C.1(a). Such a distribution might be analogous to a

polarizeable medium stimulated by an electric field propagating in the x-direction, such as a laser

field, polarized in the z-direction with frequency ω = ck. Such a Gaussian profile roughly approx-

imates the region within a laser focus where atoms might respond nonlinearly to the intensity.

The electric field in the far-field limit would then be given by [19]

E(r, t) =
1

4πε0c2

∫ tr d3r′

rret

[(
J̇
(
r′, tr

)
· r̂ret

)
r̂ret− J̇(r, tr)

]
(C.2)

with rret ≡ r− r′ and tr ≡ t− rret/c [19]. In the far-field limit, we may also use the simplifications

r̂ret ≡ rret/rret ∼= r̂ and rret ∼= r− r′ · r̂, with rret ∼= r in the denominator. With Eq. (1.1) substituted

into Eq. (C.2) the result becomes
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This Gaussian integration can be performed analytically, then time-averaged to obtain the time-

averaged Poynting vector directed along r̂ given by

I ≡ 〈S〉t = ε0c
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with θ being the angle r̂ makes with the z axis. The far-field emission pattern for three different

distribution sizes is shown in Fig. C.2. For small distributions, such as when kx0 � 1,ky0 � 1,

the emission is fairly uniform throughout the x− y-plane and resembles the pattern of a single

dipole emitter. However, as the size of the current distribution grows, interference from different

parts causes radiation emitted in directions perpendicular to the propagating electric field to be

suppressed. In the forward, or propagation direction, the irradiance remains a constant factor

proportional to (x0y0z0J0)
2. Such constructive interference in the direction of propagation is the

well known phenomenon of phase matching.

As indicated in Fig. C.2, as the distribution grows in size, emission in directions other than x̂

falls dramatically. This is a well known characteristic of continuous distributions as well as ordered
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Figure C.2 Far-field average Poynting flux from a Gaussian current distribution accord-
ing to Eq. (C.4) with distribution sizes (a) r0 = 0, (b) r0 = λ/4, (c) r0 = λ , with

r0 =
√

x2
0 + y2

0 + z2
0 and x0 = y0 = z0. (d) shows the exponential factor in Eq. (C.4) for the

forward (dashed) and perpendicular (solid) emission directions.
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arrays of discrete emitters, with cancellation into poorly phase-matched directions becoming sig-

nificant as the distribution becomes only a few wavelengths across. Next, this analysis is extended

to a collection of randomly distributed dipoles.

C.2 Emission From an Ensemble of Dipoles

To begin the analysis, the expression for a single dipole oriented along ẑ, positioned at rn, oscillat-

ing with frequency ω = ck is given by

pn = ẑp0n cos(−ωt +ϕn) . (C.5)

where p0n and ϕn represent the amplitude and phase, respectively. Such a dipole could represent a

particular oscillating frequency component of an atom located at rn, a particular harmonic of the

driving laser field, for example.

In the far field, the electric field such a dipole radiates may be written as

En (r, t)∼=−θ̂ sinθ
k2

4πε0r
p0n cos(krret−ωt +ϕn) (C.6)

with rret ≡ r− rn and rret ∼= r− rn · r̂ [33]. For comparison with the Gaussian current distribution

used previously, the strength of each individual dipole is chosen to be p0n = p0e−(x
2
n/x2

0+y2
n/y2

0+z2
n/z2

0),

and the phase to be ϕn = kxn. Next, the electric fields are summed for collection of dipoles dis-

tributed randomly throughout space, analogous to a collection of atoms in a gas backfilled into a

vacuum chamber wherein a laser is focused, for example.

The time-averaged Poynting flux from such a distribution of dipoles can be written as
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The portion of this expression in with the absolute-value squared is called the "structure fac-

tor" [33], and generally may not have an analytical expression, so it must be computed numer-

ically. Note, however, that this expression agrees with Eq. (C.4) for directions that are well
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phase-matched. In particular, if the observation point is r = xx̂, the complex exponential in Eq.

(C.7) collapses to unity, so the expectation of the structure factor can be written as
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where nV is the density of dipoles. In Eq. (C.4), J0/ω also has units of dipoles per unit volume, and

serves the role p0nV does in this expression. Thus, in the limit where there is a large number of par-

ticipating dipoles, and in the direction of good phase-matching, Eqs. (C.4) and (C.7) provide iden-

tical results. For convenience in the subsequent analysis, an effective dipole amplitude is defined

as pe f f ≡ p0/23/2 and an effective number of participating dipoles as Ne f f ≡ nV (2π)3/2x0y0z0.

Now, in contrast with the coherent result derived above, in poorly phase matched directions

(i.e. when kx0(1− x/r) & π , ky0y/r & π , or kz0z/r & π), the randomized locations (xn,yn,zn)

causes the expectation of the structure factor to reduce to the well established incoherent result
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dxndyndzn = p2

effNeff (C.9)

when the number of dipoles grows sufficiently large. In this case, the emission is reduced by a

factor of Ne f f . These results, depicted in Fig. C.3 for a randomly distributed collection of coherent

dipoles, agrees with the Gaussian fluid model in directions where phase-matching exceeds 1/Ne f f

times the peak value. Inclusion of the Guoy shift or other phase mismatches would only impact

emission in phase-matched directions.

Now, if ϕn were randomly assigned, then Eq. (C.9) would apply to any observation direction,

eliminating any phase-matching, as shown in Fig. C.3. The results in Fig. C.3 were generated

numerically using Eq. (C.7). Notice that in poorly phase-matched directions, emission strength

is the same regardless of whether the dipoles are emitting coherently or incoherently. In other

words, the randomness of the dipole locations, so long as the distribution size exceeds wavelength,

produces the same result as if the emission phase were inherently random.
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Figure C.3 Emission as a function of angle φ = tan−1( y
x) with x0, y0, z0 = λ for a continu-

ous distribution according to Eq. (C.4) (line), a distribution of randomly located coherent
dipoles according to Eq. (C.7) (filled circles), and a similar distribution dipoles that emit
with a randomly selected phase ±π (open circles). Neff was chosen to be 106, and each
point represents the average of 1000 trials involving randomly selected full ensembles.
The inset shows the intensity for the case of Neff = 1 plotted on a linear scale (averages of
50,000 trials).

C.3 Conclusions

In the previous examples of a Gaussian distribution and a collection of dipole emitters, there are

a few important observations to make. First, the volume being excited need only exceed one

wavelength to obtain characteristically incoherent emission into poorly phase-matched directions.

Second, that this property remains true even when there is effectively only a single emitter within

the focal volume. These properties are particularly important for interpreting the results in the

electron-scattering experiment, where the densities of atoms should be fairly low.
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