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ABSTRACT

Machine Learning to Discover and Optimize Materials

Conrad Waldhar Rosenbrock
Department of Physics and Astronomy, BYU

Doctor of Philosophy

For centuries, scientists have dreamed of creating materials by design. Rather than discovery
by accident, bespoke materials could be tailored to fulfill specific technological needs. Quantum
theory and computational methods are essentially equal to the task, and computational power is the
new bottleneck. Machine learning has the potential to solve that problem by approximating mate-
rial behavior at multiple length scales. A full end-to-end solution must approximate the quantum
mechanics, microstructure and engineering tasks well enough to be predictive in the real world.

In the realm of enumeration, systems with many degrees of freedom such as high-entropy alloys
may contain prohibitively many unique possibilities so that enumerating all of them would exhaust
available compute memory. One possible way to address this problem is to know in advance
how many possibilities there are so that the user can reduce their search space. Although tools
to calculate this number were available, none performed well for very large systems and none
could easily be integrated into low-level languages for use in existing scientific codes. I present an
algorithm to solve these problems.

Testing the robustness of machine-learned models is an essential component in any materials
discovery or optimization application. Typically, a small number of system-specific tests are used
to validate an approach, this may be insufficient in many cases. In particular, for Cluster Expansion
models, the expansion may not converge quickly enough to be useful and reliable. Although the
method has been used for decades, a rigorous investigation across many systems to determine when
CE “breaks” was still lacking. This dissertation includes this investigation along with heuristics
that use only a small training database to predict whether a model is worth pursuing in detail.

Computational materials discovery must lead to experimental validation. However, experi-
ments are difficult due to sample purity, environmental effects and many other considerations. In
many cases, it is difficult to connect theory to experiment because computation is deterministic.
By combining advanced group theory with machine learning, we created a new tool that bridges
the experiment-theory gap so that experimental and computed phase diagrams can be harmonized.

Grain boundaries in real materials control many important material properties such as corro-
sion, thermal conductivity, and creep. Because of their high dimensionality, learning the underly-
ing physics to optimizing grain boundaries is extremely complex. By leveraging a mathematically
rigorous representation for local atomic environments, machine learning becomes a powerful tool
to approximate properties for grain boundaries. But it also goes beyond predicting properties
by highlighting those atomic environments that are most important for influencing the boundary
properties. This provides an immense dimensionality reduction that empowers grain boundary sci-
entists to know where to look for deeper physical insights.

Keywords: materials discovery, machine learning, grain boundaries, derivative structure enumera-
tion, Pólya enumeration theorem, monte carlo structure identification, order parameters
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CHAPTER 1

Machine Learning and Materials Discovery

Throughout recorded history, materials have been the driving force behind both advances and
limitations in technological ability. Although the stone, bronze and iron ages serve as good
examples, we are privileged to personally witness the silicon age and the explosion of technologies
that now impact every individual in the world. It is natural to ask what comes next.

1.1 QUANTUM MECHANICS AND
MATERIALS DISCOVERY

For several decades, researchers have worked
tirelessly to find approximate models for
material behavior in the real world. As
our understanding of quantum mechanics has
grown, there have been spectacular successes
in engineering materials that directly exploit
the quantum nature of matter. Perhaps most
famous, semiconductors such as silicon have
been engineered and re-engineered to meet
diverse requirements in multiple applications
[1–4]. However, exclusively experimental
approaches to material optimization are slow
and expensive. Furthermore, the combina-
toric complexity of the space of all possible
materials suggests that we have only uncovered
the tip of the iceberg. This defines our quest:
to discover the next materials age, and to do it
within our lifetime.

Inasmuch as experimental optimization and
discovery are time-intensive, computational
methods to approximate quantum mechanics
for materials have become mainstream. Of
these methods, Density Functional Theory
(DFT) [5, 6] has emerged as the main tool of
use because of its sensible trade-off between
chemical accuracy and speed. DFT has also
had some spectacular successes. For example,
in Figure 1.1, several STEM micrographs for
a molybdenum disulphide surface with defects
are contrasted with simulated surfaces and

calculations made with DFT [7]. The compu-
tations clearly discover the correct behavior
as verified in experiment. While DFT does
have several problems [8], it is remarkably
versatile for many materials science problems
and continues to be used.

With the steady ascent of commodity
computing resources, it is now standard
practice to perform thousands of DFT calcu-
lations every day and compile large materials
databases1. For example, as of November 2017,
aflowlib.org has more than 1.7 million material
compounds. Unfortunately, even while this
collection is large in an absolute sense, it is
only a small fraction of all possibilities. For
example, if common structure prototypes are
taken (i.e., those commonly found in nature)
and a substitutional enumeration is performed
for alloys including up to four elements, more
than 30 trillion materials are possible. Consid-
ering that aflowlib has been working for
almost a decade, the additional three orders of
magnitude are prohibitive.

And this is not the only problem. Even
if we do examine the common prototypes, in
order to be predictive and confident, we also
need to examine other likely candidates from
an enumerated list. Depending on the number
of elements in the material and the number of
basic arrangements to investigate, this can also
require a large number of calculations, each of
which is in on the order of hours or days when
using DFT. In the case of high-entropy alloys
[9], the list of possible structures is often large

1aflowlib.org, materialsproject.org and the NOMAD Laboratory are three of the largest and most-used.

1

http://aflowlib.org/
http://aflowlib.org/
https://materialsproject.org/
https://repository.nomad-coe.eu/
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enough that the enumeration itself becomes a
computational challenge. Chapter 2 presents
a numerical algorithm that we developed to
make such enumeration problems tractable by

calculating memory requirements for the final
enumerated list before structure enumeration
has even started.

Figure 1.1 Taken from [7]. (a-c) High-resolution STEM–ADF images of antisite MoS,
MoS2 and Mo2S2, respectively; (d-e) Atomic structures of antisite defects SMo and
S2Mo, respectively.; (f-j) Simulated STEM images based on the theoretically relaxed
structures of the corresponding point defects using QSTEM [10] ; (k-t) Relaxed atomic
model of all antisite defects in a-e through DFT calculation, with top and side views,
respectively.
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1.2 MACHINE LEARNING MATERIALS

Statistical models, recently popularized as
“machine learning,” can approximate high-
dimensional spaces with a reasonable precision
tradeoff for many problems [11–13]. Some
of the hype surrounding machine learning
is due to the remarkable discovery that, as
datasets grow extremely large, the accuracy
of certain models continues to improve rather
than saturating asymptotically [14, 15]. For
example, better-than-human performance on
image recognition [16, 17], tumor detection
[18–20], and voice recognition [21] is now
possible.

Given the success of machine learning
models in other fields, it is natural to ask
whether they might be leveraged in materials
design. Certainly, examining all possible
materials is a problem of high dimensionality.
But does the problem lend itself to standard
machine learning approaches? There are two
important differences between the standard
machine learning problems of image recog-
nition, voice recognition, etc., and materials
prediction. In the first instance, we cannot
afford the typical accuracy tradeoff—materials
predictions are not useful without meeting a
high accuracy target; the energy difference of
competing phases is often very small, requiring
high fidelity in the models. The second
difference is the amount of training data—we
don’t have “big data”. Although materials
science may move into the petabyte regime of
distributed data in the future, for now, high
accuracy, DFT-computed materials databases
contain about only about one million unique
materials.

Another potential drawback of traditional
machine learning tools in the context of
materials problems is that these tools often
make excellent predictions in specific cases,
but the “knowledge” that they “learn” remains

undisclosed. It would be better if the
knowledge could be generalized and converted
to general engineering principles. In Chapter 5,
I show that well-designed representations lead
to the discovery of new physics, not merely
to predictions alone. And we can do this
even though our database is small compared to
typical machine learning applications. Impor-
tantly, the machine learning was based on
mathematically rigorous representations for the
material systems built specifically for that task.
The often-exaggerated promotion surrounding
machine learning comes from a certain class of
data sets that lend themselves well to automatic
representation. However, automatic represen-
tation is generally not possible for arbitrary
data sets and is particularly challenging for
materials.

Even with readily available tools for
finding correlations in datasets, model perfor-
mance is largely determined by the way in
which data is represented to the algorithms
(the so-called feature matrix). Images lend
themselves well to discrete convolutional repre-
sentations [22]; audio does well with traditional
harmonic analysis [23], wavelet representa-
tions [24, 25], and some acoustical analysis
[26]. Finding the right representation is
the dark art of machine learning [27]. An
exciting race to find effective representations
for machine learning in materials discovery
has produced great innovation in modeling
molecular properties [28–35] and behaviors
[36], and some innovation in producing force
fields for solids [37–42]. However, while these
results are encouraging in a fundamental sense,
they are only a single part of a multi-scale
materials discovery process.
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1.3 ASSESSING THE ROBUSTNESS OF
MODELS

While several proof-of-concept, generalized
machine learning approaches for materials
exist, there are important lessons to be learned
from history. Cluster Expansion (CE) is a
machine learning approach that can accurately
approximate quantum mechanical energies for
many alloy systems [43–46]. It relies on
a representation that is purely configura-
tional, meaning that it learns from materials’
composition and relative atomic positions only
and ignores the small differences in atomic
positions that are present in non-ideal (i.e., real
life) materials. Despite this approximation, it
is still quite successful and has been a tool
of choice in alloy stability studies for many
years [47–57]. Interestingly, although CE
was often used, its stability and robustness
was not rigorously investigated until recently
[58]. Whenever machine learning is applied
in a materials setting, it is essential to rigor-
ously investigate whether its predictions can be
trusted.

In Chapter 3, I present a rigorous study
on how errors and noise in DFT calcula-
tions affect the ability of CE to approximate
material energies. This chapter also includes a
discussion on the dangers of applying methods
outside of the subspace for which they were
designed and when it may be possible to detect
such deviations.

1.4 MULTI-SCALE MATERIALS
DISCOVERY

The discussion above about DFT addresses the
atomistic view of materials. But macroscopic
applications of materials encounter additional
problems. Grain boundaries are interfaces
between neighboring crystalline regions and

thus act across length scales several orders
of magnitude bigger than DFT can handle.
Furthermore, grain boundaries exert a signif-
icant influence on material properties such as
strength, ductility, corrosion resistance, crack
resistance, and conductivity.

Modern day technologies need materials
with optimized properties but are hampered
by a limited understanding of the physics that
drives grain boundary behavior and, in turn,
dictates material properties. Chapter 5 shows
how machine learning helps us to approximate
grain boundary properties and to learn the
physics that governs them.

Once we have entered the realm of macro-
scopic materials, difficulties between computa-
tional theory and experiment begin to surface as
well. Even if DFT or a machine learning model
correctly predicts a stable structure at a certain
composition, it may not be easy to create that
structure in the lab: although the arrangement
may indeed be stable, kinetic pathways to
reach that arrangement may not be accessible.
Chapter 4 presents one possible way to address
this problem by combining a machine learning
model with Monte Carlo simulations and group
theoretical analysis to predict transition struc-
tures between stable or meta-stable states. This
allows a bridge to be created between theory
and experiment.

1.5 OUTLOOK AND FUTURE WORK

The chapters presented in this dissertation are a
sampling of some of the difficulties associated
with an end-to-end materials discovery process.
The ultimate goal is to design and optimize
materials from scratch using only computa-
tional methods, and then have the final product
in the lab match the predictions at every level.
This task is sufficiently vast that it requires
collaboration with scientists worldwide.

Currently, we are working with collabo-
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rators in the UK and Russia to verify the
first-ever approach to building alloy potentials
that are quantum accurate for static properties
such as energies and forces, but which also
reproduce dynamic features such as the phonon
dispersion curves. At the same time, we
are verifying these alloy potentials as candi-
dates for generating quantum-accurate phase
diagrams, a first in the history of the world.
One of these potentials uses the same repre-
sentation discussed in Chapter 5. One of the
most exciting aspects of these alloy potentials
is that they are amenable to automated fitting.
Although free parameters do exist in any of
the models, we can automate selection of these
using heuristic algorithms.

We are concurrently working on isolating
the “fingerprint” of material systems by
equating the linear bases of Cluster Expansion
(CE) and the Smooth Overlap of Atomic Poten-
tials (SOAP). Since both methods provide
mathematically complete bases, this provides
a formally rigorous approach to identifying
the space-dependent interaction parameters
between chemical species. Since CE is
effective across all compositions for on-lattice
structures, it learns the species interactions
extremely well. The tradeoff is that it cannot
handle structures that have relaxed from ideal

lattice positions. In contrast, the SOAP basis
is flexible enough to span the entire materials
space, but there is no well-defined process for
extracting the species interaction terms needed
by the basis. By equating the two approaches
on a physical property such as energy, we can
use CE’s approximation on-lattice to approx-
imate species interactions throughout materials
space. The approach is discussed in more detail
in the appendix.

Finally, we plan to release the method and
code to convert existing Cluster Expansion
models into alloy potentials using existing data
and a minimal number of additional calcula-
tions. This enables expertise from multiple
decades of work to be transferred to state-of-
the-art models with very little human time.

Each of the next chapters is centered around
a peer-reviewed article, typeset in the style
of the journal in which it was published.
Each includes a short revision of the context
surrounding the work and then a description
of how it is currently being used, with plans
for any future development. The concluding
chapter has a short list of software packages
produced in conjunction with the research
presented in this dissertation and a description
of their typical use cases.



CHAPTER 2

Optimizing Enumeration for Complex Systems

A seminal question in alloy discovery is
how to enumerate all possible alloys for a given
set of elements. In theory, we should inves-
tigate all of these possibilities to ensure that we
have found the lowest energy (i.e., most stable)
structure. The problem is complicated by the
presence of symmetry: we would prefer to
enumerate only symmetrically unique possibil-
ities so that we don’t compute the same config-
uration twice. The enumeration problem was
essentially solved by Hart et al. [59]. However,
certain systems such as high entropy alloys [9]
may contain prohibitively many unique possi-
bilities so that enumerating all of them would
exhaust available compute memory.

One possible way to address this problem
is to know in advance how many possibilities
there are so that the user can reduce their search
space by restricting the occupation of certain
lattice sites. The Pólya enumeration theorem
discussed below [60] answers precisely this
question. However, no low-level algorithm was
available to make it usable in practice. We
produced this algorithm for two reasons:

1. To allow the alloy enumeration code to
know in advance the number of unique
structures that it would find. This helps with

memory partitioning (which optimizes the
enumeration) and provides a way to notify
the user of an intractable problem.

2. To verify that the alloy enumeration code
did in fact find all possible unique decora-
tions of the lattice.

Our algorithm is currently used
in the latest version of the enumer-
ation code and is also available open
source for both fortran and python at
https://github.com/rosenbrockc/polya. Because
of the central role that enumeration plays in the
multi-scale process of materials discovery, this
contribution will continue to be used for many
years.

My contribution to this project includes
creation of the algorithm and drafting the
majority of the paper. Wiley Morgan helped me
debug the algorithm, implement it in fortran
and provide unit test cases. He and the other
authors helped refine the text, figures and
presentation of the algorithm to make it easier
to understand.

The following article is reproduced with
permission. A license is on file with the
Department of Physics and Astronomy.

6

https://github.com/msg-byu/enumlib
https://github.com/msg-byu/enumlib
https://github.com/rosenbrockc/polya
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Although the Pólya enumeration theorem has been used extensively for decades, an optimized, purely
numerical algorithm for calculating its coefficients is not readily available. We present such an algorithm
for finding the number of unique colorings of a finite set under the action of a finite group.

Categories and Subject Descriptors: G.2.1 [Discrete Mathematics]: Combinatorics
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ACM Reference Format:
Conrad W. Rosenbrock, Wiley S. Morgan, Gus L. W. Hart, Stefano Curtarolo, and Rodney W. Forcade. 2016.
Numerical algorithm for pólya enumeration theorem. J. Exp. Algorithmics 21, 1, Article 1.11 (August 2016),
17 pages.
DOI: http://dx.doi.org/10.1145/2955094

1. INTRODUCTION

A circle partitioned into 4 equal sectors can be colored 16 different ways using two
colors, 24 = 16, as shown in Figure 1. But only 6 of these colorings are symmetrically
distinct, several others being equivalent (under rotations and reflections) as shown by
the arrows in the figure. The Pólya enumeration theorem provides a way to determine
how many symmetrically distinct colorings there are with, for example, all sectors red
(only one, as shown in the figure), one red sector and three green (again, only one), or
the number with two red sectors and two green sectors (two, as shown in the figure).
Borrowing a word from physics and chemistry, we refer to the partition of red and
green sectors as the stoichiometry. For example, a coloring with 1 red sector and 3
green sectors has a stoichiometry of 1:3.

The Pólya theorem [Pólya 1937; Pólya and Read 1987] produces a polynomial (gen-
erating function), shown in the figure, whose coefficients answer the question of how
many distinct colorings there are for each stoichiometry (each partition of the colors).
For example, the 2r2g2 term in the polynomial indicates that there are two distinct
ways to color the circle with 2:2 stoichiometry ( ). For all other stoichiometries (4:0,

This work was supported under Grant No. ONR (MURI N00014-13-1-0635).
Authors’ addresses: C. W. Rosenbrock, W. S. Morgan, and G. L. W. Hart, Department of Physics and As-
tronomy, 84602, Brigham Young University; S. Curtarolo, Materials Science, Electrical Engineering, Physics
and Chemistry, 27708, Duke University; R. W. Forcade, Department of Mathematics, 84602, Brigham Young
University.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 1084-6654/2016/08-ART1.11 $15.00
DOI: http://dx.doi.org/10.1145/2955094

ACM Journal of Experimental Algorithmics, Vol. 21, No. 1, Article 1.11, Publication date: August 2016.



1.11:2 C. W. Rosenbrock et al.

Fig. 1. Top row: All possible two-color colorings of a circle divided into four equal sectors (left side of figure).
Bottom row: All symmetrically distinct binary colorings of the circle. Arrows indicate combinatorically
distinct colorings that are equivalent by symmetry.

0:4, 1:3, and 3:1), the polynomial coefficients are all 1, indicating that for each of these
cases there is only one distinct coloring, as is obvious from the figure.

