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ABSTRACT 

Improvements to the Two-Point In Situ Method for Measurement of the 
Room Constant and Sound Power in  

Semi-Reverberant Rooms 

Zachary R. Jensen 
Department of Physics and Astronomy, BYU 

Master of Science 

The two-point in situ method is a technique for measuring the room constant of a semi-
reverberant room and the sound power of a source in that room simultaneously using two 
measurement positions.  Using a reference directivity source, where the directivity factor along 
any given axis of the source has been measured, one is able to use the Hopkins-Stryker equation 
to measure both the room constant and the sound power level of another source rather simply.  
Using both numerical and experimental data, it was found that by using generalized energy 
density (GED) as a measurement quantity, the results were more accurate than those using 
squared pressure.  The results also improved when one measurement position was near the 
source and the other measurement position was far from the source.  This resulted in strong 
contributions of both the direct and reverberant fields in each of the measurement positions.  
Another improvement to the two-point method was the use of a local, spatial average around the 
measurement position.  The assumptions in the Hopkins-Stryker equation rely on this average 
and it was found that a small local spatial average improved the measurements.  However, this 
improvement was greater for squared pressure than for GED.  Several source sound power levels 
and room constants were measured to show that these measurements are improved by using the 
suggested techniques.  

Keywords: sound power, room constant, generalized energy density, semi-reverberant enclosure 
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Chapter 1 

Introduction 

Anyone who has enjoyed a musical performance or given an oral presentation has been 

affected by the absorption of sound in the room.  In addition, the sound power of a source is a 

metric often used in quantifying global sound radiation, developing regulations for machinery, 

and predicting the effects of noise.  Both the room constant (which quantifies sound absorption 

in a room) and the sound power are often used in acoustical calculations and measurements.  

This thesis describes a refined method of measuring both the room constants of semi-reverberant 

rooms and the sound power of sources in a practical, efficient, and accurate way.  It also 

introduces clarifications and improvements to previous approaches to the problem.  The method 

may allow professionals to more easily meet the requirements of complex standards, which 

currently require ideal rooms such as anechoic and reverberation chambers.   

1.1 Previous Work 

The steady-state sound field in a semi-reverberant room can be described by the energy 

balance equation.1 It can be broken into two components: the direct field and the reverberant 
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field.  The direct field is dominant near the sound source and is typically described by spherical 

spreading.  The reverberant field is that reflected from surfaces in the room.  The time and 

spatially averaged energy density about a point (𝑟𝑟,𝜃𝜃0,𝜙𝜙0) = (𝑥𝑥,𝑦𝑦, 𝑧𝑧) in a room is the summation 

of the direct and reverberant energy density at that point.  The governing equation will be 

referred to as the Hopkins-Stryker equation2 and is given by  

 〈𝑤𝑤𝑇𝑇(𝑟𝑟,𝜃𝜃0,𝜙𝜙0)〉𝑡𝑡,𝑠𝑠 =
〈Π〉𝑡𝑡
𝑐𝑐

�
𝛾𝛾(𝜃𝜃0,𝜙𝜙0)

4𝜋𝜋𝑟𝑟2
+

4
𝑅𝑅
�, (1.1) 

where 〈𝑤𝑤𝑇𝑇〉𝑡𝑡,𝑠𝑠 is the time and local spatially averaged total energy density (TED), 〈Π〉𝑡𝑡 is the 

time-averaged source sound power, 𝛾𝛾 is the far-field directivity factor of the source at angles 

(𝜃𝜃0,𝜙𝜙0), 𝑟𝑟 is the distance from the acoustic center of the source, 𝑐𝑐 is the speed of sound, and 𝑅𝑅 is 

the room constant.  Here 𝜃𝜃0 represents the polar angle defined by 𝜃𝜃0 = arccos �𝑧𝑧
𝑟𝑟
� and 𝜙𝜙0 

represents the azimuthal angle defined by 𝜙𝜙0 = arctan �𝑦𝑦
𝑥𝑥
�.  The TED is the sum of the potential 

energy density (PED) and kinetic energy density (KED).  The first term in the square brackets in 

Eq. (1.1) is proportional to the direct energy density and the second term is proportional to the 

reverberant energy density.  This equation is the basis for the two-point method that will be 

described in this thesis.   

There are several ways of measuring either the room constant or the sound power of a source 

utilizing the principles of direct and reverberant fields represented by the Hopkins-Stryker 

equation.3  Standards such as ISO 3741 create guidelines for a sound power measurement to 

assure that the sound field is predominantly reverberant, with negligible direct sound 

contribution.4 The sound power of a source may then be measured using only the principles of 

diffuse or nearly diffuse fields and neglecting the direct field. ISO 3741 requires a nearly ideal 

reverberation chamber and uses at least six randomly placed microphones (within constraints) 
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rather than local spatial averaging.  The surface area of the room and reverberation times must 

also be known to solve for the sound power.   Other standards such as ISO 3745 are used in a 

free-field environment such as an anechoic chamber where the reverberant field energy is 

negligible, leaving only the direct field for the measurement of sound power.5 

Most practical rooms are neither anechoic nor reverberant enough to neglect the reverberant 

or direct energy.  For these semi-reverberant fields, other methods must be used to measure the 

room constant and the sound power of the source.  These methods rely fundamentally on the 

Hopkins-Stryker equation with its relationship to the source sound power, directivity factor, and 

room constant. 

The room constant can be estimated directly from the surface area of the boundaries and their 

average absorption coefficient.6 For a majority of rooms, both values can be difficult if not 

impossible to determine accurately.  A classroom, for example, may have several desks, 

bookshelves, and other fixtures that affect surface area and sound absorption of the room.  The 

difficulty of calculating the correct surface area and absorption for a room inherently makes this 

method inaccurate and impractical to implement.  There is a possibility of measuring the 

absorption in a room using the measured reverberation time. However, this method is similarly 

limited by the necessity of calculating the correct surface area and volume of a room.  It is also 

impractical in rooms where many averages are required or a quick measurement is essential. 

Other methods have been developed to measure or estimate the in situ room constant 

from measurements in the room.  The walk away (WA) method, as described by Moreland, 

involves taking several pressure measurements near the source and several at increasing 

distances from the source, all along the same axis.7  The direct field is then estimated from the 

measurements near the source and the reverberant field is estimated from the measurements 
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farther from the source.  The room constant can be calculated from the difference between these 

two estimates.  Ianniello found the WA method to be similar in accuracy to calculating the room 

constant using absorption values measured from reverberation time.8 However, for accurate 

results, several measurement points (many more than two) and averages were necessary, making 

this method cumbersome in practice. 

The reference sound power (RSP) method described by Wells involves measuring the sound 

pressure level (SPL) at specified distances in a free-field environment and then moving the 

source to the room under test and measuring the SPL at the same specified distances.9  Again, the 

difference in SPL is used to calculate the room constant.  It may be difficult to find a suitable 

free-field environment for this measurement.  It also assumes that the sound power of the source 

does not change with a change in environment (and the source position in the room), which may 

not be accurate.10 

The two-surface method uses the Hopkins-Stryker equation to measure sound power in 

semi-reverberant rooms by averaging measurements of two hypothetical surfaces that enclose the 

source at different distances.10,11 The measurements can also be used to assess the room constant. 

However, Moreland showed that the resulting room constant is easily affected by measurement 

inaccuracies.7 An accurate evaluation may also require a high resolution of measurements on the 

surface for sufficient accuracy, possibly making the method impractical. 

The loss due to distance (LDD) method uses the difference in SPL at two distances from the 

source, 𝑟𝑟 and 2𝑟𝑟, to calculate the room constant.12 Findings are similar to the WA method in that 

many averages and measurement points must be used to determine accurate results.  In this 

method, the directivity factor of the source is only roughly assumed to be 1, 2, 4, or 8, depending 

upon its position relative to a reflecting surface. 



1.2 Motivation for Research  5 

 

All of the methods described above use squared pressure, which is proportional to PED to 

measure sound power or the room constant.  However, the original Hopkins-Stryker equation 

was developed using a local spatial average of the TED.  The benefit of using TED is that it is 

more spatially uniform than PED.13,23  More recently, Xu et al. have shown that generalized 

energy density (GED), a “weighted” total energy density, has an even lower spatial variance than 

TED.14  

Marquez explored a two-point in situ method, which utilizes the enhanced spatial uniformity 

of the GED to measure the room constant and sound power of a source.15 This is similar to the 

LDD method in that it utilizes two measurements along a line at increasing distance from the 

source. However, a reference directivity source is used, meaning that the directivity factor in a 

specified direction 𝛾𝛾𝑟𝑟𝑟𝑟𝑟𝑟(𝜃𝜃0,𝜙𝜙0) is known in advance and is not estimated.  The room constant 

and sound power can then be solved directly from two equations.  The method will be described 

further in Ch. 2. 

Using the two-point method, Marquez measured the sound power of a loudspeaker with 

reasonable accuracy in a few different rooms.  However, the room constant results were erratic 

when compared with expectations.  This discrepancy inspired the further research into the two-

point method explained in this thesis. 

1.2 Motivation for Research 

  Knowledge of the room constant is essential for the measurement of sound power using the 

two-point method.  Its value can also be used to calculate other room acoustics parameters such 

as average absorption coefficient, reverberation time, and critical distance.  These parameters are 

invaluable to those interested in noise control and sound system design.  An in situ measurement 
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of the room constant could potentially reduce the time and effort necessary for work in these 

areas and its validation.  

A practical, efficient, and accurate method of measuring the sound power level of a source 

in a semi-reverberant room would likewise be very useful to anyone involved in designing or 

evaluating products within noise constraints.  An engineer could simply (and with reasonable 

accuracy) measure the sound power of a source in any room.  This would greatly reduce time, 

effort, and cost when compared to measuring the sound power according to current ISO 

standards. 

A few shortfalls of previous methods will be addressed in this research.  One assumption 

used to derive the Hopkins-Stryker equation, Eq. (1.1), is that a local spatial average of the 

measurement is taken, which is described by Pierce as “an average over a volume with 

dimensions substantially larger than a representative acoustic wavelength but substantially 

smaller than those of the room as a whole.”1 Beranek also mentions moving a microphone 

“backward and forward” to obtain a sufficient spatial average.16 However, all of the methods 

described earlier utilize a point measurement, rather than a spatial average.  While this may be 

simpler, it does not meet the assumed spatial averaging requirements.  The local spatial average 

is explored in this research as a method of increasing the accuracy of the two-point method. 

From experimental results, Marquez observed that the best results from the two-point 

method were achieved when one measurement point was between the source and the critical 

distance (more direct field energy), and one measurement point was beyond the critical distance 

(more reverberant field energy).16 It is advantageous for the engineer to know what the best 

positions (relative to the source) are for the microphones in the two-point method and if certain 

points should be avoided.  This thesis explores this matter further. 
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The weighting factor for the GED used by Marquez was 𝛽𝛽 = 0.25, which produces the most 

spatially uniform value of GED in a diffuse field.13  However, for microphone positions closer to 

the source than the critical distance, the field is predominantly direct, not diffuse.  The question 

is then, what is the optimal value for 𝛽𝛽?  Is there another value besides 𝛽𝛽 = 0.25 that leads to a 

more accurate two-point measurement? 

Marquez tested the two-point method using three different sources that might be considered 

nearly ideal in that they were all loudspeakers with well-behaved broadband radiation.  As a 

natural continuation of this research, three less-ideal sources were tested in this work to see if the 

two-point method would still be effective.  These sources, (a blender, a handheld vacuum, and a 

belt sander) were considered less-ideal because the positions of their acoustic centers were less 

clear and their radiation patterns and spectra were considered to be less uniform.  

1.3 Objectives 

The primary objective of the research was to develop careful guidelines for using the two-

point method to improve its results.  This was accomplished through the following steps: 

1. Exploring the benefits of local spatial averages for improved room constant and sound 

power measurements. 

2. Determining the optimal weighting factor for GED as a measurement quantity in the two-

point method. 

3. Determining the optimal measurement positions relative to the source when using the 

two-point method. 

4. Measuring the sound power of less-ideal sources using the two-point method. 
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The objective of this thesis is to present the results of the research through theoretical, 

numerical, and experimental details that demonstrate practical improvements to the two-point 

method for measurement of the room constant and sound power. 

1.4 Plan of Development 

The thesis will be organized as follows. First, Chapter 2 will outline and clarify the 

theoretical development of the two-point in situ method, as well as a near-field correction to the 

method.  Chapter 3 will describe several numerically modeled rooms used to explore the two-

point method and develop guidelines for measurements.   Chapter 4 describes the results of 

several experiments wherein the room constant and sound power are measured using the two-

point method.  Many other pertinent developments are presented in the appendices.



 

Chapter 2 

Theory 

2.1 The Hopkins-Stryker Equation 

The time-averaged TED at a point in space is the sum of PED and KED components: 

 〈𝑤𝑤𝑇𝑇〉𝑡𝑡 = 〈𝑤𝑤𝑃𝑃〉𝑡𝑡 + 〈𝑤𝑤𝐾𝐾〉𝑡𝑡. (2.1) 

The time-averaged PED is defined as 

 〈𝑤𝑤𝑃𝑃〉𝑡𝑡 =
〈𝑝𝑝2〉𝑡𝑡
2𝜌𝜌0𝑐𝑐2

, (2.2) 

where 〈𝑝𝑝2〉𝑡𝑡 is the time-averaged squared pressure and 𝜌𝜌0 is the density of the ambient air.  The 

KED is defined as 

 〈𝑤𝑤𝐾𝐾〉𝑡𝑡 =
𝜌𝜌0
2
〈|𝒖𝒖|2〉𝑡𝑡, (2.3) 

where |𝒖𝒖| is the vector magnitude of the particle velocity. 

Because Eq. (1.1) has been difficult to implement in the past due to the difficulties in 

measuring TED, certain assumptions have been made to simplify the equation.  By assuring the 

measurement is in the direct far field of the source (Beranek suggests at least 1/3 of a wavelength 
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from the source)16 and that the reverberant field is diffuse, one can assume that the time and 

locally spatially averaged PED 〈𝑤𝑤𝑃𝑃〉𝑡𝑡,𝑠𝑠 is equal to the time and local spatially averaged KED 

〈𝑤𝑤𝐾𝐾〉𝑡𝑡,𝑠𝑠.1 The TED can then be written as  

 〈𝑤𝑤𝑇𝑇〉𝑡𝑡,𝑠𝑠 = 2〈𝑤𝑤𝑃𝑃〉𝑡𝑡,𝑠𝑠 = 2〈𝑤𝑤𝐾𝐾〉𝑡𝑡,𝑠𝑠 =
〈𝑝𝑝2〉𝑡𝑡,𝑠𝑠

𝜌𝜌0𝑐𝑐2
 

(2.4) 

and Eq. (1.1) may be written in terms of squared pressure: 

 〈𝑝𝑝2〉𝑡𝑡,𝑠𝑠 = 〈Π〉𝑡𝑡𝜌𝜌0𝑐𝑐 �
𝛾𝛾(𝜃𝜃0,𝜙𝜙0)

4𝜋𝜋𝑟𝑟2
+

4
𝑅𝑅
�. (2.5) 

This equation illustrates the usefulness of the Hopkins-Stryker equation in that one might predict 

the average sound pressure at a position in a room by knowing the room constant, the source 

sound power, and its directivity factor.  Conversely, one may also measure the sound power of a 

source by knowing the directivity factor, the room constant, and by measuring the average sound 

pressure in a room. 

 When using GED rather than PED, the final equation is slightly different.  The GED is 

calculated as 

 〈𝑤𝑤𝐺𝐺,𝛽𝛽〉𝑡𝑡 = 𝛽𝛽〈𝑤𝑤𝑃𝑃〉𝑡𝑡 + (1 − 𝛽𝛽)〈𝑤𝑤𝐾𝐾〉𝑡𝑡 , (2.6) 

where 〈𝑤𝑤𝐺𝐺,𝛽𝛽〉𝑡𝑡 represents the time-averaged GED and 𝛽𝛽 is the weighting factor.  For a truly 

diffuse field, a weighting factor of 𝛽𝛽 = 0.25 is optimal for minimum spatial variance.14,15 The 

more familiar PED, KED, and TED follow from other 𝛽𝛽 values: 

 

 〈𝑤𝑤𝐺𝐺,1〉𝑡𝑡 = 〈𝑤𝑤𝑃𝑃〉𝑡𝑡;   𝛽𝛽 = 1 

〈𝑤𝑤𝐺𝐺,0〉𝑡𝑡 = 〈𝑤𝑤𝐾𝐾〉𝑡𝑡;   𝛽𝛽 = 0 

〈𝑤𝑤𝐺𝐺,1/2 〉𝑡𝑡 =
〈𝑤𝑤𝑇𝑇〉𝑡𝑡

2
;  𝛽𝛽 =

1
2

 

(2.7a) 

(2.7b) 

(2.7c) 
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Using the simplifying assumption that 〈𝑤𝑤𝑃𝑃〉𝑡𝑡,𝑠𝑠 = 〈𝑤𝑤𝐾𝐾〉𝑡𝑡,𝑠𝑠 as described earlier, Eq. (2.6) reduces to 

〈𝑤𝑤𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠 = 〈𝑤𝑤𝑃𝑃〉𝑡𝑡,𝑠𝑠 = 〈𝑤𝑤𝐾𝐾〉𝑡𝑡,𝑠𝑠 = 〈𝑤𝑤𝑇𝑇〉𝑡𝑡,𝑠𝑠/2 for any 𝛽𝛽.  Equation (1.1) may then be expressed in 

terms of GED as  

 〈𝑤𝑤𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠 =
〈Π〉𝑡𝑡
2𝑐𝑐

�
𝛾𝛾(𝜃𝜃0,𝜙𝜙0)

4𝜋𝜋𝑟𝑟2
+

4
𝑅𝑅
�. (2.8) 

Equation (2.8) is the Hopkins-Stryker equation for GED, with the direct and reverberant 

energy densities 

 〈𝑤𝑤𝐺𝐺,𝛽𝛽,𝐷𝐷〉𝑡𝑡,𝑠𝑠 =
〈Π〉𝑡𝑡
2𝑐𝑐

𝛾𝛾(𝜃𝜃0,𝜙𝜙0)
4𝜋𝜋𝑟𝑟2

 (2.9) 

and 

 〈𝑤𝑤𝐺𝐺,𝛽𝛽,𝑅𝑅〉𝑡𝑡,𝑠𝑠 =
〈Π〉𝑡𝑡
2𝑐𝑐

4
𝑅𝑅

. (2.10) 

The critical distance is defined as the distance from the source where the direct [Eq. (2.9)] and 

reverberant [Eq. (2.10)] field contributions are equal, i.e.,  

 𝑟𝑟𝑐𝑐 = �𝛾𝛾(𝜃𝜃0,𝜙𝜙0)𝑅𝑅
16𝜋𝜋

. (2.11) 

The general concepts of the Hopkins-Stryker equation and its direct and reverberant-field 

energy density are illustrated graphically in Fig. 2.1.  In this example, the room has a volume of 

210 m3, a surface area of 214 m2, a room constant of 112 m2, and a monopole radiating with a 

sound power of 1 mW.  The composite and direct energy density levels are shown relative to the 

reverberant level as 

 𝐿𝐿 = 10 log�〈𝑤𝑤𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠/〈𝑤𝑤𝐺𝐺,𝛽𝛽,𝑅𝑅〉𝑡𝑡,𝑠𝑠� (2.12) 

and 

 𝐿𝐿𝐷𝐷 = 10 log�〈𝑤𝑤𝐺𝐺,𝛽𝛽,𝐷𝐷〉𝑡𝑡,𝑠𝑠/〈𝑤𝑤𝐺𝐺,𝛽𝛽,𝑅𝑅〉𝑡𝑡,𝑠𝑠�, (2.13) 
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respectively.  The reverberant field energy density level is also plotted (𝐿𝐿𝑅𝑅), but since it is 

calculated relative to itself, the value is consistently zero. 

The Hopkins-Stryker equation inherently assumes direct far-field and diffuse reverberant-

field conditions.  The diffuse reverberant field requires that its local spatially averaged energy 

density be the same at any point.  In other words, as the distance from the source increases, the 

composite locally spatially averaged energy density converges to a constant value, regardless of 

position in the room.  These assumptions can be compromised in actual rooms due to 

nonuniformly distributed absorption, scattering surfaces, and irregular room geometries.   

Room shape and size are well-known factors in the diffuse-field assumption.  For 

example, in a hallway, the directions of plane waves converging on a point are not randomly 

distributed, but are biased in the direction leading down the hallway (away from the source).  

Rooms with high absorption, especially nonuniform absorption, also detract from the diffuse-

𝑟𝑟/𝑟𝑟𝑐𝑐 

Fig 2.1.  The composite-field level 𝐿𝐿 of a monopole by the Hopkins-Stryker equation, the direct-field level 𝐿𝐿𝐷𝐷, 
and the reverberant-field level 𝐿𝐿𝑅𝑅.  All levels are relative to 〈𝑤𝑤𝐺𝐺,𝛽𝛽,𝑅𝑅〉𝑡𝑡,𝑠𝑠, which is assumed to be constant over 
distance.  In this example, the room volume is 210 m3, the surface area is 214 m2, and the room constant is 112 
m2.   
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field criteria.  On the other hand, the majority of rooms discussed in this thesis are “Sabine-like,” 

in that they have reasonable aspect ratios where one dimension is not much larger than another.7 

While this constraint does limit application to some rooms, the sound field in many typical 

rooms may be approximated by the Hopkins-Stryker equation, especially for the types mentioned 

in this thesis, such as offices, labs, storage rooms, and classrooms.   

In certain rooms, a reduction in the reverberant field may be observed as one moves away 

from the source.36  This decay has been noticed particularly in large rooms, rooms with high 

absorption, or rooms with irregular aspect ratios as mentioned previously.36-39  Several different 

corrections for this nonuniformity have been developed.  Some methods require a measurement 

of the reverberant-field decay, while others are analytical or empirical.  Hodgson provides a 

summary of some of these methods for large rooms.39  While it is beyond the scope of this thesis, 

further research into which correction works best with the two-point method would be beneficial. 

2.2 Near-Field Correction 

The Hopkins-Stryker equation relies on the assumption that all measurements are made in the 

direct far field where wavefronts are locally planar and the PED and KED are equal.  However, 

the two energy densities diverge in the near field, even for a monopole source.  The KED 

becomes much larger than the PED and thus the TED becomes larger than twice the PED. The 

PED of a monopole is given by Pierce as1  

 〈𝑤𝑤𝑃𝑃〉𝑡𝑡 =
〈𝐼𝐼𝑟𝑟〉𝑡𝑡
2𝑐𝑐

, (2.14) 

where 〈𝐼𝐼𝑟𝑟〉𝑡𝑡 is the time-averaged radial intensity.  The KED is 

 〈𝑤𝑤𝐾𝐾〉𝑡𝑡 =
〈𝐼𝐼𝑟𝑟〉𝑡𝑡
2𝑐𝑐

�1 +
1

(𝑘𝑘𝑟𝑟)2�. 
(2.15) 

The TED is then the sum of Eq. (2.14) and (2.15), 
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 〈𝑤𝑤𝑇𝑇〉𝑡𝑡 =
〈𝐼𝐼𝑟𝑟〉𝑡𝑡
2𝑐𝑐

�2 +
1

(𝑘𝑘𝑟𝑟)2�. 
(2.16) 

For a monopole, the Hopkins-Stryker equation can be readily corrected for the near-field effects.  

The time-averaged intensity is written in terms of its sound power and directivity factor 

𝛾𝛾(𝜃𝜃0,𝜙𝜙0) = 1 as1 

 〈𝐼𝐼𝑟𝑟〉𝑡𝑡 = 〈Π〉𝑡𝑡 �
1

4π𝑟𝑟2
� . (2.17) 

When substituted into Eq. (2.16), this resembles the direct-field term of the Hopkins-Stryker 

equation for an omnidirectional source, but with an extra correction term: 

 〈𝑤𝑤𝑇𝑇〉𝑡𝑡 = 〈Π〉𝑡𝑡 �
1

4π𝑟𝑟2𝑐𝑐
� �1 +

1
2(𝑘𝑘𝑟𝑟)2�. (2.18) 

In Fig. 2.2, the associated direct-field level relative to the reverberant energy density is overlaid 

with the levels previously shown in Fig. 2.1.  In this case, 𝛽𝛽 = 0.5 for GED.  

In the direct far-field region (beyond about 10% of the critical distance in this example), 

the corrected and uncorrected levels converge, and the Hopkins-Stryker equation gives the 

correct composite field value.  However, in the near field, the Hopkins-Stryker equation should 

follow the direct TED field but does not. 

For a monopole, the Hopkins-Stryker equation can then be modified to include a near-

field correction using Eqs. (2.6)-(2.14) in terms of GED, giving  

 〈𝑤𝑤𝐺𝐺,𝛽𝛽,𝑁𝑁〉𝑡𝑡,𝑠𝑠 =
〈Π〉𝑡𝑡
2𝑐𝑐

�
1

4π𝑟𝑟2
�𝛽𝛽 + (1 − 𝛽𝛽) �1 +

1
(𝑘𝑘𝑟𝑟)2�� +

4
𝑅𝑅
�. (2.19) 
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A similar, corrected, composite level relative to the reverberant-field level is then  

 𝐿𝐿𝑁𝑁 = 10 log�〈𝑤𝑤𝐺𝐺,𝛽𝛽,𝑁𝑁〉𝑡𝑡,𝑠𝑠/〈𝑤𝑤𝐺𝐺,𝛽𝛽,𝑅𝑅〉𝑡𝑡,𝑠𝑠�. (2.20) 

As shown in Fig. 2.3, this corrected Hopkins-Stryker equation successfully converges to the 

direct-field GED for a given value of 𝛽𝛽 = 1/2 when 𝑟𝑟 < 𝑟𝑟𝑐𝑐.  While 𝛽𝛽 = 1/2 was used as an 

example, it should be noted that Eq. (2.19) will work for any value of 𝛽𝛽. The benefit of GED is 

that the value of 𝛽𝛽 may be varied depending upon the application.  The optimal value of 𝛽𝛽 for the 

Hopkins-Stryker equation will be discussed more in Ch. 3, but Eq. (2.19) clearly shows that its 

near-field term should be adjusted for the value chosen. 

 When using the two-point method, the positions of the two measurements relative to the 

source become important, as will also be discussed in Ch. 3.  It will be shown that the optimal 

placement is to have one measurement in the predominantly direct field of the source and the 

other in the predominantly reverberant field, as suggested by Marquez.15  Under certain 

Fig 2.2.  The near-field-corrected direct field level 𝐿𝐿𝐷𝐷,𝑁𝑁 of a monopole overlaid with the levels previously shown 
in Fig. 2.1  All levels are relative to 〈𝑤𝑤G,β,R〉𝑡𝑡,𝑠𝑠, which is assumed to be constant over distance.  In this example, 
the room volume is 210 m3, the surface area is 214 m2, and the room constant is 112 m2.   
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measurement conditions (especially at low frequencies), the direct far field may be too close to 

the critical distance or even beyond it, making a measurement in the direct near field necessary 

to avoid two measurements in the predominantly reverberant field.  Equation (2.19) is meant to 

address the effects of a predominantly direct near-field measurement.  

 Although most actual sources do not radiate as monopoles, one might use Eq. (2.19) as a 

starting point for measurements near a source that are not in the direct far field.  In principle, the 

directivity factor for an actual source would be substituted into Eq. (2.19) to make it a more 

useful equation.  Furthermore, a directivity factor 𝛾𝛾(𝑘𝑘, 𝑟𝑟,𝜃𝜃0,𝜙𝜙0) that is a function of frequency, 

distance, and angle would be known.  The direct near-field PED and KED for practical sources 

are inherently functions of frequency, distance, angle, and 𝛽𝛽.  The difference between PED and 

KED would be known to develop a near-field correction 𝐾𝐾(𝑘𝑘, 𝑟𝑟,𝛽𝛽).  This would allow one to 

write the modified Hopkins-Stryker equation in the form   

Fig. 2.3.  The PED and TED are shown for the same conditions as described for Fig. 2.1.  The results of the 
corrected Hopkins-Stryker equation follow the TED in the near-field as expected. 
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 〈𝑤𝑤𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠 =
〈Π〉𝑡𝑡
2𝑐𝑐

�𝛾𝛾(𝑘𝑘, 𝑟𝑟,𝜃𝜃0,𝜙𝜙0)𝐾𝐾(𝑘𝑘, 𝑟𝑟,𝛽𝛽) +
4
𝑅𝑅
�. (2.21) 

Because the exact natures of 𝛾𝛾(𝑟𝑟,𝜃𝜃0,𝜙𝜙0) and 𝐾𝐾(𝑘𝑘, 𝑟𝑟,𝛽𝛽) are source dependent, they are not well 

defined.  Long gives an example for measurements near a very large source (such as a wall) 

where 𝑟𝑟 in Eq. (2.8) is replaced with 𝑟𝑟 + �𝑆𝑆𝛾𝛾/4𝜋𝜋 .36  One could imagine another near-field 

correction for a cylindrical or a line source which is proportional to 1/𝑟𝑟2 near the source and 

1/𝑟𝑟 in the far-field.  These near-field corrections could be derived analytically for other idealized 

source configurations, but such work is beyond the scope of this thesis.  

 For the developments presented herein, the near-field correction was approximated for 

actual sources by simply including the far-field directivity factor in Eq. (2.19): 

 〈𝑤𝑤𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠 =
〈Π〉𝑡𝑡
2𝑐𝑐

�
γ(θ0,𝜙𝜙0)
4π𝑟𝑟2

�𝛽𝛽 + (1 − 𝛽𝛽) �1 +
1

(𝑘𝑘𝑟𝑟)2�� +
4
𝑅𝑅
�. (2.22) 

Although this approximation introduces errors for the reasons mentioned, they are typically 

limited to low frequencies and cases for which measurements are taken very near to a source. 

2.3 The Two-Point Method 

The two-point method uses a reference directivity source rather than a reference power 

source, meaning that the directivity factor 𝛾𝛾𝑟𝑟𝑟𝑟𝑟𝑟(𝜃𝜃0,𝜙𝜙0) is known and is not estimated.  The far-

field directivity factor will be used in this derivation because it can be readily measured.  Should 

any dependence upon radial distance be known, it could be simply incorporated.  The GED 

weighting factor 𝛽𝛽 will also be kept general for this derivation.  Optimal values of 𝛽𝛽 will be 

covered further in Ch. 3.  
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Since the directivity factor of the source is known in advance and two measurement points 

are used, the room constant and sound power can be solved directly.  With two measurement 

points at positions (𝑟𝑟1,𝜃𝜃0,𝜙𝜙0) and (𝑟𝑟2,𝜃𝜃0,𝜙𝜙0) from the source, Eq. (2.22) yields 

 〈𝑤𝑤1,𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠 =
〈Π〉𝑡𝑡,𝑟𝑟𝑟𝑟𝑟𝑟

2𝑐𝑐
�
𝛾𝛾𝑟𝑟𝑟𝑟𝑟𝑟(𝜃𝜃0,𝜙𝜙0)

4𝜋𝜋𝑟𝑟12
𝐾𝐾1,𝛽𝛽 +

4
𝑅𝑅
� (2.23a) 

and 

 〈𝑤𝑤2,𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠 =
〈Π〉𝑡𝑡,𝑟𝑟𝑟𝑟𝑟𝑟

2𝑐𝑐
�
𝛾𝛾𝑟𝑟𝑟𝑟𝑟𝑟(𝜃𝜃0,𝜙𝜙0)

4𝜋𝜋𝑟𝑟22
𝐾𝐾2,𝛽𝛽 +

4
𝑅𝑅
�, (2.23b) 

where  

 𝐾𝐾𝑖𝑖,𝛽𝛽 = 𝛽𝛽 + (1 − 𝛽𝛽) �1 +
1

(𝑘𝑘𝑟𝑟𝑖𝑖)2
� (2.24) 

is the near-field correction factor.  Again, the correction for a monopole is used in this 

derivation, but it could be replaced by a more suitable near-field correction for a given source.  

The room constant is then solved as 

 𝑅𝑅 =
16𝜋𝜋 �

〈𝑤𝑤2,𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠
〈𝑤𝑤1,𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠

− 1�

𝛾𝛾𝑟𝑟𝑟𝑟𝑟𝑟(𝜃𝜃0,𝜙𝜙0) �
𝐾𝐾2,𝛽𝛽
𝑟𝑟22

−
𝐾𝐾1,𝛽𝛽
𝑟𝑟12

〈𝑤𝑤2,𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠
〈𝑤𝑤1,𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠

�
. (2.25) 

The reference source is then replaced by the device under test (DUT) and two more 

measurements are taken: 

 〈𝑤𝑤3,𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠 =
〈Π〉𝑡𝑡,𝐷𝐷𝐷𝐷𝑇𝑇

2𝑐𝑐
�
𝛾𝛾𝐷𝐷𝐷𝐷𝑇𝑇(𝜃𝜃0′ ,𝜙𝜙0′ )

4𝜋𝜋𝑟𝑟32
𝐾𝐾3,𝛽𝛽 +

4
𝑅𝑅
�, (2.26a) 

and 

 〈𝑤𝑤4,𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠 =
〈Π〉𝑡𝑡,𝐷𝐷𝐷𝐷𝑇𝑇

2𝑐𝑐
�
𝛾𝛾𝐷𝐷𝐷𝐷𝑇𝑇(𝜃𝜃0′ ,𝜙𝜙0′ )

4𝜋𝜋𝑟𝑟42
𝐾𝐾4,𝛽𝛽 +

4
𝑅𝑅
�. (2.26b) 
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These measurements could be taken at a different angle from the reference source measurements, 

as indicated by (𝜃𝜃0′ ,𝜙𝜙0′ ).  The directivity factor of the DUT along the axis is thus measured in 

situ and solved as  

 𝛾𝛾𝐷𝐷𝐷𝐷𝑇𝑇(𝜃𝜃0′ ,𝜙𝜙0′ ) =
16𝜋𝜋 �

〈𝑤𝑤4,𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠
〈𝑤𝑤3,𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠

− 1�

𝑅𝑅 �
𝐾𝐾4,𝛽𝛽
𝑟𝑟42

−
𝐾𝐾3,𝛽𝛽
𝑟𝑟32

〈𝑤𝑤4,𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠
〈𝑤𝑤3,𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠

�
. (2.27) 

The sound power of the DUT can be subsequently solved from either Eq. (2.26a) as 

 〈Π𝐷𝐷𝐷𝐷𝑇𝑇〉𝑡𝑡 =
2〈𝑤𝑤3,𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠𝑐𝑐

�𝛾𝛾𝐷𝐷𝐷𝐷𝑇𝑇
(𝜃𝜃0′ ,𝜙𝜙0′)

4𝜋𝜋𝑟𝑟32
𝐾𝐾3,𝛽𝛽 + 4

𝑅𝑅�
. (2.28) 

Equation (2.26b) yields a similar result.  

2.4 Room Constant 

Throughout the literature, there are several proposed definitions for the room constant.1,2,16,18-21 

It was defined by Hopkins and Stryker as2 

 𝑅𝑅 =
𝑆𝑆𝛼𝛼�

1 − 𝛼𝛼�
  , (2.29) 

where 𝛼𝛼� represents the average absorption coefficient and 𝑆𝑆 is the total surface area of the room 

boundaries.  The average absorption coefficient may be calculated by summing the absorption 

coefficient, 𝛼𝛼𝑖𝑖, of each surface element multiplied by its surface area 𝑆𝑆𝑖𝑖 and dividing the sum by 

𝑆𝑆:6 

 𝛼𝛼� =
∑𝑆𝑆𝑖𝑖𝛼𝛼𝑖𝑖
𝑆𝑆

. (2.30) 

Beranek16 and others have alternatively defined the room constant as  

 𝑅𝑅 = 𝑆𝑆𝛼𝛼�, (2.31) 
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which is clearly an approximation for small values of 𝛼𝛼�. However, Pierce1 states that the 

approximation is generally used due to “the absence of any better model of comparable 

simplicity.”  Wells and Weiner refer to the room constant simply as a function of absorption,   

 𝑅𝑅 = 𝑓𝑓(𝛼𝛼�), (2.32) 

without explicitly defining it.19 They discussed a method similar to the two-point method 

wherein the room constant could be measured and the explicit formula was not necessary.  

Thompson and Cortana modified the room constant to account for local energy density 

anomalies in rooms with complex shapes, absorption, and scattering surfaces.20,21 One could also 

add air absorption when calculating the room constant by adding 4𝑚𝑚𝑚𝑚, where 𝑚𝑚 is the air 

absorption coefficient according to ISO 9613 and 𝑚𝑚 is the total room volume.6,17  

The benefit of the two-point method is that one can measure the room constant directly, 

without knowing the explicit formula, as was done by Wells and Weiner.  One does not need to 

be concerned with air absorption as long as the temperature and humidity do not vary 

significantly during the measurement process.  In Chs. 3 and 4, Eqs. (2.29)-(2.31) are used to 

compare to the measured room constant.  This is feasible because the rooms are generally 

“Sabine-like.” 

2.5 A Three-point Method 

 Ideally, it would be very useful if a three-point method could be developed to assess the 

in-situ sound power, directivity factor, and room constant.  This would alleviate the requirement 

for a reference directivity source.  Unfortunately, this is not feasible with the Hopkins-Stryker 

equation in Eq. (2.22).  The issue is that the sound power, directivity factor, and room constant 

terms are not independent variables.  With three equations (three different measurements along 

the same axis), the result is a nonlinear underdetermined system, meaning an infinite number of 
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solutions is possible for each quantity.  In other words, one can solve for the ratio between two of 

the three variables, but cannot solve all three simultaneously.  

 The acoustic center of a source could potentially be determined by using a three-point 

method and the near-field correction discussed in Sec. 2.2.  This is accomplished by making 

three measurements along one axis from an assumed acoustic center of the source and varying 

the distance that the measurement probe is moved.  For example, the first measurement is taken 

at a distance 𝑟𝑟 from the assumed acoustic center of the source.  Since the exact location of the 

acoustic center is unknown, the distance 𝑟𝑟 cannot be measured or known, but will be solved for.  

The second and third measurements are then taken at a distances of Δ𝑟𝑟 and 𝑑𝑑Δ𝑟𝑟 from the first 

measurement, along the same axis, where 𝑑𝑑 is any positive real number.  The equations for these 

three measurements follow from Eq. (2.22) as 

 〈𝑤𝑤1𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠 =
〈Π〉𝑡𝑡
2𝑐𝑐

�
γ(θ0,𝜙𝜙0)
4π𝑟𝑟2

�𝛽𝛽 + (1 − 𝛽𝛽) �1 +
1

(𝑘𝑘𝑟𝑟)2�� +
4
𝑅𝑅
� (2.33a) 

 〈𝑤𝑤2𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠 =
〈Π〉𝑡𝑡
2𝑐𝑐

�
γ(θ0,𝜙𝜙0)

4π(𝑟𝑟 + Δ𝑟𝑟)2
�𝛽𝛽 + (1 − 𝛽𝛽) �1 +

1
𝑘𝑘2(𝑟𝑟 + Δ𝑟𝑟)2

�� +
4
𝑅𝑅
� (2.33b) 

 〈𝑤𝑤3𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠 =
〈Π〉𝑡𝑡
2𝑐𝑐

�
γ(θ0,𝜙𝜙0)

4π(𝑟𝑟 + 𝑑𝑑Δ𝑟𝑟)2
�𝛽𝛽 + (1 − 𝛽𝛽) �1 +

1
𝑘𝑘2(𝑟𝑟 + 𝑑𝑑Δ𝑟𝑟)2

�� +
4
𝑅𝑅
�. (2.33c) 

The three unknowns (〈Π〉𝑡𝑡, 𝑟𝑟, and 𝑅𝑅) can be solved simultaneously, with a known 𝛾𝛾(𝜃𝜃0,𝜙𝜙0), Δ𝑟𝑟, 

and 𝑑𝑑.  The solution is quite complicated and involves a fourth order polynomial, but there is an 

analytical solution that allows the actual distance to the acoustic center from all three 

measurements to be solved for.  The caveat is that the axis for all three point measurements must 

actually extend through the acoustic center.  If this assumption is incorrect, the method will not 

accurately solve for 𝑟𝑟.  This three-point method of solving for the distance to the acoustic center 

will not be explored further in this thesis, but could be useful when measuring complex sources. 
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2.6 Conclusions 

The underlying assumptions of the Hopkins-Stryker equation require that measurements be 

taken in the direct far field of a source, where PED and KED are equal.  This may not be feasible 

for the two-point method in some rooms, when the need for one point inside the critical distance 

may require a measurement in the direct near-field of the source.  A near-field correction to the 

Hopkins-Stryker equation was developed for a monopole.  While it is imperfect for other sources 

due to near-field differences, the modification was used to enhance the two-point method, 

allowing one to solve for the room constant and the sound power of a source in terms of the GED 

weighting factor 𝛽𝛽.  Numerical and experimental results will be presented in Chs. 3 and 4 to 

demonstrate the improvements this enables.  A three-point method was outlined that could be 

used to solved for the distance to the acoustic center of a source.  Although it was not explored 

further, it may be useful in future research for complex or large sources.



 

Chapter 3 

Numerical Results 

3.1 Hybrid Modal Analysis 

Numerical simulations of sound fields in rooms were used to facilitate the exploration of an 

improved two-point method.  The first was based on the hybrid modified modal analysis model 

described by Xu and Sommerfeldt.22 Two aspects of this approach differ significantly from what 

might be termed classical modal analysis.  First, the impedance boundary condition used to solve 

for the eigenvalues and eigenfunctions is not assumed to be infinite.  Instead, the boundary 

condition is assumed to be the real part of the wall admittance.  While not an exact representation 

of the problem, it has several benefits. First and foremost, it allows more rooms with damping to 

be modeled than with classical modal analysis.  This point was considered extremely beneficial 

for modeling the semi-reverberant rooms of this study, many of which involved considerable 

damping.  In these cases, the eigenvalue problems were solved numerically.   

By using only the real part of the boundary admittance, the numerical root search for the 

eigenvalue is not in the complex domain, which makes it more computationally efficient.  The 
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second aspect which differs from classical modal analysis is that the free-field Green’s function 

of a point source is included as part of the solution.  In this case, the model converges much 

more quickly near the point source, where it would otherwise be very slow.  The full 

development of the method can be found in Appendix A.  One of the challenges of the approach 

is that it requires an admittance value for the boundaries rather than an absorption coefficient.  

Appendix B provides details on assigning impedance values for a given absorption coefficient 

and validation of the approach for an actual room.   

3.2 Design of Experiments  

3.2.1 Room Characteristics 

A numerical design of experiments (DOE) was developed to more fully explore and 

generalize the guidelines learned from the numerical models.  The sound fields of nine different 

rooms were modeled using either a single point source or multiple point sources. The pressure 

and particle velocity were calculated using the hybrid modified modal analysis (HMMA) method 

described in Appendix A.  The models were all based on actual rooms so the method might be 

usefully compared.  As described in Table 3.1, the nine rooms comprised several different 

combinations of room dimensions �𝐿𝐿𝑥𝑥, 𝐿𝐿𝑦𝑦, 𝐿𝐿𝑧𝑧� and average absorption coefficients 𝛼𝛼�.  The 

volume 𝑚𝑚, surface area 𝑆𝑆, source position (𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0), Schroeder frequency1 𝑓𝑓𝑠𝑠, and critical 

distance 𝑟𝑟𝑐𝑐 of each room are also shown in the table.  The absorption coefficients used in the 

models were frequency dependent, measured in 1/3 octave bands.  However, Table 3.1 shows the 

frequency-averaged absorption coefficients 𝛼𝛼� for simplicity.  The absorption coefficients were 

applied uniformly to every surface in each room model. 
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The first room is modeled after the variable acoustics chamber (VAC) at Brigham Young 

University (BYU), with its measured absorption, while the second room has the dimensions of 

the VAC but the average absorption coefficient of a classroom on campus.  The third room 

models the small reverberation chamber at BYU, while the fourth has the dimensions of the 

chamber but the average absorption coefficients of an industrial test cell for internal combustion 

engines.  The fifth, sixth and seventh rooms all have the dimensions of the large reverberation 

chamber at BYU with the average absorption coefficients of the chamber, a dance studio, and a 

small classroom, respectively.  The eighth room represents an industrial test cell with its 

measured absorption coefficients.  The ninth room represents the dance studio with its measured 

absorption coefficients.  The rooms increase in room number from the smallest to largest 

volumes. The room constant increases roughly the same way, although not exactly due to 

absorption coefficient variations.  The different room constants for each room are shown in Fig. 

3.1 as functions of frequency. 

The room constants are calculated from the spatially averaged absorption coefficient as 

shown in Eqs. (2.29) and (2.30).  For actual rooms, there is almost always significant uncertainty 

in the room constant due to limitations of calculating the average absorption coefficient.  This is 

caused by errors in reverberation time, room volume, and room surface area estimations.  

Table 3.1.  The characteristics of each of the rooms in the design of experiments. 
 

Room 𝑚𝑚 𝑆𝑆 𝛼𝛼� 𝑓𝑓𝑠𝑠 𝑟𝑟𝑐𝑐 (𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0) �𝐿𝐿𝑥𝑥 ,𝐿𝐿𝑦𝑦,𝐿𝐿𝑧𝑧� 
1 27 54 0.02 730 0.2 (0.92, 1.82, 1.08) (3.59,2.89,2.58) 
2 27 54 0.20 258 0.5 (0.92, 1.82, 1.08) (3.59,2.89,2.58) 
3 61 99 0.04 418 0.3 (1.75, 1.55, 1.00) (5.68,4.29,2.51) 
4 61 99 0.45 127 1.3 (1.75, 1.55, 1.00) (5.68,4.29,2.51) 
5 205 210 0.02 368 0.3 (1.55, 2.05, 1.50) (4.98,5.88,6.99) 
6 205 210 0.19 135 0.9 (1.55, 2.05, 1.50) (4.98,5.88,6.99) 
7 205 210 0.20 130 1.0 (1.55, 2.05, 1.50) (4.98,5.88,6.99) 
8 252 241 0.45 81 2.0 (2.40, 1.60, 1.50) (7.30,5.40,6.40) 
9 532 476 0.19 90 1.4 (1.90, 2.70, 1.00) (9.60,15.40,3.60) 
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However, with numerically modeled rooms, the absorption, volume, and surface area have all 

been well defined, and there are no obstructions or scattering objects that would complicate the 

room constant calculations.  This gives us the benefit of comparing the room constant estimated 

numerically using the two-point method and that defined by Hopkins and Stryker in Eq. (2.29).2   

As evident from Fig. 3.1(a), the room constants have a large spread due to the various 

sizes and absorption coefficients of the different rooms.  Fig. 3.1(b) shows a logarithmic version 

of the room constants given by  

 𝐿𝐿𝑅𝑅 = 10 log �
𝑅𝑅

1 m2�. (3.1) 

In the past, it has been noted that seemingly large errors in the room constant derived from the 

two-point method do not create similarly large errors in sound power levels.  This is partly due to 

the logarithmic nature of the sound power level.  The sound power level 𝐿𝐿Π from the Hopkins-

Fig. 3.1. The frequency-dependent room constants of the various rooms in the DOE.  Both (a) the linear 
room constant and (b) the logarithmic room constant 𝐿𝐿𝑅𝑅 are plotted.  See Table 3.1 for specific room 
details. 

(a) (b) 
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Stryker equation is composed of direct and reverberant sound contributions, as previously 

mentioned, and has the following simplified proportionality (on a decibel scale): 

 𝐿𝐿Π ∝ 10 log �
𝛾𝛾

4𝜋𝜋𝑟𝑟2
+

4
𝑅𝑅
�. (3.2) 

Assuming that the measurement position is in the reverberant field so the direct field can be 

neglected, then the sound power becomes inversely proportional to the room constant: 

 𝐿𝐿Π  ∝ 10 log �
4
𝑅𝑅
�. (3.3) 

This gives us some context to understand how the linear room constant affects the logarithmic 

sound power level.  From Eq. (3.3), we see that the larger a room constant is, the less 

contribution the reverberant field produces.  A large room constant follows from a room with 

high absorption, a large surface area, or both.  When a room has a large room constant, the 

diffuse-field assumption behind the Hopkins-Stryker equation begins to break down, meaning 

one sees greater errors.  However, the sound power level may still be measured with reasonable 

accuracy, due to the fact that the reverberant field contribution with a large room constant is 

much smaller than the direct field contribution.   

3.2.2 Local Spatial Averaging 

For each measurement position, a distance to the acoustic center of the source and a 

directivity factor is defined.  When performing a spatial average about that measurement 

position, the energy density at different distances and angles is measured and averaged.  Points in 

a spatial average have either a different directivity factor or a different distance from the source 

than the center point of the average.  These differences can lead to errors, which is why it is 

beneficial to know what type of local spatial averaging gives the best results.  
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Several types of spatial averaging were tested, as depicted in Fig. 3.2. The first was a 

simple point measurement, which is what has been previously used for the two-point method.  

The second was a linear spatial average of several discrete points along the axis of measurement, 

toward and away from the source.  The directivity factor at that angle should remain consistent 

(provided the measurement is in the direct far field) for the entire spatial average.  On the other 

hand, a clear error with this method is caused by underestimation or overestimation of the 

distance to the source.  The third averaging method also involved a linear discrete point traverse, 

which was perpendicular to the axis of measurement.  In this case, both the distance and the 

directivity factor changed along the traverse, which led to errors.  An underestimation of distance 

is typical for several points of the average.  However, it may be assumed that for small averaging 

lengths, the error due to this underestimation is smaller than that of the parallel linear spatial 

Fig. 3.2. Different methods of spatial averaging that were evaluated numerically.  The spherical mesh around the 
source represents the critical distance for an omnidirectional source. The methods are: (a) a point measurement, 
(b) a linear average, parallel to the axis of measurement, (c) a linear average, perpendicular to the axis of 
measurement, (d) an area average, perpendicular to the axis of measurement, and (e) a cubic volume average. 
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average. The fourth averaging method involved an averaging area perpendicular to the 

measurement axis, similar to the previous method, but with more points above and below the 

measurement axis.  The fifth method involved a cubic volume around each measurement point, 

which includes both the advantages and disadvantages of each previous method.  

3.2.3 Source Power 

The acoustic fields were modeled using HMMA, by simulating a point source in each 

enclosed room with uniform absorption coefficients.  For a monopole in free space, the sound 

power is calculated as1  

 〈Π𝑀𝑀〉𝑡𝑡 =
𝜌𝜌0𝑐𝑐𝑘𝑘2

8𝜋𝜋
�𝑄𝑄�𝑠𝑠�

2
, (3.4) 

where 𝜌𝜌0 is the ambient density of air, 𝑐𝑐 is the speed of sound, 𝑘𝑘 is the acoustic wavenumber, 

and 𝑄𝑄�𝑠𝑠 is the complex source strength.  The sound power level of the source is calculated as  

 𝐿𝐿Π,𝑀𝑀 = 10 log �
〈Π𝑀𝑀〉𝑡𝑡

1 × 10−12 W
�. (3.5) 

 This can be compared to the sound power levels derived from the HMMA models using 

the two-point method.  The source strength was calculated such that it would output the same 

power (0.08 W) and sound power level (109 dB PWL) at all frequencies.  The density of air was 

𝜌𝜌0 = 1.21 and the speed of sound was 𝑐𝑐 = 343 for all simulations. 

3.2.4 Directivities 

In addition to multiple rooms, three different directivities were tested, including those of 

a monopole, a dipole, and a cardioid source.  The dipole was modeled by summing the enclosed 

complex pressure and particle velocity fields of two closely spaced point sources with a 180o 

phase difference.  The cardioid source was modeled similarly, but using three closely spaced 
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point sources.  Two sources were placed on opposing sides of the center source in the 𝑥𝑥 and −𝑥𝑥 

directions, with opposing polarities.  The source was essentially a dipole with a monopole in the 

center.  The source strength required for the cardioid pattern is given by  

 𝑄𝑄�𝑠𝑠,1 =
𝑄𝑄�𝑠𝑠,0

𝑗𝑗𝑘𝑘0𝑑𝑑
 , (3.6) 

where 𝑄𝑄�𝑠𝑠,0 is the source strength of the center monopole, 𝑄𝑄�𝑠𝑠,1 is the source strength of the two 

outer point sources (one with an opposite polarity), 𝑘𝑘0 is the design wave number for the 

cardioid pattern, and 𝑑𝑑 is the spacing between the outer sources.  

The spacing between the two point sources for the dipole and the outer point sources for 

the cardioid was 𝑑𝑑 = 40 mm.  The source strength 𝑄𝑄�𝑠𝑠,0 was the corresponding source strength to 

ensure a free-space sound power level of 109 dB PWL as described previously. 

The sound power and directivity factor of each source configuration was determined by 

simulating its free-field pressure response at a distance of 2 m from its center and at 1∘ 

increments around a sphere.  With these simulations, ISO 3745 could be used to assess the sound 

powers and directivity factors of the sources as described in Appendix C.  Figure 3.3 shows the 

directivity factors of the dipole and cardioid source configurations at 2 m from the source.  The 

𝑥𝑥-𝑦𝑦 plane of the sound field of all three source configurations for a single frequency is shown in 

Fig. 3.4, along with a simple diagram of how the sources were positioned (not to scale).  

As pointed out earlier, the directivity factor for a source is actually radially dependent in 

the near-field.  Figure 3.5 shows the directivity factor for the cardioid source configuration using 

a simulated response at six different radii from the center of the source, beginning with 10 

centimeters and ending with 10 meters.  As the radius of measurement increases, the directivity 

factor begins to converge to that of the far field. This shows that some error is introduced when 
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using the two-point method and taking a measurement in the near field, without accounting for 

the radial dependence of the directivity factor. 

However, in practice it is difficult to measure the radially dependent directivity of a 

physical source.  Because of this, the far-field directivity factor of the reference directivity source 

was measured and used in this thesis to approximate the directivity at all distances from the 

Fig. 3.3. The directivity factor of the dipole source at (a) specific frequencies and (b) specific angles.  The 
directivity factor of the cardioid source at (c) specific frequencies and (d) specific angles. The dipole sources 
were spaced 40 mm apart.  The cardioid is the same configuration as the dipole, with a monopole in the center. 

(a) (b) 

(c) (d) 
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source.  Future research could explore the benefits of using a known near-field directivity factor 

for sound power and room constant measurements.  

3.2.5 Numerical Convergence 

In theory, modal analysis requires the summation of an infinite number of modes to 

calculate the pressure and particle velocity at a point in space.  However, as pointed out in 

Fig. 3.4.  The 𝑥𝑥-𝑦𝑦 plane of the sound field in room 2 at the height of the source.  The (a) monopole, (b) cardioid, 
and (c) dipole source directivities can be seen near the source at the left edge the sound field.  The sound field 
was not generated for positions behind the source for computational efficiency. 