A common problem in many fields involves enumerating1 the symmetrically distinct
colorings of a finite set, similar to the toy problem of Figure 1. The Pólya theorem
has shown its wide range of applications in a variety of contexts. Classically, it was
applied to counting chemical isomers [Robinson et al. 1976; Kennedy et al. 1964; Pólya
1937] and graphs [Harary 1955]. Recent examples include confirming enumerations
of molecules in bioinformatics and chemoinformatics [Deng and Qian 2014; Ghorbani
and Songhori 2014]; unlabeled, uniform hypergraphs in discrete mathematics [Qian
2014]; analysis of tone rows in musical composition [Lackner et al. 2015]; commuta-
tive binary models of Boolean functions in computer science [Genitrini et al. 2015];
generating functions for single-trace-operators in high-energy physics [McGrane et al.
2015]; investigating the role of nonlocality in quantum many-body systems [Tura et al.
2015]; and photosensitizers in photosynthesis research [Taniguchi et al. 2014].

In computational materials science, chemistry, and related subfields such as compu-
tational drug discovery, combinatorial searches are becoming increasingly important,
especially in high-throughput studies [Curtarolo et al. 2013]. As computational meth-
ods gain a larger market share in materials and drug discovery, algorithms such as
the one presented in this article are important as they provide validation support to
complex enumeration codes. Pólya’s theorem is the only way to independently confirm
that an enumeration algorithm has performed correctly. The present algorithm has
been useful in checking a new algorithm extending the work in Hart and Forcade
[2008, 2009] and Hart et al. [2012], and Pólya’s theorem was recently used in a similar
crystal enumeration algorithm [Mustapha et al. 2013] that has been incorporated into
the CRYSTAL14 software package [Dovesi et al. 2014].

Despite the widespread use of Pólya’s theorem in different science and mathematics
contexts, a low-level, numerical implementation is not available. Typical approaches
use Computer Algebra Systems (CASs) to symbolically generate the Pólya polynomial.
This strategy is ineffective for two reasons. First, CASs are too slow for large problems
that arise in a research setting, and, second, generating the entire Pólya polynomial
(which can have billions or trillions of terms) is unnecessary when one is interested in
only a single stoichiometry.

1The Pólya theorem does not generate the list of unique colorings (which is generally a much harder problem),
but it does determine the number of unique colorings.
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Here we demonstrate a low-level algorithm for finding the polynomial coefficient
corresponding to a single stoichiometry. It exploits the properties of polynomials and a
priori knowledge of the relevant term. We briefly describe the Pólya enumeration the-
orem in Section 2, followed by the algorithm for calculating the polynomial coefficients
in Section 3. In the final section, we investigate the scaling and performance of the
algorithm.

2. PÓLYA ENUMERATION THEOREM

2.1. Introduction the Pólya Enumeration Theorem

Pólya’s theorem provides a simple way to construct a generating polynomial whose
coefficients count the numbers of symmetrically distinct colorings for each possible
stoichiometry. The polynomial in Figure 1 above was easy to verify because we were
able to hand count the symmetrically distinct colorings. But suppose there were dozens
of colors and dozens of sites to be colored and hundreds of symmetries to apply. In that
case, it is easier to use Pólya’s theorem to construct the polynomial directly from the
symmetry group.

To describe this very useful theorem, we refer once more to Figure 1. There are four
symmetries—the identity, two 90◦ rotations (clockwise and counterclockwise), and a
180◦ rotation. If we label the colorable sectors 1, 2, 3, and 4, and write the permutations
in disjoint-cycle notation, we have (1)(2)(3)(4) for the identity, the two 90◦ rotations are
represented by (1234) and (1432), while the 180◦ rotation is (13)(24) in cycle notation.

Now Pólya’s theorem simply tells us to replace each cycle of length λ with a sum of
λ-th powers of variables corresponding to the colors available. For example, letting r
and g stand for red and green, the identity is represented by (r + g)(r + g)(r + g)(r + g),
the two 90◦ rotations are each replaced by (r4 +g4), and the 180◦ rotation is replaced by
(r2 +g2)(r2 +g2). When we average these four polynomials, we get the Pólya polynomial
predicted above:

P(r, g) = 1
4

(
(r + g)(r + g)(r + g)(r + g) + (r4 + g4) + (r4 + g4) + (r2 + g2)(r2 + g2)

)
= r4 + r3g + 2r2g2 + rg3 + g4.

(1)

In other words, Pólya’s theorem relies on a structural representation of the sym-
metries as permutations written in disjoint-cycle notation to construct the generating
polynomial we need.

The problem with Pólya, however, is that it requires us to compute the entire poly-
nomial when we may need only one of its coefficients. For example, if we have 50 sites
to color, and 20 colors available, the number of terms in our polynomial (regardless of
symmetries) would be about 4.6 × 1016. That is a lot of work (and memory) to compute
the entire polynomial (and all of those very large terms) if we needed only to know the
number of symmetrically distinct colorings for a single stoichiometry. That information
is contained in just 1 term of the 46 quadrillion terms of the Pólya polynomial. Can we
spare ourselves the work of computing all the others?

Suppose we have a target stoichiometry [c1 : c2 : · · · : cξ ], where ξ is the number
of colors and

∑ξ

j=1 c j = n is the number of sites to be colored. To find the number of
symmetrically distinct colorings with those frequencies, we must determine the coef-
ficient of the single term in the Pólya polynomial containing the product xc1

1 xc2
2 . . . xcξ

ξ .
The Pólya polynomial is the average,

P(x1, x2, . . . , xξ ) = 1
|G|

(∑
π∈G

Pπ (x1, x2, . . . , xξ )

)
, (2)
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of the polynomials Pπ (x1, x2, . . . , xξ ) computed for each permutation π in the symmetry
group G, each Pπ being formed by multiplying the representations of each disjoint cycle
in π (as illustrated in Equation (1)).

Clearly, if we are only interested in the coefficient of xc1
1 xc2

2 . . . xcξ

ξ in P, we may simply
find the coefficient of that product in each Pπ and add those partial coefficients together.
Thus, given a permutation π with k1 cycles of length r1, k2 cycles of length r2, and so
on, up to kt cycles of length rt, with

∑t
i=1 riki = n (the number of sites, t is the number

of cycle types), we must compute the coefficient of xc1
1 xc2

2 . . . xcξ

ξ in Pπ .
It is well known that a product of sums is equal to the sum of all products one

can obtain by taking one summand from each factor (generalizing the familiar First
Outer Inner Last (FOIL) rule used by undergrads to multiply two binomials). Thus
the polynomial Pπ is the sum of all products of the form

∏
s xλ(s)

is (where the product
runs over all cycles s, λ(s) is the length of the cycle s, and xis is one of the colors chosen
from the sum for that cycle). Thus the product we want, xc1

1 xc2
2 . . . xcξ

ξ , has a coefficient
that simply counts the number of products of the form

∏
s xλ(s)

is where the sum of the
exponents for each xi is equal to the target ci.

Each cycle, of length ri (i = 1 . . . t), gets assigned to one of the colors. Let sij be the
number of cycles of length ri assigned to color j ( j = 1 . . . ξ ). This defines a t × ξ matrix
S = (sij) of non-negative integers, where (1) the sum of row i equals the number of
cycles of length ri:

ξ∑
j=1

sij = ki (row sum condition), (3)

and (2) weighted sum of column j must equal the target frequency of the j-th color:
t∑

i=1

risij = c j (column sum condition), (4)

in order to achieve our target stoichiometry.
For each such matrix, there are a number of possible ways to assign colors to the

cycles, with multiplicities prescribed by S. The number is

F(S) =
t∏

i=1

(
ki

si1, si2, . . . , siξ

)
, (5)

the product of the number of ways to do it for each cycle. Thus we are obliged to sum
the function F(S), so computed, over all matrices S meeting the given row and column
sum conditions (3) and (4).

If we do this computation for each permutation π , and average them (add them
and divide by |G|), we then get the coefficient of the Pólya polynomial P(x1, x2, . . . , xi)
corresponding to our target stoichiometry [c1 : c2 : · · · : cξ ]. This calculation depends
only on the cycle type of the permutation, the number of disjoint cycles of different
lengths comprising the disjoint-cycle representation. Thus we only need to make an
inventory of the cycle types for our permutations and do the calculation once for each
distinct cycle type. There will not be more such cycle types than the number of conjugacy
classes in the symmetry group. Also, note, the utility of multinomial coefficients in this
context stems from the likelihood that our permutations will have many cycles of the
same length.

Algorithmically, the process is straight forward. First, we must find all matrices S
which meet the row and sum conditions (3) and (4) above. For each successful matrix,
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Fig. 2. The symmetry group operations of the square. This group is known as the dihedral group of degree
4 or D4. The dashed lines are guides to the eye for the horizontal, vertical, and diagonal reflections (M1,M2
and D1, D2).

we then compute the product of row-multinomial-coefficients. We add those up and
multiply by the number of permutations in the conjugacy class, sum those results for
the conjugacy classes, and divide by the group order. That gives us the Pólya coefficient
for the given stoichiometry.

For example, suppose our permutation is made up of two 1-cycles, three 2-cycles, and
one 4-cycle (so the number of sites is 12), and we have three colors with frequencies
(red:green:blue → 4:6:2) respectively. Then we are looking for 3 × 3 matrices S whose

rows sum to
(

2
3
1

)
and whose columns (when dotted with the cycle lengths

(
1
2
4

)
) sum

to 4, 6, and 2 respectively. There are exactly five such matrices (see Figure 3 and
discussion in Section 3):

( 0 0 2
0 3 0
1 0 0

)
,

( 0 0 2
2 1 0
0 1 0

)
,

( 0 2 0
0 2 1
1 0 0

)
,

( 0 2 0
2 0 1
0 1 0

)
,

( 2 0 0
1 1 1
0 1 0

)
. (6)

The multinomial coefficient for the top and bottom row in each case is
( 2

2,0,0

) = (2
2

) =
1 = ( 1

1,0,0

)
, so the F(S) in each case is equal to the multinomial coefficient of the middle

row; thus
(3

3

) = 1 in the first case,
( 3

2,1

) = 3 for the middle three matrices, and
( 3

1,1,1

) = 6
for the right-hand matrix. So our count for this problem is 1 + 3 + 3 + 3 + 6 = 16. We
may check this by computing (r + g + b)2(r2 + g2 + b2)3(r4 + g4 + b4) (a la Pólya) and
noting that the coefficient of r4g6b2 is indeed 16.

Clearly, we can do that for each permutation in the group and sum the results. That
is equivalent to determining in how many ways we may assign a single color to each
cycle in the permutation—in such a way that the total number of occurrences of each
color achieves its target frequency.

2.2. Example: Applying Pólyas Theorem

Here we present a simple example showing how Pólya’s theorem is applied to a small,
finite group. The square has the set of symmetries displayed in Figure 2. These sym-
metries include four rotations (by 0◦, 90◦, 180◦, and 270◦; labeled 1, R1, R2, and R3)
and four reflections (one horizontal, one vertical, and two for the diagonals; labeled
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Table I. Disjoint-Cyclic Form for Each Group Operation in D4 and the Corresponding
Polynomials, Expanded Polynomials and the Coefficient of the x2y2 Term for Each

Op. Disjoint-Cyclic Polynomial Expanded Coeff.

1 (1)(2)(3)(4) (x + y)4 x4 + 4x3 y + 6x2 y2 + 4xy3 + y4 6

D1 (1, 3)(2)(4) (x2 + y2)(x + y)2 x4 + 2x3 y + 2x2 y2 + 2xy3 + y4 2

D2 (1)(2, 4)(3) (x2 + y2)(x + y)2 x4 + 2x3 y + 2x2 y2 + 2xy3 + y4 2

M1 (1, 2)(3, 4) (x2 + y2)2 x4 + 2x2 y2 + y4 2

M2 (1, 4)(2, 3) (x2 + y2)2 x4 + 2x2 y2 + y4 2

R1 (1, 4, 3, 2) (x4 + y4) x4 + +y4 0

R2 (1, 3)(2, 4) (x2 + y2)2 x4 + 2x2 y2 + y4 2

R3 (1, 2, 3, 4) (x4 + y4) x4 + +y4 0

M1, M2 and D1, D2). This group is commonly known as the dihedral group of degree
four, or D4 for short.2

The group operations of the D4 group can be written in disjoint-cyclic form as in
Table I. For each r-cycle in the group, we can write a polynomial in variables xr

i for
i = 1 . . . ξ , where ξ is the number of colors used. For this example, we will consider the
situation where we want to color the four corners of the square with only two colors. In
that case we end up with just two variables x1, x2, which are represented as x, y in the
table.

The Pólya representation for a single group operation in disjoint-cyclic form results
in a product of polynomials that we can expand. For example, the group operation D1
has disjoint-cyclic form (1, 3)(2)(4) that can be represented by the polynomial (x2 +
y2)(x + y)(x + y), where the exponent on each variable corresponds to the length of the
r-cycle of which it is a part. For a general r-cycle, the polynomial takes the form(

xr
1 + xr

2 + · · · + xr
ξ

)
, (7)

for an enumeration with ξ colors. As described in Section 2.1, we exchange the group
operations acting on the set for polynomial representations that obey the familiar rules
for polynomials.

We will now pursue our example of the possible colorings on the four corners of the
square involving two of each color. Excluding the symmetry operations, we could come
up with

(4
2

) = 6 possibilities, but some of these are equivalent by symmetry. The Pólya
theorem counts how many unique colorings we should recover. To find that number, we
look at the coefficient of the term corresponding to the overall color selection (in this
example, two of each color); thus we look for coefficients of the x2y2 term for each group
operation. These coefficient values are listed in Table I. The sum of these coefficients,
divided by the number of operations in the group, gives the total number of unique
colorings under the entire group action, in this case (6 + 2 + 2 + 2 + 2 + 0 + 2 + 0)/8 =
16/8 = 2.

Next, we apply the procedure discussed in connection with Equation (6) to construct
the matrix S for one of the permutations of the square. It illustrates the idea behind
the general algorithm presented in the next section.

In the symmetries of the square, there is a cycle type consisting of two 1-cycles and
one 2-cycle. The two permutations with that type are (1)(3)(24) and (2)(4)(13). The
cycle lengths are 1 (with multiplicity 2) and 2 (with multiplicity 1). So each of those

2The dihedral groups have multiple, equivalent names. D4 is also called Dih4 or the dihedral group of order
8 (D8).
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permutations requires a matrix S =
(

s11
s21

s12
s22

)
satisfying s11 + s12 = 2 and s21 + s22 = 1

(row sum condition (3)) and s11 + 2s21 = 2 and s12 + 2s22 = 2 (column sum condition
(4)). There are only two matrices of non-negative integers satisfying those conditions
simultaneously: (

2 0
0 1

)
and

(
0 2
1 0

)
. (8)

For each of these matrices, the row-multinomial coefficients are
( 2

0,2

) = 1 and
( 1

0,1

) = 1
so each matrix yields a product 1. Thus each permutation of this cycle type contributes
2 to the sum. This corresponds to the fact that the coefficient of x2y2 in (x + y)2(x2 + y2)
is 2.

Since there are two permutations of this cycle type, the total contribution of the cycle
type to the overall Pólya polynomial is 4 (which must then be divided by the number
of symmetries in the group).

Thus, in general, the only problem is to find an efficient way of generating these ma-
trix solutions. Since the problem is equivalent to enumerating all lattice points within
a high-dimensional polytope, we presume that a tree search (implemented recursively
or via a backtracking algorithm) may be the most efficient way to achieve this.

3. COEFFICIENT-FINDING ALGORITHM

Our implementation of the tree search is fundamentally identical to the method of the
last section; however, the details may not be immediately recognizable as such.3 In
this section we rephrase the row and column sum conditions (3) and (4) to highlight
the logical connections between our specific implementation and the general ideas
from Section 2. We adopt this approach because (1) for pedagogical value, the matrix
approach is much easier to visualize and (2) the algorithms presented here mirror the
accompanying code closely, which we consider valuable.

First, for a generic polynomial

(
xr

1 + xr
2 + · · · + xr

ξ

)d
, (9)

the exponents of each xi in the expanded polynomial are constrained to the set

V = {0, r, 2r, 3r, . . . , dr}. (10)

Next, we consider the terms in the expansion of the polynomial:

(
xr

1 + xr
2 + · · · + xr

ξ

)d =
∑

k1,k2,...,kξ

μk

ξ∏
i=1

xrki
i , (11)

where the sum is over all possibles sequences k1, k2, . . . , kξ such that the sum of the
exponents (represented by the sequence in ki) is equal to d,

k1 + k2 + · · · + kξ = d. (12)

3If all you are looking for is a working code, you now know enough to use it. Download it at https://
github.com/rosenbrockc/polya.
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As described in the introduction, the coefficients μk in the polynomial expansion
Equation (11) are found using the multinomial coefficients

μk =
(

n
k1, k2, . . . , kξ

)
= n!

k1!k2! · · · kξ !

=
(

k1

k1

)(
k1 + k2

k2

)
· · ·

(
k1 + k2 + · · · + kξ

kξ

)

=
ξ∏

i=1

(∑i
j=1 kj

ki

)
. (13)

Finally, we define the polynomial (7) for an arbitrary group operation π ∈ G as4

Pπ (x1, x2, . . . , xξ ) =
m∏

α=1

Mrα

α (x1, x2, . . . , xξ ), (14)

where each Mrα
α is a polynomial of the form (9) for the αth distinct r-cycle and dα is the

multiplicity of that r-cycle; m is the number of cycle types in Pπ . Linking back to the
matrix formulation, each Mrα

α is equivalent to a row Si in matrix S.
Since we know the fixed stoichiometry term T = ∏ξ

i=1 Ti = ∏ξ

i=1 xci
i in advance, we

can limit the possible sequences of ki for which multinomial coefficients are calculated.
This is the key idea of the algorithm and the reason for its high performance.

For each group operation π , we have a product of polynomials Mrα
α . We begin filtering

the sequences by choosing only those combinations of values viα ∈ Vα = {viα}dα+1
i=1 for

which the sum
m∑

α=1

viα = Ti, (15)

where Vα is the set from Eq. (10) for multinomial Mrα
α . At this point it is useful to refer

to Figure 3 to make the connection to the recursive tree search for possible matrices.
The Vα are equivalent to all the possible values that any of the elements in a row of the
matrix may take. If we take Mr1

1 as an example, then V1 is the collection of all values
that show up in row 1 of any matrix in the figure, multiplied by the number of cycles
with length r1. Constraint (15) is equivalent to the column sum requirement (4).

We first apply constraint (15) to the x1 term across the product of polynomials to find
a set of values {k1α}m

α=1 that could give exponent T1 once all the polynomials’ terms have
been expanded. This is equivalent to finding the set of first columns in each matrix
that match the target frequency for the first color. Once a value k1α has been fixed for
each Mrα

α , the remaining exponents in the sequence {k1α} ∪ {kiα}ξi=2 are constrained via
(12). We can recursively examine each variable xi in turn using these constraints to
build a set of sequences

Sl = {Slα}m
α=1 = {(k1α, k2α, . . . , kξα)}m

α=1, (16)

where each Slα defines the exponent sequence for its polynomial Mrα
α that will produce

the target term T after the product is expanded. Each Slα ∈ Sl represents the trans-
posed matrix S that survives both the row and column sum conditions (highlighted in
green in the figure). Thus, Sl is the set of these matrices for the group operation π . The

4We will use Greek subscripts to label the polynomials in the product and Latin subscripts to label the
variables within any of the polynomials.
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Fig. 3. A recursive tree search for some of the possible matrices S for the problem of Section 2: two 1-cycles,
three 2-cycles, and one 4-cycle. We have restricted the figure to include only the zero pendants of the tree,
which produce four of the five relevant matrices in Equation (6). Matrix elements in red (blue) represent the
only possible values that would satisfy the row (column) sum conditions. A red (blue) cross over a matrix
shows that it fails the row (column) sum condition, and its descendants need not be examined. Matrices with
green borders are solutions to the tree search problem. The purple squares show the current row and column
on which the recursive search is operating.

maximum value of l depends on the target term T and how many possible viα values
are filtered out using constraints (15) and (12) at each step in the recursion.

Once the set S = {Sl} has been constructed, we use Equation (13) on each polynomial’s
{kiα}ξi=1 in Slα to find the contributing coefficients. The final coefficient value for term
T resulting from group operation π is

tπ =
∑

l

τl =
∑

l

m∏
α=1

(
dα

Slα

)
. (17)

To find the total number of unique colorings under the group action, this process is
applied to each element π ∈ G and the results are summed and then divided by |G|.

We can further optimize the search for contributing terms by ordering the exponents
in the target term T in descending order. All the {k1α}m

α=1 need to sum to T1 (15); larger
values for T1 are more likely to result in smaller sets of {kiα}m

α=1 across the polynomials.
This happens because if T1 has smaller values (like 1 or 2), then we end up with
lots of possible ways to arrange them to sum to T1 (which is not the the case for the
larger values). Since the final set of sequences Sl is formed using a Cartesian product,
including a few extra sequences from any Ti prunings multiplies the total number of
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sequences significantly. In the figure, this optimization is equivalent to completing a
row with red entries because all the remaining, unfilled entries are constrained by the
row sum condition.

Additionally, constraint (12) applied within each polynomial will also reduce the
total number of sequences to consider if the first variables x1, x2, and so on, are larger
integers compared to the target values T1, T2, and so on. This speed-up comes from
the recursive implementation: If x1 is already too large (compared to T1), then possible
values for x2, x3, . . . are never considered. This optimization is equivalent to completing
matrix columns with blue entries because of the column sum constraint.

3.1. Pseudocode Implementation

Note: Implementations in PYTHON and FORTRAN are available in the supplementary
material.

For both algorithms presented below, the operator (⇐) pushes the value to its right
onto the list to its left.

For algorithm (1) in the EXPAND procedure, the ∪ operator horizontally concatenates
the integer root to an existing sequence of integers.

For BUILD_Sl, we use the exponent k1α on the first variable in each polynomial to
construct a full set of possible sequences for that polynomial. Those sets of sequences
are then combined in SUM_SEQUENCES (alg. 2) using a Cartesian product over the sets in
each multinomial.

When calculating multinomial coefficients, we use the form in Eq. (13) in terms of
binomial coefficients with a fast, stable algorithm from Manolopoulos [2002].

In practice, many of the group operations π produce identical products
Mr1

1 Mr2
2 . . . Mrm

m . Thus before computing any of the coefficients from the polynomials,
we first form the polynomial products for each group operation and then add identical
products together.

4. COMPUTATIONAL ORDER AND PERFORMANCE

The algorithm is structured around the a priori knowledge of the target stoichiometry.
At the earliest possibility, we prune terms from individual polynomials that would
not contribute to the final Pólya coefficient in the expanded product of polynomials
(see Figure 3). Because the Pólya polynomial for each group operation is based on its
disjoint-cyclic form, the complexity of the search can vary drastically from one group
operation to the next. That said, it is common for groups to have several classes whose
group operations (within each class) will have similar disjoint-cyclic forms and thus also
scale similarly. However, from group to group, the set of classes and disjoint-cyclic forms
may differ considerably; this makes it difficult to make a statement about the scaling
of the algorithm in general. As such, we instead provide a formal, worst-case analysis
for the algorithm’s performance and supplement it with experimental examples. For
these experiments, we crafted special groups with specific properties to demonstrate
the various scaling behaviors as group properties change.

4.1. Worst-Case Scaling

Heuristically, the behavior of our algorithm should depend roughly on the size of the
group: the number of permutations we have to analyze. That seems consistent with
our experiments. But that can also be mitigated by noting that some groups of the
same size have many more distinct cycle types than others. For example, if our group
is generated by a single cycle of prime integer length p, then there are only two cycle
types, despite the group having order p.

The majority of computation time should be spent in enumerating those matrices
S and be proportional to the number of same (see Figure 4). Numerical experiments
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ALGORITHM 1: Recursive Sequence Constructor
Procedure initialize(i, kiα, Mrα

α , Vα,T)
Constructs a Sequence Object tree recursively for a single Mrα

α by filtering possible exponents
on each xi in the polynomial. The object has the following properties:

root: kiα, proposed exponent of xi in Mrα
α .

parent: proposed Sequence for ki−1,α of xi−1.
used: the sum of the proposed exponents to left of and including this variable

∑i
j=1 kiα.

i: index of variable in Mrα
α (column index).

kiα: proposed exponent of xi in Mrα
α (matrix entry at iα).

Mrα
α : Pólya polynomial in Pπ (14).

Vα: possible exponents for Mrα
α (10).

T: {Ti}ξ

i=1 target stoichiometry.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

if i = 1 then
self.used ← self.root + self.parent.used

else
self.used ← self.root

end

self.kids ← empty
if i ≤ ξ then

for p ∈ Vα do
rem ← p − self.root
if 0 ≤ rem ≤ Ti and |rem| ≤ dαrα − self.used and |p − self.used| mod rα = 0 then

self.kids ⇐ initialize(i + 1, rem, Mrα
α , Vα, T)

end
end

end
Function expand(sequence)

Generates a set of Slα from a single Sequence object.
sequence: the object created using initialize().
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sequences ← empty
for kid ∈ sequence.kids do

for seq ∈ expand(kid) do
sequences ⇐ kid.root ∪ seq

end
end

if len(sequence.kids) = 0 then
sequences ← {kid.root}

end

return sequences
Function build Sl(k, V, Pπ , T)

Constructs Sl from {k1α}m
α=1 for a Pπ (14).

k: {k1α}m
α=1 set of possible exponent values on the first variable in each Mrα

α ∈ Pπ .
V: {Vα}m

α=1 possible exponents for each Mrα
α (10).

Pπ : Pólya polynomial representation for a single operation π in the group G (14).
T: {Ti}ξ

i=1 target stoichiometry.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sequences ← empty
for α ∈ {1 . . . m} do

seq ← initialize(1, k1α, Mrα
α , Vα, T)

sequences ⇐ expand(seq)
end

return sequences
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ALGORITHM 2: Coefficient Calculator
Function sum sequences(Sl)

Finds τl (17) for Sl = {Slα}m
α=1 (16)

Sl: a set of lists (of exponent sequences {kiα}ξ

i=1) for each polynomial Mrα
α in Pπ (14).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Kl ← Sl1 × Sl2 × · · · × Slm = 〈{(kiα)ξi=1}m

α=1〉l
coeff ← 0
for each {(kiα)ξi=1}m

α=1 ∈ Kl do
if

∑m
α=1 kiα = Ti ∀ i ∈ {1 . . . ξ} then

coeff ← coeff + ∏m
α=1

( dα

{kiα }ξi=1

)
end

end

return coeff
Function coefficient(T, Pπ , V)

Constructs S = {Sl} and calculates tπ (17)
T: {Ti}ξ

i=1 target stoichiometry.
Pπ : Pólya polynomial representation for a single operation π in the group G (14).
V: {Vα}m

α=1 possible exponents for each Mrα
α (10).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
if m = 1 then

if r1 > Ti ∀ i = 1..ξ then
return 0

else
return

( d1
T1T2 ...Tξ

)
end

else
T ← sorted(T)
possible ← V1 × V2 × · · · × Vm
coeffs ← 0

for {k1α}m
α=1 ∈ possible do

if
∑m

α=1 k1α = T1 then
Sl ← build Sl({k1α}m

α=1, V, Pπ , T)
coeffs ← coeffs+ sum sequences(Sl)

end
end

return coeffs
end

confirm5 that the number of matrices scales exponentially with the number of colors
(fixed group and number of elements in the set), linearly with the number of elements
in the set (fixed number of colors and group), and is linear with the group size (fixed
number of colors and elements in the set). The number of entries in the matrix S is
tξ (see the discussion above Equation (3)) and the height of the entries is (roughly)
bounded by the number of cycles and (very roughly) by the color frequencies divided
by cycle lengths. This makes computing a time estimate based on these factors very
difficult, but in the worst case, it could grow like the tξ -th power of the average size of the
entries, which will depend on the size of the target frequencies, and so on. This would
be a very complex function to estimate, but we may expect it to grow exponentially for

5Figures are included in the code repository. See supplementary material.
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Fig. 4. Normalized algorithm scaling with the number of relevant matrices to enumerate. For large matrix
counts, the behavior appears linear, supporting the hypothesis that the algorithm scales roughly with the
number of matrices. The scatter is appreciable only for small matrix counts (less than 106).

Fig. 5. Log plot of the algorithm scaling as the number of colors increases. Since the number of variables
xi in each polynomial increases with the number of colors, the combinatoric complexity of the expanded
polynomial increases drastically with each additional color; this leads to an exponential scaling. The linear
fit to the logarithmic data has a slope of 0.403.

very large input. We did not find that to be an impediment for the sizes of problems we
needed to solve.

4.2. Experiments Demonstrating Algorithm Scaling

In Figure 5, we plot the algorithm’s scaling as the number of colors in the enumer-
ation increases (for a fixed group and number of elements). For each r-cycle in the
disjoint-cyclic form of a group operation, we construct a polynomial with ξ variables,
where ξ is the number of colors used in the enumeration. Because the group opera-
tion results in a product of these polynomials, increasing the number of colors by 1
increases the combinatoric complexity of the polynomial expansion exponentially. For
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Fig. 6. Algorithm scaling as the number of elements in the finite set increases (for two colors). The Pólya
polynomial arises from the group operations’ disjoint-cyclic form, so more elements in the set results in a
richer spectrum of possible polynomials multiplied together. Because of the algorithms aggressive pruning
of terms, the exact disjoint-cyclic form of individual group operations has a large bearing on the algorithm’s
scaling. As such, it is not surprising that there is some scatter in the timings as the number of elements in
the set increases.

this scaling experiment, we used the same transitive group acting on a finite set with
20 elements for each data point but increased the number of colors in the fixed color
term T . We chose T by dividing the number of elements in the group as equally as
possible; thus for two colors, we used [10, 10]; for three colors we used [8, 6, 6], then
[5, 5, 5, 5], [4, 4, 4, 4, 4], and so on. Figure 5 plots the log10 of the execution time (in
ms) as the number of colors increases. As expected, the scaling is linear (on the log
plot).

As the number of elements in the finite set increases, the possible Pólya polynomial
representations for each group operation’s disjoint-cyclic form increases exponentially.
In the worst case, a group acting on a set with k elements may have an operation with
k 1-cycles; on the other hand, that same group may have an operation with a single
k-cycle, with lots of possibilities in between. Because of the richness of possibilities, it
is almost impossible to make general statements about the algorithm’s scaling without
knowing the structure of the group and its classes. In Figure 6, we plot the scaling for
a set of related groups (all are isomorphic to the direct product of S3 × S4) applied to
finite sets of varying sizes. Every data point was generated using a transitive group
with 144 elements. Thus, this plot shows the algorithm’s scaling when the group is
the same and the number of elements in the finite set changes. Although the scaling
appears almost linear, there is a lot of scatter in the data. Given the rich spectrum of
possible Pólya polynomials that we can form as the set size increases, the scatter is not
surprising.

Finally, we consider the scaling as the group size increases (Figure 7). For this test, we
selected the set of unique groups arising from the enumeration of all derivative super
structures of a simple cubic lattice for a given number of sites in the unit cell [Hart
and Forcade 2008]. Since the groups are formed from the symmetries of real crystals,
they arise from the semidirect product of operations related to physical rotations and
translations of the crystal. In this respect, they have similar structure for comparison.
In most cases, the scaling is obviously linear; however, the slope of each trend varies
from group to group. This once again highlights the scaling’s heavy dependence on
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Fig. 7. Normalized algorithm scaling with group size for an enumeration problem from solid state physics
[Hart and Forcade 2008]. We used the unique permutation groups arising from all derivative super structures
of a simple cubic lattice for a given number of sites in the unit cell. The behavior is generally linear with
increasing group size.

the specific disjoint-cyclic forms of the group operations. Even for groups with obvious
similarity, the scaling may differ.

4.3. Comparison with Computer Algebra Systems

In addition to the explicit timing analysis and experiments presented above, we also
ran a group of representative problems with our algorithm and MATHEMATICA (a common
CAS). We also attempted the tests with MAPLE but were unable to obtain consistent
results between multiple runs of the same problems.6 So, we have opted to exclude the
MAPLE timing results. For the comparison with MATHEMATICA, we used MATHEMATICA’s
Expand and Coefficient functions to return the relevant coefficient from the Pólya
polynomial (see Figure 8).

5. SUMMARY

Until now, no low-level, numerical implementation of Pólya’s enumeration theorem has
been readily available; instead, a CAS was used to symbolically solve the polynomial
expansion problem posed by Pólya. While CAS’s are effective for smaller, simpler cal-
culations, as the difficulty of the problem increases, they become impractical solutions.
Additionally, codes that perform the actual enumeration of the colorings are often im-
plemented in low-level codes, and interoperability with a CAS is not necessarily easy
to automate.

We presented a low-level, purely numerical algorithm and code that exploits the
properties of polynomials to restrict the combinatoric complexity of the expansion.
By considering only those coefficients in the unexpanded polynomials that might con-
tribute to the final answer, the algorithm reduces the number of terms that must be
included to find the significant term in the expansion.

6The inconsistency manifests in MAPLE sometimes returning 0 instead of the correct result and sometimes
running the same problem unpredictably in hours or seconds.
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Fig. 8. Comparison of the CPU time (a) and memory usage (b) between the FORTRAN implementation of our
algorithm and MATHEMATICA as the number of colors increases. These are the times needed to generate the
data in Figure 5.

Because of the algorithm scaling’s reliance on the exact structure of the group and
the disjoint-cyclic form of its operations, a rigorous analysis of the scaling is not possible
without knowledge of the group. Instead, we presented some numerical timing results
from representative, real-life problems that show the general scaling behavior.

In contrast to the CAS solutions whose execution times range from milliseconds to
hours, our algorithm consistently performs in the millisecond to second regime, even
for complex problems. Additionally, it is already implemented in both high- and low-
level languages, making it useful for confirming enumeration results. This makes it an
effective substitute for alternative CAS implementations.
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CHAPTER 3

Assessing Robustness in Machine Learning Models

As discussed above, Cluster Expansion
(CE) is a machine learning model whose repre-
sentation relies on compositional degrees of
freedom only. This means that it does an
excellent job of approximating properties on-
lattice. However, in practice we are most inter-
ested in “relaxed” structures, those for which
atoms are allowed to move off of ideal lattice
sites to lower their energy. Once the atoms
move off-lattice, CE may no longer be a good
basis for expanding the property of interest.

In practice, if the structures within an alloy
system relax “too much”, the CE fails and
has no predictive power. Before this study
was published [58], there was no reliable way
to know a priori whether the CE would fail
for a given system. This meant that several
hundred expensive DFT calculations may be
produced to train a CE that will not approx-
imate the physics well. We set out to answer
the following questions:

• How do we quantify “too much” relaxation?

• Is it possible to know in advance (i.e., with
only a few DFT calculations) whether the
CE will converge rapidly enough to justify
the additional calculations?

By combining a thorough analysis over
hundreds of systems with our group’s expertise
in Compressive Sensing [61, 62], we were able

to show that it is possible to detect slow conver-
gence with relatively few calculations. In
the context of machine learning for materials
discovery, this study serves as a gentle reminder
not to forget rigor in applying models. The CE
community applied the methodology for many
years before someone asked enough questions
to get at the fundamental problems behind CE
convergence.

Inasmuch as CE will soon be replaced by
alloy potentials, the analysis serves mostly
as a guide to understanding historical results
published using CE.

For this article, I performed the numerical
error analyses for experimental and analytic
distributions presented in Section III. This
includes interpreting the results in light of
Bayesian Compressive Sensing and using that
framework to generate predictive heuristics
for failure of CE. Using these heuristics,
it is possible to predict whether a CE is
worth pursuing by generating comparatively
few training configurations and analyzing the
behavior of the learning rate with respect
to sparsity. Andrew Nguyen performed the
analyses in Section II and we both drafted the
introduction and conclusion.

The following article is reproduced with
permission. A license is on file with the
Department of Physics and Astronomy.