(a) (b) (c) 

Fig. 3.5. The directivity factor at three different angles for the cardioid source measured at six different radii 
(0.1, 0.2, 0.5, 1, 3, and 10 meters).  As the distance from the center increases, the directivity factor converges to 
the far-field directivity. 
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Appendix  A, the modal summation must be cut off at a finite number of modes in practice.  This 

is done by using the modal width factor and summing over a number of modal widths.23 To 

determine the number of modal widths required for adequate convergence, the pressure values at 

30 random points were calculated in the nine rooms used in the DOE.  Figure 3.6 shows the 

difference in the energetically averaged sound pressure level relative to the case using 120 modal 

widths for all thirty points as a function of the number of modal widths used.  It was determined 

from the convergence trends that a factor of 100 modal widths would be computationally 

efficient, while still ensuring that the models had converged within a reasonable tolerance of 0.1 

dB. 

3.2.6 Two-Point Method Example 

The DOE was used to generate many different measurements and obtain an average error 

from the results over several different rooms.  For all of the numerical simulations, the 

frequencies simulated were 1/48 octave bands from 80 Hz to either 5 or 8 kHz, depending on the 

Fig. 3.6. The average sound pressure level relative to a final value with 120 modal bandwidths for all 
nine rooms used in the DOE.   
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size of the room.  The frequencies were then summed into 1/3 octave bands, meaning 16 

narrower bands were summed per 1/3 octave band. 

The simulated two-point measurements represented by Figs. 3.7, 3.8, and 3.9 were 

generated for room 6 with a monopole source.  Figure 3.7(a) shows the source (large red dot) in 

the enclosure (represented by the trihedral corner) and the critical distance (represented by the 

spherical mesh), along with the two measurement positions (small blue dots).  The two 

measurement positions were at 0.8 m and 3 m from the source, along the axis defined by 𝜃𝜃0 =

90∘ and 𝜙𝜙0 = 30∘.  For reference, 𝜃𝜃0 = 90∘ and 𝜙𝜙0 = 0∘ is parallel to the x-axis and 𝜃𝜃0 = 90∘ 

and 𝜙𝜙0 = 90∘ is parallel to the y-axis.  Figure 3.7(b) shows the free-space sound power level of 

the monopole, and the sound power level 𝐿𝐿Π,𝛽𝛽 measured by the two-point method [Eq. (2.28)] 

using both 𝛽𝛽 = 1 (PED) and 𝛽𝛽 = 0.25 for the measurement quantities.  The room constant is 

also shown in Fig. 3.7(c) as calculated by Eqs. (2.29), (2.31), and (2.25).  The latter is the in-situ 

room constant measured with the two point method.  Figure 3.8 shows the same simulation, but 

rather than using point measurements, it used a perpendicular linear average.  In this case, better 

agreement is seen between the theoretical values and the simulated measurement values.  Figure 

3.9 again represents the same simulation, but with a perpendicular area average, which shows 

even closer agreement between the theoretical and measured values. 

3.3 Design of Experiment Results 

In order to explore and develop guidelines for the two-point method, 1,000 two-point 

measurements were simulated in each of the modeled rooms for each source configuration.  The 

simulated measurements were randomly generated for different angles, with different distances 

from the source and different spatial averaging shapes and sizes.  Using a sample size this large, 

it was possible to generalize some of the findings from the research.  Three distinct guidelines 
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for using the two-point method were explored using the models.  The first was the optimal value 

for the GED weighting factor. The second was the best place for the two-point measurement 

positions relative to the critical distance.  The third was how spatial averaging is beneficial to the 

two-point method.   

Fig. 3.7.  The two-point in situ method simulated in room 6. (a) Two point measurements were used to measure 
(b) the sound power of the source and (c) the room constant using the two-point method.  The spherical mesh 
around the source represents the critical distance at 𝑟𝑟𝑐𝑐 = 0.9 m for an omnidirectional source.  The dashed 
vertical line represents the Schroeder frequency 𝑓𝑓𝑠𝑠 = 135 Hz in the room. 

(a) 

(c) 

(b) 
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To evaluate the effectiveness of the method, the root-mean-square error (RMSE) was 

assessed over frequency between the actual sound power and the in-situ sound power on a 

decibel scale. This was similar to the standard deviation calculation used by Marquez and the 

ISO 3741/ISO 3745.4-5,15  Specifically, the RMSE calculation for sound power is  

Fig. 3.8.  A modified two-point in situ method simulated in room 6. (a) Perpendicular linear spatial averages 
were used to measure (b) the sound power of the source and (c) the room constant. The spherical mesh around 
the source represents the critical distance at 𝑟𝑟𝑐𝑐 = 0.9 m for an omnidirectional source.  The dashed vertical line 
represents the Schroeder frequency 𝑓𝑓𝑠𝑠 = 135 Hz in the room. 
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Fig. 3.9.  A modified two-point in situ method simulated in room 6. (a) Perpendicular area spatial averages was 
used to measure (b) the sound power of the source and (c) the room constant. The spherical mesh around the 
source represents the critical distance at 𝑟𝑟𝑐𝑐 = 0.9 m for an omnidirectional source.  The dashed vertical line 
represents the Schroeder frequency 𝑓𝑓𝑠𝑠 = 135 Hz in the room. 
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 𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸𝐿𝐿Π = �∑ �𝐿𝐿Π𝑖𝑖 − 𝐿𝐿�Π𝑖𝑖�
2𝑁𝑁

𝑖𝑖=1

𝑁𝑁
, (3.7) 

where 𝑁𝑁 is the total number of frequencies, 𝐿𝐿Π𝑖𝑖 is the actual sound power level at the 𝑖𝑖th 

frequency, and 𝐿𝐿�Π𝑖𝑖 is the corresponding sound power level determined by the two-point method.  

Likewise, the RMSE of the room constant was calculated using   

 𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸𝑅𝑅 = �∑ �𝑅𝑅𝑖𝑖 − 𝑅𝑅�𝑖𝑖�
2𝑁𝑁

𝑖𝑖=1
𝑁𝑁

, (3.8) 

where 𝑅𝑅 is the classical room constant defined by Hopkins and Stryker2, and 𝑅𝑅� is the measured 

room constant using the two-point method.  The logarithmic RMSE for the room constant 

 𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸𝐿𝐿𝑅𝑅 = �∑ �𝐿𝐿𝑅𝑅,𝑖𝑖 − 𝐿𝐿�𝑅𝑅,𝑖𝑖�
2𝑁𝑁

𝑖𝑖=1
𝑁𝑁

 (3.9) 

will be used as an additional metric, where 𝐿𝐿𝑅𝑅 is defined by Eq. (3.1) and 𝐿𝐿�𝑅𝑅 is the corresponding 

logarithmic room constant determined using the two-point method.   

These error metrics give an idea of how well the measured values match the actual values 

over frequency and will be used throughout the remainder of this thesis. As indicated earlier, the 

vertical dashed lines in Figs. 3.7 through 3.9 represent the Schroeder frequency.  Below that 

frequency the diffuse field assumption inherent in the Hopkins-Stryker equation breaks down.  

Therefore, results from frequencies below the Schroeder frequency are not included in the RMSE 

calculations.    

3.3.1 Optimal Beta 

According to Xu et al., the most spatially uniform GED weighting factor is 𝛽𝛽 = 0.25 for a 

diffuse field (assumed in the Hopkins-Stryker equation).14 The question of the optimal weighting 

factor is raised due to the fact that the two-point method generally uses a point in the 
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predominantly direct field region and a point in the predominantly reverberant field region.  

From Fig. 2.3, it can be seen that for the ideal room, the reverberant field contribution in Eq. 

(2.8) is the same for all values of 𝛽𝛽.  The direct far field, as pointed out previously, is also the 

same value for all values of 𝛽𝛽.  However, the direct near field, as seen in Eq. (2.19), is dependent 

upon 𝛽𝛽.  Without the correction for the difference in energy contributions in the direct near field, 

one might expect that the optimal 𝛽𝛽 value would be closer to 𝛽𝛽 = 1, since the direct near-field 

and far-field energy densities are equal for PED. 

 For each simulation in each room, the optimal 𝛽𝛽 values were found for each measurement 

axis and frequency, using the MATLAB™ fmincon function and the sqp algorithm. The cost 

functions for the optimization were the RMSEs of the logarithmic room constant and sound 

power level [Eqs. (3.7) and (3.9)].  The process changed the 𝛽𝛽 value from each two-point 

measurement simulation until the RMSE was minimized.  The 𝛽𝛽 values at the first position (𝛽𝛽1) 

and second position (𝛽𝛽2) in the two-point method were both optimized.  Average 𝛽𝛽 values from 

all optimizations without the near-field correction are shown in Fig. 3.10. As expected, the 

average value for 𝛽𝛽 increased as frequency decreased (i.e., when 𝑟𝑟1 and 𝑟𝑟2 were in the direct near 

field).  This follows because the formula without the near-field correction does not account for 

the increase in KED in the near field, thus causing the RMSE to be higher.  

For the case with the near-field correction [see Eq. (2.19)] shown in Fig. 3.11, the optimal 

𝛽𝛽 value for nearly every frequency more closely approaches 𝛽𝛽 = 0.25 for both the sound power 

and the room constant.  With the near-field correction, one can simply use the single value of 

𝛽𝛽 = 0.25 for all frequencies.  

Figure 3.12 shows the average of all runs as a function of frequency. Again, variance at 

low frequencies is present due to the Schroeder frequencies of some of the rooms being higher.  
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Fig. 3.10.  The average GED weighting factors 𝛽𝛽1 and 𝛽𝛽2 for measurement positions 𝑟𝑟1 and 𝑟𝑟2 for (a) sound 
power level and (b) the room constant, optimized over the nine different rooms.  It is assumed here that the same 
𝛽𝛽 value is used for every frequency.  For (c) and (d) the 𝛽𝛽 value varied by frequency for both 𝑟𝑟1 and 𝑟𝑟2 
respectively.  The near-field correction was not used for this optimization [see Eq. (2.8)].  The dashed line 
represents 𝛽𝛽 = 0.25. 

(a) (b) 

(c) (d) 

𝛽𝛽 

𝛽𝛽 

𝛽𝛽1 𝛽𝛽2 𝛽𝛽2 𝛽𝛽1 

Fig. 3.11.  The average GED weighting factor (𝛽𝛽) for measurement position 1 and position 2 for (a) sound power 
level and (b) the room constant, optimized over the nine different rooms.  It is assumed here that the same 𝛽𝛽 
value is used for every frequency.  For (c) and (d) the 𝛽𝛽 value varied by frequency for both 𝑟𝑟1 and 𝑟𝑟2.  The near-
field correction was used for this optimization [see Eq. (2.18)].  The dashed line represents 𝛽𝛽 = 0.25. 
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Because 𝛽𝛽 = 0.25 is the optimal value for the GED measurements, it will be assumed 

from this point forward that GED refers to 𝛽𝛽 = 0.25 and PED refers to 𝛽𝛽 = 1 as before.  

However, it should be restated that the near-field correction is technically only valid for a 

monopole source.  

3.3.2 Critical Distance  

When using the two-point method, it is important to know where to place the 

measurement sensors in order to most accurately measure the room constant and sound power.  

Marquez noted from his experimental work that if one measurement was in the predominantly 

direct field region and the other was in the predominantly reverberant field region, the results 

tended to be better.15  From the DOE, we were able to use randomly placed two-point 

simulations to determine the most accurate placements.  By using the known critical distances as  

a metric, three different placement methods were explored: (1) both points were in the region 

dominated by the reverberant energy (outside the the critical distance), (2) both points were in 

Fig. 3.12.  The average GED weighting factor (𝛽𝛽) for all nine rooms as a function of frequency for (a) sound 
power and (b) the room constant.  The near-field correction was used for this optimization [see Eq. (2.18)].  The 
dashed line represents 𝛽𝛽 = 0.25. 

(a) 

(b) 

𝛽𝛽1 
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the region dominated by the direct energy (inside the the critical distance), and (3) one point was 

in each region (both sides of critical distance). 

The average RMSEs of all simulations for all nine rooms are shown in Fig. 3.13, where 

two different measurement quantities are compared, namely PED and GED.  The results from the 

simulations confirm Marquez’s assertion that it is beneficial to have one point on each side of the 

critical distance for both energy quantities.  

(b) (a) 

(c) (d) 

Fig. 3.13.  Error as a function of measurement positions both inside, both outside, or on each side of the critical 
distance.  The averages of simulations in all nine rooms are shown.  The graphs include: (a) 𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸𝐿𝐿𝑅𝑅 with GED 
as the measurement quanitity, (b) 𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸𝐿𝐿𝑅𝑅  with PED as the measurement quantity, (c) 𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸𝐿𝐿Πwith GED as the 
measurement quantity, and (d) 𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸𝐿𝐿Π with PED as the measurement quantity.   Three different source 
configurations were simulated: an omnidirectional source, a dipole source, and a cardioid source. 
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3.3.3 Spatial Averaging 

To determine the best method of spatial averaging, 1,000 random measurements for each of 

the five spatial average types were simulated with one center point on each side of the critical 

distance.  The average RMSEs for both the room constant and the sound power are compared in 

Fig. 3.14.   The averages shown include all sizes of each spatial average (the minimum was 5 cm 

(b) (a) 

(c) (d) 

Fig. 3.14.  Error as a function of different spatial averaging methods.  Averages for all nine rooms are shown.  
The graphs include: (a) 𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸𝐿𝐿𝑅𝑅 with GED as the measurement quantity, (b) 𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸𝐿𝐿𝑅𝑅 with PED as the 
measurement quantity, (c) 𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸𝐿𝐿Π with GED as the measurement quantity, and (d) 𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸𝐿𝐿Π with PED as the 
measurement quantity.  Three different source configurations were simulated, an omnidirectional source, a 
dipole source, and a cardioid source.    
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and the maximum was 1/2 of the minimum dimension of the room, with a 5 cm step size).  In 

general, as the average expanded from a perpendicular linear average to a perpendicular area 

average, the error decreased.  For the room constant and GED-based sound power assessment, 

the linear average along the axis of measurement increases the error.  As suggested previously, 

when a spatial average around a point was taken, there were inherent errors in the average.  The 

errors come from the fact that the directivity factors and distances of the central measurement 

points were known, but the directivity factors and distances to other points in the spatial average 

regions were not fully accounted for.   

These discrepancies were reduced in the reverberant field, where one might expect 

differences in distance from the source and directivity factor to become more negligible.  Closer 

to the source, the discrepancies were more pronounced.  For example, in the near field of a point 

source, as pointed out earlier, one finds that the GED increases rapidly as the measurement 

position approaches the source. If a spatial average causes the measurement to extend closer to 

the source, the energy density will likely be overestimated, causing errors in both the room 

constant and sound power measurements.  From Fig. 3.14, it can be seen that the best averages 

for GED are linear average or area averages, perpendicular to the axis of measurement.  These 

approaches reduce the errors associated with misrepresented distances to the various averaging 

points.  Errors in the directivity factor, at least for the sources explored in this study, were of 

smaller consequence.   

3.3.4 Spatial Averaging Size 

From Xu’s work on generalized energy density, we know that with 𝛽𝛽 = 0.25 in a diffuse 

field, the GED has a higher spatial correlation than PED.14  Because of this, one would expect an 

average of the same size to actually be more effective for PED.  In order to test this assertion, 
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100 random measurements were simulated with one point on each side of the critical distance for 

all nine rooms in the DOE.  A spatial average was then simulated at each point.  The 

perpendicular linear and area spatial averages were used for this test, as they seemed to be the 

most practical and effective.  The room constant and sound power level were then measured with 

the spatial averages increasing in size.  The average RMSEs of both are shown in Fig. 3.15.  

They begin at a point measurement then increase in size (length for the linear average and square 

root of the area for the area average) until half of the minimum dimension of the room (𝐿𝐿𝑚𝑚𝑖𝑖𝑚𝑚/2).  

The 𝑥𝑥-axis of the plots is normalized such that 𝐴𝐴𝑠𝑠𝑧𝑧 is the average length 𝐴𝐴𝑙𝑙 for the linear average 

and the square root of the average area 𝐴𝐴𝑠𝑠𝑧𝑧 = �𝐴𝐴𝑠𝑠 for the area average.  The results shown are 

for the cardioid source, but the other sources showed very similar trends. 

For a point measurement, the error is lower for GED than for PED, as expected.  As the 

average size increases, the error decreases monotonically for sound power level but with little 

Fig. 3.15.  Average RMSE as a function of average size divided by the smallest room dimensions for (a) the 
room constant and (b) the sound power level.  The spatial averages are performed at each measurement position. 

(b) 

(a) 
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incremental benefit above about 15% of 𝐿𝐿𝑚𝑚𝑖𝑖𝑚𝑚.  For the room constant, an average size larger than 

about 15% of 𝐿𝐿𝑚𝑚𝑖𝑖𝑚𝑚 actually causes the RMSE to increase.  The average size is equal about both 

central points in this case.  The increase in error is likely due to directivity and distance 

estimation errors.  For the 𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸𝐿𝐿𝑅𝑅 measured with GED, it appears that the most accurate area or 

linear average would be between about 10% to 25% of 𝐿𝐿𝑚𝑚𝑖𝑖𝑚𝑚.  Because larger spatial averages 

lead to larger errors in measured angle and distance at positions closer to the source, the RMSE 

is also potentially larger at these points.  With that in mind, the same test was run again, but 

without spatial averaging for the point closer to the source.  The results from that experiment are 

shown in Fig. 3.16. They show a more expected trend in error reduction, which converges as the 

average about the more distant point gets larger for both the room constant and the sound power 

level.  

Fig. 3.16.  Average RMSE as a function of average size divided by the smallest room dimensions for (a) the 
room constant and (b) the sound power level.  In this case, the average was only performed about the point past 
the critical distance where the reverberant field dominates. 
 

(b) 

(a) 



3.4 Rooms with Nonuniform Absorption  47 

 

Considering the spatial correlation mentioned earlier, we expect the error to decrease 

more rapidly for PED than GED as the spatial average gets larger.  This effect can be seen in Fig. 

3.16 as the error for PED decreases more rapidly than the error for GED, especially when 

moving from a point measurement to a small average.  At the same time, the results demonstrate 

the superiority of GED for any averaging size and its benefit as a point measurement. 

The average RMSE results also show that for sound power level, a spatial average at both 

points or only one spatial average in the reverberant field and a point measurement in the near 

field produce essentially the same error.  On the other hand, for the room constant, a small spatial 

average in both the direct and reverberant fields can yield an error that is lower than that 

produced by only one spatial average in the reverberant field.  

3.4 Rooms with Nonuniform Absorption   

The simulations in the DOE were done with a model that assumed uniform absorption on 

the walls, floor, and ceiling.  The assumptions made for the Hopkins-Stryker equation rely on the 

diffuse nature of the reverberant field, which in turn relies on the assumption that the absorption 

in the room is distributed rather uniformly.  Since that is often not the case in practice, an image 

source model was used to simulate a room with nonuniform absorption. A hybrid image-source 

and ray-tracing software package called EASETM was also used to simulate rooms with 

nonuniform absorption as well as scattering surfaces and objects. 

3.4.1 Image Source Method 

The image source method used for this research was based mainly on that described by 

Lehman and Johannson, which in turn was based on the method of Allen and Berkley.24,25  The 

sound pressure at any point in a room can be found from the addition of the pressure of a 
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principal source and numerous image sources.  Each image source amplitude is multiplied by the 

pressure reflection coefficient of the boundary it is reflected from.  The method allows a separate 

reflection coefficient to be used for each boundary, whereas the HMMA method requires that 

opposing parallel boundaries have the same impedance values.  More details about the image 

source method can be found in Appendix A.  

Four modeled rooms each had dimensions of (5 × 6 × 7) m, with the source located 1.5 

meters from the origin in each direction.  The varied absorption coefficients of the walls for each 

room are shown in Table 3.2.  While each room has the same average absorption coefficient, the 

nonuniformity of the boundaries increases with increasing room number.   

 It was necessary to ensure that a sufficient number of image sources were included in the 

summations, in a manner similar to including sufficient terms in the modal expansion method.  

This was done by plotting the energetically averaged sound pressure level of several points 

throughout each modeled room as a function of the number of image sources.  The results are 

shown in Fig. 3.17 for all four rooms.  The average sound pressure levels are plotted relative to 

the final average rms sound pressure with 150,000 image sources. The number of image sources 

used in the model was about 100,000, where all four rooms have converged to within ±0.1 dB, 

as shown in the graphs.  

Table 3.2. The wall absorption coefficients for four rooms modeled by the image source method. 
 

 Room Number 
Wall 1 2 3 4 
x = 0 0.15 0.20 0.13 0.02 
y = 0 0.15 0.15 0.08 0.40 
z = 0 0.15 0.10 0.01 0.10 
x = Lx 0.15 0.10 0.08 0.05 
y = Ly 0.15 0.15 0.13 0.01 
z = Lz 0.15 0.20 0.40 0.25 
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 The room constant and the sound power associated with the three sources used previously 

(monopole, dipole, and cardioid) were again measured via simulation using point measurements 

for each of the four rooms mentioned.  The RMSEs are shown in Fig. 3.18 for each of the 

sources in each modeled room.  As expected, the room with the most nonuniform boundary 

absorption also tends to show the largest error.  A few more observations can be made from the 

results.  First, GED is less affected by the nonuniformities than PED, which suggests that it is 

still more spatially uniform.  Second, the dipole source has the largest increase in error for the 

most nonuniform room. 

3.4.2 EASE Models 

To test the two-point method with more complex rooms, a few rooms located on the 

BYU campus were modeled in the EASE room acoustics simulation program.42  The software is 

generally used for architectural acoustics and sound system design problems.  As such, it allows 

one to model complex rooms while placing source and listening positions anywhere within the 

room.  It uses a combination of image source and ray-tracing methods to model the sound field.  

Fig. 3.17.  Convergence of the image source method for the number of image sources used for each room.  The 
dB value plotted is the average rms pressure relative to the final value for 150,000 image sources. 
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One drawback to the program is that it is only able to calculate pressure magnitudes.  The author 

was thus unable to use GED to study the two-point method.  Instead, he used PED to test some 

of the indicated guidelines in a few rooms.  The number of rays was 217,000 for all simulations. 

The first was the VAC, represented in Fig. 3.19.  The walls were modeled with spatially 

uniform absorption coefficients based on the actual 1/3 octave band reverberation time 

measurements.  The sensor positions are represented by the chairs in the figure and the source is 

represented by the loudspeaker.  The source in the model is a monopole.  The sensor positions 

for the two-point method are located at distances of 0.3 and 1.3 meters from the source.  Linear 

Fig. 3.18. Error from nonuniform boundary conditions for the (a) sound power level and (b) room constant.  The 
room was modeled with 100,000 image sources.  The dimensions of the room were (5 × 6 × 7) m and the source 
was located 1.5 meters from the corner of the room in all directions.  The results were generated from 100 
random simulations in each room. 

(b) 

(a) 
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spatial averages perpendicular to the axis of measurement were also used.  The reverberation 

time in the room was calculated from the impulse response generated by the software. The 

classical room constant [Eq. (2.29)] then followed from the Eyring-Norris equation.6  The free-

space sound power level of the source was an input into the software and was designed to be a 

flat 107.6 dB based on the efficiency of the source defined in the software.  The theoretical room 

Fig. 3.19.  (a) The VAC modeled in EASE.  The chairs represent sensor positions.  (b) The theoretical room 
constant (triangles) compared with several two-point method simulations. (c) The theoretical sound power level 
(triangles) compared with two-point method simulations.  In the legends, the size of measurement for each 
position is noted before and after the slash e.g., a point measurement for 𝑟𝑟1 and a 15 cm spatial average for 𝑟𝑟2 is 
denoted by P/15 cm. 

(b) 

(a) 

(c) 
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constant and sound power level are shown in Fig. 3.19, along with measurements simulated in 

EASE for a number of linear spatial averaging combinations, perpendicular to the axis of 

measurement.  In general, the two-point method measured the room constant and the sound 

power level well in the VAC.  The best combination seemed to be a point measurement near the 

source and a small average in the predominantly reverberant field. This coincides with what was 

found from the DOE.   

Another room that was modeled was a BYU lecture hall (Eyring Science Center room 

C215) as depicted in Fig. 3.20.  The first source was a monopole in the hall.  The theoretical 

Fig. 3.20. (a) An EASE model of room C215 in the BYU Eyring Science Center.  (b) The actual room constant 
compared with measured room constants using the simulated two-point method.  (c) The actual sound power of 
the source compared with measured sound power levels using the simulated two-point method. In the legend, the 
size of measurement for each position is noted before and after the slash, e.g. a point measurement for 𝑟𝑟1 and a 
50 cm spatial average for 𝑟𝑟2 is denoted by P/50 cm. 
 

(b) 

(a) 

(c) 



3.4 Rooms with Nonuniform Absorption  53 

 

room constant and sound power level are again compared to simulated measurements in Fig. 

3.20.  The results show that the room constant measurements are somewhat overestimated, 

especially at higher frequencies, while the sound power measurements are quite accurate for all 

averaging methods.   

  A more directional source was also used in the room model, which simulated an average 

male talker.  The software includes a defined frequency-dependent directivity factor and sound 

power which was used for the experiment.  The on-axis directivity factor of the source and the 

results from the test are shown in Fig. 3.21.  The two-point method again measured the sound 

power level quite well.  However, the room constant assessment had even more error at the 

higher frequencies for the directional source.  It is difficult to know exactly why the directional 

Fig. 3.21. (a) The on-axis directivity factor of a human male talker, modeled in room C215 in the BYU Eyring 
Science Center.  (b) The actual room constant compared with measured room constants using the simulated two-
point method.  (c) The actual sound power of the source compared with measured sound power level using the 
simulated two-point method. In the legend, the size of measurement for each position is noted before and after the 
slash, e.g., a point measurement for 𝑟𝑟1 and a 50 cm spatial average for 𝑟𝑟2 is denoted by P/50 cm. 

(b) 

(a) 

(c) 

𝛾𝛾 

 



3.5 Conclusions  54 

 

source produced more error, as the algorithms used in the software and their reliability are 

unkown. 

One explanation for greater error at higher frequencies could be the fact that the room 

absorption is so high at those frequencies.  Larger errors were also seen from the DOE for rooms 

with higher room constants.  Even for a large room, the reverberant field is no longer diffuse 

with sufficiently high levels of absorption.  The sound power measurement was still measured 

quite accurately, even with large errors in the room constant.  Again, this could be due to the fact 

that the actual room constant is so large that the errors do not significantly affect the sound 

power (see the discussion in Sec. 3.2.1). 

3.5 Conclusions 

The investigation reported in this chapter found that for the near-field corrected version of 

the Hopkins-Stryker equation, the best GED weighting factor for semi-reverberant rooms was 

𝛽𝛽 = 0.25 for all points and all frequencies above the Schroeder frequency.  This is consistent 

with the results of prior work. It also confirmed that the best positions for the measurement 

sensors in the two-point method involves one sensor on each side of the critical distance, well 

within the direct and reverberant field regions.  This ensures that both the direct field energy and 

the reverberant field energy become dominant at one of the sensor positions.  

Spatial averaging decreases the measurement error of the room constant and sound power 

level.  For GED, the perpendicular linear average or the perpendicular area average seem to have 

the most practical benefit, as they would be simple to implement and have a lower error.  For 

point measurements, the GED is typically more accurate than the PED.  As expected from 

theory, the spatial average is more beneficial for PED than for GED due to the high spatial 

correlation of the latter.  However, averaged GED measurements generally outperform averaged 
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PED measurements.  The averaging method with the lowest error on average was a small spatial 

average, roughly 10% to 25% of the smallest room dimension for both measurement points.  In 

some cases, a single point measurement in the predominantly direct field and a spatial average in 

the predominantly reverberant field produces the best results.  The most accurate spatial average 

was the area average, perpendicular to the source.  The linear average perpendicular to the source 

was also accurate, and may be more practical for some applications. 