24



PHYSICAL REVIEW B 96, 014107 (2017)

Robustness of the cluster expansion: Assessing the roles of relaxation and numerical error
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Cluster expansion (CE) is effective in modeling the stability of metallic alloys, but sometimes cluster
expansions fail. Failures are often attributed to atomic relaxation in the DFT-calculated data, but there is no
metric for quantifying the degree of relaxation. Additionally, numerical errors can also be responsible for slow
CE convergence. We studied over one hundred different Hamiltonians and identified a heuristic, based on a
normalized mean-squared displacement of atomic positions in a crystal, to determine if the effects of relaxation
in CE data are too severe to build a reliable CE model. Using this heuristic, CE practitioners can determine
a priori whether or not an alloy system can be reliably expanded in the cluster basis. We also examined the
error distributions of the fitting data. We find no clear relationship between the type of error distribution and CE
prediction ability, but there are clear correlations between CE formalism reliability, model complexity, and the
number of significant terms in the model. Our results show that the size of the errors is much more important
than their distribution.

DOI: 10.1103/PhysRevB.96.014107

I. INTRODUCTION

Increases in computational power and algorithmic advance-
ments are making many computational materials problems
more tractable. For example, density functional theory (DFT)
is used to assess the stability of potential metal alloys with high
accuracy. However, the computational costs of DFT prevents
exhaustive exploration of all possible configurations of a
system. In certain cases, one can map first-principles results
on to a faster Hamiltonian, the cluster expansion (CE) [1–3].
Over the past 30 years, CE has been used in combination with
first-principles calculations to predict the stability of metal
alloys [4–16], to study the stability of oxides [17–21], and to
model interaction and ordering phenomena at metal surfaces
[22–26]. Numerical error and relaxation effects decrease the
predictive power of CE models. The aim of this paper is to
demonstrate the effects of both and to provide a heuristic so
one can know when a reliable CE model can be expected for a
particular material system.

CE treats alloys as a purely configurational problem, i.e.,
a problem of decorating a fixed lattice with the alloying
elements [1,2]. However, CE models are usually trained with
data taken from “relaxed” first-principles calculations where
the individual atoms assume positions that minimize the total
energy, displaced from ideal lattice positions. Unfortunately,
cluster expansions of systems with larger lattice relaxation
converge more slowly than cluster expansions for unrelaxed
systems [27]. In fact, CEs with increased relaxation may fail
to converge altogether. No rigorous description of conditions
for when the CE breakdown occurs exists in the CE literature.

A persistent question in the CE community regards the
impact of relaxation on the accuracy of the cluster expansion.
Some proponents of CE argue that the CE formalism holds
even when the training structures are relaxed because there is
a one-to-one correspondence in configurational space between
relaxed and unrelaxed structures. This is an assumption.

*gus.hart@gmail.com

Independent of whether or not it is true, the relevant issue
is not the correspondence but the sparsity of the expansion. In
this paper, we demonstrate a relationship between relaxation
and sparsity in the CE model. As relaxation increases, CE
sparsity and the accuracy of CE predictions decreases.

In addition to the effects of relaxation, we also examine the
impact of numerical error on the reliability of the CE fits. There
are several sources of numerical error: approximations to the
physics of the model, the number of k points, the smearing
method, basis set sizes and types, etc. Most previous studies
[28–30] only examine the effect of Gaussian errors on the
CE model, but Arnold et al. [28] also investigated systematic
error (round-off and saturation error). They showed that, above
a certain threshold, the CE model fails to recover the correct
answer, that is, the CE model started to incorporate spurious
terms (i.e., sparsity was reduced). A primary question that we
seek to answer is whether the shape of the error distribution
impacts predictive performance of a CE model.

In this study, we quantify the effects of: (1) relaxation, by
comparing CE fits for relaxed and unrelaxed data sets and (2)
numerical error, by adding different error distributions (i.e.,
Gaussian, skewed, etc.) to ideal CE models. We study more
than one hundred Hamiltonians ranging from very simple pair
potentials to first-principles DFT Hamiltonians. We present a
heuristic for judging the quality of the CE fits. We find that
a small mean-squared displacement is indicative of a good
CE model. In agreement with past studies, we show that the
predictive power of CE is lowered when the level of error is
increased. We find that there is no clear correlation between
the shape of the error profile and the CE predictive power.
It is possible to decide whether the computational cost of
generating CE fitting data is worthwhile by examining the
degree of relaxation in a smaller set of 50–150 structures.

II. RELAXATION

Relaxation is distinct from numerical error—it is not an
error—but it has a similar negative effect. When relaxations
are significant, it is less likely that a reliable CE model

2469-9950/2017/96(1)/014107(11) 014107-1 ©2017 American Physical Society
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(a) (b)

FIG. 1. Symmetry-allowed distortions for two different unit cells.
The atomic positions of the cell on the left do not have any
symmetry-allowed degrees of freedom, but the aspect ratio of the
unit cell is allowed to change. For the unit cell on the right, the
horizontal positions of the atoms in the middle layer may change
without destroying the symmetry. (The unit cell aspect ratio may also
change.)

exists. Relaxation is a systematic form of distortion, the local
adjustment of atomic positions to accommodate atoms of
different sizes. Atoms “relax” away from ideal lattice sites
to reduce the energy, with larger atoms taking up more room,
and smaller atoms giving up volume. The type of relaxations
(i.e., the distortions that are possible) for a particular unit
cell are limited by the symmetry of the initially undistorted
case, as shown in Fig. 1. In the rectangular case (left),
the unit cell aspect ratio may change without changing the
initial rectangular symmetry. At the same time, the position
of the blue atom is not allowed to change because doing
so would destroy rectangular symmetry. In contrast, the two
blue atoms in the similar structure shown in the right panel
of the figure can move horizontally without reducing the
symmetry.

Conceptually, the cluster expansion is a technique that
describes the local environment around an atom and then
sums up all the “atomic energies” (environments in a unit
cell) to determine a total energy for the unit cell. For the
cluster expansion model to be sparse—to be a predictive model
with few parameters—it relies on the premise that any specific
local neighborhood contributes the same atomic energy to the
total energy regardless of the crystal in which it is embedded.
For example, the top row of Fig. 2 shows the same local
environment (denoted by the hexagon around the central blue
atom) embedded in two distinct crystals. If the contribution
of this local environment to the total energy is the same in
both cases, then the cluster expansion of the energy will be
sparse.

The effect of relaxation on the sparsity becomes clear in
the bottom row of Fig. 2. In the left-hand case [panel (a)],
the crystal relaxes dramatically and the central blue atom is
now fourfold coordinated entirely by red atoms. By contrast,
in the right-hand case [panel (b)], a collapse of the layers
is not possible and the blue atoms are allowed by symmetry
to move closer to each other. From the point of view of the
cluster expansion, the local environments of the central blue
atom are the same for both cases. This fact, that two different
relaxed local environments have identical descriptions in the
cluster expansion basis, leads to a slow convergence of cluster
expansion models. The problem is severe when the atomic
mismatch is large and relaxations are significant (i.e., when
atoms move far from the ideal lattice positions.)

(a) (b)

(a) (b)

FIG. 2. Relaxation scheme. The top images show the original
unrelaxed configurations, while the bottom figures show the relaxed
configuration. The left images (a) shows the relaxation where the
hexagon is contracted as shown by the black arrows in the bottom
left figure. The relaxation in the right images (b) is restricted to
displacement of the blue atoms as shown by the black arrows in the
bottom right figure.

A. Methodology

We investigated the predictive power of cluster expansions
using data from more than one hundred Hamiltonians gen-
erated from density functional theory (DFT), the embedded
atom method, Lennard-Jones potential, and Stillinger-Weber
potential. To investigate the effects of relaxation, we examined
different metrics to measure the degree of atomic relaxation in
a crystal configuration.

1. Hamiltonians

First-principles DFT calculations have been used to simu-
late metal alloys and for building cluster expansion models
[7,9–14]. However, DFT calculations are too expensive to
extensively examine the relaxation in many different systems
(lattice mismatch). Thus, we examine other methods such as
the embedded atom method (EAM) which is a multibody
potential. The EAM potential is a semiempirical potential
derived from first-principles calculations. EAM potentials
of metal alloys such as Ni-Cu, Ni-Al, and Cu-Al have
been parameterized from DFT calculations and validated to
reproduce their experimental properties such as bulk modulus,
elastic constants, lattice constants, etc. [31]. EAM potentials
are computationally cheaper, allowing us to explore the effects
of relaxation for large training sets; however, we are limited
by the number of EAM potentials available.

Therefore, we also selected two classical potentials,
Lennard-Jones (LJ) and Stillinger-Weber (SW), to adequately
examine various degrees of relaxation, which can be varied
using free parameters in each model. The Lennard-Jones
potential is a pairwise potential. Using the LJ potential, we
can model a binary (AxB1−x) alloy with different lattice
mismatch and interaction strength between the A and B atoms
by adjusting the σ parameter in the model. Additionally,
we also examined the Stillinger-Weber potential which has
a pair term and an angular (three-body) term. In attempting
to determine the conditions under which the CE formalism
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breaks down, we implemented a set of parameters in the SW
potential where the angular dependent term could be turned
on/off using the λ coefficient [32]. For example, depending on
the strength of λ, the local atomic environment in a relaxed,
two-dimensional structure switches between three-, four- and
six-fold coordination. When the system relaxes to a different
coordination, the CE fits would no longer be valid or at least
not sparse.

All first-principles calculations were performed using the
Vienna ab initio simulation package (VASP) [33–36]. We used
the projector-augmented-wave (PAW) [37] potential and the
exchange-correlation functional proposed by Perdew, Burke,
and Ernzerhof (PBE) [38]. In all calculations, we used the
default settings implied by the high-precision option of the
code. Equivalent k-point meshes were used for Brillioun zone
integration to reduce numerical errors [39]. We used 1728 (123)
k points for the pure element structures and an equivalent mesh
for the binary alloy configurations. Each structure was allowed
to fully relax (atomic, cell shape, and cell volume).

Relaxation was carried out using molecular dynamics
simulations for EAM, LJ, and SW potentials. Two molecular
dynamics packages were used to study the relaxation: GULP

[40,41] and LAMMPS [42]. Details for the LJ, SW, and EAM
potentials and the DFT calculations can be found in the
Supplemental Material [43].

2. Cluster expansion setup

The universal cluster expansion (UNCLE) software [44–46]
was used to generate 1000 derivative superstructures each
of face-centered cubic (FCC), body-centered cubic (BCC),
and hexagonal closed-packed (HCP) lattice. For the DFT
calculations, we used only 500 structures instead of 1000
due to the computational cost. We generated a set of 1100
clusters, ranging from two-body up to six-body interactions.
100 independent CE fits were performed for each system
(Hamiltonian and lattice).

We briefly discuss some important details about cluster
expansion here, but for a more complete description, see the
Supplemental Material [43] and past works [1,4,10,13,47–50].
Cluster expansion is a generalized Ising model with many-
body interactions. The cluster expansion formalism allows one
to map a physical property, such as E, to a configuration (�σ ):

ECE
i = �iJi�i(�σ ), (1)

where E is energy, � is the correlation matrix (basis), and J

is coefficient or effective cluster interaction (ECI).
When constructing a CE model, we are solving for the

effective cluster interactions or J s. We used the compressive
sensing (CS) framework to solve for these coefficients [13,50].
The key assumption in compressive sensing is that the solution
vector has few nonzero components, i.e., the solution is sparse
[51,52]. The CS framework guarantees that the sparse solution
can be recovered from a limited number of DFT energies.
Using the J s, we can build a CE model to interpolate the
configuration space.

Each CE fit used a random selection of 25% of the data
for training and 75% for validation. Results were averaged
over the 100 CE fits with error bars computed from the
standard deviation. We defined the percent error as a ratio

of the prediction root mean squared error (RMS) over the
standard deviation of the input energies, percent error =
RMS/STD(Einput) × 100%. This definition of percent error
allowed us to consistently compare different systems.

3. Relaxation metrics

Currently, there is no standard measure to indicate the
degree of relaxation. We evaluated different metrics as a mea-
sure of the relaxation: normalized mean-squared displacement,
Ackland’s order parameter [53], difference in Steinhardt order
parameter (D6) [54], SOAP [55], and the centrosymmetry
parameter [56]. We compared the metrics across various
Hamiltonians to find a criterion that is independent of the
potentials and systems [43]. We found that none of these met-
rics are descriptive/general enough except for the normalized
mean-squared displacement.

4. Normalized mean-squared displacement (NMSD)

To measure the relaxation of each structure/configuration,
we used the mean-squared displacement (MSD) to measure the
displacement of an atom from its reference position, i.e., the
unrelaxed atomic position. The MSD metric is implemented
in the LAMMPS software [42], which also incorporates the peri-
odic boundary conditions to properly account for displacement
across a unit cell boundary. The MSD is the total squared
displacement averaged over all atoms in the crystal:

MSD = 1

Natom

∑
atom

∑
X=x,y,z

(X[t] − X[0])2, (2)

where X represents the Cartesian components of each atom
position, t is the final relaxed configuration, and 0 is the
initial unrelaxed configuration. Additionally, we defined a
normalized mean-square displacement (NMSD) percent:

NMSD = MSD

V 2/3
× 100% (3)

which is the ratio of MSD to volume of the system. This allows
for a relaxation comparison parameter that is independent of
the overall scale.

B. Results and discussions

To explore the effects of relaxation on CE predictability,
we examine relaxation in various systems from very high
accuracy (DFT) to very simple, tunable systems (LJ and
SW potentials). We examine more than one hundred different
Hamiltonians and we find several common trends among the
different systems.

In most cases, we find that the relaxed CE fits are worse
(higher prediction error and higher number of coefficients)
than the unrelaxed ones. For example, Fig. 3 shows the cluster
expansion fitting for unrelaxed and relaxed data sets of Ni-Cu
alloy system using DFT and EAM with two different primitive
lattices, FCC and BCC. Because Ni-Cu alloys are naturally
FCC-like and the lattice mismatch is small, the training
structures for the FCC-based training structures have small
relaxations, whereas BCC-based training structures have large
relaxations. The contrast between the two cases demonstrates
the effect of atomic relaxations. As Fig. 3 shows, Ni-Cu alloy
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FIG. 3. Cluster expansion fits for Ni-Cu alloy using DFT or EAM
potential. Each bar represents the average percent error and error bar
(standard deviations) for 100 independent CE fits. The blue bars
represent the unrelaxed CE fits, while the red bars represent the
relaxed CE fits. The colored number represents the average number
of coefficients used in the CE models. When the configurations are
relaxed, we find that the CE fits are often worse (higher prediction
error and higher number of J s) than the unrelaxed system. However,
we show that in one case (Ni-Cu EAM) the unrelaxed and relaxed CE
fits are identical (same error and same number of coefficients) and
this is due to a small relaxation.

fitting for a FCC lattice is below 10% error, while BCC
fitting result in more J s and higher percent error (above 10%)
[57]. We find similar results in the relaxation of Ni-Cu alloy
using first-principles DFT and EAM potential. The difference
between relaxed and unrelaxed CE fits are negligible when
relaxations are small. This is shown in Fig. 3 for the relaxation
of FCC superstructures using a Ni-Cu EAM potential.

Figure 3 shows that relaxation is often associated with
reduced sparsity (increased cardinality of J s) [58]. One
possible implication is that a number of coefficients (J ) could
be used to evaluate the predictive performance of the CE fits.
The number of coefficients used in the fits (such as in Fig. 3)
is a simple way to determine whether or not a CE fit can be
trusted. Figures 4(b) and 4(f) show similar clusters across the
100 independent CE fittings; thus, vertical lines indicate the
presence of the same cluster across all CE fits. When the fit is
good, only a small subset of clusters is needed [Fig. 4(b)]. On
the other hand, Fig. 4(f) shows some common clusters in all of
the CE fits with several additional clusters. Figure 5(a) shows
the correlation of the percent error with the number of terms
in the expansion. We find that as the number of coefficients
increases the percent error increases. However, this is not a
sufficient metric as shown in Fig. 5(a) where the number of
coefficient varies a lot. Nonetheless, the number of coefficients
may be used as a general, quick test.

The degree of relaxation is crucial to define whether or not
the CE model is accurate or not. However, there is no standard
for when cluster expansion fails due to relaxation. Thus far,
we have made some remarks about relaxation and CE fits.
But the question of how much relaxation is allowed has not
been addressed. By examining a few metrics: NMSD, SOAP

[55], D6 [54], Ackland [53], and centrosymmetry [56], we
find that there is a relationship between degree of relaxation
and the quality of CE fits. As shown in the Supplemental
Material, we have used these metrics to investigate over
100+ systems (different potentials, lattice mismatches, and
interaction strengths). Here, we present a heuristic to measure
the degree of relaxation based on the NMSD.

In general, cluster expansion will fail when the relaxation is
large. Figure 5(b) shows that a small NMSD weakly correlates
with a small number of coefficients. However, Fig. 6 high-
lights the correlation between degree of relaxation and predic-
tion error. There is a roughly linear relationship between the
degree of relaxation and the CE prediction. We partition the
quality of the CE models into three regions: good (NMSD <

0.1%), maybe (0.1% � NMSD � 1%), and bad (NMSD >

1%). The “maybe” region is the gray area where the CE fit can
be good or bad. This metric provide a heuristic to evaluate the
reliability of the CE models, i.e., any systems that exhibit high
relaxation will fail to provide an accurate CE model.

III. NUMERICAL ERROR

As we have shown in the previous section, greater relax-
ation results in worse CE fitting. In addition to the effects
of relaxation, we now investigate the effects of numerical
error on reliability of CE models. The distinction between
relaxation “error” and numerical error is that the former is
inherent in the data used to train the CE model. Numerical
error can be completely eliminated, in principle. Numerical
error arises from various sources such as the number of
k points, the smearing method, minimum force tolerance,
basis set sizes and types, etc. These errors are not stochastic
errors or measurement errors; they arise from tuning the
numerical methods. We assume that the relaxation-induced
change in energy for each structure is an error term that
the CE fitting algorithm must handle. The collection of
these “errors” from all structures in the alloy system then
form an error profile (or distribution). Using the simulated
relaxation error profiles from the previous section together
with common analytic distributions, we built “toy” CE models
with known coefficients. We then examined whether or not
the shape of the error distribution affects the CE predictive
ability.

A. Methodology

The numerical errors in DFT calculations are largely
understood, but it is difficult to disentangle the effects of
different, individual error sources. Instead of studying the
effects of errors separately, we added different distributions
of error to a “toy” model in order to imitate the aggregate
effects of the numerical error on CE models. Hence, we opt to
simplify the problem by creating a “toy” problem for which the
exact answer is known. To restrict the number of independent
variables, we formulated a “toy” cluster expansion model by
selecting five nonzero values for a subset of the total clusters.
Using this toy CE, we predicted a set of energies y for 2000
known derivative superstructures of an FCC lattice. These y

values are used as the true energies for all subsequent analysis.
We added error to y, chosen from either: (1) “simulated”
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(b) CE fits vs clusters for FCC parent lattice
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(f) CE fits vs clusters for BCC derivative structures
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FIG. 4. CE fitting and relaxation of Ni-Cu alloys (DFT calculations) using FCC derivative superstructures and BCC derivative
superstructures. Shown in Figs. 4(b) and 4(a) are the 100 CE fits and the histogram of the clusters used for the FCC lattices, while plots
4(f) and 4(e) are for the BCC lattice. The errors and coefficients are shown in 4(c) and 4(d) for the FCC structures and in 4(g) and 4(h) for
the BCC lattice. The plot shows that the number of clusters used in fitting is small when cluster expansion fitting is good (error is on average
6.03% for FCC derivative structures). However, the CE fitting of the BCC parent lattice is worse at 16.70% compared to FCC at 6.03%. More
coefficients are used when CE fails. The increased number of J s and error indicate a bad CE fitting model as shown by plots 4(g) and 4(h).
Figure 4(e) shows only a few significant terms with many other clusters used sparingly in the fits.

distributions obtained by computing the difference between
relaxed and unrelaxed energies predicted by either DFT, EAM,
LJ, or SW models (Fig. 7) or (2) common analytic distributions
(Fig. 8).

To generate the simulated distributions, we chose a set of
identical structures and fitted them using a variety of classical

and semiclassical potentials, and quantum mechanical calcu-
lations using VASP. For each of the potentials we selected, we
calculated an unrelaxed total energy y for each structure and
then performed relaxation to determine the lowest energy state
ỹ. The difference between these two energies (�y = ỹ − y)
was considered to be the “relaxation” error.
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FIG. 5. Plot 5(a) displays the CE fitting error vs the number
of coefficients, while plot 5(b) highlights the relationship between
number of coefficients and relaxation. The dashed line approximates
what we consider as the maximum acceptable error for a CE model
(10%). The dashed line in Fig. 5(b) marks the estimated threshold for
acceptable relaxation level. Each symbol represents 100 independent
CE fittings for each Hamiltonian. Higher error correlates with a higher
number of coefficients.

Certain assumptions are usually made about the error in the
signal, namely that it is Gaussian. The original CS paradigm
proves that the �2 error for signal recovery obeys [52]:

||x∗ − x||�2 � C0 · ||x − xS ||/
√

S + C1 · ε, (4)

where ε bounds the amount of error in the data, x∗ is the CS
solution, x is the true solution, and xS is the vector x with all but
the largest S components set to zero. This shows that, at worst,
the error in the recovery is bounded by a term proportional to
the error. For our plots of this error, we first normalized �y

so that ε ≡ normalized(�y) ∈ [0,1] using

ε = y − min(y)

max(y) − min(y)
. (5)

Not surprisingly, the various potentials produced different
error profiles.

0.001 0.01 0.1 1 10
NMSD (%)

1

10

100

Pe
rc

en
t e

rr
or

 (%
)

Good Maybe BadSW
LJ
EAM

FIG. 6. Relationships between relaxation and CE fitting reveal
a heuristic for determining the quality of a CE model. This graph
shows the CE fitting error vs normalized mean square displacement
(NMSD). Each mark represents 100 individual CE fittings for each
system (potentials and parameters). As the NMSD (relaxation)
increases, the CE fitting error increases for various systems and
potentials. Using the relaxation metric, the quality/ reliability of the
CE fits can be divided into three regions: good, maybe, and bad CE
model. The solid black lines indicates these three areas.

The expectation value of the distributions was set to be
a percentage of the average, unrelaxed energy across all
structures. Thus, “15% error” means that each unrelaxed
energy was changed by adding a randomly drawn value from
a distribution with an expectation value of 15% of the mean
energy. We performed CE fits as a function of the %-error
added (2, 5, 10, and 15%) for each distribution. Although
we only present the 15% error results in the next section, all
results at different error levels can be found in the supporting
information [43]. For each data point, we performed 100
independent CE fits and used the mean and standard deviation
to produce the values and error bars for the plots.

B. Results and discussions

As shown in Fig. 9, the error is weakly uniform across all
(analytic and simulated) distributions, implying that there is
no correlation between specific distribution and error. None
of the normal quantifying descriptions of distribution shape
(e.g., width, skewness, kurtosis, standard deviation, etc.) show
a correlation with the CE prediction error. The error increased
proportionally with the level of error in each system (2, 5, 10,
and 15% error). We therefore turn to the compressive sensing
(CS) formalism for insight.

The theorems of Tao and Candés [51] guarantee that the
solution for an underdetermined CS problem can be recovered
exactly with overwhelming probability provided:

(1) The solution is sparse within the chosen representation
basis.

(2) Sufficient data points, sampled independent and iden-
tically distributed (i.i.d).

(3) The sensing and representation bases are maximally
incoherent.

If all of these conditions are met, we know that CS will pro-
vide a solution that is very close to the true answer. Conversely,
if CS cannot converge to a good solution, it means that one of
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FIG. 8. The analytic, equal width distributions used for adding error to the toy model CE fit.
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FIG. 9. Comparison of the predictive error in CE fits as the shape
of relaxation error changes. (A) refers to the analytic distribution
while (S) refers to simulated distribution. The fits are ordered
from lowest to highest distribution width. Fits were averaged over
100 randomly selected subsets with 500/2000 data points used
for training; the remaining 1500 were used to verify the model’s
predictions. The black and red colored symbols represent 2% and
15% error levels, respectively. The circles and triangles represent
the analytical and simulated distributions, respectively. Higher error
produces higher prediction errors.

these conditions has been violated. We have control over the
number of training points, and the incoherence of the sensing-
representation bases. However, we cannot control whether
the true physical solution is sparsely represented for relaxed
systems. This suggests a useful connection between the CS
framework and the robustness of CE: if CS cannot reproduce
a good CE fit (quantified below), then sparsity has been lost.

In the CS framework, the foundational assumption is that
of sparsity, meaning that the compressed signal (or cluster
expansion) requires only a few terms to accurately represent
the true signal (physics). Thus, the number of terms recovered
by CS to produce the CE is a good measure of the quality of
the CS fit. This begs the question: Can we use the number
of terms within the CS framework to heuristically predict in
advance whether the CE fit will converge well?

In answering the question of predictability for a good CE
fit, we define three new quantities:

(1) 	: total number of unique clusters used over 100 CE
fits of the same dataset. We also call this the model complexity.

(2) �∈: number of “exceptional” clusters. These are clusters
that show up fewer than 25 times across 100 fits, implying that
they are not responsible for representing any real physics in
the signal, but are rather included because the CE basis is no
longer a sparse representation for the relaxed alloy system.
They are sensitive to the training/fitting structures.

(3) 
: number of significant clusters in the fit; essentially
just the total number of unique clusters minus the number of
“exceptional” clusters, 
 = 	− �∈.

In the relaxation section, we showed that the average
number of coefficient is not sufficient to determine the quality
of the CE model. Here, we decompose the number of J s into
three new quantities to provide additional insights into the

%

FIG. 10. Prediction error over 65% of the structures for the “toy”
cluster expansion (at 15% error added). The systems are ordered by
	, which is the total number of unique clusters used by any of the
100 CE fits for the system. This ordering shows a definite trend with
increasing 	.

reliability of the CE fits. In Fig. 10, we plot the CE error,
ordered by model complexity and show that it reproduces the
trend identified by the number of coefficients (indeed they are
intimately related, 	 being the statistically averaged number
of coefficients across many fits). An ordering by the number
of exceptional clusters �∈ produces an identical trend, showing
that it may also serve to quantify a good fit [43].

As indicated earlier, all these experiments were performed
for a known CE model that had five nonzero terms. Additional
insight is gained by plotting the errors, ordered by 
, the
number of significant clusters (Fig. 11). Figure 11 shows that in
almost all cases, once we remove the exceptional clusters �∈, the
remaining model is almost exactly the known CE model that
we started with. The CS framework provides a rigorous math-
ematical framework for this statement because it guarantees to
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FIG. 11. Prediction error over 65% of the structures for the “toy”
CE model (at 15% error added). The errors are ordered by 
, the
number of significant terms in the expansion. As expected, the values
are close to the known model complexity (5 terms) and the ordering
once more appears random.
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exactly recover the original function with high probability as
long as we have enough measurements and our representation
basis is truly sparse. Once the cluster expansion stops converg-
ing, we lose sparsity and CS fails. This gives us confidence to
use the CS framework as a predictive tool for CE robustness.

Provided the training structures are independent and identi-
cally distributed, we do not necessarily need hundreds of costly
DFT calculations to tell us that the CE will not converge. Using
our toy CE model, we discovered that for all error distributions,
a training set size of 50 data points was sufficient to recover
the actual model complexity (five terms) [43]. For actual
DFT calculations, where relaxation was known to disrupt CE
convergence, we saw a similar trend with about 100 data points
needed to identify whether the CE would converge with more
data or not.

We conclude that CE robustness for relaxed systems can
be predicted with a much smaller number of data points than
is typically needed for a good CE fit (on the order of 5–10%
from our experience) [59]. The proposed heuristic to verify
convergence of the relaxed CE, when trained with a limited
dataset, is to examine the values of 
 and 	 over a large
number of independent fits. If the number of the exceptional
clusters �∈ is significant compared to 
, then it is likely that the
CE will not converge on a larger dataset as shown in Fig. 12.
Figure 13 highlights the CE fitting as a function of training
set size. We observe small relaxation (black curve) correlates
with a small number of coefficients; thus the CE can fit using
a small number of J s even with 5% (25) to 10% (50) of the
structures. On the other hand, red and blue curves, which have
high relaxation, do not converge. By using a small relaxed
dataset (50 to 100 structures), we can predict whether or not
the computational cost of relaxing many structures is fruitful.

IV. CONCLUSIONS

Relaxation and error decrease the reliability of the cluster
expansion fit because the CE model is no longer sparse. Never-

FIG. 12. Plot of predictive error over 65% of the structures for
the “toy” problem (at 15% error added). The systems are ordered by
�∈ the number of clusters that were used less than 25 times across all
100 CE fits. These are considered exceptions to the overall fit for the
system. As for Fig. 10, there is a definite trend toward higher error
for systems with more exceptional clusters.
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FIG. 13. For a reliable CE model, the number of coefficients
converges as a function of the training set size. A total of 500 structure
were available for training. The number of coefficients in a fit and its
error bars give us an indication of the predictive power of CE with
only a small training set. The black curve represents a good CE fit;
only 25 to 50 (or 5 to 10%) of training structures were needed. On
the other hand, the red and blue curves show that CE fails to fit the
data due to a slowly converging expansion. The error bars on the blue
points indicate extremely bad fitting.

theless, until now, there has been no measure of relaxation that
provides a heuristic as to when the CE fitting data is reliable.
Using four different Hamiltonians (first-principles, Lennard-
Jones, Stillinger-Weber, and embedded atom method), we
show that the normalized mean-squared displacement of
alloy configuration is a good measure of relaxation and CE
predictability. A small displacement percent, e.g., less than
0.1%, will usually generate a reliable CE model. The number
of cluster terms in the CE models can be an indicator of how
well cluster expansions perform; we find that models with a
large number of parameters have poor predictive capability
and tend not to converge, even with more training data. CE
tends to fail when the number of J s exceeds 80.

In our error analysis, we investigated the ability of the
compressive sensing framework to obtain fits to a toy, cluster
expansion model as the energy of relaxation changes in a
predictable way. We used 16 relaxation error distributions
(both analytic and simulated) and compared the prediction
errors of the resulting CE fits for the relaxed vs unrelaxed case.
No clear correlation appears between the statistical measures
of distribution shape and the predictive errors. However,
there are clear correlations between the predictive error, the
complexity of the resulting CE model, and the number of
significant terms in that model.

We cannot use the relaxation distributions alone to de-
termine the viability of a CE fit in advance. However, the
analysis does reveal that the majority of the clusters used by the
unrelaxed CE fit will also be present in the relaxed case (albeit
with adjusted J values) if the CE fit is viable. This suggests
that it may be possible to decide whether the computational
cost of full CE is worthwhile by making predictions for a few
relaxed systems (50–100) and determining whether the error
remains small enough.
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CHAPTER 4

Bridging the Experiment-Theory Gap

If a computational method predicts stable
alloys at a certain composition, it does not
necessarily guarantee that the alloy will be easy
to make. Experimentally, we can control the
composition and the temperatures/pressures at
which the solution anneals. If an accurate phase
diagram is available, the process is stream-
lined since the exact structure at each point
in the diagram is known and the tempera-
tures at which phase transitions occur are also
known. Unfortunately, phase diagrams are not
always reliable, especially when they are drawn
from knowledge of only a few experimentally
verified points.

Machine learning models such as Cluster
Expansion (CE) can approximate the energy of
a structure given its configuration. As soon
as a fast method is available for calculating
energies, statistical simulations (such as Monte
Carlo) can be executed to approximate phase
transition temperatures and the structures that
occur at the stable minima on either side of the
transition. Since computational experiments
can always run to completion, this provides a
valuable source of information if the models are
accurate.

In contrast, if an experiment doesn’t anneal
for long enough at the transition temperature,
the structure may be stuck in an interme-
diate phase or a combination of pre- and post-
transition phases. If the phase diagram is
incomplete, this presents a special problem
because characterization of the sample for such
intermediate phases may produce an unknown
structure.

This study leveraged a fast CE model and
metropolis Monte Carlo simulation to approx-
imate the energy of CuPt3 as a function of
temperature. Using a group-theoretical analysis
of the structures with order parameters of the
symmetry-breaking subgroups, we were able

to identify transition phases computationally.
It is significant because it clarifies a phase
diagram published earlier that was ambiguous
as to the particular structures. We were able to
verify the structures at experimental points in
the phase diagram and then go beyond exper-
iment by characterizing intermediate structures
at the phase transitions.

The methodology presented in this work
can be generally applied to any computa-
tional modeler that tries to discover struc-
tures within a phase diagram. Tools to
discover the order parameters for distorted
sub-groups can be applied generally to new
systems [63]. Combined with automated alloy
potential generation and nested sampling for
phase discovery [64–66], we plan to use this
methodology for structure characterization in
computed phase diagrams.

Bridging the gap between experiment and
theory requires tight collaboration. From
the experimental side, sample preparation
and characterization are both time-consuming,
often requiring many iterations. The theoretical
analysis in this case required combining
advanced group theory with machine learning.
I performed Monte Carlo simulations using a
machine-learned Cluster Expansion model for
CuPt to characterize the temperature-dependent
structure of the phases. This leveraged struc-
tural characterization tools from group theory
provided by Stokes and Campbell and Cluster
Expansion expertise from Nelson and Hart.
Combining these existing tools in a new way
created a reusable tool, adding to the signif-
icance of the theoretical contribution to this
work. The remaining authors were involved in
experimental synthesis and characterization.

The following article is reproduced with
permission. A license is on file with the
Department of Physics and Astronomy.
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Abstract

Experimentally and computationally, the structure of Pt–Cu at 1:3 stoichiometry has a convoluted history. The L13 structure has been
predicted to occur in binary alloy systems, but has not been linked to experimental observations. Using a combination of electron dif-
fraction, synchrotron X-ray powder diffraction, and Monte Carlo simulations, we demonstrate that it is present in the Cu–Pt system at
1:3 stoichiometry. We also find that the 4-atom, fcc superstructure L13 is equivalent to the large 32-atom orthorhombic superstructure
reported in older literature, resolving much of the confusion surrounding this composition. Quantitative Rietveld analysis of the X-ray
data and qualitative trends in the electron-diffraction patterns reveal that the secondary Xþ1 ða; 0; 0Þ order parameter of the L13 phase is
unexpectedly weak relative to the primary Lþ1 ða; a; 0; 0Þ order parameter, resulting in a partially-ordered L13 ordering, which we con-
clude to be the result of kinetic limitations. Monte Carlo simulations confirm the formation of a large cubic superstructure at high tem-
peratures, and its eventual transformation to the L13 structure at lower temperature, but also provide evidence of other transitional
orderings.
� 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Keywords: Diffraction; Ordering; Alloys; Platinum; Catalysis

1. Introduction

The structure of Cu–Pt at 1:3 stoichiometry was first
reported by Schneider and Esch in 1944 [1] as an ortho-
rhombic ordering that can be visualized as a 32-atom fcc
supercell (see Fig. 1(a)). This result was followed by con-
flicting reports over the next three decades [2–7]. In 1974,
Miida and Watanabe resolved the contradictions by dem-

onstrating that the 32-atom orthorhombic ordering is
indeed the stable structure in CuPt3 at room temperatures,
but that rhombohedral and cubic orderings also
appear in the phase diagram at adjacent compositions
and temperatures [8].