As the nonuniformity of the room boundary absorption increases, the errors in the room 

constant and sound power measurements increase as well.  This is expected, as the underlying 

theory relies on uniformly distributed boundary absorption to create a diffuse field.  The GED 

performs better than PED under nonuniform conditions.  It seems to be robust, as long as the 

nonuniformity of the boundaries is not too extreme. 



 

Chapter 4  

Experimental Results 

4.1 Energy Density Measurements 

The following results are from experiments using the two-point method to measure the 

room constant and sound power of a source.  The energy density was measured using a G.R.A.S. 

50VI-1 vector intensity probe.  The sensor includes three pairs of phase-matched microphones, 

facing each other, with an intervening spacer.  The particular spacer used in these experiments 

was 25 mm in length, producing a working frequency range from about 125 Hz to 5,500 Hz.26  

Pascal and Li presented a systematic method of measuring PED and KED by using the 

finite-difference method, the auto-spectrum, and the cross-spectrum of the six microphone 

signals.27 The PED is given by the expression 

 PED =
1

24𝜌𝜌0𝑐𝑐2
�𝐺𝐺𝑖𝑖𝑖𝑖

6

𝑖𝑖=1

+
1

12𝜌𝜌0𝑐𝑐2
[𝐶𝐶21 + 𝐶𝐶43 + 𝐶𝐶65] (4.1) 

and the KED is given similarly by 
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 KED =
1
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−
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𝜌𝜌0𝑐𝑐2𝑘𝑘2𝑑𝑑2
[𝐶𝐶21 + 𝐶𝐶43 + 𝐶𝐶65], (4.2) 

where 𝜌𝜌0 is the density of air, 𝑐𝑐 is the speed of sound, 𝑘𝑘 is the wavenumber, 𝑑𝑑 is the microphone 

spacing, 𝐺𝐺𝑖𝑖𝑖𝑖 is the auto-spectrum of the 𝑖𝑖th microphone, and 𝐶𝐶𝑖𝑖𝑖𝑖 is the real part of the cross-

spectrum between the 𝑖𝑖th and 𝑗𝑗th microphone. 

4.2 Variable Acoustics Chamber 

The VAC was used as the main laboratory environment for studying the two-point method.  

In its most basic configuration, it is a small room with smooth rigid boundaries and no scattering 

objects or furnishings.  It is a rectangular parallelepiped, which allows for simple calculation of 

the volume and surface area with accurate results.  These facts made room constant calculations 

more simple and accurate.   

Three different absorption configurations were used to vary the room constant.  In order to 

change its behavior, blankets were hung on the walls to increase absorption.  The absorption 

coefficients of the blankets were measured separately in a 210 m3 reverberation chamber 

according to ISO 354 as shown in Fig. 4.1.28 The classical frequency-dependent room constant of 

the VAC was then calculated using Eq. (2.29), the surface area and absorption coefficients of the 

empty VAC, by subtracting the absorption area of the rigid walls that were covered by the 

blankets, and by adding the surface area and absorption coefficient of the blankets.  The new 

average absorption coefficient was then  

 𝛼𝛼� =
∑ 𝑆𝑆𝑖𝑖𝛼𝛼𝑖𝑖𝑖𝑖

∑ 𝑆𝑆𝑖𝑖𝑖𝑖
, (4.3) 
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where the subscript 𝑖𝑖 represents the 𝑖𝑖th surface in the room and the denominator is the entire 

surface areas\ of the room. Two blanket configurations were used: one with two blankets (one on 

each side of two opposing walls) and one with four blankets (one on each wall).   

Table 4.1 shows the measured average absorption coefficients for the empty VAC and the 

absorption coefficients of a single blanket as measured in the reverberation chamber.  Absorption 

coefficients measured above 1 at higher frequencies resulted because the edge of the blanket was 

not considered in its surface area and because of other measurement artifacts.  The room 

constants for the various configurations are shown in Fig. 4.2. Since there is not much absorption 

at low frequencies they do not differ much at lower frequencies.   Because the room is so small, 

the Schroeder frequency is quite high (nearly 700 Hz) when it is empty.  The absorption lowers 

the Schroeder frequency, but the room is still limited to a usable bandwidth of about 500 to 6300 

Hz, where the upper cut-off frequency is due to the limitations of the energy density sensor.  

  

Fig. 4.1.  The experimental setup for measuring the absorption coefficients of the blanket in the BYU reverberation 
chamber.  A 20 cm dodecahedron loudspeaker was used as the excitation source and the measurements were taken 
according to ISO 354. 
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Fig. 4.2. Different room constant configurations in the Variable Acoustics Chamber (VAC).  The room constants 
were calculated using Eq. (2.29) and the absorption coefficient for the blankets measured using ISO 354. 

Table 4.1.  The average absorption coefficient of the empty VAC and of the blanket measured in the 
reverberation chamber.  The effective surface area of the VAC is 53.9 m2 while that of a blanket is 3.5 m2. 
 

Frequency VAC Blanket Frequency VAC Blanket 
100 Hz 0.01 0.01 1250 Hz 0.03 0.91 
125 Hz 0.01 0.07 1600 Hz 0.03 0.98 
160 Hz 0.01 0.11 2000 Hz 0.04 1.06 
200 Hz 0.01 0.09 2500 Hz 0.04 1.08 
250 Hz 0.01 0.18 3150 Hz 0.05 1.11 
315 Hz 0.01 0.24 4000 Hz 0.06 1.25 
400 Hz 0.02 0.32 5000 Hz 0.08 1.27 
500 Hz 0.02 0.44 6300 Hz 0.10 1.33 
630 Hz 0.02 0.50 8000 Hz 0.13 1.25 
800 Hz 0.02 0.63 10000 Hz 0.16 1.37 

1000 Hz 0.02 0.76    
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4.3 Near-Field Correction 

In order to experimentally verify the near-field correction to the Hopkins-Stryker equation 

it was necessary to use a source where radiation resembled that of a monopole.  A 7.5 cm 

diameter spherical loudspeaker with a dodecahedron driver configuration was used inside the 

VAC to measure the room constant for the verification.  The energy density probe and 

dodecahedron are shown in Fig. 4.3.  The dodecahedron is very small and essentially 

omnidirectional beyond 2 kHz.   

A pulley system was used to measure the potential and kinetic energy densities along an 

axis moving away from the source.  The room constant was measured using the two-point 

method for positions close to the source and positions well into the reverberant field.  No spatial 

averaging was included.  Due to the assumed omnidirectionality of the source, a directivity factor 

of unity was used for all frequencies when solving for the room constant.  The source was also 

considered to have a near-field directivity factor that was more omnidirectional than that of a 

larger source.  

Fig. 4.3. The 7.5 cm spherical dodecahedron loudspeaker and the energy density probe in the VAC. 
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Figure 4.4 shows the measured logarithmic room constant 𝐿𝐿𝑅𝑅 in the empty VAC using 

PED, GED, and GED with near-field corrections [see Eqs. (2.5), (2.8), and (2.19)].  These are 

compared to the calculated room constants based on Eqs. (2.29) and (2.31).  For GED, the near-

field correction provides a better measurement of the room constant at lower frequencies, as 

expected.  Figures 4.5 and 4.6 show similar results for the two-blanket and four-blanket VAC 

configurations.  These results also show the superiority of GED and that the near-field correction 

is necessary and beneficial when making some measurements close to the source.  The accuracy 

of the room constant measurement might be improved by using local spatial average and a 

measured directivity factor (especially a near-field directivity factor) instead of an assumed 

omnidirectional pattern.  

  

Fig. 4.4.  The room constant measured using the two point method and the 7.5 cm spherical dodecahedron 
loudspeaker in the VAC with no blankets on the walls.  The first position 𝑟𝑟1 was 11.4 cm away from the center 
of the source and the second position 𝑟𝑟2 was 1.07 m away.  The dashed red line represents the uncorrected two-
point method GED result and the solid red line includes the near-field correction.  The vertical dashed lines are 
the Schroeder frequency 𝑓𝑓𝑠𝑠 of the room with no blankets and the upper limit of the probe. 
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Fig. 4.5.  The room constant measured using the two point method and the 7.5 cm spherical dodecahedron 
loudspeaker in the VAC with two blankets on the walls.  The first position 𝑟𝑟1 was 11.4 cm away from the center 
of the source and the second position 𝑟𝑟2 was 1.07 m away.  The dashed red line represents the uncorrected two-
point method GED result and the solid red line includes the near-field correction.  The vertical dashed lines are 
the Schroeder frequency 𝑓𝑓𝑠𝑠 of the room with two blankets and the upper limit of the probe. 
 

Fig. 4.6.  The room constant measured using the two point method and the 7.5 cm spherical dodecahedron 
loudspeaker in the VAC with four blankets on the walls.  The first position 𝑟𝑟1 was 11.4 cm away from the center 
of the source and the second position 𝑟𝑟2 was 1.07 m away.  The dashed red line represents the uncorrected two-
point method GED result and the solid red line includes the near-field correction.  The vertical dashed lines are 
the Schroeder frequency 𝑓𝑓𝑠𝑠 of the room with four blankets and the upper limit of the probe. 
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4.4 Measurement Positions 

 As indicated in Ch. 3, the reason for taking a measurement near a source (i.e., in the direct 

near field rather than the direct far field) is to ensure a measurement position on either side of the 

critical distance.  It was shown numerically that a point well on each side gives the best results 

when measuring the room constant.  Based on the number of measurements that were taken in 

the VAC, this same result can be shown experimentally.   

Figure 4.7 is a scatter plot showing the RMSE of the logarithmic room constant [see Eq. 

(3.9)], with the Schroeder frequency as a lower frequency limit and the 6300 Hz 1/3 octave band 

as the upper limit.  The size and color of each marker corresponds to the error level; the larger 

and brighter the marker, the higher the error (see the color scale).  The dashed lines show the 

frequency averaged critical distance and divides the graph into four quadrants.  The upper right 

quadrant represents the region wherein both points 𝑟𝑟1 and 𝑟𝑟2 are beyond the critical distance.  

Both measurements are thus dominated by the reverberant field.  The lower left quadrant 

represents the region wherein both points are within the critical distance and dominated by the 

direct field.  The lower right quadrant represents the best region wherein the first point is within 

the critical distance and the second is beyond it.  The upper left region is not used because that 

would represent a measurement where 𝑟𝑟1 > 𝑟𝑟2, which contradicts the measurement assumption. 

Figures 4.8 and 4.9 show the same results for two and four blankets in the VAC.  From the 

figures it is clear that the lower right quadrant has the lowest error, which again suggests that one 

point should be on each side of the critical distance, validating what was discovered numerically 

and suggested by Marquez.15  

  



4.4 Measurement Positions  64 

 

 

  

Fig. 4.8. The logarithmic RMSE of the room constant [see Eq. (3.9)] measured in the VAC with two blankets for 
(a) PED and (b) GED.   

(b) (a) 

Fig. 4.7. The logarithmic RMSE of the room constant [see Eq. (3.9)] measured in the VAC with no blankets for 
(a) PED and (b) GED.  Each point represents a specific combination of 𝑟𝑟1 and 𝑟𝑟2 to compute the room constant 
using the two-point method.  The dashed lines represent the critical distance and split the graph into four 
quadrants.  The lower left is where both points are within the critical distance (near the source).  The upper right 
is where both points are beyond the critical distance.  The lower right is where the first point is less than the 
critical distance and the second point is beyond it.   The larger and brighter markers represent a higher error, 
whereas the smaller and darker markers represent lower error. 

(b) (a) 
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4.5 Reference Directivity Source 

A reference directivity source was used for other two-point measurements, as shown in Fig. 4.10.  

It is a 7.6 cm full-range driver in a 22.9×15.2×10.2 cm box with a passive radiator of the same 

size above the active driver.  The acoustic center was considered to be at the center of the dust 

cap on the active driver.  Marquez recommended that the reference directivity source be one with 

Fig. 4.9. The RMSE of the room constant measured in the VAC with four blankets for (a) PED and (b) GED.   
(b) (a) 

Fig. 4.10.  Reference directivity loudspeaker used in the VAC with two blankets and four blankets to study the 
effects of spatial averaging.  The lower cone is the active driver, while the upper cone is a passive radiator. 



4.5 Reference Directivity Source  66 

 

a relatively smooth directivity pattern over frequency and angle.15  This speaker was readily 

available for experimentation and the directivity factor was measured according to a variant of  

ISO 3745. Many more measurement points were used than required to increase its accuracy and 

that of the sound power measurement. 5 The passive radiator complicates the directivity at lower 

frequencies, but not enough to require the use of another loudspeaker.   Directivity factor 

balloons at select frequencies are shown in Fig. 4.11(a), where radius and color represent the 

directivity factor at different angles. Figure 4.11(b) also shows the directivity factor as a function 

of frequency for angles around the normal axis of the loudspeaker.  It is relatively smooth around 

Fig. 4.11.  The directivity factor of the reference sound source.  (a) Balloon plots showing the directivity factor 
via color and radius.  The blue arrows represent the principal axis, pointing directly away from the center of the 
active driver.  The mesh sphere represents the unity directivity factor of an omnidirectional source.  (b) The 
directivity factor as a function of frequency for several angles.  The 𝜃𝜃 = 90∘, 𝜙𝜙 = 0∘ case represents the 
principal axis. 

(b) 

(a) 

𝛾𝛾 
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these positions, which means that small errors in the reference angle do not significantly affect 

the directivity factor value.   

4.6 Spatial Averaging in the VAC 

The numerical results described earlier point to local spatial averaging as a way to 

improve the two-point method.  To explore this option experimentally, the room constant of the 

VAC was again measured with the two-blanket and four-blanket configurations and the reference 

directivity source.  The source was placed at (0.915, 1.82, 1.08) m and measurements were taken 

along the 𝜃𝜃0 = 80∘ and 𝜙𝜙0 = 15∘ axis at 0.6 m and 1.7 m.  Several measurements were also 

made in a linear grid about the measurement positions, about 6 cm apart, perpendicular to the 

axis of the measurement.  The measurements of the room constant using the two-point method 

and the two-blanket configuration are shown in Figs. 4.12 and 4.13 for PED and GED, 

respectively.  The near-field correction was used for the GED measurements.  A point 

measurement is shown in comparison to a spatially averaged measurement and the classical 

Fig. 4.12.  The room constant measured in the VAC with two blankets using the reference directivity source and 
the two-point in situ method with PED as the measurement quantity.  The calculated room constant (triangles) is 
compared with a point measurement and a 22.9 cm linear perpendicular average.  The vertical lines represent the 
Schroeder frequency and the upper spectral limit of the probe. 



4.6 Spatial Averaging in the VAC  68 

 

prediction calculated from the reverberation time of the empty room and the measured 

absorption of the blankets, as described in Sec. 4.2.  The spatially averaged measurement shows 

an improvement when compared to the point measurement.  The GED also gives a better 

estimation of the room constant than PED for spatially averaged quantities.  Figure 4.14 shows 

the RMSE of the room constant for several different spatial averages about both position 𝑟𝑟1 and 

𝑟𝑟2.  The spatial averages were all perpendicular to the axis of measurement.  The linear averages 

Fig. 4.13.  The room constant measured in the VAC with two blankets using the reference directivity source and 
the two-point in situ method with GED as the measurement quantity.  

Fig. 4.14.  The error in room constant as measured in the VAC with two blankets using the reference directivity 
source and the two-point in situ method for several different average types, all perpendicular to the measurement 
axis.  
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were 11.5 cm, 23 cm, and 53 cm long, and the area measurement was 30.5 cm2.  The grid size 

was 6 cm as mentioned before.  Again, the reference value for the RMSE is the classical 

prediction of the room constant shown in Eq. (2.29).  

By increasing the average size at each point, we see some improvement in the room 

constant measurement, especially between the Schroeder frequency and the upper usable 

frequency of the probe.  The exception is with the 53.3 cm long linear average.  As mentioned 

previously, there are a few possible reasons for this.  First, by averaging over a large region of a 

line or area, there are components of the average that are at much greater distances than the 

distance to the center of the averaging region.  This discrepancy in central distance versus actual 

distance to the averaging point becomes larger as the average size gets larger, thus adding to the 

error.  Another reason is that the length of the average is nearly the same as 𝑟𝑟1.  This causes the 

average to sweep a large angle and consequently the directivity factor at some points of the 

average could be significantly different from that used at the central measurement position.  To 

minimize this issue, the average should have a much smaller length than the distance from the 

source to the measurement position. 

Figures 4.15, 4.16, and 4.17 are similar to the previous figures but for the four-blanket 

configuration of the VAC.  The results are consistent with what was seen in the two-blanket 

configuration.  A spatial average is beneficial, especially in the reverberant field, far from the 

source.   From Figs. 4.14 and 4.17 we also see that the spatial average is significantly more 

beneficial for PED than GED, as discussed in Ch. 3.  
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Fig. 4.15.  The room constant measured in the VAC with four blankets using the reference directivity source and 
the two-point in situ method with PED as the measurement quantity.  The legend entry Point/11.4 cm Area 
indicates that the spatial average was performed only about the point farthest from the source.  The point near 
the source had no spatial averaging. 

Fig. 4.16.  The room constant measured in the VAC with four blankets using the reference directivity source and 
the two-point in situ method with GED as the measurement quantity.  The legend entry Point/11.4 cm Area 
indicates that the spatial average was performed only about the point farthest from the source.  The point near 
the source had no spatial averaging. 
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Measuring a spatial average by taking a grid of measurements one at a time and then 

averaging is not always a practical solution. A few alternatives are available to this method.  If 

one is standing inside the room and the sensor is on a boom arm, it may be slowly “waved” 

around for an average during the measurement.  Another alternative would be to use a rotating 

boom, turntable, or pulley device to trace out a spatial average during a measurement.  

4.7 Sound Power Measurements 

Another purpose of the two-point method is to measure the sound power of a source 

under less-than-ideal conditions.  Several different measurements were accordingly taken to test 

the usefulness of the method.  Marquez showed that the sound power of a loudspeaker could be 

measured in nonideal rooms.15  In the work conducted for this research, a few sources with less 

predictable behaviors were used to further validate the approach for general field measurements. 

Fig. 4.17.  The error in room constant as measured in the VAC with four blankets using the reference directivity 
source and the two-point in situ method for several different average types, all perpendicular to the measurement 
axis.  
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4.7.1 Variable Acoustics Chamber 

The sound powers produced by three sources were measured in the VAC.  These 

included (1) a handheld vacuum cleaner, (2) a blender motor without a jar, and (3) a combination 

belt and disc sander.  The vacuum and the blender had symmetries or sizes that allowed 

approximations of their acoustic centers near their geometric centers.  However, the acoustic and 

geometric centers of the third source, the belt and disc sander, were more difficult to determine, 

making it a good case study for larger, distributed, and asymmetric sources.  The sound powers 

of the blender and the vacuum were alternatively measured according to ISO 3741 and ISO 3745 

standards.  The sound power of the belt and disc sander was alternatively measured only 

according to ISO 3741.   

In the VAC, the same reference directivity source was used as mentioned earlier, with the 

empty, two-blanket, and four-blanket configurations.  The setup for the vacuum is pictured in 

Fig. 4.18 in the four-blanket configuration.  When using the two-point method with a small 

source such as this, a single position for the device under test (DUT) and the reference directivity 

source can be used sequentially, which allows for more options for the two sensor positions.  For 

larger, cumbersome to move sources, the DUT and the reference source can both be placed in the 

room at the same time, as pictured in Fig. 4.19. 

 Figures 4.20 through 4.22 show the results from the two-point in situ method for the 

vacuum, blender, and belt and disc sander, respectively.  They each include overlaid results for 

the three different absorption configurations.  These particular measurements were point GED 

measurements, rather than spatially averaged measurements.  The near-field correction was 

applied to all sound power measurements.  The results show good overall agreement for all three 

conditions.  Table 4.2 shows the A-weighted sound power levels measured for each source.   
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Fig. 4.18.  The handheld vacuum in the VAC with the four-blanket configuration. 

Fig. 4.19.  The measurement configuration for the sound power of the belt and disc sander in the VAC with two 
blankets.  The reference directivity source is on the left and the DUT is on the right.  The sensor is positioned 
closer to the former. 
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Fig. 4.20. The A-weighted sound power level curves of the blender measured in the VAC under the three 
different absorption conditions. The measurement quantity used was GED. The dashed lines represent the 
Schroeder frequency for each condition,with the highest being the empty condition and lowest being the four-
blanket configuration.  The upper dotted line represents the upper cut-off frequency of the energy density sensor.  
Results from ISO 3745 and ISO 3741 measurements are also overlaid for comparison. 

Fig. 4.21.  The A-weighted sound power level curves of the vacuum measured in the VAC under the three 
different absorption conditions.   
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All of the A-weighted levels were calculated for all frequencies above the Schroeder frequency 

and below the upper frequency limit of the probe.  All measurements are within about 2 dBA of 

the ISO 3745 standard measurement.  For the belt and disc sander, only the ISO 3741 sound 

power level was measured.  This standard appears to be consistently higher than the ISO 3745 

standard above about 3 kHz, which, if adjusted for, would lower the total sound power of the belt 

and disc sander, hence lowering the error of the two-point method.  Table 4.3 shows the RMSE 

of the sources compared to ISO 3745 for the blender and vacuum and ISO 3741 for the belt 

sander.  Most cases have an RMSE below 2 dB while one has an RMSE of 3.1 dB.   

Fig. 4.22.  The A-weighted sound power level curves of the belt and disc sander measured in the VAC under the 
three different absorption conditions.   

Table 4.2.  The A-weighted sound power levels of the sources measured in the VAC under the three different 
absorption conditions.  These values are compared to results using the ISO 3741 and 3745 standards. 
 

 Sound Power Level (dBA) 
 Source Empty Two Blankets Four Blankets ISO 3741 ISO 3745 
Vacuum 83.8 83.6 85.9 85.5 83.8 
Blender 86.2 87.5 87.2 87.1 86 
Sander 77.4 79.7 78.3 80 -- 
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Although the small room causes the lower cut-off frequency to be higher than one might 

desire, the results for sound power measurements are quite good.  The smaller sources, 

especially, were quite accurate considering both the ISO 3745 and ISO 3741 standard, which 

have 95% uncertainty values between 1.2 and 1.4 dB for well-behaved sources.4,5  Both the 

vacuum and the blender have considerable tonal components as well, which generally makes the 

sound power even more difficult to assess.4   

The two-point measurements represent a practical method for engineers without the 

resources of an anechoic or reverberation chamber to measure the sound power level of a device 

with reasonable accuracy in a small, convenient room.  Even with the use of blankets, the 

absorption of the VAC may have been more uniform than typical offices or other work 

environments.  This, perhaps, contributes to the accuracy of the sound power level 

measurements, even though the room was quite small.  The next sections explore measurements 

in rooms with conditions that were less uniform.  

4.7.2 Laboratory Room 

Room U186C in the BYU Eyring Science Center (Fig. 4.23) is a laboratory and 

equipment storage room.  It is a moderate-sized room, with many different objects that provide 

scattering and absorption in a nonuniform fashion.  The estimated volume of the room was 166 

m3 and the surface area was 191 m2 (without accounting for objects in the room).  The 

Table 4.3.  The RMSE of the sound power levels of the sources measured in the VAC under the three different 
absorption conditions.  The ISO 3745 measurement was used as a reference value to calculate the RMSE for the 
vacuum and the blender.  The ISO 3741 measurement was used for the sander. 
 

 RMSE (dB) 
 Source Empty Two Blankets Four Blankets 
Vacuum 1.9 1.6 1.6 
Blender 1.3 1.2 1.2 
Sander 2 1.9 3.1 
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frequency-averaged reverberation time was about 0.5 seconds, the Schroeder frequency was 110 

Hz and the frequency-averaged critical distance was 1.05 m.   

  The sound power measurements of the belt and disc sander were measured with a few 

different positions using the two-point method (shown in Table 4.4).  Only point measurements 

were made in this room.  The low-frequency cutoff is set at 200 Hz because the noise floor in the 

room below 200 Hz was significant, especially considering that the output of the sander was very 

Fig. 4.23. The two-point in situ method in room U186C of the Eyring Science Center on BYU campus.  The 
reference directivity speaker and the belt sander are shown.  This room is used for equipment storage and 
experiments. 

Table 4.4.  Measurement distances (in meters) for the two-point method measuring the sound power of the belt 
and disc sander in U186C. 
 

 Reference Source Sander 
Configurations 𝑟𝑟1 𝑟𝑟2 𝑟𝑟3 𝑟𝑟4 

1 0.37 1.78 0.91 2.31 
2 0.37 2.21 0.48 2.31 
3 0.83 1.78 0.91 1.87 
4 0.83 2.21 0.48 1.87 
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low in this spectral region.  Figure 4.24 shows the sound power level measurements of the 

sander.   

 They show good agreement at all measurement points, with A-weighted sound power 

levels less than 2 dB from the ISO 3741 measurement for all configurations.  Configuration 2 

had the lowest error and also the measurement positions that were farthest from the critical 

distance.   This suggests that it is beneficial for the positions to be well within the direct and 

reverberant fields, but near-field directivity of the source should be considered as a complication 

if 𝑟𝑟1 is too close to the source. 

 The frequency-dependent room constant was also calculated according to Eq. (2.29) from 

the measured reverberation times in the room and the estimated volume and surface area.  It must 

be stated that the calculation requires accurate estimations of the volume and surface area of a 

room, which is not likely in a room like U186C, with so many obstructive objects that 

complicate them.  Figure 4.25 shows the logarithmic room constant measured by the two-point 

Fig. 4.24.  The A-weighted sound power level of the belt sander measured in room U186C.  The lower dashed 
line represents a background noise floor cutoff frequency while the upper dashed line represents the upper cutoff 
frequency of the energy density sensor. 
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method, compared with the calculated room constant from the reverberation times and volume 

and surface area.  The discrepancy is less above the 200 Hz background noise cutoff frequency.   

4.7.3 Lecture Hall 

Room C215 is a lecture hall in the Eyring Science Building at BYU.  It has an estimated 

volume of 590 m3, a surface area of 611 m2, and a Schroeder frequency of approximately 80 Hz.  

The two-point measurement setup with the reference directivity loudspeaker is pictured in Fig. 

4.26.  Again, since the vacuum and blender were small sources, they were simply substituted in 

the same position as the reference source for sound power level measurements. 

Fig. 4.25. The room constant level measured by the two-point in situ method in room U186C.  The lower-
frequency vertical dotted line represents a background noise floor cutoff frequency while the upper dotted line 
represents the upper usable frequency limit of the energy density sensor.  The estimated room constant 
(triangles) was calculated from the measured reverberation time and the estimated volume and surface area of 
the room.   
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This room was much larger than those described previously, so there was a lot of room to 

experiment with “manual” spatial averaging.  This consisted of loosening the joints on the 

microphone stand and slowly moving the sensor back and forth and up and down (perpendicular 

to the measurement axis) while data was being measured and time averaged.16  The results in 

Fig. 4.27 for the blender show that the best combination for overall sound power measurement 

seemed to involve a point measurement for the position near the source and a small spatial 

average far from the source.  The small average comprised about a 0.09 m2 total area average 

about the measurement position.  Figure 4.28 shows similar results for the vacuum.  The 300 Hz 

lower frequency cutoff in this case is due to considerable background noise compared to the 

signal at those frequencies.  As done previously, the total sound power level was calculated 

between the lower and upper cutoff frequencies. 

  

Fig. 4.26.  The two-point in situ method in room C215 of the Eyring Science Center on the BYU campus.  The 
reference directivity loudspeaker is shown.   
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Fig. 4.27.  The A-weighted sound power level of the blender measured in room C215.  The lower frequency 
vertical dotted line represents a background noise floor cut-off frequency while the upper dotted line represents 
the upper frequency limit of the energy density sensor.  The Point/0.25 m2 Area text in the legend represents a 
point measurement at 𝑟𝑟1 and a 0.25 m2 perpendicular area measurement at 𝑟𝑟2.  The Point text in the legend 
represents a measurement where both 𝑟𝑟1 and 𝑟𝑟2 were point measurements.  Similarly, the measurement with only 
0.09 m2 Area represents two perpendicular area measurements of the same size at 𝑟𝑟1 and 𝑟𝑟2. 

Fig. 4.28.  The A-weighted sound power level of the vacuum measured in room C215. 
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The theoretical and measured room constants are presented in Fig. 4.29.  The measured 

room constant is below the estimated value for the room constant over most frequencies. The 

latter comes from a reverberation time measurement and an estimate of the volume and surface 

area of the room.  The volume and surface area of the room are difficult if not impossible to 

know exactly, which causes errors in the estimation.  The two-point method uses a known 

directivity factor to measure the room constant rather than estimate it.  This example shows that 

the sound power levels of two sources were measured accurately using an in situ measurement of 

the room constant, rather than estimating it.  In cases such as these, where the volume and 

surface area are difficult to estimate, it may be more beneficial to simply measure the room 

constant in situ.  Along these same lines, Cotana explained that the actual value of the room 

constant can be region dependent, based on the localized scattering and absorption in a room.20-21  

This could explain some of the discrepancy because the in situ room constant was measured in 

Fig. 4.29. The logarithmic room constant measured by the two-point in situ method in room C215.  The lower 
frequency dashed line represents a background noise floor cutoff frequency while the upper frequency dashed 
line represents the upper cutoff frequency of the energy density sensor.  The estimated room constant (triangle) 
is estimated from the reverberation time and the volume and surface area of the room.   
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one region of the room, whereas the room constant calculation was based on the reverberation 

times averaged from many positions in the room. 

A possible source of error in the room constant measurements may result from the fact 

that the reverberant field in large rooms has been found to decay with increasing distance.36-39 

This reverberant field decay is not considered in the two-point method in its current form, so a 

room this large could lead to some error in the room constant measurement.  Future research 

could explore the use of a reverberant field decay factor 𝜏𝜏(𝑟𝑟,𝑘𝑘) in the room constant term of the 

modified Hopkins-Stryker as a function of distance and wavenumber: 

 〈𝑤𝑤𝐺𝐺,𝛽𝛽〉𝑡𝑡,𝑠𝑠 =
〈Π〉𝑡𝑡
2𝑐𝑐
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4.8 Conclusions 

Several experiments were performed to validate the two-point measurement theory from Ch. 

2, and results from the numerical experiments from Ch. 3.  The near-field correction was shown 

to be beneficial for a small dodecahedron source, greatly improving the in situ room constant 

calculation for GED at lower frequencies.  The suggestion that one measurement position should 

be in the predominantly direct field and one should be in the predominantly reverberant field was 

also affirmed using the same source.  

Spatial averaging improves both the sound power level measurement and the room constant 

measurements.  The work in this chapter demonstrated that a simple and effective method of 

spatial averaging was to use a point measurement in the direct field region and a perpendicular 

spatial average in the reverberant field region.  As discussed in Ch. 3, the simplest spatial 

average is a linear average, perpendicular to the axis of measurement. 
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The sound powers produced by three arbitrary sources were measured in three different 

environments using GED as the measurement quantity.  The A-weighted sound power level was 

measured to within about 2 dBA of the ISO 3745 standard for most cases.  Spatial averaging and 

a measurement position on either side of the critical distance improved the RMSE for more 

accurate measurements. 



 

Chapter 5 

Conclusions 

The two-point in situ method using GED has proven to be a practical and effective method 

of measuring both the room constant and sound power of a source in nonideal semi-reverberant 

rooms.  The RMSE relative to current ISO standard measurements for sound power was found 

experimentally to be between about 1 dB and 3.5 dB, depending on the source and room 

conditions.   

This work has explored improvements to the two-point method.  Local spatial averaging was 

studied both numerically and experimentally and found to improve the method.  The optimal 

value of the GED weighting factor using the two-point method was found numerically.  The best 

method of sensor placement was found both numerically and experimentally.  A near-field 

correction for the two-point method was developed for a monopole.  The room constant was 

measured using the two-point method.  The results from this thesis showed improvements to 

room constant measurements when compared to earlier results of Marquez.  These improvements 

resulted from spatial averaging of measurements, the optimal placement of sensors, near-field 

correction, as well as recognizing the importance of representing the room constant 
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logarithmically.  The sound powers produced by three arbitrary sources were measured using the 

two-point method improvements with good results.  Several insights were learned from this 

research and are summarized here: 

1. The underlying assumptions of the Hopkins-Stryker equation require that measurements 

be taken in the direct far field of a source.  This may be impossible for some rooms and 

sources, because the location of the critical distance requires one point of the two-point 

method to be in the direct near-field region of the source.  However, for a point source, 

one can correct the amplitude for any GED value of 𝛽𝛽.  The correction can also be used 

as a starting point to approximate the near-field effects of other sources. 

2. With the near-field corrected version of the Hopkins-Stryker equation, the best GED 

weighting factor was found to be 𝛽𝛽 = 0.25 for all points and frequencies above the 

Schroeder frequency, which is consistent with prior diffuse-field work.15  

3. The best measurement sensor positions for the two-point method involve one well on 

either side of the critical distance.  This ensures that the direct-field energy or the 

reverberant-field energy is dominant at each location.  

4. Spatial averaging decreases the errors associated with room constant and sound power 

measurements.  When using GED, the perpendicular linear or area average seem to have 

the most practical benefit.  For both point measurements and spatially averaged 

measurements, GED is generally more accurate than PED.  However, it was seen that a 

spatial average is more beneficial for PED than GED due to the higher spatial correlation 

of GED.  The spatial average with the lowest error was a spatial average about 10% to 

25% of the smallest room dimension.  Care should be taken to ensure that the average 

size is smaller than the distance from the source to the central measurement location.  If 



Conclusions  87 

 

the directivity of the source is likely to be complicated in the near field or change 

significantly over the averaging region, one can use a point measurement for the close 

measurement and a spatial average for the more distant measurement.  The most accurate 

spatial average for the experiments was the area average, perpendicular to the axis from 

the source.  The linear average perpendicular to the axis was also accurate and may be 

more practical in some applications. 

5. As the nonuniformity of the room boundaries increases, the error in the room constant 

and sound power measurements increases as well.  This is expected, as reverberant field 

theory relies on uniform boundaries or well distributed absorption to create a diffuse 

field.  The GED performs better than PED under nonuniform conditions and seems to be 

robust, as long as the nonuniformity of the boundaries is not too extreme. 

6. Several experiments were performed to validate the results from numerical experiments.  

The near-field correction was shown to be beneficial for a small dodecahedron 

loudspeaker, greatly improving the in situ room constant calculation for GED at low 

frequencies, i.e., involving the direct near field.  The assertion that placing one 

measurement position in the direct field and one in the reverberant field was also 

validated using this loudspeaker.   

The sources and rooms used in this research do not cover all the possibilities one might 

encounter using the two-point method.  Future research could explore the use of the method on 

more varied sources and rooms in an attempt to characterize errors that might arise and establish 

the conditions for which the two-point method would not be recommended.  An example of the 

two-point method underestimating the sound power level of a large distributed source is shown 

in Appendix D.  This could be further explored to develop guidelines for larger and more 
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complicated sources.  The three-point method described in Ch. 2 could possibly be helpful in 

identifying the acoustic center of large sources.  

The environment that the source is in also presents limitations.  Ambient noise can cause 

problems that must be addressed.  The reverberant field assumption made for the Hopkins-

Stryker equation also assumes that the spatially averaged reverberant field is constant throughout 

the room.  Several examples in the literature show that this is not always the case for many 

rooms.20-21,36-39 These references include potential methods for correcting reverberant field decay 

using the Hopkins-Stryker equation.  It would be beneficial to explore more of these results to 

build in a feasible correction to the in situ room constant measurement method that accounts for 

these discrepancies.   

The Hopkins-Stryker equation neglects the fact that the directivity factor of a source in the 

near field is radially dependent.  If one point of the two-point method is in the direct near field of 

the source and the other is in the far field, along the same axis, the directivity factor at each 

points is not necessarily the same.  Methods of accounting for this effect (such as near-field 

acoustical holography), both for the reference source and the DUT, would help eliminate some of 

the errors associated with the directivity assumptions.  The author recommends that additional 

research in these and other areas be conducted to further enhance the methods discussed in this 

thesis.
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Appendix A 

Numerical Models 

Acoustic field modeling is useful for predicting pressure or particle velocity values at certain 

positions in a room. There are several advantages of using modal analysis (MA) and image 

source (IS) methods for this purpose. The first is the simplicity of the models. They are based on 

the acoustic wave equation and describe the steady-state response of the room. They are 

relatively simple to code using a mathematical program such as MATLAB and, depending on 

accuracy, may not be computationally expensive. Another advantage is that the foundation for 

each method is generally understood and accepted in the acoustics community.   

The following derivations are limited to a room with a “shoebox” geometry—a rectangular 

parallelepiped—although both methods may be generalized to other geometries.  The room has 

dimensions 𝐿𝐿𝑥𝑥 × 𝐿𝐿𝑦𝑦 × 𝐿𝐿𝑧𝑧, a volume 𝑚𝑚, and a surface area 𝑆𝑆. The origin of the room is in the 

corner, as shown in Fig. (A.1).  Both methods incorporate distinct assumptions that limit their 

accuracy and scope.  These assumptions will be addressed in the derivations. 
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A.1 Modal Analysis 

The modal solution is a linear combination of modal eigenfunctions 

 �̂�𝑝 = �𝑎𝑎𝑚𝑚Ψ𝑚𝑚
𝑚𝑚

, (A.1) 

where 𝑎𝑎𝑚𝑚 are the modal amplitudes and the eigenfunctions satisfy the homogeneous Helmholtz 

equation  

 ∇2Ψ𝑚𝑚 + 𝑘𝑘𝑚𝑚2Ψ𝑚𝑚 = 0 (A.2) 

and the boundary-value problem, where 𝑘𝑘𝑚𝑚2 represents the eigenvalues. The inhomogeneous 

wave equation for a point source at a single position 𝑟𝑟0 in a room is 

 ∇2𝑝𝑝 −
1
𝑐𝑐2
𝜕𝜕2𝑝𝑝
𝜕𝜕𝑡𝑡2

= −𝑗𝑗𝜌𝜌0𝑐𝑐𝑘𝑘𝑄𝑄𝑠𝑠(𝑡𝑡)𝛿𝛿(𝑟𝑟 − 𝑟𝑟0). (A.3) 

The term on the right hand side represents the point source, where 𝑄𝑄𝑠𝑠 is the source strength.1  

 Assuming the solution is time harmonic, or taking the Fourier transform of Eq. (A.3), 

gives the inhomogeneous Helmholtz equation follows as 

 ∇2�̂�𝑝 + 𝑘𝑘2�̂�𝑝 = −𝑗𝑗𝜌𝜌0𝑐𝑐𝑘𝑘𝑄𝑄�𝑠𝑠𝛿𝛿(𝑟𝑟 − 𝑟𝑟0), (A.4) 

Fig. A.1. A rectangular parallelepiped with the origin (O) in the corner. 
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where the circumflex marks denote complex variables in the frequency domain (𝜔𝜔).  To solve 

for the modal amplitudes and eigenfunctions in Eq. (A.1), one can first multiply Eq. (A.4) by the 

conjugate of the eigenfunction Ψ𝑚𝑚∗ , where the subscript 𝑚𝑚 represent the mth mode:  

 Ψ𝑚𝑚∗ ∇2�̂�𝑝 + 𝑘𝑘2Ψ𝑚𝑚∗ �̂�𝑝 = −𝑗𝑗𝜌𝜌0𝑐𝑐𝑘𝑘𝑄𝑄�𝑠𝑠𝛿𝛿(𝑟𝑟 − 𝑟𝑟0)Ψ𝑚𝑚∗ . (A.5) 

Adding zero to the quantity Ψ𝑚𝑚∗ ∇2�̂�𝑝, 

 Ψ𝑚𝑚∗ ∇2�̂�𝑝 = Ψ𝑚𝑚∗ ∇2�̂�𝑝 + (�̂�𝑝∇2Ψ𝑚𝑚∗ − �̂�𝑝∇2Ψ𝑚𝑚∗ ) = �̂�𝑝∇2Ψ𝑚𝑚∗ + ∇ ∙ (Ψm∗ ∇�̂�𝑝 − �̂�𝑝∇Ψ𝑚𝑚∗ ), (A.6) 

Eq. (A.5) becomes 

 �̂�𝑝∇2Ψ𝑚𝑚∗ + ∇ ∙ (Ψm∗ ∇�̂�𝑝 − �̂�𝑝∇Ψ𝑚𝑚∗ ) + 𝑘𝑘2Ψ𝑚𝑚∗ �̂�𝑝 = −𝑗𝑗𝜌𝜌0𝑐𝑐𝑘𝑘𝑄𝑄�𝑠𝑠𝛿𝛿(𝑟𝑟 − 𝑟𝑟0)Ψ𝑚𝑚∗ . (A.7) 

Since the eigenfunction satisfies the Helmholtz equation [see Eq. (A.2)], 

 (𝑘𝑘2 − 𝑘𝑘𝑚𝑚2 )�̂�𝑝Ψ𝑚𝑚∗ + ∇ ∙ (Ψm∗ ∇�̂�𝑝 − �̂�𝑝∇Ψ𝑚𝑚∗ ) = −𝑗𝑗𝜌𝜌0𝑐𝑐𝑘𝑘𝑄𝑄�𝑠𝑠𝛿𝛿(𝑟𝑟 − 𝑟𝑟0)Ψ𝑚𝑚∗ . (A.8) 

Integrating over the entire volume, using Gauss’ theorem, and applying the sifting property of 

the Dirac delta function, this becomes 

 � (𝑘𝑘2 − 𝑘𝑘𝑚𝑚2 )�̂�𝑝Ψ𝑚𝑚∗ 𝑑𝑑𝑚𝑚
𝑉𝑉

+ � (Ψm∗ ∇�̂�𝑝 − �̂�𝑝∇Ψ𝑚𝑚∗ ) ∙ n 𝑑𝑑𝑆𝑆
𝑆𝑆

= −𝑗𝑗𝜌𝜌0𝑐𝑐𝑘𝑘𝑄𝑄�𝑠𝑠Ψ𝑚𝑚∗ (𝑟𝑟0), (A.9) 

which matches the second line of Eq. (A.8) in Xu.17  

We can simplify the result further by using what we know about the impedance boundary 

conditions for (presumably) locally reacting surfaces.  The normal specific acoustic wall 

impedance 𝑍𝑍𝑆𝑆 is the pressure over the normal velocity component 𝑢𝑢�𝑚𝑚 into the surface 𝑆𝑆: 

 𝑍𝑍𝑆𝑆 = �
�̂�𝑝
𝑢𝑢�𝑚𝑚
�
𝑆𝑆

. (A.10) 

The latter is determined from the time-harmonic Euler’s equation 
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 𝑢𝑢�𝑚𝑚 = −
1

𝑗𝑗𝜔𝜔𝜌𝜌0
𝜕𝜕�̂�𝑝
𝜕𝜕𝑀𝑀

= −
1

𝑗𝑗𝜔𝜔𝜌𝜌0
∇�̂�𝑝 ∙ 𝑀𝑀�⃑ , (A.11) 

where 𝑀𝑀�⃑  is the unit vector into the surface of the wall.  It follows that  

 �̂�𝑝 = −
𝑍𝑍𝑆𝑆
𝑗𝑗𝜔𝜔𝜌𝜌0

𝜕𝜕�̂�𝑝
𝜕𝜕𝑀𝑀

. (A.12) 

Using the normalized, dimensionless specific acoustic impedance  

 ζ =
𝑍𝑍𝑆𝑆
𝜌𝜌0𝑐𝑐

 , (A.13) 

the relationship can be rewritten as  

 𝜁𝜁
∂�̂�𝑝
∂𝑀𝑀�⃑

= −𝑗𝑗𝑘𝑘�̂�𝑝 (A.14) 

or 

∂�̂�𝑝
∂𝑀𝑀�⃑

= γ�̂�𝑝, (A.15) 

where  

γ = −𝑗𝑗𝑘𝑘 �
𝜌𝜌0𝑐𝑐
𝑍𝑍𝑆𝑆
� = −

𝑗𝑗𝑘𝑘
𝜁𝜁

 (A.16) 

is proportional to the dimensionless specific acoustic admittance and will be called the modified 

specific acoustic admittance.*  The boundary condition for the eigenfunction is likewise 

 �
∂Ψn
∂𝑀𝑀�⃑

�
𝑆𝑆

= 𝛾𝛾′Ψ𝑚𝑚. (A.17) 

                                                 
* Traditionally, the normalized specific acoustic admittance is written as 𝛽𝛽 = 𝜌𝜌0𝑐𝑐

𝑍𝑍�𝑆𝑆
.  The modified specific acoustic 

admittance includes the extra 𝑗𝑗𝑘𝑘 modifier on the normalized specific acoustic admittance, as in Eq. (A.16). 
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The value of  𝛾𝛾′ is typically set to zero for classical modal analysis, and will be further defined in 

section A.3.   

Using  Eqs. (A.15) and (A.17) we can write Eq. (A.9) as 

 � (𝑘𝑘2 − 𝑘𝑘𝑚𝑚2 )�̂�𝑝Ψ𝑚𝑚∗ 𝑑𝑑𝑚𝑚
𝑉𝑉

+ � (𝛾𝛾 − 𝛾𝛾′)�̂�𝑝Ψ𝑚𝑚∗ 𝑑𝑑𝑆𝑆
𝑆𝑆

= −𝑗𝑗𝜌𝜌0𝑐𝑐𝑘𝑘𝑄𝑄�𝑆𝑆Ψ𝑚𝑚∗ (𝑟𝑟0). (A.18) 

We then expand the pressure as a linear combination of modal amplitudes and eigenfunctions as 

in Eq. (A.1) and interchange summation and integration to yield 

 �𝑎𝑎𝑚𝑚� (𝑘𝑘2 − 𝑘𝑘𝑚𝑚2 )Ψ𝑚𝑚Ψ𝑚𝑚∗
𝑉𝑉

𝑑𝑑𝑚𝑚
𝑚𝑚

+ �𝑎𝑎𝑚𝑚� (𝛾𝛾 − 𝛾𝛾′)Ψ𝑚𝑚Ψ𝑚𝑚∗ 𝑑𝑑𝑆𝑆
𝑆𝑆𝑚𝑚

= −𝑗𝑗𝜌𝜌0𝑐𝑐𝑘𝑘𝑄𝑄�𝑆𝑆Ψ𝑚𝑚∗ (𝑟𝑟0). (A.19) 

Here the index 𝑀𝑀 represents one mode, which is a combination of all the index terms, 𝑀𝑀 =

(𝑀𝑀𝑥𝑥,𝑀𝑀𝑦𝑦,𝑀𝑀𝑧𝑧).  We can simplify these equations and write them in matrix form to solve for 𝑎𝑎𝑚𝑚 very 

efficiently.  We begin by making the substitutions 

 𝐶𝐶𝑚𝑚𝑚𝑚 = � Ψ𝑚𝑚Ψ𝑚𝑚∗
𝑉𝑉

𝑑𝑑𝑚𝑚 = Λ𝑚𝑚𝑚𝑚𝛿𝛿𝑚𝑚𝑚𝑚 (A.20) 

and 

 𝐷𝐷𝑚𝑚𝑚𝑚 = � (𝛾𝛾 − 𝛾𝛾′)Ψ𝑚𝑚Ψ𝑚𝑚∗ 𝑑𝑑𝑆𝑆
𝑆𝑆

, (A.21) 

where Λ𝑚𝑚𝑚𝑚 is a normalization constant and 𝛿𝛿𝑚𝑚𝑚𝑚 is the Kronecker delta function.  Equation 

(A.19) can then be rewritten as 

 �𝑎𝑎𝑚𝑚[(𝑘𝑘2 − 𝑘𝑘𝑚𝑚2 )𝐶𝐶𝑚𝑚𝑚𝑚 + 𝐷𝐷𝑚𝑚𝑚𝑚]
𝑚𝑚

= −𝑗𝑗𝜌𝜌0𝑐𝑐𝑘𝑘𝑄𝑄�𝑆𝑆Ψ𝑚𝑚∗ (𝑟𝑟0), (A.22) 

or in matrix form 
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�
(𝑘𝑘2 − 𝑘𝑘12)𝐶𝐶11 + 𝐷𝐷11 𝐷𝐷12 ⋯

𝐷𝐷21 (𝑘𝑘2 − 𝑘𝑘22)𝐶𝐶22 + 𝐷𝐷22 ⋯
⋮ ⋮ ⋱

� ∙ �
𝑎𝑎1
𝑎𝑎2
⋮
�

= �
−𝑗𝑗𝜌𝜌0𝑐𝑐𝑘𝑘𝑄𝑄�𝑆𝑆Ψ1∗(𝑟𝑟0)
−𝑗𝑗𝜌𝜌0𝑐𝑐𝑘𝑘𝑄𝑄�𝑆𝑆Ψ2∗(𝑟𝑟0)

⋮
�. 

(A.23) 

The modal amplitudes 𝑎𝑎𝑚𝑚 can be solved quite simply from Eq. (A.23) and the pressure at any 

point in the room can be calculated using Eq. (A.1). 

A.2 Eigenfunctions 

The eigenfunction from Eq. (A.1) can be determined using the separation of variables 

technique. We begin by assuming the eigenfunction is a product of three spatially independent 

functions: 

 Ψ = Ψ𝑥𝑥(𝑥𝑥)Ψ𝑦𝑦(𝑦𝑦)Ψ𝑧𝑧(𝑧𝑧). (A.24) 

From Eq. (A.2) we see that 

 
Ψ𝑥𝑥′′

Ψ𝑥𝑥
+
Ψ𝑦𝑦′′

Ψ𝑦𝑦
+
Ψ𝑧𝑧′′

Ψ𝑧𝑧
+ 𝑘𝑘2 = 0. (A.25) 

Each term can subsequently be set equal to a constant: 

 
Ψ𝑥𝑥′′

Ψ𝑥𝑥
= −𝑘𝑘𝑥𝑥2;      

Ψ𝑦𝑦′′

Ψ𝑦𝑦
= −𝑘𝑘𝑦𝑦2;     

Ψ𝑧𝑧′′

Ψ𝑧𝑧
= −𝑘𝑘𝑧𝑧2.  (A.26) 

Solving for Ψ𝑖𝑖 in Eq. (A.26) yields 

 Ψ𝑥𝑥 = 𝐴𝐴 cos(𝑘𝑘𝑥𝑥𝑥𝑥) + 𝐵𝐵 sin(𝑘𝑘𝑥𝑥𝑥𝑥),  

 Ψ𝑦𝑦 = 𝐶𝐶 cos�𝑘𝑘𝑦𝑦𝑦𝑦� + 𝐷𝐷 sin�𝑘𝑘𝑦𝑦𝑦𝑦�,  

 Ψ𝑧𝑧 = 𝐸𝐸 cos(𝑘𝑘𝑧𝑧𝑧𝑧) + 𝐹𝐹 sin(𝑘𝑘𝑧𝑧𝑧𝑧), (A.27) 

so that Eq. (A.24) becomes 
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Ψ = [𝐴𝐴 cos(𝑘𝑘𝑥𝑥𝑥𝑥) + 𝐵𝐵 sin(𝑘𝑘𝑥𝑥𝑥𝑥)] �𝐶𝐶 cos�𝑘𝑘𝑦𝑦𝑦𝑦� + 𝐷𝐷 sin�𝑘𝑘𝑦𝑦𝑦𝑦��[𝐸𝐸 cos(𝑘𝑘𝑧𝑧𝑧𝑧)

+ 𝐹𝐹 sin(𝑘𝑘𝑧𝑧𝑧𝑧)]. 
(A.28) 

Using the boundary conditions from Eq. (A.17) in the 𝑥𝑥 direction at the 𝑥𝑥 = 0 wall and 

solving for the constant 𝐵𝐵 yields 

 
−𝑘𝑘𝑥𝑥𝐴𝐴 sin(𝑘𝑘𝑥𝑥0) + 𝑘𝑘𝑥𝑥𝐵𝐵 cos(𝑘𝑘𝑥𝑥0)

𝐴𝐴 cos(𝑘𝑘𝑥𝑥0) + 𝐵𝐵 sin(𝑘𝑘𝑥𝑥0) =
𝑘𝑘𝑥𝑥𝐵𝐵
𝐴𝐴

= −𝛾𝛾𝑥𝑥0′ ,  

 𝐵𝐵 =  −
𝛾𝛾𝑥𝑥0′ 𝐴𝐴
𝑘𝑘𝑥𝑥

. (A.29) 

The modified specific acoustic admittance 𝛾𝛾′ is negative because the negative 𝑥𝑥 direction is into 

the wall.  We can now write Eq. (A.27) as  

 Ψ𝑥𝑥 = 𝐴𝐴 �cos(𝑘𝑘𝑥𝑥𝑥𝑥) −
𝛾𝛾𝑥𝑥0′

𝑘𝑘𝑥𝑥
sin(𝑘𝑘𝑥𝑥𝑥𝑥)�. (A.30) 

Now using the 𝑥𝑥 = 𝐿𝐿𝑥𝑥 boundary condition, we can write  

 
−𝐴𝐴[𝑘𝑘𝑥𝑥 sin(𝑘𝑘𝑥𝑥𝐿𝐿𝑥𝑥) + 𝛾𝛾𝑥𝑥0′ cos(𝑘𝑘𝑥𝑥𝐿𝐿𝑥𝑥)]

𝐴𝐴 �cos(𝑘𝑘𝑥𝑥𝐿𝐿𝑥𝑥) − 𝛾𝛾𝑥𝑥0′
𝑘𝑘𝑥𝑥

sin(𝑘𝑘𝑥𝑥𝐿𝐿𝑥𝑥)�
= 𝛾𝛾𝑥𝑥𝐿𝐿′  , (A.31) 

which simplifies to the transcendental equation  

 tan(𝑘𝑘𝑥𝑥𝐿𝐿𝑥𝑥) =
(𝛾𝛾𝑥𝑥0′ + 𝛾𝛾𝑥𝑥𝐿𝐿′ )𝑘𝑘𝑥𝑥
𝛾𝛾𝑥𝑥0′ 𝛾𝛾𝑥𝑥𝐿𝐿′ − 𝑘𝑘𝑥𝑥2

. (A.32) 

The same process yields similar equations in the y and z directions: 

 tan�𝑘𝑘𝑦𝑦𝐿𝐿𝑦𝑦� =
�𝛾𝛾𝑦𝑦0′ + 𝛾𝛾𝑦𝑦𝐿𝐿′ �𝑘𝑘𝑦𝑦
𝛾𝛾𝑦𝑦0′ 𝛾𝛾𝑦𝑦𝐿𝐿′ − 𝑘𝑘𝑦𝑦2

 
 

(A.33) 

and  

 tan(𝑘𝑘𝑧𝑧𝐿𝐿𝑧𝑧) =
(𝛾𝛾𝑧𝑧0′ + 𝛾𝛾𝑧𝑧𝐿𝐿′ )𝑘𝑘𝑧𝑧
𝛾𝛾𝑧𝑧0′ 𝛾𝛾𝑧𝑧𝐿𝐿′ − 𝑘𝑘𝑧𝑧2

. 
 