On the theoretical side, the story is also rather convo-
luted. Based on theoretical considerations, Khachaturyan’s
formalism is consistent with a 4-atom orthorhombic unit
cell as the prototype CuPt3 structure [9] but he incorrectly
cites the 32-atom cell of cubic symmetry proposed by Tang
(see Ref. [2]), which can be condensed to an 8-atom prim-
itive cell, and diagrams a tetragonal 32-atom cell that seems
to be a hybrid of the orthorhombic and cubic structures;
see also Fig. 1 panes (b) and (d). The Khachaturyan
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orthorhombic cell2 is now referred to by the Strukturbericht

symbol L13.3
Although, it was never recognized experimentally, L13

has long been employed as a hypothetical structure in the
alloy community, due both to the work of Khachaturyan
and the seminal work of Kanamori and Kakehashi where
it is derived as a possible alloy structure on purely theoret-
ical grounds [11]. No work in the experimental literature
has discussed the primitive unit cell of the (original, 1944)
32-atom orthorhombic supercell, and no work in the com-
putational/theoretical literature has recognized that the
L13 structure is related to the experimental structure of
Schneider [12]. Here, we make the simple observation that
the ordering conveyed by Schneider’s original orthorhom-
bic 32-atom supercell is in fact equivalent to the 4-atom
L13 structure (shown in Fig. 1(c)), which is also
orthorhombic.

The L13 structure emerges naturally from the concentra-
tion wave formalism [9,13] as a Lifshitz structure associated
with the k-points 1

2
; 1

2
; 1

2

� �
and ð1; 0; 0Þ. It also emerged inde-

pendently from the cluster expansion community, where
ordered superstructures of a disordered fcc parent were
enumerated for ground state searches using Ising models
of alloys [11,14–17]; but it was not considered to be
especially interesting until it was predicted to be a stable

Fig. 1. (a) The originally proposed [1] orthorhombic structure for CuPt3, where Pt atoms are shown in blue and Cu atoms in red. This 32-atom cell is not
primitive (or even conventional) but clearly shows the ordering motif and the underlying fcc parent lattice. (b) A CuPt3 ordering model proposed by Tang
[2], wherein both the 2� 2� 2 supercell and the parent cell have face-centered cubic symmetry. Despite the 3:1 stoichiometry, one of the sites (indicated by
purple atoms) is disordered, i.e. randomly occupied by both Pt and Cu atoms. (c) The conventional C-centered orthorhombic unit cell of L13 first discussed
by Khachaturyan and proposed as the structure of CuPt3, which is crystallographically equivalent to that of (a). The smaller 4-atom primitive cell is
indicated by red lines. The numerals 1, 2, and 3 indicate distinct Wyckoff positions and are discussed later. (d) The structure of L13 as determined from
present experiments. Gray atoms indicate a disordered site, while purple atoms indicate a partially-ordered site that is Cu-rich but not pure Cu.

2 Although the 4-atom cell that Khachaturyan introduced in Ref. [9] is
orthorhombic, he referred to it as a tetragonal cell. Subsequent references
to this special Lifshitz structure in the theoretical literature recognize it as
orthorhombic.

3 This arbitrary Strukturbericht-like designation is motivated by other
official designations. Strukturbericht designations for pure elements start
with A; the face centered cubic (fcc) structure is A1. One-to-one structure
designations start with B; the NaCl structure is designated B1, the 1
coming from A1, indicating fcc. Alloy structures are indicated by a
beginning L and fcc-based alloys L1, again the 1 indicating fcc. A second,
subscripted number in the Strukturbericht symbol, L1x, indicates the order
of discovery or assignment. For example, the designation for CuAu is L10,
indicating that CuAu was the first fcc-based alloy to be given a symbol.
Next, was the designation for equiatomic PtCu as L11, and so forth. The
designation of the 4-atom, orthorhombic structure shown in Fig. 1(d) as
L13 follows this convention. However, adding to the potential confusion,
the Strukterbericht symbol L13 was already used in 1931 [10] for another
structure (an 8-atom cell of 1:1 stoichiometry but not that referred to as
D4 in the modern community). Apparently, the previous use of the symbol
was forgotten by the modern community. It is possible that there are
instances, besides [10] in the literature (past or current), where L13

designation is used for the previous structure but the authors are not
aware of any.
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configuration in the Ag–Pd system in 2001 (where it was
called L1þ1 because of its relationship to the L11 structure
[18]). Curtarolo predicted it as a ground state structure in
Pd–Pt and Cd–Pt [19]; and it was discussed as a likely
“missing structure” in the enumeration-related work of
Hart [20].

The interest in CuPt3 is not merely academic—it has
practical import. Much research has been done on the cat-
alytic properties of platinum and platinum-based alloys
because of their widespread use in the chemical and petro-
leum industries. Additionally, the use of platinum-alloys in
the jewelery industry accounts for a sizeable fraction of the
worldwide consumption of platinum alloys, about 30%
over the last decade [21]. In both cases, knowing the com-
position and structure of stable compounds is useful for
materials improvement and design. It is surprising then
that so little is known about the structural and mechanical
properties of these alloys, knowledge that could be used to
improve Pt-based jewelery alloys [22] and catalysts.

The most common alloying element in platinum jewelery
is Cu in relativly low concentration. Although Pt–Cu has
been extensively used by jewelerers for more than 100 years,
the influence of the cubic 7:1 phase [1], which can dramati-
cally harden the alloy when it is present even in small
volume fractions [22], was only recently confirmed [23]. It
is important to remember that even well-known alloys
harbor surprises, and that novel alloy orderings can have
significant impact on practical material performance.

The L13 structure was very recently predicted to be the
stable phase of Cu–Pt at the 1:3 stoichiometry in Ref.
[24]. It was this prediction that led to the present re-exam-
ination of the room-temperature structure of CuPt3, where
electron diffraction and X-ray powder diffraction measure-
ments unambiguously identify the supercell and quantify
the Pt and Cu occupancy fractions at each site, which turn
out to be roughly consistent with L13. This reexamination
clarifies the apparent discrepancies in previous work, con-
nects first-principles predictions and experimental evidence
in the Cu–Pt system, and provides a pathway towards the
engineering of Cu–Pt alloys with superior properties.

2. Methods

Buttons of Cu 75 at.% Pt were prepared by arc-melting
on a copper hearth. The thickness of a cast button was first
reduced by 50% in a rolling mill, after which the alloy was
homogenised in argon at 1000 �C for 24 h, terminated by
quenching. The buttons were then reduced a further 90%
by rolling. We checked composition (1) by carrying out
SEM–EDS on the as-cast button; (2) by carrying out
TEM–EDS on the TEM foils which were used for imaging
and diffraction. In each case, composition was evaluated at
a number of points and averaged; the average was within
1 at.% of 25 at.% Cu, 75 at.% Pt.

Disks for transmission electron microscopy (TEM) were
cut from this cold rolled sheet and subjected to heat treat-
ments between 100 �C and 800 �C in an argon atmosphere,

terminated by quenching. Grinding and dimpling were
followed by final thinning to perforation using a Gatan
Precision Ion Polishing System.

The CuPt3 sample used to collect synchrotron powder
X-ray diffraction (PXD) data was prepared by 90% cold
working and subsequent annealing at 350 �C for 2 months.
Quantitative Rietveld analysis was performed using the
TOPAS Academic (TA) software package.

Electron microscopy images and electron diffraction pat-
terns were collected using a Tecnai F20 TEM, operating at
200 kV, by combining selected-area electron diffraction
(SAED) and dark-field (DF) imaging. In situ heating was
performed using a Gatan heating specimen stage in the
TEM. For comparison with experimental results, the candi-
date structures and associated electron diffraction patterns
were generated using CrystalMaker and SingleCrystalTM

software respectively.
Laboratory PXD data from a rolled foil of 1 mm thick-

ness proved inadequate for Rietveld analysis due to the
highly-oriented rolling texture and due to the weakness of
the superlattice reflections. The samples were too small
and expensive to grind into powders in amounts sufficient
for flat-plate reflection-geometry experiments, but we did
attempt a transmission-geometry experiment with a
finely-ground powder that was lightly distributed over the
surface of a Kapton capillary tube (the CuPt3 absorption
length is approximately 3 lm at an X-ray wavelength of
1.54 Å); because the sample density was very low, the rela-
tive scattering contribution from the Kapton introduced
far too much background and noise to allow the investiga-
tion of weak superlattice peaks.

To overcome the challenges presented by small samples
of strongly-absorbing and highly-oriented materials, we
designed and built a double-axis sample spinner (DASS)
(see Fig. 2(a)) in order to orientationally average a small
polycrystal in transmission mode, and also utilized high-
energy (30 keV, k ¼ 0:41346 Å) synchrotron X-rays at
beamline 11BM at the Advanced Photon Source at
Argonne National Laboratory. Because the absorption
length at this energy is 20 lm, a small button sample was
polished down into a foil of 20 lm thickness and trimmed
into a 2.5 mm � 200 lm rectangle. In order to render the
X-ray absorption as isotropic as possible, the rectangular
foil was then roughly shaped into a half-cylinder with its
axis parallel to the 2.5 mm dimension, and mounted on
the tip of a steel needle (see Fig. 2(b)). The omega axis of
the DASS was oriented perpendicular to the X-ray beam
and parallel to the lab floor and rotated at a speed of
1 Hz, while the phi-axis, which is affixed to the moving
omega stage, was inclined 54.74 � relative to the omega axis
and rotated at a speed of 10 Hz. The 2h multi-detector
bank was scanned in 0.005 � increments while collecting
data for 4 s per step. The time per point was intentionally
set to an integer multiple of the DASS omega-axis period;
incommensurability in this ratio results in undesirable cyc-
lic background variations due to incomplete orientational
averaging at each point. Because the detector bank had
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12 detectors spaced 2 � apart, a 2 � scan covered 24 �, and
two such scans provided coverage out to 48 �. Each scan
was collected 6 times and averaged, requiring about 6 h
of collection time.

We used the UNCLE [25] software package to perform
a classical, thermodynamic Monte Carlo simulation on a
supercell that repeated the primitive unit cell 32 times in
each direction. The simulation used 9� 105 flips per
averaging step, with each step terminating after energy
convergence within 0.5 meV. Order parameters for the
supercell at each temperature step were calculated using
the mean of the charge occupancies (based on atomic num-
ber) at each site in a given crystallographic direction.

3. Results and discussion

3.1. Transmission electron microscopy

The electron diffraction patterns from initially cold
worked Cu 75 at.% Pt in Fig. 3(a), as observed along the
½100�; ½11 0�, ½112� and ½103� zone axes, show the funda-
mental reflections expected from a disordered fcc alloy.
After heat treatment at 350 �C, additional reflections were
observed (see Fig. 3(b)) halfway (1) along the f200g and
f220g type directions in the ½100� zone axis diffraction pat-
tern, (2) along f20 0g; f111g and f22 0g in the ½11 0�fcc

pattern, (3) along f2 20g f111g and f131g in the ½11 2�fcc

pattern, and (4) along f131g and f2 00g in the ½1 03�fcc pat-
tern. These reflections were observed following each heat

treatment between 200 �C and 400 �C, indicating that
ordering had taken place. Note that the 1

2
f220g and

1
2
f131g reflections are related by translations of the par-

ent-fcc reciprocal lattice to the 1
2
f200g and 1

2
f11 1g reflec-

tions in the first Brillouin zone. In fact, all of the observed
superlattice reflections are related to either 1

2
f200g or

1
2
f111g by translations of the parent-fcc reciprocal lattice.

Thus, it is not possible for the intensities at these points to
arise from the double-diffraction of two parent-lattice
reflections.

The L13 structure has several inequivalent viewing direc-
tions or variants that contain the same fundamental reflec-
tions but different superlattice reflections. Fig. 4 shows
three L13 variants with the same ½100�fcc zone axis. We find
that the electron diffraction patterns shown in Fig. 3(b) are
consistent with those expected from the L13 structure based
on simulations. However, we also find that they are

Fig. 2. (a) Gandolfi-type double-axis sample spinner for generating
powder diffraction patterns from small polycrystals. The central omega
axis (left) and inclined phi axis (right) are 54.74� apart for optimal
orientational averaging and have independent motors that also act as
counterweights. (b) Platinum alloy sample (mostly inside the center box)
mounted to a steel needle tip (left side) at beamline 11BM. The 300 lm
X-ray beam is smaller than the region marked by the dashed lines. The
sample spins around two axes while maintaining a fixed point at the center
of the beam.
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Fig. 3. Electron diffraction patterns from Cu 75 at.% Pt (a) initially cold
worked; (b) after heat treatment at 350 �C for 3 h; showing
½100�fcc; ½110�fcc, ½112�fcc, and ½103�fcc zone axes. The heat treated
specimen shows clear signs of ordering.
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consistent with the 32-atom orthorhombic CuPt3 structure
of Schneider and Esch [1]. On closer inspection of Fig. 1(a
and c), we discovered that the two orderings are crystallo-
graphically equivalent, a fact that does not appear to have
been reported or discussed in previous literature. Thus, any
subsequent mention of the orthorhombic ordering will
implicitly refer to L13.

Each simulated pattern in Fig. 4 corresponds to the
same experimental ½10 0�fcc zone-axis pattern from
Fig. 3(b), but lacks some of the experimentally-observed
superlattice reflections. This is because the compositional
ordering has a larger unit cell than the fcc parent structure,
and therefore has distinct orientational variants. Each sim-
ulated pattern simulates only one of these variants. Because
there is no orientation preference for nucleation of the L13

structure in the disordered alloy, the variant that appears
within a given nucleating grain will be essentially random.
Thus, any large-area diffraction pattern, such as those seen
in Fig. 3(b), will sample all possible variants and will simul-
taneously exhibit all of their superlattice reflections. One
critical feature of the work by Miida and Watanabe [8]
was creating large enough ordered grains that distinctions
between the variants could be observed. The presence of
variants makes it possible to distinguish L13 from the
2� 2� 2 cubic supercell, for which the ½100�fcc zone axis
diffraction pattern simultaneously contains the superlattice
reflections from all three of the variants of Fig. 4.

Because the patterns in Fig. 3(b) are the result of aver-
aging over multiple orientational variants of the ordered
L13 structure, we collected dark-field images with a single

Fig. 4. Simulated electron diffraction patterns for three variant views of the ½100�fcc zone axis diffraction pattern of the L13 structure of CuPt3. Only the
fundamental reflections of the fcc parent structure are labeled, but using the setting of the ordered structure.

Fig. 5. Dark field images and selected area diffraction at different locations of the dark field image from CuPt3 after heat treatment for 3 h at 350 �C: (a)
shows a ½100�fcc zone axis electron diffraction pattern from the whole grain; (b) is the dark field image made using the circled reflection in (a), with circled
areas showing the regions from which selected area diffraction patterns (c) and (d) were acquired.
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1
2
f220g type superlattice reflection within the ½100�fcc

pattern (Fig. 5(a)) to separate the distinct variants that give
rise to 1

2
f200g and 1

2
f220g type superlattice reflections.

The expected diffraction patterns of these variants are sim-
ulated in Fig. 4. Fig. 5(a) shows the diffraction from a large
½100�fcc grain with the 1

2
ð220Þ used for the dark-field image

circled with Fig. 5(b) showing the dark-field image with the
central region being the ½100�fcc grain. Sharp boundaries
between intensities delineate different fcc grains and the
mottled appearance within the ½100�fcc grain is fluctuations
of the 1

2
f2 20g intensities. The two circles in Fig. 5(b) show

the placement of a small SA aperture and indicate the
regions from which diffraction patterns in 5(c) and 5(d)
are taken. Because the ordered domains were roughly
10 nm in diameter, the size limitations of the microscope
SA aperture made it difficult to fully isolate a single reflec-
tion type. However, regions c and d show a different mix of
intensity in the additional superlattice refections. Region c
was chosen to contain both the brightest and darkest
regions of the dark-field image and shows approximately
equal intensities in the possible superlattice peaks while
region d, which was chosen for its intermediate intensity,
shows a strong set of 1

2
f200g peaks above and below the

central peak and a much weaker set of 1
2
f200g peaks to

the left and right of the central peak; the 1
2
f22 0g peaks

are also weak. This mix of intensities demonstrates that
the variants required of the L13 structure are indeed pres-
ent in our sample.

Following a heat treatment at or above roughly 400 �C,
the pattern of superlattice reflections changes to that indi-
cated in Fig. 6, where the 1

2
f200g and related reflections

are unexpectedly weak relative to the 1
2
f111g and related

reflections. In the 350 �C-annealed samples of Fig. 3,
however, these two types of reflections have more similar
intensities.

In Figs. 3, 5 and 6, some strong Bragg reflections exhibit
sharp streaks along f110g directions. In most cases, (e.g.,
Fig. 5(d)), this is clearly a CCD-saturation artifact. Some
of the weaker streaks are due to sweeping the diffraction
pattern onto the CCD detector during a relatively short
exposure. Because of the intense peaks in the diffraction
pattern and the short exposure times, the sweep across
the CCD leaves artifacts that can be seen in this case. We
also note the presence of an unaccounted pair of reflections
in the [100] panels of Fig. 3(b) and 5(a), which appear to be
f200g reflections from a second grain.

3.2. X-ray diffraction

The synchrotron PXD data from samples annealed for
two months at 350� were of exceptionally high quality
and permitted the observation of many superlattice peaks,
all of which could be indexed using the supercell associated
with the L13 ordered structure (Fig. 1(c)): a C-centered
conventional cell with basis vectors ð1; 0; 1Þ; ð0; 2; 0Þ;
ð� 1

2
; 0; 1

2
Þ, and origin ð0; 0; 0Þ relative to the conventional

basis vectors of the fcc parent. In fact, the L13 ordering
is the only binary decoration of an fcc lattice consistent
with this supercell. Thus, we used the L13 model as a start-
ing point for quantitative Rietveld analysis. The final fit is
shown in Fig. 7.

Because the background was somewhat structured, we
fit it with a combination of a 1=x term for air scattering,
a Chebychev polynomial and several extremely-broad

Fig. 6. Electron diffraction patterns from CuPt3 after heat treatment for 3 h at 600 �C, showing (a) ½100�fcc, (b) ½110�fcc, (c) ½112�fcc, and (d) ½103�fcc zone
axes.
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low-amplitude peaks. The peak shape was entirely strain
dominated with widths that adhered to a distinct FWHM
¼ s tanðhÞ trend. Furthermore, the superlattice peaks were
distinctly broader than the fcc parent peaks, and were thus
fitted with different shapes. The parent peaks exhibited a
convolution of Lorentzian (s ¼ 0:442ð2Þ�) and Gaussian
(s ¼ 0:185ð1Þ�) contributions, while the superlattice peaks
were fitted with a purely Lorentzian (s ¼ 0:83ð2Þ�) shape.