(A.34) 

By assuming that parallel walls have the same admittance, we may further reduce Eq. (A.32) to  
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 𝑘𝑘𝑥𝑥 tan �
𝑘𝑘𝑥𝑥𝐿𝐿𝑥𝑥

2
� = −𝛾𝛾𝑥𝑥′ (A.35) 

or 

 𝑘𝑘𝑥𝑥 cot �
𝑘𝑘𝑥𝑥𝐿𝐿𝑥𝑥

2
� = 𝛾𝛾𝑥𝑥′ , (A.36) 

with similar results in the 𝑦𝑦 and 𝑧𝑧 directions.  The eigenvalues 𝑘𝑘𝑥𝑥 ,𝑘𝑘𝑦𝑦,𝑘𝑘𝑧𝑧 can be solved 

numerically by using the interval Newton/generalized bisection (INGB) method.29  

In summary, to solve for the pressure in the room we use a linear combination of modal 

eigenfunctions, where the modal amplitudes 𝑎𝑎𝑚𝑚 are solved using Eq. (A.23), the eigenvalues 

from Eqs. (A.32) through (A.34), and the eigenfunctions from Eq. (A.28). 

A.3 Boundary Conditions 

Up to this point, we have derived the equations in the most general terms, making very few 

assumptions.  We now need to decide how to treat the modified specific acoustic admittance 𝛾𝛾′ 

for the eigenvalue boundary condition in Eq. (A.17).  The following sections discuss different 

methods and their benefits and drawbacks. 

A.3.1 Exact Modal Analysis 

The actual Robin boundary condition is given in Eq. (A.15), with the modified 

normalized specific acoustic admittance 𝛾𝛾 given by Eq. (A.16).  To match our boundary 

conditions exactly we would set 𝛾𝛾′ = 𝛾𝛾.  This is known as the exact modal analysis (EMA) 

method, giving the advantage of eigenfunctions that satisfy the exact boundary conditions.  This 

condition also makes the square matrix in Eq. (A.23) sparse (as 𝐷𝐷𝑚𝑚𝑚𝑚 = 0 always) so the modes 

are uncoupled.  The disadvantage of EMA is that 𝛾𝛾′ is complex, which means that the 
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eigenvalues must be solved numerically in the complex domain, which can be computationally 

expensive.  

A.3.2. Classical Modal Analysis (Large Impedance Approximation) 

Another option for 𝛾𝛾′ is to say that the admittance of the boundary is so small that it is 

effectively zero, making 𝛾𝛾′ = 0. This classical modal analysis (CMA) approach is the derivation 

that Pierce outlines1 and will be briefly explained here.  With 𝛾𝛾′ = 0, Eq. (A.28) becomes 

 Ψ = cos(𝑘𝑘𝑥𝑥𝑥𝑥) cos�𝑘𝑘𝑦𝑦𝑦𝑦� cos(𝑘𝑘𝑧𝑧𝑧𝑧). (A.37) 

We can solve for the eigenvalues by substituting 𝛾𝛾′ = 0 into Eq. (A.32): 

 tan(𝑘𝑘𝑥𝑥𝐿𝐿𝑥𝑥) = 0, (A.38) 

which leads to the allowed values 

 𝑘𝑘𝑥𝑥𝑛𝑛𝑥𝑥 =
𝑀𝑀𝑥𝑥𝜋𝜋
𝐿𝐿𝑥𝑥

 , (A.39) 

with 

 𝑀𝑀𝑥𝑥 = 0,1,2, … (A.40) 

For the y and z directions, 𝑀𝑀𝑦𝑦 and 𝑀𝑀𝑧𝑧 are also nonnegative integers: 

 𝑘𝑘𝑦𝑦𝑛𝑛𝑦𝑦 =
𝑀𝑀𝑦𝑦𝜋𝜋
𝐿𝐿𝑦𝑦

;  𝑀𝑀𝑦𝑦 = 0,1,2, … (A.41) 

and 

 𝑘𝑘𝑧𝑧𝑛𝑛𝑧𝑧 =
𝑀𝑀𝑧𝑧𝜋𝜋
𝐿𝐿𝑧𝑧

;  𝑀𝑀𝑧𝑧 = 0,1,2, …  (A.42) 

For computational purposes, the indices 𝑀𝑀𝑥𝑥,𝑀𝑀𝑦𝑦, 𝑀𝑀𝑧𝑧 must be truncated to a finite number of 

modes.  If the impedance of the walls is sufficiently large, we may assume that the 𝑚𝑚 ≠ 𝑀𝑀 terms 

in Eq. (A.21) are negligible and set them to zero such that 
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 𝐷𝐷𝑚𝑚𝑚𝑚 = � 𝛾𝛾Ψ𝑚𝑚2𝑑𝑑𝑆𝑆
𝑆𝑆

. (A.43) 

The normalization constant from Eq. (A.20) can be written as 

 Λ𝑚𝑚 =
𝑚𝑚

𝜖𝜖𝑚𝑚𝑥𝑥𝜖𝜖𝑚𝑚𝑦𝑦𝜖𝜖𝑚𝑚𝑧𝑧
, (A.44) 

where  

 𝜖𝜖𝑖𝑖 = �1;  𝑖𝑖 = 0
2;  𝑖𝑖 ≠ 0 . 

          

(A.45) 

With these assumptions, we can rewrite Eq. (A.22) for a single term and then solve for the modal 

amplitudes 𝑎𝑎𝑚𝑚 such that 

 𝑎𝑎𝑚𝑚 = −
𝑗𝑗𝜌𝜌0𝑐𝑐𝑘𝑘𝑄𝑄�𝑠𝑠Ψ𝑚𝑚 (𝑟𝑟0)

Λ𝑚𝑚(𝑘𝑘2 − 𝑘𝑘𝑚𝑚2) − 𝐷𝐷𝑚𝑚𝑚𝑚   
. (A.46) 

The pressure can then be written using Eq. (A.1) as 

 �̂�𝑝 = −𝑗𝑗𝜌𝜌0𝑐𝑐𝑘𝑘𝑄𝑄�𝑠𝑠�
Ψ𝑚𝑚 (𝑟𝑟0)Ψ𝑚𝑚(r⃑)

Λ𝑚𝑚(𝑘𝑘2 − 𝑘𝑘𝑚𝑚2) − 𝑗𝑗𝑘𝑘∬ Ψ𝑚𝑚2𝑆𝑆
𝜌𝜌0𝑐𝑐
𝑍𝑍𝑆𝑆

𝑑𝑑𝑆𝑆
.

𝑚𝑚

 (A.47) 

 A.3.3 Modified Modal Analysis 

So far we have discussed the two extremes for 𝛾𝛾′ that we may use.  The EMA approach 

uses the actual wall admittance while the CMA approach assumes that the walls are extremely 

rigid or that the admittance is negligible for the eigenfunction boundary.  While EMA is difficult 

to solve and CMA does not match the actual boundary conditions, modified modal analysis 

(MMA) attempts to bridge the gap between the two methods by setting 𝛾𝛾′ = 𝑅𝑅𝑀𝑀{𝛾𝛾}.  This keeps 

the true boundary condition partially satisfied, and ensures that the eigenvalue root search is 

more efficient than that of EMA because it is not in the complex domain. 
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A.3.4 Hybrid Modal Analysis 

While the above methods provide a complete solution to the wave equation in the enclosure—as 

long as the boundary conditions are chosen appropriately—the solution requires many 

eigenvalues to converge to a solution in the region near the point source.  This weakness may be 

overcome by adding the free-field Green’s function for a point source to Eq. (A.1), providing a 

direct-field and reverberant-field term in the solution: 

 �̂�𝑝 =
𝑗𝑗𝜌𝜌𝑜𝑜𝑐𝑐𝑘𝑘𝑄𝑄�𝑠𝑠

4𝜋𝜋
[𝐺𝐺(𝑟𝑟|𝑟𝑟0) + 𝐹𝐹(𝑟𝑟)], (A.48) 

where 𝐺𝐺(𝑟𝑟|𝑟𝑟0) is the free-field Green’s function, 

 𝐺𝐺(𝑟𝑟|𝑟𝑟0) =
𝑀𝑀−𝑖𝑖𝑗𝑗∙(𝑟𝑟−𝑟𝑟0)

|𝑟𝑟 − 𝑟𝑟0| , (A.49) 

and 𝐹𝐹(𝑟𝑟) is the reverberant field term1,35 

 𝐹𝐹(𝑟𝑟) = �𝑏𝑏𝑚𝑚Ψ𝑚𝑚. (A.50) 

Using Eqs. (A.48) and (A.49) in Eq. (A.18), and employing the sifting property of the Dirac delta 

function on the right-hand side [see Eqs. (A.8) and (A.9)] yields 

 

� (𝑘𝑘2 − 𝑘𝑘𝑚𝑚2 )
𝑗𝑗𝜌𝜌𝑜𝑜𝑐𝑐𝑘𝑘𝑄𝑄�𝑠𝑠

4𝜋𝜋
(𝐺𝐺 + �𝑏𝑏𝑚𝑚Ψ𝑚𝑚

𝑚𝑚

)Ψ𝑚𝑚∗ 𝑑𝑑𝑚𝑚
𝑉𝑉

+ � (𝛾𝛾 − 𝛾𝛾′)
𝑗𝑗𝜌𝜌𝑜𝑜𝑐𝑐𝑘𝑘𝑄𝑄�𝑠𝑠

4𝜋𝜋
(𝐺𝐺 + �𝑏𝑏𝑚𝑚Ψ𝑚𝑚

𝑚𝑚

)Ψ𝑚𝑚∗ 𝑑𝑑𝑆𝑆
𝑆𝑆

= � −𝑗𝑗𝜌𝜌0𝑐𝑐𝑘𝑘𝑄𝑄�𝑆𝑆𝛿𝛿(𝑟𝑟 − 𝑟𝑟0)Ψ𝑚𝑚∗ (𝑟𝑟0)
𝑉𝑉

𝑑𝑑𝑚𝑚. 

(A.51) 

Putting all the 𝑏𝑏𝑚𝑚 terms on one side and dividing through by 𝑗𝑗𝜌𝜌0𝑐𝑐𝑘𝑘𝑄𝑄�𝑠𝑠/4𝜋𝜋 leads to the expression 
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�𝑏𝑏𝑚𝑚
𝑚𝑚

(𝑘𝑘2 − 𝑘𝑘𝑚𝑚2 )� Ψ𝑚𝑚∗ Ψ𝑚𝑚𝑑𝑑𝑚𝑚
𝑉𝑉

+ �𝑏𝑏𝑚𝑚
𝑚𝑚

� (𝛾𝛾 − 𝛾𝛾′)Ψ𝑚𝑚∗ Ψ𝑚𝑚𝑑𝑑𝑆𝑆
𝑆𝑆

= −� (𝑘𝑘2 − 𝑘𝑘𝑚𝑚2 )𝐺𝐺Ψ𝑚𝑚∗ 𝑑𝑑𝑚𝑚
𝑉𝑉

−� (𝛾𝛾 − 𝛾𝛾′)𝐺𝐺Ψ𝑚𝑚∗ 𝑑𝑑𝑆𝑆
𝑆𝑆

−� 4𝜋𝜋𝛿𝛿(𝑟𝑟 − 𝑟𝑟0)Ψ𝑚𝑚∗
𝑉𝑉

𝑑𝑑𝑚𝑚. 

(A.52) 

The left hand side of this equation is formally the same as the left-hand side of Eq. (A.22), so 

from here we concentrate on the right-hand side of Eq. (A.52).  Grouping the terms within a 

single volume integral, we can write the right hand side as 

 … = −� (𝛾𝛾 − 𝛾𝛾′)𝐺𝐺Ψ𝑚𝑚∗ 𝑑𝑑𝑆𝑆
𝑆𝑆

−� {[𝑘𝑘2𝐺𝐺 + 4𝜋𝜋𝛿𝛿(𝑟𝑟 − 𝑟𝑟0)] − 𝑘𝑘𝑚𝑚2 𝐺𝐺}Ψ𝑚𝑚∗
𝑉𝑉

𝑑𝑑𝑚𝑚. (A.53) 

Because the Green’s function is a solution to the inhomogeneous Helmholtz equation [Eq. (A.4)] 

for unit monopole amplitude or 𝑄𝑄�𝑠𝑠 = −𝑗𝑗4𝜋𝜋/𝜌𝜌0𝑐𝑐𝑘𝑘, we can rewrite 4𝜋𝜋𝛿𝛿(𝑟𝑟 − 𝑟𝑟0) = −∇2𝐺𝐺 − 𝑘𝑘2𝐺𝐺 

in the volume integral, such that 

 … = −� (𝛾𝛾 − 𝛾𝛾′)𝐺𝐺Ψ𝑚𝑚∗ 𝑑𝑑𝑆𝑆
𝑆𝑆

−� [−∇2𝐺𝐺 − 𝑘𝑘𝑚𝑚2 𝐺𝐺]Ψ𝑚𝑚∗
𝑉𝑉

𝑑𝑑𝑚𝑚. (A.54) 

Distributing the eigenfunction inside the volume integral and using Eq. (A.2), we have 

 … = −� (𝛾𝛾 − 𝛾𝛾′)𝐺𝐺Ψ𝑚𝑚∗ 𝑑𝑑𝑆𝑆
𝑆𝑆

−� [−Ψ𝑚𝑚∗ ∇2𝐺𝐺 + 𝐺𝐺∇2Ψ𝑚𝑚∗ ]
𝑉𝑉

𝑑𝑑𝑚𝑚. (A.55) 

Using Green’s second identity for the volume integral then yields 

 … = −� (𝛾𝛾 − 𝛾𝛾′)𝐺𝐺Ψ𝑚𝑚∗ 𝑑𝑑𝑆𝑆
𝑆𝑆

−� [𝐺𝐺∇Ψ𝑚𝑚∗ − Ψ𝑚𝑚∗ ∇𝐺𝐺] ∙ 𝑀𝑀�⃑  𝑑𝑑𝑆𝑆
𝑆𝑆

. (A.56) 

The surface integrals can be combined.  We can also use Eq. (A.17) for the gradient of the 

eigenfunction, giving 



A.4 Convergence 105 

 

 … = −� [(𝛾𝛾 − 𝛾𝛾′)𝐺𝐺Ψ𝑚𝑚∗ + 𝐺𝐺γ′Ψ𝑚𝑚∗ − Ψ𝑚𝑚∗ ∇𝐺𝐺 ∙ 𝑀𝑀�⃑ ]𝑑𝑑𝑆𝑆
𝑆𝑆

 (A.57) 

or 

 … = −� �Ψ𝑚𝑚∗ �𝛾𝛾𝐺𝐺 −
𝜕𝜕𝐺𝐺
𝜕𝜕𝑀𝑀�⃑
�� 𝑑𝑑𝑆𝑆

𝑆𝑆
, (A.58) 

which matches the solution from Xu and Sommerfeldt.22  The entire equation for the modal 

amplitudes after including the free-field Green’s function in the solution is similar to Eq. (A.22), 

with a significant change to the right-hand side: 

 �𝑏𝑏𝑚𝑚[(𝑘𝑘2 − 𝑘𝑘𝑚𝑚2 )𝐶𝐶𝑚𝑚𝑚𝑚 + 𝐷𝐷𝑚𝑚𝑚𝑚]
𝑚𝑚

= −� �Ψ𝑚𝑚∗ �𝛾𝛾𝐺𝐺 −
𝜕𝜕𝐺𝐺
𝜕𝜕𝑀𝑀
�� 𝑑𝑑𝑆𝑆

𝑆𝑆
. (A.61) 

The solutions are more complicated due to the surface integral, but they may be evaluated 

numerically.  The sound pressure then results from Eq. (A.48) by substituting the 𝑏𝑏𝑚𝑚 values into 

Eq. (A.50).   

Xu and Sommerfeldt show that this hybrid method converges with fewer modes in the 

summation than the standard formulation.  This method can be used with any method mentioned 

previously (EMA, CMA, MMA), but is most effective when used in conjunction with MMA 

because the convergence rate improves while the boundary conditions are still partially met.  

This hybrid modified modal analysis method (HMMA) is the approach used in this thesis for 

simulations. 

A.4 Convergence 

A.4.1 Truncating Summation Terms 

In theory, the number of modes to include in the summation is infinite.  Since this cannot 

be realized in practice, a method of determining how many modes should be used is critical.  As 
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can be noted in the denominator of Eq. (A.47), as the eigenvalue or modal wavenumber 𝑘𝑘𝑚𝑚 

approaches the acoustic wavenumber 𝑘𝑘, the modal amplitude becomes large.  When the modal 

wavenumber is far from the acoustic wavenumber, the modal amplitude will become negligible.  

This allows us to define a modal width 𝑘𝑘𝑤𝑤 that defines the range of modes to sum over. 

Pierce explains through a series of approximations that the imaginary part of Eq. (A.47) 

can be reduced to 𝑖𝑖𝑘𝑘𝑆𝑆𝛼𝛼�/4𝑚𝑚.1,6  From this approximation, an associated half-energy bandwidth 

 𝑘𝑘𝐵𝐵𝐵𝐵 =
𝑆𝑆𝛼𝛼�
4𝑚𝑚

, (A.62) 

can be defined in terms of wavenumber.1,6 We can then define a number of bandwidths 𝑁𝑁𝐵𝐵𝐵𝐵 to 

determine limits for the number of eigenvalues to sum over.23 The modal width is then defined as 

𝑘𝑘𝑤𝑤 = 𝑁𝑁𝐵𝐵𝐵𝐵𝑘𝑘𝐵𝐵𝐵𝐵.  The eigenvalues included in the summation are the values between 𝑘𝑘 ± 𝑘𝑘𝑤𝑤. 

This allows for quicker calculations by neglecting all of the modes with negligible amplitudes 

that exist outside the modal width.  The approach is illustrated in Fig. A.2.  The modal 

amplitudes for a room with an average absorption coefficient 𝛼𝛼� = 0.5 and excited at a frequency 

of 500 Hz are normalized to the maximum value and plotted as a function of modal 

wavenumber.  The vertical dashed red lines represent the cutoff wavenumbers around the 

resonance; modal amplitudes outside the wavenumbers are not included in the summation. The 

judicious use of limited numbers of summation terms produces a significant savings in 

computation time, while still enabling reasonable solutions. 
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A.4.2 Classical Modal Analysis and Hybrid Modified Modal Analysis 

As discussed earlier, the HMMA overcomes the CMA weakness of poor convergence near the 

point source for the traditional method.  Farther from the source, the two are nearly identical for 

low absorption but begin to diverge as absorption increases. These effects are seen in Fig. A.3 

where the PED for two different uniform absorptions (𝛼𝛼� = 0.01 and 𝛼𝛼� = 0.1) are plotted at 

different distances from a monopole along a common axis. The HMMA method for a single 

modal width is compared to the CMA method for three increasing modal widths.  The response 

of the same point source radiating into free-space is also plotted for comparison.  As more 

eigenvalues are included in the summation (larger modal width) the CMA method converges to 

the HMMA method and the free-field response of the point source near the source. The 

advantages then of using the HMMA method are that fewer terms are required to converge in the 

Fig. A.2. The normalized modal amplitudes of a room with dimensions �𝐿𝐿𝑥𝑥 , 𝐿𝐿𝑦𝑦 , 𝐿𝐿𝑧𝑧� = (10, 16, 3), an 𝛼𝛼� = 0.5, 
and a 500 Hz excitation are plotted as a function of modal wavenumber.  Anything outside of the red dashed 
lines is not included in the modal summation.  The number of bandwidths was 𝑁𝑁𝐵𝐵𝐵𝐵 = 50 for this case.  The 
distance between the two dashed lines is 2𝑘𝑘𝑤𝑤. 
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N
or

m
al

iz
ed

 M
od

al
 A

m
pl

itu
de

 (𝑎𝑎
𝑚𝑚
) 



A.4 Convergence 108 

 

predominantly direct field and that more absorptive boundary conditions may be used, whereas 

the CMA is limited to the assumption of very rigid walls.  

 It is important to note that there are some undulations in Fig. A.3 in the expected 

reverberant field region (far from the source).  The Hopkins-Stryker equation does not predict 

these undulations, but instead assumes a constant value in the local spatially averaged 

reverberant-field.  Undulations over space and frequency are expected in the reverberant field.6  

Fig. A.3 actually demonstrates the necessity for local spatial averaging to smooth these 

reverberant field undulations out.  In practice, 1/3 octave bands are often measured, which 

inherently smooth the results. 

Fig. A.3. The axial SPL (re 20µ Pa) for two enclosures is plotted for both HMMA (𝑁𝑁𝐵𝐵𝐵𝐵 = 20) and CMA, the 
latter with three different modal widths (𝑁𝑁𝐵𝐵𝐵𝐵 = 1, 10, and 20) as functions of distance from the point source 
along a line.  The room dimensions are �𝐿𝐿𝑥𝑥 , 𝐿𝐿𝑦𝑦 , 𝐿𝐿𝑧𝑧� = (5, 6, 7) m.  The absorption is (a) 𝛼𝛼� = 0.1 and (b) 𝛼𝛼� =
0.01 both of which are uniformly distributed about the room.  The source excites the room at 200 Hz and is 
positioned exactly 1 m from the origin in all directions for both cases.  The points were measured along the 𝜃𝜃 =
45∘ and 𝜙𝜙 = 50∘ axis.  The free-field sound power level for the monopole source was 90 dB re 10-12 W.  

(a) 

(b) 
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A.5 Image Source Method 

When a source is near a rigid (or nearly rigid) reflecting plane, the reflection of a sound ray from 

the boundary to a position in the field can be treated as though it emerged from an image source 

with the same source strength.  This concept is illustrated in Fig. A.4.  For an enclosure, this 

concept can be extended infinitely for each boundary.  The steady-state acoustic pressure and 

particle velocity responses are then the summations of all image source contributions at a certain 

position. The following derivation of the image-source method is based on the derivation from 

Allen and Berkley24 for a rectangular parallelepiped enclosure geometry (see Fig. A.1), but could 

be generalized to other geometries.30 

A.5.1 Rigid Wall Solution 

The image source method can be derived from the modal analysis solution for completely rigid 

walls.24 This is represented by Eq. (A.47) with an infinite wall impedance (𝑍𝑍𝑆𝑆 → ∞): 

 �̂�𝑝(𝑘𝑘, 𝑟𝑟0, 𝑟𝑟) = −𝑗𝑗𝜌𝜌0𝑐𝑐𝑘𝑘𝑄𝑄�𝑠𝑠 � � �
Ψ𝑚𝑚𝑥𝑥,𝑚𝑚𝑦𝑦,𝑚𝑚𝑧𝑧(𝑟𝑟0)Ψ𝑚𝑚𝑥𝑥,𝑚𝑚𝑦𝑦,𝑚𝑚𝑧𝑧(𝑟𝑟)

Λ𝑚𝑚𝑥𝑥,𝑚𝑚𝑦𝑦,𝑚𝑚𝑧𝑧 �𝑘𝑘2 − 𝑘𝑘𝑚𝑚𝑥𝑥,𝑚𝑚𝑦𝑦,𝑚𝑚𝑧𝑧
2 �

∞

𝑚𝑚𝑧𝑧=0

∞

𝑚𝑚𝑦𝑦=0

∞

𝑚𝑚𝑥𝑥= 0

, (A.63) 

Fig. A.4. The direct and reflected sound due to a rigid boundary.  The reflection can be represented as an image 
source on the other side of the boundary. 
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where 𝑟𝑟0 and 𝑟𝑟 represent the source and receiver positions respectively.  The eigenvalues for a 

rigid-walled room are given in Eqs. (A.39) through (A.42) and the eigenfunction is given in Eq. 

(A.37).  

The eigenfunctions for a rigid-walled room are comprised of  cosine functions, which are 

even: 

 cos (−𝑥𝑥) = cos(𝑥𝑥). (A.64) 

This property allows us to substitute for the normalization constant [see Eqs. (A.44) and (A.45)] 

with a sum from −∞ to ∞ over 𝑀𝑀𝑥𝑥,𝑀𝑀𝑦𝑦 and 𝑀𝑀𝑧𝑧.  A simple example in one dimension will 

illustrate how this is done.  Assuming 𝑀𝑀𝑦𝑦 = 𝑀𝑀𝑧𝑧 = 0, 

 �
cos(𝑀𝑀𝑥𝑥𝑥𝑥)
Λ𝑚𝑚𝑥𝑥

=
cos(0𝑥𝑥) + 2 cos(1𝑥𝑥)

𝐿𝐿𝑥𝑥

1

𝑚𝑚𝑥𝑥=0

. (A.65) 

By summing from 𝑀𝑀𝑥𝑥 = −1 to 𝑀𝑀𝑥𝑥 = 1 without the 𝜖𝜖𝑚𝑚𝑥𝑥 factor of the normalization constant, we 

again have 

 �
cos(𝑀𝑀𝑥𝑥𝑥𝑥)

𝐿𝐿𝑥𝑥
=

cos(−𝑥𝑥) + cos(0𝑥𝑥) + cos(𝑥𝑥)
𝐿𝐿𝑥𝑥

1

𝑚𝑚𝑥𝑥=−1

=
cos(0𝑥𝑥) + 2 cos(1𝑥𝑥)

𝐿𝐿𝑥𝑥
, (A.66) 

This concept can be expanded to all three dimensions, meaning one can write Eq. (A.63), by 

factoring out 𝑚𝑚 = 𝐿𝐿𝑥𝑥𝐿𝐿𝑦𝑦𝐿𝐿𝑧𝑧 without the additional 𝜖𝜖𝑖𝑖 normalization constant as 

 �̂�𝑝(𝑘𝑘, 𝑟𝑟0, 𝑟𝑟) =
−𝑗𝑗𝜌𝜌0𝑐𝑐𝑘𝑘𝑄𝑄�𝑠𝑠

𝑚𝑚
� � �

Ψ𝑚𝑚𝑥𝑥,𝑚𝑚𝑦𝑦,𝑚𝑚𝑧𝑧(𝑟𝑟0)Ψ𝑚𝑚𝑥𝑥,𝑚𝑚𝑦𝑦,𝑚𝑚𝑧𝑧(𝑟𝑟)

�𝑘𝑘2 − 𝑘𝑘𝑚𝑚𝑥𝑥,𝑚𝑚𝑦𝑦,𝑚𝑚𝑧𝑧
2 �

∞

𝑚𝑚𝑧𝑧=−∞

∞

𝑚𝑚𝑦𝑦=−∞

∞

𝑚𝑚𝑥𝑥= −∞

. (A.68) 

The eigenfunctions can be written in terms of complex exponentials using the 

relationship 

 Ψ𝑥𝑥 = cos(𝑘𝑘𝑥𝑥𝑥𝑥) =
1
2
�𝑀𝑀𝑖𝑖𝑗𝑗𝑥𝑥𝑥𝑥 + 𝑀𝑀−𝑖𝑖𝑗𝑗𝑥𝑥𝑥𝑥�. (A.69) 
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Using 𝑀𝑀 = �𝑀𝑀𝑥𝑥, 𝑀𝑀𝑦𝑦,𝑀𝑀𝑧𝑧�, multiplying Ψ𝑚𝑚(𝒓𝒓0)Ψ𝑚𝑚(𝒓𝒓), and collecting terms, the pressure becomes 

 �̂�𝑝 = −
𝑗𝑗𝜌𝜌0𝑐𝑐𝑘𝑘𝑄𝑄�𝑠𝑠

8𝑚𝑚
� � � �

𝑀𝑀𝑖𝑖(𝑗𝑗𝑛𝑛∙𝑑𝑑𝑚𝑚)

[𝑘𝑘2 − 𝑘𝑘𝑚𝑚2]

1

𝑚𝑚𝑧𝑧=0

1

𝑚𝑚𝑦𝑦=0

1

𝑚𝑚𝑥𝑥=0

∞

𝑚𝑚=−∞

, (A.70) 

where 𝑑𝑑𝑚𝑚 represents the following eight combinations 

 d𝑚𝑚 = �𝑥𝑥0 + (2𝑚𝑚𝑥𝑥 − 1)𝑥𝑥 ,𝑦𝑦0 + (2𝑚𝑚𝑦𝑦 − 1)𝑦𝑦,  𝑧𝑧0 + (2𝑚𝑚𝑧𝑧 − 1)𝑧𝑧�. (A.71) 

As with 𝑀𝑀, we may substitute 𝑚𝑚 = (𝑚𝑚𝑥𝑥,𝑚𝑚𝑦𝑦,𝑚𝑚𝑧𝑧) and represent the triple sum with one sum 

 �̂�𝑝 = −
𝑗𝑗𝜌𝜌0𝑐𝑐𝑘𝑘𝑄𝑄�𝑠𝑠

8𝑚𝑚
� �

𝑀𝑀𝑖𝑖(𝑗𝑗𝑛𝑛∙𝑑𝑑𝑚𝑚)

[𝑘𝑘2 − 𝑘𝑘𝑚𝑚2]

1

𝑚𝑚=0

∞

𝑚𝑚=−∞

. (A.72) 

Using the sifting property of the delta function 

 � 𝛿𝛿(𝑥𝑥 − 𝑎𝑎)𝐹𝐹(𝑥𝑥)𝑑𝑑𝑥𝑥 = 𝐹𝐹(𝑎𝑎),
∞

−∞

 (A.73) 

we can write Eq. (A.72) as 

 �̂�𝑝 = −
𝑗𝑗𝜌𝜌0𝑐𝑐𝑘𝑘𝑄𝑄�𝑠𝑠

8𝑚𝑚
� �

𝑀𝑀𝑖𝑖(𝜉𝜉∙𝑑𝑑𝑚𝑚)

[𝑘𝑘2 − 𝜉𝜉2]

∞

−∞

� 𝛿𝛿(𝜉𝜉 − 𝑘𝑘𝑚𝑚)𝑑𝑑3𝜉𝜉
∞

𝑚𝑚=−∞

1

𝑚𝑚=0

. (A.74) 

Using a Fourier series for the x-component, with analogs for the y and z components, we 

see that 

 � 𝛿𝛿�𝜉𝜉𝑥𝑥 −
𝑀𝑀𝑥𝑥𝜋𝜋
𝐿𝐿𝑥𝑥

� 𝑑𝑑𝜉𝜉𝑥𝑥

∞

𝑚𝑚𝑥𝑥=−∞

=
𝐿𝐿𝑥𝑥
𝜋𝜋

� 𝑀𝑀𝑖𝑖2𝐿𝐿𝑥𝑥𝑚𝑚𝑥𝑥𝜉𝜉𝑥𝑥
∞

𝑚𝑚𝑥𝑥=−∞

, (A.75) 

which allows us to rewrite Eq. (A.74) as 

 �̂�𝑝 = −
𝑗𝑗𝜌𝜌0𝑐𝑐𝑘𝑘𝑄𝑄�𝑠𝑠

8𝑚𝑚
� �

𝑀𝑀𝑖𝑖(𝜉𝜉∙𝑑𝑑𝑚𝑚)

[𝑘𝑘2 − 𝜉𝜉2]

∞

−∞

�
𝐿𝐿𝑥𝑥𝐿𝐿𝑦𝑦𝐿𝐿𝑧𝑧
𝜋𝜋3

� � 𝑀𝑀𝑖𝑖2�𝐿𝐿𝑥𝑥𝑚𝑚𝑥𝑥𝜉𝜉𝑥𝑥+𝐿𝐿𝑦𝑦𝑚𝑚𝑦𝑦𝜉𝜉𝑦𝑦+𝐿𝐿𝑧𝑧𝑚𝑚𝑧𝑧𝜉𝜉𝑧𝑧�
∞

𝑚𝑚=−∞

𝑑𝑑3𝜉𝜉
1

𝑚𝑚=0

, (A.76) 

which simplifies to 
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 �̂�𝑝 = −
𝑗𝑗𝜌𝜌0𝑐𝑐𝑘𝑘𝑄𝑄�𝑠𝑠

(2𝜋𝜋)3 �� �
𝑀𝑀𝑖𝑖𝜉𝜉(𝑑𝑑𝑚𝑚+𝑑𝑑𝑛𝑛)

[𝑘𝑘2 − 𝜉𝜉2] 𝑑𝑑
3𝜉𝜉

∞

𝑚𝑚=−∞

∞

−∞

1

𝑚𝑚=0

, (A.77) 

where  

 𝑑𝑑𝑚𝑚 = 2�𝑀𝑀𝑥𝑥𝐿𝐿𝑥𝑥,𝑀𝑀𝑦𝑦𝐿𝐿𝑦𝑦,𝑀𝑀𝑧𝑧𝐿𝐿𝑧𝑧�. (A.78) 

One can see that Eq. (A.77) is equivalent to the free-field Green’s function of a monopole by 

recognizing that the triple integral is a Fourier transform of a plane wave.  A spherical wave can 

be represented by summing an infinite number of plane waves31: 

 
𝑀𝑀𝑖𝑖𝑗𝑗|𝑎𝑎|

4𝜋𝜋|𝑎𝑎| =
1

8𝜋𝜋3
�

𝑀𝑀𝑖𝑖 𝜉𝜉 ∙ 𝑎𝑎

[𝑘𝑘2 − 𝜉𝜉2]𝑑𝑑
3𝜉𝜉

∞

−∞

. (A.79) 

Using this expression we can write Eq. (A.76) more simply as  

 �̂�𝑝 = −𝑗𝑗𝜌𝜌0𝑐𝑐𝑘𝑘𝑄𝑄�𝑠𝑠 � �
𝑀𝑀𝑖𝑖𝑗𝑗|𝑑𝑑𝑚𝑚+𝑑𝑑𝑛𝑛|

4𝜋𝜋|𝑑𝑑𝑚𝑚 + 𝑑𝑑𝑚𝑚|

∞

𝑚𝑚=−∞

1

𝑚𝑚=0

. (A.80) 

The acoustic pressure response in the frequency domain is thus given by the Eq. (A.80).  If an 

impulse response is desired, an inverse Fourier transform is required, although the image source 

derivation was originally developed for an impulse response in the time domain.24-25,32 

A.5.2 Nonrigid Walls 

The image source method was derived by assuming completely rigid walls or that there was 

effectively no absorption in the room.  Allen and Berkley proposed that although the answer may 

not be exact, the image source method could still be used for rooms under certain conditions:  (1) 

a frequency range of 100 Hz to 4,000 Hz, (2) a pressure reflection coefficient of 𝑅𝑅 > 0.7 which 

translates to an average absorption coefficient of 𝛼𝛼� < 0.5, (3) room geometries of typical offices, 

and (4) the source and receiver are not too close to a wall.24 
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Under these conditions, we can develop an image source method useful in typical rooms 

where the pressure reflection coefficient is less than unity.  For typical nonrigid enclosure 

boundary conditions, the amplitude of a ray decreases in proportion to the pressure reflection 

coefficient 𝑅𝑅 of the boundary.  The amplitude for each image source is then decreased by the 

number of boundaries that it crosses in order to reach the receiver position.  The factor that the 

pressure amplitude is decreased by may be written as25  

 𝐴𝐴(𝑀𝑀,𝑚𝑚) = 𝑅𝑅𝑥𝑥1
|𝑚𝑚𝑥𝑥−𝑚𝑚𝑥𝑥| 𝑅𝑅𝑥𝑥2

|𝑚𝑚𝑥𝑥| 𝑅𝑅𝑦𝑦1
�𝑚𝑚𝑦𝑦−𝑚𝑚𝑦𝑦� 𝑅𝑅𝑦𝑦2

�𝑚𝑚𝑦𝑦� 𝑅𝑅𝑧𝑧1
|𝑚𝑚𝑧𝑧−𝑚𝑚𝑧𝑧| 𝑅𝑅𝑧𝑧2

|𝑚𝑚𝑧𝑧|, (A.81) 

where 𝑅𝑅𝑥𝑥1 represents the reflection coefficient of the 𝑥𝑥 = 0 wall, 𝑅𝑅𝑥𝑥2 is the 𝑥𝑥 = 𝐿𝐿𝑥𝑥 wall, and so 

on. Notice that either a complex or a real-valued pressure reflection coefficient is possible.   

For a wall with a known boundary impedance, the pressure reflection coefficient may be 

written as   

 𝑅𝑅 =
𝜁𝜁 cos(𝜃𝜃𝑖𝑖) − 1
ζ cos(𝜃𝜃𝑖𝑖) + 1

, (A.82) 

where 𝜁𝜁 is the normalized specific acoustic impedance in Eq. (A.13) and 𝜃𝜃𝑖𝑖 is the angle of wave 

incidence on the boundary.  In order to simplify the image method, the assumption is made that 

the pressure reflection coefficient 𝑅𝑅 is independent of angle of incidence.  This is equivalent to 

saying that the wall impedance is proportional to sec(𝜃𝜃), which is different than a common 

assumption with modal analysis that the boundaries are locally reacting.  With this 

simplification, the pressure reflection coefficient becomes  

 𝑅𝑅 =
𝜁𝜁 − 1
ζ + 1

. (A.83) 

Although it is uncertain what this means physically, Allen and Berkley considered it to be a 

reasonable approximation. 
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The pressure response at the receiver position for a room with nonrigid boundaries 

modifies Eq. (A.80) to 

 𝑝𝑝� = −𝑗𝑗𝜌𝜌0𝑐𝑐𝑘𝑘𝑄𝑄�𝑠𝑠� �
𝐴𝐴(𝑢𝑢, 𝑀𝑀)

4𝜋𝜋𝑑𝑑(𝑚𝑚, 𝑀𝑀) 𝑀𝑀
−𝑗𝑗𝑘𝑘𝑑𝑑(𝑝𝑝,𝑀𝑀)

∞

𝑀𝑀=−∞

1

𝑚𝑚=0

, (A.84) 

where 𝑑𝑑(𝑚𝑚, 𝑀𝑀) represents the distance from the image source to the receiver position and can be 

written in matrix form as25 

 𝑑𝑑(𝑚𝑚,𝑀𝑀) = � �
2𝑚𝑚𝑥𝑥 − 1 0 0

0 2𝑚𝑚𝑦𝑦 − 1 0
0 0 2𝑚𝑚𝑧𝑧 − 1

� ∙ �
𝑥𝑥0
𝑦𝑦0
𝑧𝑧0
� − �

𝑥𝑥
𝑦𝑦
𝑧𝑧
� − �

2𝑀𝑀𝑥𝑥 0 0
0 2𝑀𝑀𝑦𝑦 0
0 0 2𝑀𝑀𝑧𝑧

� ∙ �
𝐿𝐿𝑥𝑥
𝐿𝐿𝑦𝑦
𝐿𝐿𝑧𝑧
�

 

�. (A.85) 

A.6 Similarity of the Models 

A.6.1 Similarity of CMA and Image Source Solutions for Rigid Walls 

Because the image source method can be derived from normal mode analysis for completely 

rigid walls, it should ideally converge to the same values.  It would be tempting to say that a 

certain number of image sources correspond exactly to one mode or vice versa.  The trouble is 

that the image source equation was derived from an infinite sum of modes.  This infinite sum 

also became an infinite sum in the image source equation.  Without any absorption for either 

method, the summations must both be infinite in order for these equations to be equal.  A 

truncation results in inequalities between the two models.  

The rigid-walled image source and modal analysis methods were simulated in an 

undamped room with dimensions �𝐿𝐿𝑥𝑥,  𝐿𝐿𝑦𝑦,  𝐿𝐿𝑧𝑧� = (5, 6, 7).  A monopole source was located at 

(𝑥𝑥0,  𝑦𝑦0,  𝑧𝑧0) = (1, 1, 1) with a free-field sound power level 𝐿𝐿Π = 90 dB re 10-12 W.  Figure A.5 
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shows sound pressure levels at points increasing in distance away from the source at an angle 

𝜃𝜃0 = 90∘ and 𝜙𝜙0 = 0∘ (this will be called a “walk-away line”) at 100 Hz. Over 81 million image 

sources and 10 million modal amplitudes were summed for comparison.  As was seen earlier, the 

CMA produces a result that approaches the free-field response of a monopole with an increasing 

number of modal contributions.  In addition, the reverberant field, shows certain discrepancies 

that would likely be resolved if the summations did not need to be truncated.  

For Fig. A.6, the same room parameters were used, but with over 138 million image 

sources, and 156 million modal amplitudes summed.  The source was excited at 66.7 Hz, which 

corresponded to a natural frequency.  The image source method was unable to resolve the 

amplitude and would again require an infinite summation to match the results of the modal 

method.   

Fig. A.5. Walk-away lines from a point source in a rigid-walled room excited at 100 Hz using both the CMA and 
the image source method.  The dimensions of the room was �𝐿𝐿𝑥𝑥 ,  𝐿𝐿𝑦𝑦 ,  𝐿𝐿𝑧𝑧� = (5, 6, 7) and the source was located 
at (𝑥𝑥0,  𝑦𝑦0,  𝑧𝑧0) = (1, 1, 1).  The source was a monopole with a free-field sound power level of 90 dB re 10-12 W. 
The walk-away axis was 𝜃𝜃0 = 90∘ and 𝜙𝜙0 = 0∘.  
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 Figure A.7 shows the potential energy at 700 Hz in the same room as a function of the 

number of image sources and modal amplitudes included in the summation.  The potential 

energy was found by simulating the PED at 700 Hz at 200 points in the room, each with an equal 

Fig. A.7. The total potential energy in an enclosure as the number of image sources and eigenvalues included in 
the summation is increased. The dimensions of the room are �𝐿𝐿𝑥𝑥 , 𝐿𝐿𝑦𝑦 , 𝐿𝐿𝑧𝑧� = (5,6,7) and the source was located at 
(𝑥𝑥0,𝑦𝑦0 , 𝑧𝑧0) = (1,1,1).  The source was a monopole with a sound power level of 90 dB re 1 pW.  The potential 
energy was the summation of the PED from 200 points distributed through the room with equal volume. 

Fig. A.6.  A walk-away line from a source excited at 66.7 Hz, which corresponds to a natural frequency for the 
room. The dimensions of the room are �𝐿𝐿𝑥𝑥 ,  𝐿𝐿𝑦𝑦 ,  𝐿𝐿𝑧𝑧� = (5, 6, 7) and the source was located at (𝑥𝑥0, 𝑦𝑦0 , 𝑧𝑧0) =
(1, 1, 1).  The source was a monopole with a free-field sound power level of 90 dB re 10-12 W. The walkaway 
axis was 𝜃𝜃0 = 90∘ and 𝜙𝜙0 = 0∘. 
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volume and summing all the points.  The image source method gradually approaches the 

classical modal method and would in theory agree with more image sources. 

It is sufficient to say that in theory, with an infinite number of sums, the two models for 

completely rigid-walled enclosures should be equal.  We will now discuss the more practical 

case with absorption included in the model. 

A.6.2 Similarity of the Models for Nonideal Rooms 

Introducing absorption into the models gives a more practical view of how similar the methods 

are.  Figure A.8 shows walkaway lines at two different frequencies with very low absorption in 

the room.  The room parameters were the same as those used for Fig. A.5 and A.6, and the 

absorption was uniform for all walls.  Using the complex reflection coefficient, the image source 

results (blue), very closely match the HMMA (maroon) and CMA (green) except for the 

divergence of the CMA 5 cm from the source for the 60 Hz and 500 Hz conditions.   

Fig. A.8. A walk-away line for (a) 100 Hz and (b) 500 Hz for a room with 𝛼𝛼� = 0.01.  The dimensions of the 
room are �𝐿𝐿𝑥𝑥 ,  𝐿𝐿𝑦𝑦 ,  𝐿𝐿𝑧𝑧� = (5, 6, 7) and the source was located at (𝑥𝑥0,  𝑦𝑦0 ,  𝑧𝑧0) = (1, 1, 1).  The source was a 
monopole with a free-field sound power level of 90 dB re 10-12 W. The walkaway axis was 𝜃𝜃0 = 90∘ and 𝜙𝜙0 =
0∘.   

(a) (b) 
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When more absorption is added (see Fig. A.9), the models follow similar trends, but have 

more amplitude discrepancies between them.  This is due to the differences in boundary 

conditions.  The image source method is based on the assumption that there is no angular 

dependence in the pressure reflection coefficient 𝑅𝑅.  This is essentially the same as saying the 

impedance is proportional to sec(𝜃𝜃), which means that the boundary is not locally reacting.  On 

the other hand, the HMMA method assumes that the boundary condition for the eigenfunctions 

uses only the real part of the locally reacting impedance (see Sec. A.3.4).   

The image source method could be improved by using an angularly dependent reflection 

coefficient.  The modal analysis method could be improved by using the exact boundary 

condition rather than the modified solution.  However, both of these improvements would 

significantly increase complexity and computation time of the methods, and are beyond the 

scope of this thesis. 

(a) (b) 

Fig. A.9. A walk-away line for (a) 100 Hz and (b) 500 Hz for a room with 𝛼𝛼� = 0.25.  The dimensions of the 
room are �𝐿𝐿𝑥𝑥 ,  𝐿𝐿𝑦𝑦 ,  𝐿𝐿𝑧𝑧� = (5, 6, 7) and the source was located at (𝑥𝑥0,  𝑦𝑦0 ,  𝑧𝑧0) = (1, 1, 1).  The source was a 
monopole with a free-field sound power level of 90 dB re 10-12 W. The walkaway axis was 𝜃𝜃0 = 90∘ and 𝜙𝜙0 =
0∘.   



 

 

Appendix B 

Hybrid Modified Modal Analysis Validation 

B.1 Experimental Setup 

In order to generate confidence in the HMMA model, its results were compared with 

measurements from the BYU VAC mentioned in Ch. 3.  This is a plaster-coated and painted 

concrete room with dimensions (3.4 × 2.9 × 2.6) m.  It incorporates the option to add or remove 

acoustically absorptive panels to the walls and ceiling.  The concrete floor is covered with vinyl 

composite tile.  The treatments allow the room to be varied from a nearly hemi-anechoic to a 

very reverberant condition.  By removing all of the absorption panels (see Fig. B.1), it becomes a 

nearly rectangular room with hard and smooth surfaces.  There is a slight recess to the door, so a 

plug, consisting of 3.8 cm-thick MDF and surrounding 6.35 mm-thick steel plates was installed 

to cover the recess and make the associated wall much flatter (see Fig. B.2).  

A 20.3 cm diameter dodecahedron loudspeaker with 7.6 cm diameter drivers was used to 

approximate a nominally omnidirectional source up to about 1.5 kHz.  Its low-frequency roll-off 

was at about 100 Hz.  It is pictured in the setup in Fig. B.3. 
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The source was placed asymmetrically in the room and 15 sound pressure measurements 

were taken as shown in Fig. B.4. Table B.1 displays the position of each measurement relative to 

the lower left corner in Fig. B.4. A swept sinusoidal signal was played and the frequency 

response function between each position and the source was measured.  The measurement 

bandwidth was 0 to 6.4 kHz with a 1 Hz frequency bin width.  Because the reverberation times 

were measured in 1/3 octave bands, the absorption coefficients were interpolated for each 

frequency value within the 1/3 octave bands.  Below 100 Hz, it was assumed that the absorption 

coefficient was the same value as the 100 Hz 1/3 octave band.  

Fig. B.1.  The VAC with all absorption panels removed. 

Fig. B.2.  The door recess (a) in the VAC was covered with a massive plug (b) consisting of 3.8 cm-thick MDF 
and gasketed steel on the edges to seal the plug into the opening.  

(a) (b) 
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B.1.1 Damping 

The boundary conditions in the models require a known wall impedance.  As this is a 

very difficult quantity to obtain exactly, the absorption coefficient was used to estimate an 

approximate wall impedance.  One can solve for the average absorption coefficient using the 

Eyring-Norris equation:6 

 𝛼𝛼� = 1 − 𝑀𝑀− 0.161𝑉𝑉
𝑇𝑇60𝑆𝑆 , (B.1) 

where 𝑇𝑇60 is the reverberation time, 𝑆𝑆 is the total surface area of the room, and 𝑚𝑚 is the volume 

of the room.  Reverberation times for the variable acoustics chamber were measured in 1/3 

Fig. B.3.  The (a) 20.3 cm dodecahedron loudspeaker with 7.6 cm drivers and (b) the experimental setup in the 
VAC.  The ½ in microphone was moved to each position shown in Fig. B.4.  

(a) (b) 

Fig. B.4. Experimental setup for validation of the VAC.  The source is represented by the blue dot and the 
measurement positions are represented by the red dots. 
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octave bands using EASERATM and an integrated impulse response technique according to ISO 

354, as closely as the size of the room allowed.28,33 The results from several source and 

microphone positions were averaged, and because the room was small, the 𝑇𝑇60 was extrapolated 

from the -5 dB to -25 dB decay points (𝑇𝑇20).  The average absorption coefficient followed from 

Eq. (B.1) as shown in Fig. B.5. This is based on the assumption that all of the surfaces had the 

same absorption coefficient.  Although this was not strictly true, it was a good approximation for 

this room.  In the models, the absorption due to the air was not accounted for, so it was included 

in the absorption at the boundaries.  This effect is the main cause of the rise in the absorption 

coefficient at higher frequencies. 

As described by Kuttruff,6 one can use an impedance value to solve for an absorption 

coefficient of a locally reacting surface at any incident angle (𝜃𝜃𝑖𝑖): 

 𝛼𝛼(𝜃𝜃𝑖𝑖) =
4 𝑅𝑅𝑀𝑀{𝜁𝜁} cos 𝜃𝜃𝑖𝑖

|𝜁𝜁|2 cos2 𝜃𝜃𝑖𝑖 + 2𝑅𝑅𝑀𝑀{𝜁𝜁} cos 𝜃𝜃𝑖𝑖 + 1
, (B.2) 

Table B.1.  Locations of the 15 microphone positions and source position in the VAC. 
 

Position 𝑥𝑥 𝑦𝑦 𝑧𝑧 
1 1.484 2.09 1.077 
2 1.776 2.101 1.077 
3 2.078 2.096 1.077 
4 2.381 2.091 1.077 
5 2.683 2.094 1.077 
6 1.456 1.807 1.077 
7 1.752 1.782 1.077 
8 2.131 1.839 1.077 
9 2.428 1.817 1.077 
10 2.72 1.805 1.077 
11 1.452 1.536 1.077 
12 1.75 1.536 1.077 
13 2.074 1.524 1.077 
14 2.377 1.535 1.077 
15 2.673 1.53 1.077 

Source 0.915 1.82 1.077 
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where 𝜁𝜁 is the normalized specific acoustic impedance.  For random incidence, the absorption 

coefficient comes from applying the Paris Formula6 

 𝛼𝛼𝑟𝑟𝑖𝑖 = � 𝛼𝛼(𝜃𝜃𝑖𝑖) sin(2𝜃𝜃𝑖𝑖) 𝑑𝑑𝜃𝜃𝑖𝑖

𝜋𝜋
2

0
. (B.3) 

Using Eqs. (B.2) and (B.3), the random-incidence absorption coefficient for a locally reacting 

surface is then 

 

𝛼𝛼𝑟𝑟𝑖𝑖 =
8

|𝜁𝜁|2 cos 𝜇𝜇 �|𝜁𝜁| +
cos(2𝜇𝜇)

sin𝜇𝜇
arctan�

|𝜁𝜁| 𝑠𝑠𝑖𝑖𝑀𝑀 𝜇𝜇
1 + |𝜁𝜁| 𝑐𝑐𝑀𝑀𝑠𝑠 𝜇𝜇

�

− cos 𝜇𝜇 ln(1 + 2|𝜁𝜁| 𝑐𝑐𝑀𝑀𝑠𝑠 𝜇𝜇 + |𝜁𝜁|2)� , 

(B.4) 

where 𝜇𝜇 is the phase angle of the normalized specific acoustic impedance.  As can be seen from 

Eq. (B.4), there is an infinite number of impedance magnitude and phase combinations that result 

in the same absorption coefficient.  However, one can generate many random real and imaginary 

impedance values, calculate the absorption coefficient of each using Eq. (B.4), and choose the 

impedance that most closely matches the absorption coefficient.  Xu and Sommerfeldt point out 

that when using the HMMA method, impedances with a phase angle greater than 𝜋𝜋/4 converge 

Fig. B.5. The (a) reverberation time and (b) Eyring-Norris absorption coefficient for the VAC with all absorptive 
panels removed and the door plug installed (including air absorption).  

(a) (b) 

𝛼𝛼� 
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more quickly, so the phase angle in this study was constrained to values larger than 𝜋𝜋/4.22  To 

illustrate this method, three different random impedances are shown in Fig. B.6 per frequency.  

Although differences in impedance magnitude and phase are significant, the random-incidence 

absorption coefficient is nearly identical for all three cases. 

B.2 Results  

B.2.1 Convergence of the Model 

To demonstrate the convergence of the model, as described in App. A, the energetic 

average of the total sound pressure level is shown in Fig. B.7 for three different impedance 

values as a function of the number of summed modal bandwidths.  By including 100 modal 

bandwidths, the value had nearly converged to its final value.  This number of bandwidths was 

chosen for computational efficiency, but it still converged with reasonable accuracy.  

Fig. B.6. (a) The magnitude of the normalized specific acoustic impedance for three different cases per 
frequency that all have the nearly same random incidence absorption coefficient.  (b) The phase angle of the 
impedance.  The phase was restricted from 𝜋𝜋/4 to 𝜋𝜋/2.  (c) The random incidence absorption coefficient 
calculated for the impedance values using Eq. (B.4). 

(a) 

(b) 

(c) 
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B.2.2 Spectral Validation 

To eliminate the effects of differences in source strength in the model and that in the 

measurements, the transfer function between the acoustic pressure at two different positions was 

compared.  For the measurements, this was done by measuring the frequency response between 

the input to the source and the microphone output for each position then dividing one frequency 

response function by the other.  In the model, this was accomplished by setting the source 

strength to a constant value then dividing the pressure spectrum at one position by that at the 

other.  This allowed a look at the isolated room response between the two points.   

Figure B.8 shows the transfer function between position 1 and position 9 in Fig. B.4 from 

40 Hz to 150 Hz.  The noise in the measurement below 100 Hz was due to the fact that the 

dodecahedron had very low output below about 100 Hz.  The signal-to-noise ratio was 

significantly lower for those frequencies.  One can see from the results that the model predicts 

the transfer function very well for low frequencies.  Fig. B.9 illustrates the difference in the 

Fig. B.7. The energetic average value of the total sound pressure level for all 15 points relative to the value for 140 
modal widths, modeled by the HMMA for the VAC (see Fig. B.4).  The results for the three different random 
impedance sets at each frequency from Fig. B.6 are plotted. 

dB
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model for each of the three different impedance cases from Fig. B.6.  There is very little 

difference between the results at each frequency.  