Despite an obviously correct supercell and a reasonably
well-matched peak shape, the intensities were not well
matched by a simple L13 ordering. The L13 structure has
Cmmm space-group symmetry and three distinct crystallo-
graphic sites (see Fig. 1(c)): #1 the two atoms at the cell
corner and the center of the c-face, #2 the two atoms at
the middle of the a and b cell edges, and #3 the four atoms
within the interior of the supercell. Allowing these three site
occupancies to vary, under the constraints that the total
Pt + Cu occupancy at each site remains equal to 1 and
the overall stoichiometry remains at Cu:Pt = 1:3, proved
to be important; it lowered the Rwp residual factor from
55.4% to 28.5%. The result was a complete Pt order at site
#2, but partial or complete disorder at the other two sites4.

Switching from isotropic (uiso) to anisotropic (uij) ther-
mal parameters further improved the fit, though the result-
ing anisotropy was so strong as to suggest the presence of
site disorder. For this reason, we allowed each atom to
fragment into a set of symmetry-related partial-occupancy
pieces surrounding its ideal high-symmetry position. Com-

bined, with the anisotropic thermal parameters, this sophis-
tication visibly improved the fit. Note that the site disorder
only tended to displace atoms in the x and y direction of
the supercell, leading us to fix the z-axis displacements to
zero. Furthermore, strong correlations between the off-site
displacements and the anisotropic thermal parameters
required us to fix the u22 and u33 parameters of each site.
Not only were the microscopic parameters of the Pt and
Cu atoms sharing a common site tied together, but the
same Dx, Dy, and u11 were shared by all three sites (u12 only
applies to site #3). It seems reasonable to conclude that the
compositional disorder on sites #1 and #3, coupled with
the different relative atomic radii of Pt and Cu, results in
local size-effect displacements that are manifested as displa-
cive disorder and anisotropic thermal parameters. Includ-
ing these effects lowered Rwp to 17.7%.

The peak-height discrepancies that remained showed a
clearly sinusoidal trend that completed more than one full
period across the diffraction pattern, and were not resolvable
using any combination of parameters available to the atoms
of the supercell. Speculating that this oscillation is further
evidence of large size-effect displacements that cannot be
accommodated by a simple atomistic average structure, we
elected to accommodate this trend by multiplying all peak
intensities by an empirical sinusoidal envelope of the form
1þ A cos2ðBh� CÞ, where A ¼ 0:62;B ¼ 0:36, and C ¼ 6:5
were fitting parameters. While such a term is unorthodox,
it produced a clean overall fit with Rwp = 10.9% that
improved our confidence in the other structural parameters.

The values of all other refined structural parameters
described above appear in Table I, where statistical error
estimates appear in parentheses. The compositional
disorder on sites #1 and #3 clearly leads to substantial
size-effect-induced displacive disorder. It is interesting that

Fig. 7. Rietveld fit of a partially-ordered L13 model against synchrotron X-ray powder diffraction data (k ¼ 0:4135 Å) from CuPt3 after heat treatment for
2 months at 350 �C. Blue, red, and gray curves indicate the experimental data, the model calculation, and the difference, respectively. The short vertical
black lines at the bottom indicate supercell peak positions, while the longer vertical blue rods indicate parent fcc peak positions. Intensities are presented
on a log scale because all but a few of the superlattice reflections are otherwise too weak to see. Apparently large discrepancies on the weaker peaks are
actually very small. The inset contains a view of the same fit on a linear vertical scale. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

4 Because the Cmmm symmetry provides no displacive degrees of
freedom to the L13 structure, we also tried lowering the symmetry to P1
within the primitive supercell, and used simulated annealing to optimize
small displacements of 8 atoms in the supercell; but this did not reliably
improve the fit. So we returned to the Cmmm symmetry in all subsequent
attempts.

332 C. Mshumi et al. / Acta Materialia 73 (2014) 326–336



the atomic displacements have magnitudes on the order of
0.1 to 0.25 Å, which are comparable to the difference
between the nearest-neighbor distances in fcc Pt (2.775 Å)
and Cu (2.556 Å) at room temperature.

3.3. Interpretation

Assuming that the total occupancy (Pt + Cu) of each
symmetry-unique site is constrained to equal 1, and that
the overall stoichiometry is fixed during the composition-
ordering process, a complete description of the L13 order-
ing (space group Cmmm) has two independent variables.
Using group representational analysis, we associated these
variables with irreducible matrix representations (IRs) of
the parent Fm�3m space group. Using the ISODISTORT
software package [26], we find that the first variable is an
ða; a; 0; 0Þ order parameter of the Lþ1 IR at the reciprocal-
space Lð1

2
; 1

2
; 1

2
Þ point, while the second variable is an

ða; 0; 0Þ order parameter of the Xþ1 IR at the reciprocal-
space X ð1; 0; 0Þ point. Of the two contributing order
parameters, Lþ1 ða; a; 0; 0Þ is primary in the sense that its
action alone is sufficient to produce the observed supercell
and space-group symmetry. Xþ1 ða; 0; 0Þ is secondary
because it is consistent with the symmetry of the primary
order parameter, but cannot achieve such a low symmetry
by itself. Xþ1 ða; 0; 0Þ, when acting alone, would result in the
L10 structure, which is the most common ordering among
all 1:1 binary alloys. Each superlattice reflection that
results from the ordering differs from one of these two
points by a parent lattice vector, and is therefore associated
with the corresponding order parameter. The relative
intensities of the L and X-type superlattice reflections then
gauge the relative contributions of their respective order
parameters. Together, these two order parameters provide
a natural symmetry-based description of deviations from
the fcc structure.

Static concentration waves at the L and X points of
Fm�3m have been used previously to describe ordering in
copper platinum alloys [9,27,28], though they were not
labeled in this way. A proper group-representational
description of the concentration waves is completely con-
sistent with their observations, but reveals fundamental
problems with their terminology, wherein they incorrectly
associated all L-point waves with the label L11 and all
X-point waves with the label L12.

Table I
Tabulated results from the Rietveld refinement of the orthorhombic L13 model against synchrotron PXD data from CuPt3, where
a ¼ 7:6763ð1Þ; b ¼ 5:4405ð2Þ; c ¼ 2:7204ð1Þ;Dy ¼ 0:0428ð1Þ;Dz ¼ 0:0394ð3Þ; u11 ¼ 0:0131ð2Þ; u12 ¼ 0:0108ð5Þ, and Rwp ¼ 10:9%.

Atom x y z occ u11 u22 u33 u12 u13 u23

Pt1 0 0þ Dy 0þ Dz 0.497(4) u11 0� 0� 0 0 0
Cu1 0 0þ Dy 0þ Dz 0.503(4) u11 0� 0� 0 0 0
Pt2 0 1=2þ Dy 0þ Dz 1.073(4) u11 0� 0� 0 0 0
Cu2 0 1=2þ Dy 0þ Dz 0.073(4) u11 0� 0� 0 0 0
Pt3 1

4
1
4þ Dy 1=2þ Dz 0.712(3) u11 0� 0� u12 0 0

Cu3 1
4

1
4þ Dy 1=2þ Dz 0.288(3) u11 0� 0� u12 0 0

Fig. 8. Simulated kinematic superlattice intensities associated with the X

and L-points derived from Monte-Carlo simulations: (a) the four L-point
reflections, (b) the three X-point reflections, (c) powder averages of the X

and L-point intensities taking reflection multiplicity into account.

C. Mshumi et al. / Acta Materialia 73 (2014) 326–336 333



The star of the L point includes four vectors: 1
2
; 1

2
; 1

2

� �
;

1
2
;� 1

2
;� 1

2

� �
, � 1

2
; 1

2
;� 1

2

� �
, and � 1

2
;� 1

2
; 1

2

� �
; and the star of

the X point includes three vectors: ð1; 0; 0Þ; ð0; 1; 0Þ, and
ð0; 0; 1Þ. Lþ1 ða; 0; 0; 0Þ is primary for the L11 ordering sta-
ble at 50% Pt, and uses only one L-point vector.
Lþ1 ða; a; 0; 0Þ is primary for the L13 ordering near 75% Pt,
and uses two L-point vectors. Lþ1 ða; a; a; aÞ is primary for
the large-cubic ordering just above 75% Pt, and uses all
four L-point vectors. Lþ1 ða; b; b; bÞ is primary for the
large-rhombohedral ordering just below 75% Pt, and uses
all four L-point vectors; it can be viewed as a superposition
of L11 and the large-cubic ordering. Xþ1 ða; a; aÞ is primary
for L12 order, which is reported to be stable at 25% Pt
(Ref. [8]); it uses all three X-point vectors; it is secondary
to both the large-cubic and large-rhombohedral orderings.
Xþ1 ða; 0; 0Þ, which uses only one X-point vector, is primary
for L10 order but not observed at 50% Pt; it is also second-
ary for L13 ordering near 75% Pt. This more complete anal-
ysis reveals that the Cu–Pt phase diagram involves many
different structure types, and cannot be summarized merely
in terms of the labels L11 and L12, as was done previously
[27,28].

The temperature-dependent Monte Carlo simulations of
Fig. 8 indicate at least two phase transitions upon cooling
from the high-temperature disordered state, though we are
not able to infer accurate phase-transition temperatures
from this output. The first panel tracks the relative intensi-
ties of the four 1

2
½111� reciprocal-space reflections in the

kinematic approximation, which correspond to the four
components of the Lþ1 ða; b; c; dÞ order parameter. The sec-
ond panel tracks the relative intensities of the three 1

2
½20 0�

reflections, which correspond to the three components of
the Xþ1 ða; b; cÞ order parameter. The third panel tracks
the powder-average intensities associated with the L and
X reflections. Upon cooling, near 660 �C, all four L compo-
nents take on comparable values and all three X compo-
nent values take on comparable values, indicating the
formation of the large 2�2�2 cubic supercell of Tang [2].
Then in the vicinity of 480 �C, two of the L components
begin to rise towards a new maximum while the other
two drop to zero, and one of the X components begins to
rise towards a new maximum, while the other two drop
to zero; this indicates a transition to the L13 structure.

This computational result is consistent with the basic
features of the phase diagram of Miida and Watanabe
[8]. However, a closer inspection of the simulation output
reveals additional subtleties; one of the L components
clearly activates at a high temperature than the other L

or X components indicating the narrowly limited presence
of an L11 transitional phase between 660 �C and 690 �C.
Furthermore, between 480 �C and 520 �C, one of the L

components is significantly larger than the other three
(though the various components appear to take turns being
the large one), indicating the presence of a transitional
phase with the large-rhombohedral supercell. Finally,
between 430 �C and 480 �C, the two large L components
don’t immediately acquire the same intensity, indicating a

further lowering of the point symmetry of the transitional
phase to monoclinic. Our experimental mesh of tempera-
tures was much too coarse for the detection of such subtle
phase variations, though an attempt to observe them might
be worthwhile.

The PXD Rietveld analysis is only sensitive to the aver-
age L and X-component intensities due to overlap of equiv-
alent reflections. For the refinement of the disordered L13

phase, rather than refining each atomic occupancy inde-
pendently, we refined the order parameters directly, which
are related to the Cu occupancies as follows.

occðCu1Þ ¼ 1

4
þ 1

2
SL þ

1

4
SX

occðCu2Þ ¼ 1

4
� 1

2
SL þ

1

4
SX

occðCu3Þ ¼ 1

4
� 1

4
SX

Here, SL is a factor of
ffiffiffi
2
p

larger than the normalized
Lþ1 ða; a; 0; 0Þ order parameter used by ISODISTORT, and
SX is

ffiffiffi
2
p

times larger than the normalized Xþ1 ða; 0; 0Þ order
parameter used by ISODISTORT. The unnormalized
parameters conveniently run from 0 in the case of complete
disorder to 1 in the case of long-range order, and are sim-
ilar to those used in the static concentration-wave theory of
Khachaturyan [9], who used the symbol g rather than S.
Because all of the atomic occupancies must lie between 0
and 1, we simply require that SL 6

1
2
þ 1

2
SX .

From the Rietveld analysis of the sample annealed for
two months at 350�, the fitted values in Table I show that
SL ¼ 0:430 has a large value, whereas SX ¼ 0:051 is quite
small in comparison, resulting in a partially-ordered ver-
sion of L13, as illustrated in Fig. 1(d). For fully ordered
L13, we would instead have SL ¼ SX ¼ 1. The role of the
Lþ1 ða; a; 0; 0Þ is to shift Cu from site #2 to site #1, which
can only proceed alone until site #2 is completely empty
of Cu. If SX ¼ 0 for CuPt3, the limiting value of SL is
1
2
þ 1

2
� 0 ¼ 0:5, which enriches site #1 to the level of 50%

Cu without affecting the composition of site #3.
Xþ1 ða; 0; 0Þ should complete the L13 structure by transfer-
ring the residual 25% Cu on site #3 to site #1; despite its
failure to do so, the overall Cu fraction remains at
1
8

2 � 1
2
þ 2 � 0þ 4 � 1

4

� �
¼ 1

4
, as expected, where site multiplici-

ties have been taken into account. The fitted values of
SX � 0 and SL � 0:5 indicate that Lþ1 ða; a; 0; 0Þ is contribut-
ing close to the maximum amount possible given the small
value of Xþ1 ða; 0; 0Þ.

Unexpectedly small values for the X-point order param-
eters were also evident in electron diffraction data from
samples annealed at temperatures higher than 350 �C,
including those in the range where the large-cubic ordering
is expected, e.g. Fig. 6. The Monte Carlo simulations of
Fig. 8 don’t support a thermodynamically stable phase
with such a small X=L intensity ratio, even in the transi-
tional region between the L13 and large-cubic phases.
The expected ratios are considerably less than one, but
the observed intensity ratios are at least four times smaller
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than expected. And even if such an ordering were stable, it
would be very unusual for a secondary order parameter to
become active at a substantially lower temperature than its
primary; the opposite is normally true, as seen, for exam-
ple, in the CuMnPt6 system [28,29]. For this reason, we sus-
pect that the small X=L order-parameter ratio and its
associated compositional disorder are due to kinetic limita-
tions. We find that the energy of the L13 structure is far
more sensitive to Lþ1 ða; a; 0; 0Þ order parameter than it is
to Xþ1 ða; 0; 0Þ, which provides one possible explanation
for the relative kinetic difficulty of forming the X order
parameter. But we don’t understand why such limitations
would be more restrictive for the samples that were
annealed at higher temperatures. It could also be that slight
cold-working and polishing during sample preparation (in
the case of the sample used for Rietveld analysis) disrupted
the X order parameter.

4. Summary

The ordered CuPt3 alloy was first proposed and pre-
sented as a 32-atom orthorhombic superstructure [1] based
on X-ray diffraction data, but subsequent experimental
identification of two other distinct phases at about this stoi-
chiometry have confused the issue. Work by Miida [8], and
also our cluster-expansion-based Monte Carlo simulations,
have shown the 32-atom orthorhombic ordering is stable
for room-temperature CuPt3, but that these other phases
are present in nearby regions of the phase diagram.

To date, no ordered alloy has been experimentally asso-
ciated with the hypothetical L13 structure employed in the
computational arena. It is of particular interest that, prior
to the present work, the L13 structure has not been exper-
imentally associated with the CuPt3 alloy. Instead, the 32-
atom orthorhombic structure is often referenced as the sta-
ble structure for this stoichiometry. We observe that the
two structures have identical simulated diffraction patterns,
and that the atomic arrangements are in fact crystallo-
graphically equivalent. The fact that years of work in the
computational arena failed to make this connection
strongly suggests that the primitive unit cells of other alloy
systems should be reevaluated. Identifying these two struc-
tures as one and the same should help to clear up past con-
fusion surrounding the Pt-rich side of the Cu–Pt phase
diagram.

TEM images and electron diffraction patterns show that
our cold-worked samples of CuPt3 became compositionally
ordered after annealing at relatively low temperatures.
Bright and dark-field electron diffraction patterns from
multiple orientational variants confirmed the primitive unit
cell to be that of L13 at 350 �C. Monte Carlo simulations
show that CuPt3 first forms a large-cubic supercell upon
cooling from the disordered state, and subsequently forms
the L13 phase, in basic agreement with the phase diagram
of Miida and Watanabe [8]. These simulations also indicate
the stability of L11 and large-rhombohedral transitional
phases within narrow temperature ranges.

An innovative data collection strategy yielded high-
quality synchrotron powder-diffraction data from small
poly-crystalline foil fragments that suffer from extreme pre-
ferred orientation. We are not aware of comparable exper-
iments involving metallic alloys. Using a sample annealed
at 350 �C for two months, X-ray Rietveld analysis con-
firmed that essentially 100% of the sample material had
ordered, though the ordering itself was not incomplete
due to an unexpectedly low value of the Xþ1 ða; 0; 0Þ over
Lþ1 ða; a; 0; 0Þ ratio, which we judge to result from non-ther-
modynamic considerations.
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CHAPTER 5

Machine Learning Grain Boundaries

As described briefly above, grain bound-
aries (GBs) exert substantial influence on
material properties that are of interest for
engineering. Unfortunately, optimizing GBs
cannot be done easily without first under-
standing the physics underlying their behavior.
For example, in nuclear applications, GBs can
act as sinks for vacancy defects and improve
radiation resistance, but not all GBs are created
equal and some GBs are more efficient sinks
than others [67]. Similarly, in stainless steels
used in a variety of applications, certain GBs
resist stress corrosion cracking better than
others [68].

Optimizing these materials leads to
improved performance but not without an
understanding of what needs to be optimized.
Unfortunately, optimization has been difficult
because of the wide range of macroscopic
and microscopic variables influencing a GB.
Macroscopically, GBs have 5 crystallographic
degrees of freedom that cause their properties
to vary. Microscopically, GBs have a high-
dimensional phase space because of the
positional degrees of freedom of atoms in a GB.
Together, these microscopic and macroscopic
degrees of freedom make the optimization
space seem so large and complex as to be
intractable.