With increasing frequency, the modal density of the field increases, causing the field to 

become more random. Extending the measurement to higher frequencies as shown in Fig. B.10, 

one can see that the general trends are similar, but the agreement is not as clear.  Due to the 

Fig. B.8. Measured and modeled transfer functions between position 1 and position 9 in the VAC (see Fig. B.4). 

Fig. B.9. The transfer function between position 1 and position 9 in the VAC.  The measurement (black) was 
taken with the 20.3 cm dodecahedron.  Three different impedance values with nearly the same random incidence 
absorption coefficient were used for comparison. 
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random nature of the field and the smaller wavelengths at higher frequencies, errors in the 

measured room dimensions and microphone loudspeaker positions become more significant.  

Because much of the work for the thesis was at frequencies above the Schroeder 

frequency, where the field is more random, a measure was needed to address how well the model 

approximated the sound field in this spectral region.  It was beneficial then to apply a smoothing 

algorithm to the data at higher frequencies to see if the model still approximated the measured 

trend.  One can smooth the magnitude of the transfer function using40 

 〈|𝐻𝐻(𝑓𝑓)|〉 = �
1

𝑓𝑓2 − 𝑓𝑓1
� |𝐻𝐻(𝑓𝑓)|2𝑑𝑑𝑓𝑓
𝑟𝑟2

𝑟𝑟1
 , (B.5) 

where 𝑓𝑓1 and 𝑓𝑓2 are the lower and upper bounds of the averaging bandwidth.  The interval can be 

a constant value, such as 100 Hz, or determined by (1/N)th octave bands as was used in this 

thesis.   

Figure B.11 shows the results of the smoothing algorithm for 1/24 octave-band 

smoothing and how it affects the frequency response.  Figure B.12 shows the results of applying 

this smoothing algorithm to the measurements from 63 Hz to above 4 kHz for several different 

Fig. B.10. The sound pressure transfer function between positions 1 and 9 in the VAC up to 1500 Hz. 
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(1/N)th octave bands.  From these we see that the model is able to predict the trends of the 

measurement up to high frequencies.  Due to the randomness of the field, the larger the average 

over frequency, the better the model matched the measurement.   

To determine how well the model matches experimental data, we used the root-mean-

square difference (RMSD) between the model and the measurements: 

 𝑅𝑅𝑀𝑀𝑆𝑆𝐷𝐷 = �
1
𝑁𝑁
��𝐿𝐿𝐻𝐻𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐿𝐿𝐻𝐻𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚�

2
𝑁𝑁

𝑖𝑖=1

 , (B.6) 

where 𝐿𝐿𝐻𝐻𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  is the frequency response function of the measurement for the 𝑖𝑖th frequency bin on 

a decibel scale, 

 𝐿𝐿𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 20 𝑀𝑀𝑀𝑀𝑙𝑙(|𝐻𝐻𝑚𝑚𝑟𝑟𝑎𝑎𝑠𝑠|), (B.7) 

and 𝐿𝐿𝐻𝐻𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚  is the frequency response function of the model for the 𝑖𝑖th frequency on a decibel 

scale, 

Fig. B.11. Smoothed transfer functions between position 1 and position 9 in the VAC.  The transfer functions 
was smooth by 1/24 octave band, giving an idea of the trends at higher frequencies.  The smoothing was done on 
both (a) the model and (b) the measurement. 

(a) 

(b) 
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 𝐿𝐿𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 = 20 𝑀𝑀𝑀𝑀𝑙𝑙(|𝐻𝐻𝑚𝑚𝑜𝑜𝑑𝑑|). (B.8) 

In Fig. B.13, we see that the lowest RMSD is found for the full octave band as expected. 

Frequency (Hz) 

N = 1 

N = 3 

N = 6 

N = 24 

N = 12 

Fig. B.12. Smoothed transfer functions between position 1 and position 9 in the VAC.  The transfer functions 
were smooth by (1/N)th octave band at each frequency. 
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B.2.3 Spatial Validation  

Up to this point, we have shown only the results for the measured transfer function from point 1 

to point 9.  Because we also plan to do spatial averaging to improve room constant 

measurements, it is important to look at the spatial trends between the model and the 

measurements.  The RMSD for each transfer function in Fig. B.14 varies by position, which can 

Fig. B.13. The RMSD between the measurement and the model for the transfer function between position 1 and 
position 9 (see Fig. B.4).   

Fig. B.14. The RMSD between the measurement and the model for the transfer function between position 1 and 
six secondary positions in the VAC (see Fig. B.4) with 1/24 octave band smoothing.   
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be explained by measurement error. Fig. B.15 shows the 1/24 octave band smoothing for the 

transfer functions from position 1 to several other positions. The variance is generally at higher 

frequencies.  Again, because the wavelength is smaller at higher frequencies, the precision of the 

measurement position becomes more crucial.   

Positon 1 to Position 3 

Positon 1 to Position 5 

Positon 1 to Position 7 

Positon 1 to Position 11 

Positon 1 to Position 13 

Positon 1 to Position 15 

Frequency (Hz) 

Fig. B.15. Smoothed transfer functions between position 1 and positions 3, 5, 7, 11, 13, and 15 in the VAC.  The 
transfer function was smoothed by 1/24 octave band at each frequency. 



 

 

Appendix C 

ISO 3745 and ISO 3741 Measurements 

The sound powers of several sources were measured according to the ISO 3745 and ISO 3741 

standards4,5 as benchmarks for how well the two-point method measured them in semi-

reverberant rooms.  A brief description of the two standards is given here. 

C.1  ISO 3745 

ISO 3745 describes a precision method for the measurement of sound power in either a 

completely anechoic room or a hemi-anechoic room.5 By measuring the pressure on the surface 

of a Gaussian sphere surrounding the source and making the assumption that the measurements 

are in the acoustic far-field, the sound power may be approximated as 

 〈𝛱𝛱(𝑓𝑓)〉𝑡𝑡 ≈
1
𝜌𝜌0𝑐𝑐

��𝑆𝑆𝑚𝑚,𝑚𝑚 〈𝑝𝑝𝑚𝑚,𝑚𝑚
2 (𝑓𝑓)〉𝑡𝑡 ,

𝑚𝑚𝑚𝑚

 (C.1) 

where 𝑆𝑆𝑚𝑚,𝑚𝑚 represents an area weighting factor for the 𝑚𝑚𝑡𝑡ℎ polar angle and the 𝑀𝑀𝑡𝑡ℎ azimuthal 

angle, determined by microphone position.  The standard for an anechoic room requires at least 

32 microphones placed in specific positions around the device under test (DUT) such that 𝑆𝑆𝑚𝑚,𝑚𝑚 is 
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equal for each microphone position.  Should one have more measurement positions, as was the 

case for the research repeated in this thesis, it is simply necessary that 𝑆𝑆𝑚𝑚,𝑚𝑚 be known.  

 The microphones in the BYU anechoic chamber were placed on a semi-circular arc 

surrounding the source in the polar direction, as shown in Fig. C.1.  There were 37 microphones 

in total, spaced in 5∘ increments, with a microphone at each pole.  The source was then rotated in 

the azimuthal direction in 10∘ increments.  A measurement was captured by each microphone at 

each azimuthal-angle for a total of 1,262 unique measurement positions.  In reality, there are 

1,369 total measurements taken because the pole measurements were repeated with each rotation 

Fig. C.1. Semicircular arc array in the BYU anechoic chamber with a radius of 1.8 meters from the circular 
center to the microphones.  The source sits on a turntable, which rotates it a full 360o in the azimuthal angle.   
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and averaged.  Before being summed, the mean-square pressure measurements were weighted 

using the area factors 𝑆𝑆𝑚𝑚,𝑚𝑚 described by Leishman et al:34 

 𝑆𝑆0,𝑚𝑚 = � � 𝑟𝑟2 sin(𝜃𝜃)𝑑𝑑𝜃𝜃𝑑𝑑𝜙𝜙
Δ𝜃𝜃
2

0

𝜙𝜙𝑛𝑛+
Δ𝜙𝜙
2  

𝜙𝜙𝑛𝑛−
Δ𝜙𝜙
2

=
4𝜋𝜋𝑟𝑟2

𝑁𝑁
sin2 �

𝛥𝛥𝜃𝜃
4
� , 𝑚𝑚 = 0 (C.2a) 

 𝑆𝑆36,𝑚𝑚 = � � 𝑟𝑟2 sin(𝜃𝜃)𝑑𝑑𝜃𝜃𝑑𝑑𝜙𝜙
𝜋𝜋

𝜋𝜋−Δ𝜃𝜃2

𝜙𝜙𝑛𝑛+
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2  

𝜙𝜙𝑛𝑛−
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=
4𝜋𝜋𝑟𝑟2

𝑁𝑁
sin2 �

𝛥𝛥𝜃𝜃
4
� , 𝑚𝑚 = 36 (C.2b) 

 
𝑆𝑆𝑚𝑚,𝑚𝑚 = � � 𝑟𝑟2 sin(𝜃𝜃)𝑑𝑑𝜃𝜃𝑑𝑑𝜙𝜙
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𝜃𝜃𝑚𝑚−
Δ𝜃𝜃
2

𝜙𝜙𝑛𝑛+
Δ𝜙𝜙
2  
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Δ𝜙𝜙
2

                                 

                      = 2𝑟𝑟2Δ𝜙𝜙 sin(𝜃𝜃𝑚𝑚) sin �
Δθ
2
� , 𝑚𝑚 = 1,2 … ,35 

(C.2c) 

where 𝑟𝑟 is the distance from the circular center to the microphones, 𝜃𝜃 is the polar angle, 𝜙𝜙 is the 

azimuthal angle, 𝑁𝑁 is the total number of azimuthal measurements, 𝑚𝑚 is the index for the polar 

angle, 𝑀𝑀 is the index for azimuthal angle, Δ𝜙𝜙 is the difference between each azimuthal angle, and 

Δ𝜃𝜃 is the difference between each polar angle.34  This method has a much higher spatial 

resolution than the 32 microphone positions required by ISO 3745 and is thus considered a more 

accurate measurement.  

The definition of the directivity factor is the time-averaged intensity measured on a given 

axis in the far-field divided by the time-averaged intensity radiated by an omnidirectional source 

with the same power.  A directivity factor of unity along an axis means that an omnidirectional 

source producing the same sound power would radiate the same intensity along that axis.  

Although commonly defined the principal axis, the directivity factor may be calculated at any 

angle.16 The method for measuring it for a given microphone position is described in ISO 3745 

as  



C.2  ISO 3741 135 

 

 𝛾𝛾𝑚𝑚,𝑚𝑚(𝑓𝑓) = 10
𝐿𝐿𝑝𝑝(𝑚𝑚,𝑛𝑛)−𝐿𝐿𝑝𝑝����

10 , (C.3) 

where 𝐿𝐿𝑝𝑝(𝑚𝑚,𝑚𝑚) represents the sound pressure level along the 𝑚𝑚th polar angle and 𝑀𝑀th azimuthal 

angle, and 𝐿𝐿𝑝𝑝��� is the area-weighted average sound pressure level.  Another method of measuring 

the directivity factor is by using frequency response functions between a reference signal and the 

measurement positions.  The formula for the directivity factor is then15 

 𝛾𝛾𝑚𝑚,𝑚𝑚(𝑓𝑓) =
〈𝐼𝐼𝑚𝑚,𝑚𝑚(𝑓𝑓)〉𝑡𝑡
〈𝐼𝐼𝑜𝑜𝑚𝑚𝑚𝑚𝑖𝑖(𝑓𝑓)〉𝑡𝑡

=
4𝜋𝜋𝑟𝑟2�𝐻𝐻𝑚𝑚,𝑚𝑚(𝑓𝑓)�

2

∑ ∑ 𝑆𝑆𝑚𝑚,𝑚𝑚�𝐻𝐻𝑚𝑚,𝑚𝑚(𝑓𝑓)�
2

𝑚𝑚𝑚𝑚

, (C.4) 

where 𝐻𝐻𝑚𝑚,𝑚𝑚 represents the frequency response for the 𝑚𝑚𝑡𝑡ℎ polar angle and the 𝑀𝑀𝑡𝑡ℎ azimuthal 

angle. 

C.2  ISO 3741 

ISO 3741 describes a precision method for measuring the sound power of a source in a 

qualified reverberation chamber.4 The standard requires at least 6 microphones, separated 

randomly throughout the room as shown in Fig. C.2.  The microphones must be positioned a 

minimum of 1 meter from reflecting surfaces, 1.5 meters from the source, and 𝜆𝜆/2 away from 

each other (1.7 meters at 100 Hz).  The reverberation chamber at BYU has diffusion panels 

hanging from the ceiling to encourage random reflections throughout the room.  The sound 

power calculation also requires the total absorption in the room, which is measured from the 

reverberation time.  The reverberation time was measured according to ISO 354, with six 

microphone positions and two source positions.28  
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Fig. C.2.  A setup in the reverberation chamber for ISO 3741, including six microphones.  Several clear diffusers 
in the reverberation chamber are also pictured hanging from the ceiling.   



 

 

Appendix D  

Engine Source 

The sources in this study have been relatively small, especially compared to the room they are 

measured in.  When the size of the source becomes large, some of the assumptions of the 

Hopkins-Stryker equation begin to break down.  To see if the two-point method could accurately 

measure the sound power of a large source, the following test was performed on an internal-

combustion engine in an industrial test cell.  The approximate room and engine dimensions are 

shown in Table D.1.  The frequency-dependent reverberation times of similar test cells were 

measured previously and used to approximate that of this specific cell.  The others had roughly 

the same dimensions and wall materials, and were found to have an average absorption 

Table D.1 – Dimensions of the room and the internal combustion engine. 
 

 Room Engine 
𝐿𝐿𝑥𝑥 5.5 0.8 
𝐿𝐿𝑦𝑦 7.9 1.3 
𝐿𝐿𝑧𝑧 3.6 1.1 
𝑚𝑚 157.7 1.1 
𝑆𝑆 184.1 6.5 
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coefficient of roughly 𝛼𝛼� = 0.3 between using their reverberation times and the Eyring-Norris 

formula.  

D.1 ISO 3747 

The sound power measurements for the engine were measured according to ISO 3747:2010, 

which incorporates the reference sound power source method.41 Twelve microphones were 

randomly placed around the engine in the test cell with all of the equipment still in the room.  A 

Brüel and Kjær type 4224 sound power reference source was then sequentially placed at six 

different locations around the room and the sound pressure levels were measured.  Ideally, the 

reference source would be placed on the floor near the engine, but the hardware and 

instrumentation required to run the engine made that proximity impossible.  ISO 3747 Sec. 7.4.2 

indicates that if a microphone is in the line-of-sight of the engine and not the reference source, 

the sound power level will be strongly overestimated.  The standard also states that if the 

distances between the microphones and the source under test are less than those to the reference 

sound source, the results will be overestimated.  To account for some of these overestimations, 

several outliers were removed from the reference source sound power measurement data to 

obtain a more representative average.   

The reference source measurements were used to measure the room constant in situ, in 

similarity to the two-point method.  The engine was then turned on and several sound power 

measurements were taken at different engine speeds and loads using all twelve microphones.  

While as indicated earlier, an effort was made to rmove the dominant outliers from the reference 

source power measurements, the final ISO 3747 results could still overestimate the sound power 

of the engine. 
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D.2 Two-Point Method 

D.2.1 Room Constant Measurements 

Figure D.1 shows a diagram of the experimental setup in the test cell for the two-point 

method.  As shown in Fig. D.1, there were various different obstructions in the room required to 

run the engine.  To assess the room constant, the sound power level of the reference directivity 

source was measured first, before the engine was turned on.  There was significant background 

noise in the room below about 300 Hz, which complicated the measurement.  Although the 

reference directivity source was effective in low-noise situations, it did not produce a sufficient 

signal-to-noise ratio in this room at lower frequencies.  

One way to test the results of the two-point room constant measurement was to measure 

the sound power level of the reference source in the room, since it was already known.  In this 

case, the two-point method measured the A-weighted broadband sound power level of the 

reference source to within 0.6 dB of the ISO 3741 and ISO 3745 results (see Fig. D.2).  The 3-D 

intensity probe was positioned 0.27 meters and 1.5 meters from the reference directivity source 

at a 90o polar angle and a 35o azimuthal angle.  The resulting two-point logarithmic room 

constant measurement is shown in Fig. D.3 and compared to estimated room constant 

calculations.  The latter were calculated from the reverberation times of two similar test cells, 

and the volume and surface areas of the walls for this cell.   
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Fig. D.1. A (a) block diagram of the test cell, where the dashed line represents the axis of the two-point 
measurement positions.  (b) A photograph of the test setup.  Microphones with windscreens were used for the 
ISO 3747 measurement and the G.R.A.S. 50VI-1 3-D vector intensity probe was used for the two-point method 
measurements. 

(a) 

(b) 
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Because of the obstructive objects in the room, a simple volume estimation is 

overestimated and the surface area is underestimated.  With this in mind, the dimensions of the 

objects of significant size in the room were roughly measured and the room volume and surface 

area were accordingly adjusted.  The adjusted sound power level and room constant are also 

shown in Figs. D.2 and D.3.  As can be seen from the figures, even with the volume and surface 

area adjustments, neither quantity is affected greatly on a logarithmic scale.  

From Fig. D.2, one can also see that the in situ measurement of the room constant gives 

much better sound power results than the estimated room constant, even with adjustment.  This 

could mean that the estimated room constant is a poor representation of the actual room constant, 

or at least at the measurement positions.  On the other hand, because the A-weighted sound 

power level of the reference directivity source was measured within about 0.6 dB using the in-

situ room constant, one may have some confidence that this is a reasonable estimation of the 

actual room constant at the measurement positions.  

Fig. D.2.  The sound power level of the reference directivity source measured using the in-situ room constant 
from the two-point measurement (magenta), the estimated room constant from the reverberation times of other 
test cells (brown), and the estimated room constant with an adjustment in volume and surface area to account for 
the engine (blue).  All sound power measurements are compared to the ISO 3745 (red) and ISO 3741 (black) 
measurements. 
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D.2.2 Sound Power Measurements 

Two different sets of engine sound power measurements were taken: one using 𝑟𝑟1 = 1 m 

and 𝑟𝑟2 = 2.4 m from its approximate geometric center, (assumed to be the acoustic center), and 

the other with 𝑟𝑟1 = 0.5 m and 𝑟𝑟2 = 2.1 m from the center.  These were along the same axis as the 

previous measurements for the reference directivity source, although in hindsight, it might have 

been better to take the measurements along two different axes.  If better results had been found 

along one axis than another, the results could have given insights into ways the method might 

have been better implemented with such a large source. In total, three engine speed and load 

combinations were measured.  The results from the two-point in situ method were compared 

with measurements previously taken according to ISO 3747 (with the exceptions mentioned in 

Sec. D.1).  The two-point method measurements and the ISO 3747 measurements were both 

taken in the same test cell with all the same equipment present.  Another comparison was made 

by using the estimated room constant mentioned previously.    

Fig. D.3.  The room constant measured by the two-point in situ method, compared with the estimated room 
constant from reverberation times, and adjusted for the estimated volume and surface area of objects within the 
room. 
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(a) 

(b) 

(c) 

Fig. D.4.  The sound power level of the engine at (a) 2309 rpm and 10 N∙m, (b) 2000 rpm and 550 N∙m, and (c) 
1500 rpm and 2522 N∙m.  The ISO 3747 measurement is compared to two different sets of measurement 
positions.  The first used 𝑟𝑟1 = 1 m and 𝑟𝑟2 = 2.4 m from the source, while the second was 𝑟𝑟1 = 0.5 m and 𝑟𝑟2 = 
2.1 m from the source.  The two-point method in-situ method (solid) compared to the two-point method with the 
estimated room constant (dashed). 
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 The two-point in situ method appears to underestimate the ISO 3747 sound power level 

by about 5 to 6 dB for each test condition. Table D.2 shows a summary of the total A-weighted 

sound power levels for the various cases.  Using the estimated room constant, the total sound 

power level is closer to that measured by ISO 3747, although the spectral shape does not seem to 

match the spectral shape of ISO 3747 as well as the two-point method with the measured in situ 

room constant.   

D.3 Numerical Simulation 

Because of the discrepancies, a numerical simulation was conducted using HMMA and 

the typical reverberation times of tests cells.  To test the effects of having a distributed source, a 

very simple case was modeled.  Two monopoles of the same source strength were separated by 

1.25 meters.  A third monopole was modeled as the reference directivity source.  The source and 

measurement positions for the numerical simulation are depicted in Fig. D.5 and given 

specifically in Table D.3. In the figure, the reference source is represented as a blue square, the 

acoustic center of the distributed source is the blue circle, and each individual monopole is a blue 

x.  The red points represent the measurement positions.  The measurements were point 

measurements rather than spatial averages, as were those of the engine measurements.  The 

circles around the sources represent the critical distance for an omnidirectional source.  The 1/3 

octave absorption coefficients of the room are given in Table D.4.  The frequency of the 

simulation is the same as in Ch. 3, 1/24 octave spaced frequencies for every 1/3 octave. 

Table D.2.  The total sound power level for the second set of measurements (𝑟𝑟 = 0.5 m and 2.1 m) compared to 
the ISO 3747 measurements.  The measurement quantity for the two-point method is GED. 
 

𝐿𝐿𝑤𝑤 (A) 2309 rpm 2000 rpm 1500 rpm 
ISO 3747 115.8 115.1 115.9 
In Situ 𝑅𝑅 109.2 108.9 110.5 

Estimated 𝑅𝑅 113.5 113.6 115.4 
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The room constant and the sound power of the reference directivity source (a single 

monopole) were simulated first.  As shown in Fig. D.6, they appear to approach the actual values 

at higher frequencies.  Using the measured room constant from this simulation, the sound power 

level of the two-monopole distributed source was measured and is shown in Fig. D.7.   

The errors are much greater for this sound power level than for that of a single monopole 

source.  The greater errors are likely due to the directivity effects of the distributed source.  At 

least one measurement position was in the near field of the source, where the configuration has a 

complicated radially dependent directivity factor that was not being accounted for in the two-

point method equation.  Near-field directivity effects were not accounted for in the engine 

measurements either.  

Fig. D.5.  The numerical simulation of the engine measurement.  The circles represent the critical distance of an 
omnidirectional source.  The room dimensions are the same as those given in Table D.1 for the test cell. 

Table D.3.  Three source positions and two measurement positions used to simulate a single distributed source 
in a typical test cell. 
 

 𝑥𝑥 𝑦𝑦 𝑧𝑧 
Source 1 2.76 2.52 1.05 
Source 2 2.76 3.77 1.05 

Reference Source 4.77 1.05 1.05 
Point 1 3.35 2.53 1.05 
Point 2 4.45 1.39 1.05 
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Table D.4.  The absorption coefficients used in the numerical model.  They are calculated from the reverberation 
time measurements of two typical test cells. 
 

Frequency Absorption Coefficient 
63 0.10 
80 0.11 

100 0.13 
125 0.22 
160 0.20 
200 0.26 
250 0.33 
315 0.30 
400 0.36 
500 0.36 
630 0.30 
800 0.25 
1000 0.31 
1250 0.31 
1600 0.33 
2000 0.31 
2500 0.32 
3150 0.29 
4000 0.29 

 
 

Fig. D.6.  Results for the reference directivity source.  The (a) logarithmic room constant and (b) the sound 
power level of the reference source as measurement by the two-point method in the simulated test cell.  The 
vertical dashed lines represent the Schroeder frequency of the room. 

(a) 

(b) 
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D.4 Discussion 

There are a few reasons for the apparent sound power errors.  The Hopkins-Stryker 

equation relies on several assumptions discussed in Sec. 2.  One issue could be the size of the 

engine and its distributed nature.  Another could be the lack of diffuse field at the measurement 

positions.   

 Because the engine is such a large source at least one of the two-point measurement 

positions was not in the direct geometric or acoustic far field.  ISO 3745 suggests that the direct 

far field is at least twice the characteristic dimension of the source.5  For this engine, that would 

be about 1.8 meters away.  Although we have built in a near-field correction for a source with 

spherical spreading that attempts to correct for the amplitude of the GED, the near-field behavior 

of a larger source is more complicated than that of a monopole and needs to be accounted for.   

The large errors shown in the sound power measurements in Fig. D.6 are also likely due to this 

behavior.   

Fig. D.7.  The sound power level of the simulated distributed source (two monopoles) compared to the actual 
(solid) and that of a monopole with the same source strength as each of the two monopoles in the pair (dashed-
dotted).  The vertical dashed line represents the Schroeder frequency in the room. 
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Another source of error could be that the measurement positions were based on a rough 

geometric center.  Although this was relatively simple to find, the true acoustic center is much 

more difficult to locate and is frequency dependent.  This discrepancy could influence the results 

of the two-point method strongly.  

 Yet another issue could be the amount of absorption in the room.  From numerical and 

experimental results shown in Chs. 3 and 4 of this thesis, the largest errors are seen in rooms 

with high amounts of damping due to the diffuse field assumption not being well met in more 

damped rooms.  This test cell was more heavily damped than most of the rooms tested for this 

thesis, so one might expect greater errors.  The diffuse field assumption was also influenced by 

the obstructive objects in the room and where they were located relative to the measurement 

positions.  In this case, the lack of diffusivity likely exacerbated the distributed-source problems 

discussed previously. 

 From a practical standpoint, the amount of background noise and turbulence present in 

the test cell became an issue.  This made both the measurement of the room constant and the 

sound power level difficult.  For the measurement of the room constant, the reference directivity 

source was not powerful enough to overcome some of the background noise at lower 

frequencies.  For engine sound power level measurements, the difficulty came from the 

turbulence produced by the ventilation system in the room.  The strength of the turbulence was 

position dependent with some of the effects seen in Fig. D.4.  The sound power level for the 

measurement with a position at 1 meter increases greatly at low frequencies due to this problem.  

A wind screen for the energy density probe might have helped with this issue. 

Another possible source of error was that the reference directivity source measurements 

were taken before the engine measurements.  Once the engine was turned on, the ventilation 
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system also turned on and the background noise due to the ventilation system was louder than the 

reference directivity source.  As a result, the two points for the engine measurement were not in 

the exact same position as for the reference directivity source measurements.  Based on previous 

experience, making both the two-point measurement for the reference source and the DUT at the 

same positions has not been crucial, but it can lead to small errors.  Figure D.4 shows results 

from two different sets of measurement positions.  Although both seem to converge at higher 

frequencies, the set with a point at 0.5 m from the engine is less erratic at low frequencies than 

that with a point at 1 m, which is near the average critical distance for the room. 

A method of checking for errors within measurements would have been to measure the 

sound power of the reference directivity source using the ISO 3747 method, and to measure the 

sound power of the B&K reference source using the two-point method.  This would have been 

able to show discrepancies, if any, between the two methods for more controlled sources in the 

test cell. 

D.5 Conclusion 

The two-point method was unable to match the ISO 3747 sound power level 

measurement in the industrial test cell for the internal combustion engine.  It seemed to 

underestimate the sound power by about 5 or 6 dB.  It is believed that the issue has more to do 

with the size and nature of the engine source than the room.  The two-point method measured the 

total sound power level of the reference directivity source in the room to within 0.6 dBA of those 

measured using ISO 3741 and ISO 3745 and the 1/3 octave band curves matched well.  The ISO 

3747 method could have been validated by measuring the sound power of the reference 

directivity source with the method. 



D.5 Conclusion 150 

 

Future research could investigate the effects of large, distributed sources, with some 

theoretical corrections or usage guidelines to improve the two-point method.  A more robust 

reference directivity source that can overcome high levels of background noise and a wind screen 

for the energy density probe would also yield improvements. 
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