Despite these difficulties, we were able
to develop a representation for machine
learning grain boundaries that goes beyond
merely approximating these high-dimensional
GB functions—it also provides insight into
the physics that governs GB properties
[69]. Without including important structures
identified in the literature (such as stacking
faults and edge dislocations), the machine
learning was able to identify these structures
as critical in property prediction. Perhaps more

important, however, is that several new atomic
environments were discovered that are highly
correlated with material properties, despite
the fact that these structures have not been
identified in the literature as being important.
This approach provides a general method to
identify the physics that controls GB structure-
property relationships.

Because of the general applicability of
the method, several exciting projects have
spawned that continue to use these pioneering
ideas. For example, we are part of a collab-
oration to identify the physics behind solute
deposition in grain boundaries [70] and are
working with a different group to discover
sites within grain boundaries for preferential
hydrogen adsorption in iron [71]. Our project to
automate alloy potential creation will open new
avenues for creating grain boundary databases
for multi-component systems as well. This
methodology and the code package to apply it
will be ready to use these databases and thereby
expand our knowledge of the physics of grain
boundary systems.

This publication evolved from my class
project for a materials modeling course taught
by Eric Homer. Because the initial results
were already good, we collaborated to extract
physical meaning from the machine learning
models. This required many iterations and
included many failed attempts. As discussed
in the Author Contributions section of this
article, I conceived the idea and performed all
the calculations. Homer and Hart provided
essential expertise in guiding the project and
interpreting results.

The following article is reproduced with
permission. A license is on file with the
Department of Physics and Astronomy.
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ARTICLE OPEN

Discovering the building blocks of atomic systems using
machine learning: application to grain boundaries
Conrad W. Rosenbrock1, Eric R. Homer2, Gábor Csányi3 and Gus L. W. Hart1

Machine learning has proven to be a valuable tool to approximate functions in high-dimensional spaces. Unfortunately, analysis of
these models to extract the relevant physics is never as easy as applying machine learning to a large data set in the first place. Here
we present a description of atomic systems that generates machine learning representations with a direct path to physical
interpretation. As an example, we demonstrate its usefulness as a universal descriptor of grain boundary systems. Grain boundaries
in crystalline materials are a quintessential example of a complex, high-dimensional system with broad impact on many physical
properties including strength, ductility, corrosion resistance, crack resistance, and conductivity. In addition to modeling such
properties, the method also provides insight into the physical “building blocks” that influence them. This opens the way to discover
the underlying physics behind behaviors by understanding which building blocks map to particular properties. Once the structures
are understood, they can then be optimized for desirable behaviors.

npj Computational Materials  (2017) 3:29 ; doi:10.1038/s41524-017-0027-x

INTRODUCTION
Although interactions between small, isolated atomic systems can
be studied experimentally and then modeled, real-world systems
are exponentially more complex because of multi-scale, many-
body interactions between all the atoms. Approximate, statistical
methods are then necessary in the quest for deeper under-
standing. Machine learning is a powerful statistical tool for
extracting correlations from high-dimensional data sets; unfortu-
nately, it often suffers from a lack of interpretability. Researchers
can create models that approximate the physics well enough, but
the physical intuition usually provided by models may be hidden
within the complexity of the model (the black-box problem). Here,
we present a general method for representing atomic systems for
machine learning so that there is a clear path to physical
interpretation, or the discovery of those “building blocks” that
govern the properties of these systems.
We choose to demonstrate the method for crystalline interfaces

because of their inherent complexity, high-dimensionality, and
broad impact on many physical properties. Crystalline building
blocks are well known and can be classified by a finite set of
possible structures. Disordered atomic structures on the other
hand are difficult to classify and there is no well-defined set of
possible structures or building blocks. Furthermore, these
disordered atomic structures often exhibit an oversized influence
on material properties because they break the symmetry of the
crystals. Crystalline interfaces, more commonly called grain
boundaries (GBs), are excellent examples of disordered atomic
structures that exert significant influence on a variety of material
properties including strength, ductility, corrosion resistance, crack
resistance, and conductivity.1–9 They have macroscopic, crystal-
lographic degrees of freedom that constrain the configuration
between the two adjoining crystals.10, 11 GBs also have
microscopic degrees of freedom that define the atomic structure

of the GB.12–15 While often classified experimentally using the
crystallography, the crystallography is only a constraint, and it is
the atomic structure that controls the GB properties.
In this article, we examine the local atomic environments of GBs

in an effort to discover their building blocks and influence on
material properties. This is achieved by machine learning on the
space of the atomic environments to make property predictions of
GB energy, temperature-dependent mobility trends, and shear
coupling. The implications of the work are significant; despite the
immense number of degrees of freedom, it appears that GBs in
face-centered cubic (FCC) nickel are constructed with a relatively
small set of local atomic environments. This means that the space
of possible GB structures is not only searchable, but that it is
possible to find the atomic environments that give desired
properties and behaviors. We emphasize that in addition to being
successful for modeling GBs, the methodology presented here
could be applied generally to many atomic systems.
Atomic structures in GBs have been examined for decades

using a variety of structural metrics12, 16–26 with the goal of
obtaining structure-property relationships.10, 11, 27–32 Each of the
efforts has given unique insight, but none has provided a
universally applicable method to find relationships between
atomic structure and specific material properties.
Large databases of GB structures have produced property

trends12, 33–35 and macroscopic crystallographic structure-property
relationships,36, 37 but no atomic structure-property relationships.
Machine learning of GBs by Kiyohara et al.38 has been used to make
predictions of GB energy from atomic structures, but we are still left
without an understanding of what is important in making the
predictions, and how that affects our understanding of the under-
lying physics and the building blocks that control properties and
behaviors. We now present a method to address these limitations.
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METHODS
To examine atomic structures, we adopt a descriptor for single-
species GBs based on the Smooth Overlap of Atomic Positions
(SOAP) descriptor.39, 40 The SOAP descriptor uses a combination of
radial and spherical spectral bases, including spherical harmonics. It
places Gaussian density distributions at the location of each atom,
and forms the spherical power spectrum corresponding to the
neighbor density. The descriptor can be expanded to any accuracy
desired and goes smoothly to zero at a finite distance, so that it has
compact support.
The SOAP descriptor has the following qualities that make it

ideal for Local Atomic Environment (LAE) characterization.
Specifically, within GBs, the SOAP descriptor (1) is agnostic to
the grains’ specific underlying lattices (including the loss of
periodicity at the GB); (2) has invariance to global translation,
global rotation, and permutations of identical atoms; (3) leads to a
metric that is smooth and stable against deformations. SOAP
vectors are part of a normed vector space so that similarity uses a
simple dot product. This dot product can be used to produce a
symmetric dissimilarity s, defined as

s ¼
~ak k þ ~b

���
���

2
�~a �~b

������

������
; (1)

that is sensitive to the norm of each SOAP vector. Normally, SOAP
similarity uses a dot product on normalized SOAP vectors;
however, in our experience this reduces the discriminative ability
of the representation.
In GBs, the SOAP descriptor has advantages over other

structural metrics in that it requires no predefined set of
structures, and a small change in atomic positions produces a
correspondingly small (and smooth) change in the SOAP
dissimilarity s (see Eq. 1).17, 18, 20, 23, 24 Moreover, the SOAP vector
is complete in the sense that any given LAE can be reconstructed
from its SOAP descriptor.
Figure 1 illustrates the process for determining the SOAP

descriptor for a GB. First, GB atoms and some surrounding bulk
atoms are isolated from their surroundings; a SOAP descriptor for
each atom in the set is calculated and represented as a vector of

coefficients. The matrix of these vectors, one for each LAE, is the
full SOAP representation for each GB. The SOAP vector can be
expanded to resolve any desired features by increasing the
number of terms in the basis expansion of the neighbor density at
fixed cutoff. For the present work, a cutoff distance of 5 Å (≈1.4
lattice parameters) and vector of length 3250 elements produced
good results; the selection of SOAP parameters is discussed in
Section I of the Supplementary Information. The computed GBs
studied in this work are the 388 Ni GBs created by Olmsted, Foiles,
and Holm,12 using the Foiles-Hoyt embedded atom method
potential.41

We investigate two approaches for applying machine learning
to the GB SOAP matrices. For the first option, we average the
SOAP vectors, or coefficients, of all the atoms in a single GB to
obtain one averaged SOAP vector that is a measure of the whole
GB as shown in Fig. 2. In other words, it is a single description of
the average LAE for the whole GB structure. We refer to this single
averaged vector representation as the Averaged SOAP Represen-
tation (ASR). The ASR for a collection of GBs becomes the feature
matrix for machine learning.
Alternatively, we can compile an exhaustive set of unique LAEs

by comparing the environment of every atom in every GB to all
other environments using the dissimilarity metric s (from Eq. (1))
and a numerical similarity parameter ε (see Fig. 2). Two LAEs are
considered to belong to the same, unique class of LAEs if s < ε. A
SOAP vector will produce a value s = 0 when compared with itself.
Using an n2 search over all LAEs in all GBs produces the set U of

unique LAE classes, each with a representative LAE, for the GB
system. For a sufficiently small ε each GB will be characterized by a
unique fingerprint in terms of the LAEs it contains. As ε gets
smaller, the number of unique LAEs that characterize a GB
increases exponentially. When an LAE is sufficiently dissimilar to all
others in the set, it is added and becomes the representative LAE
for the class of all other LAEs that are similar to it. Any of the LAEs
in the class could be the representative LAE since they are all
similar. As additional data becomes available, this set of U LAEs
may increase in size if new LAE classes are discovered. Section III in
the Supplementary Information presents additional details.

Fig. 1 Illustration of the process for extracting a SOAP matrix P for a single GB. Given a single atom in the GB, we place a Gaussian particle
density function at the location of each atom within a local environment sphere around the atom. Next, the total density function produced
by the neighbors is projected into a spectral basis consisting of radial basis functions and the spherical harmonics, as shown in the boxed
region. Each basis function produces a single coefficient pi in the SOAP vector p! for the atom, the magnitude of which is represented in the
figure by the colors of the arrays. Once a SOAP vector is available for all Q atoms in the GB, we collect them into a single matrix P that
represents the GB. A value of N= 3250 components in p! is representative for the present work
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In the present work, 800,000 LAEs from the atoms in 388 GBs
are reduced to 145 unique LAEs. This is a considerable reduction
in dimensionality for a machine learning approach. More
importantly, these 145 unique LAEs mean that there may be a
relatively small, finite set of LAEs used to construct every possible
GB in Ni. Using the reduced set of unique LAEs, we represent each
GB as a vector whose components are the fraction of each globally
unique LAE in that GB. This GB representation is referred to as the
Local Environment Representation (LER), and the matrix of LER
vectors representing a collection of GBs is also a feature matrix for
machine learning. The 145 unique LAEs give a bounded 145-
dimensional space, which is a significant improvement over the
3 × 800,000-dimensional space of the GB data set.
These two approaches are used because they are complemen-

tary: physical quantities such as energy, mobility, and shear
coupling are best learned from the ASR, while physical interpret-
ability is accessible using the LER, with only marginal loss in
predictive power. Because we desire to discover the underlying
physics and not just provide a black-box for property prediction,
we use the LER to deepen our understanding of which LAEs are
most important in predicting material properties such as mobility
and shear coupling.

GB energy is measured as the excess energy of a grain
boundary relative to the bulk energy as a result of the irregular
structure of the atoms in the GB.12, 42 GB energy is a static
property of the system measured at 0 K, and all atomistic
structures examined in the machine learning are the 0 K structures
associated with this calculation.
Temperature-dependent mobility and shear coupled GB migra-

tion are two dynamic properties related to the behavior of a GB
when it migrates. The temperature-dependent mobility trend
classifies each GB as having (i) thermally activated, (ii) athermal, or
(iii) thermally damped mobility, depending on whether the
mobility of the GB (related to the migration rate) increases, is
constant, or decreases with increasing temperature.35 GBs that do
not move under any of these conditions are classified as being (iv)
immobile. In addition, when GBs migrate, they can also exhibit a
coupled shear motion, in which the motion of a GB normal to its
surface couples with lateral motion of one of the two crystals.34, 43

GBs are then classified as either exhibiting shear coupling or not.
GB energy is a continuous quantity, while temperature-

dependent mobility trend and shear coupling are classification
properties. Additional details regarding these properties are
available in the publications pertaining to their measurements12,

Fig. 2 Illustration of the process for construction of the ASR and LER for a collection of GBs. First, a SOAP matrix P is formed (as shown in
Fig. 1). ASR: A sum down each of the Q columns in the matrix produces an averaged SOAP vector that is representative of the whole GB. The
ASR feature matrix is then the collection of averaged SOAP vectors for all M GBs of interest (M × N). LER: The SOAP vectors from all M GBs in the
collection are grouped together and reduced to a set U of unique vectors using the SOAP similarity metric, of which each unique vector
represents a unique LAE. A histogram can then be constructed for each GB counting how many examples of each unique vector are present in
the GB. This histogram produces a new vector (the LER) of fractional abundances, whose components sum to 1. The LER feature matrix is then
the collection of histograms of unique LEA for the M GBs in the collection (M × U)

Table 1. Predictive performance of the machine learning models trained on the ASR and LER representation, respectively

Property ASR (ML model) LER (ML model) Random

GB energy 89.2± 0.7% (RBF SVM) 88.5± 0.9% (GBT) 70.4± 1.6%

Temperature-dependent mobility 77.4± 2.5% (linear SVM) 74.3± 2.7% (GBT) 38.5± 2.0%

Shear coupling 61.3± 0.6% (linear SVM) 61.4± 0% (GBT) 52.0± 2.5%

The models were trained on 50% (194) of the available 388 GBs and then validated on the remaining 194 GBs that the model had never seen. Percent error is
relative to the mean. Error bars represent the standard deviation over 50 independent, random samplings (including different combinations of the 50% split),
and re-fits of the data set. For the random column, energies were guessed by drawing values from a normal distribution that had the same mean and standard
deviation as the 50% training data, and then compared to the actual energies in the validation data. For the classification problems, random choices from the
50% training data class labels were compared to the validation data. The machine learning models used were (1) support vector machine (SVM) with either a
linear or radial basis function (RBF) kernel; or (2) gradient-boosted decision tree (GBT). Parameters for each model are discussed in the Supplementary
Information
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34, 35 and in Section IV of the Supplementary Information. For the
mobility and shear coupling classification, the data set suffered
from imbalanced classes; we used standard machine learning
resampling techniques to help mitigate the problem.44–46

RESULTS
A summary of the machine learning predictions by the various
methods is provided in Table 1. Machine learning was performed
using the ASR and LER descriptions of the GBs and the properties
of interest for the learning and prediction are GB energy,
temperature-dependent mobility, and shear coupled GB migration
(obtained from the computed Ni GBs). Table 1 also includes the
results of attempting to predict these properties by “educated”
random guessing using knowledge of the statistical behavior of
the training set. For example, GB energies were guessed by
drawing values from a normal distribution that had the same
mean and standard deviation as the 50% training data; for the
classification problems, random choices from the class labels in
the training data were used. In all cases, the machine learning
predictions are significantly better than random draws from
distributions.
At first glance, the performance for mobility trend and shear-

coupling classification (reported in Table 1) may seem mediocre.
The results are significant, however, because mobility trend and
shear-coupling are dynamic quantities, but they were predicted
using a representation based on the static, 0 K GB structures. The
mobility trend results are exceptional because the authors are
unaware of any other models that can predict mobility using only
knowledge of the atomic positions at the GB.
Shear coupling predictions are a little disappointing, but show

some important limitations of the approach and suggest possible
physical insights. Since little correlation was found between local
environment descriptions and shear coupling, it may imply that
the physical phenomenon must be multi-scale. Both the ASR and
LER use knowledge of the local environments around atoms, but
do not consider longer-range interactions between LAEs. Thus,
only physical information within the cutoff (5 Å in this case) is
considered. A future avenue of research could investigate whether
connectivity of LAEs at multiple length scales or the full GB
network are responsible for shear coupling.
Unfortunately, the size of the data set is a limiting factor in the

performance of the machine learning models. In Table 1, we used
only half of the available 388 GBs for training. As we increase the
amount of training data given to the machine, the learning rates
change as shown in Fig. 3. Although it is common practice to use
up to 90% of the available data in a small data set for training
(with suitable cross validation), we chose to use a lower
(pessimistic) split to guarantee that we are not overfitting to
non-physical features. Larger data sets would certainly improve
the models and our confidence in the physics they illuminate.

DISCUSSION
For small data sets, ASR does slightly better in predicting energy
and temperature-dependent mobility trend; ASR and LER are
essentially equivalent for shear coupling. However, the ASR
methodology suffers from a lack of interpretability because (1)
its vectors and similarity metric live in the abstract SOAP space,
which is large and less intuitive; (2) the results reported for ASR
were obtained using a support vector machine (SVM), which is not
easily interpretable. Details on the algorithm types and inter-
pretation are included in the Supplementary Information. The LER,
on the other hand, has direct analogues in LAEs that can be
analyzed in their original physical context. The best-performing
algorithms for the LER are gradient-boosted decision trees, which
lend themselves to easy interpretation. The fitted, gradient-
boosted decision trees can be analyzed to determine which of the

LAEs in the LER are most important. We used information gain as
the metric for determining LAE importance, and an example is
discussed in Section II of the Supplementary Information. Thus,
even at slightly lower accuracy, the physical insights generated by
the LER make it the superior choice.
In Fig. 4, we compare the relative abundances of the most

important LAEs for high and low energy classification in GBs. The
15 highest- and lowest-energy GBs are compared by calculating
the fraction of their LAEs which are in the same class as the 10
most important LAEs for energy prediction. The most important
LAEs selected by the machine learning algorithm are good at
distinguishing between high and low energy GBs.
In Figs. 5 and 6, we plot some of the most important

environments for determining whether a grain boundary will
exhibit thermally activated mobility or not (Fig. 5) or thermally
damped mobility or not (Fig. 6). These most important LAEs are
classified as such because their presence or absence in any of the
GBs in the entire data set is highly correlated with the decision to
classify them as thermally activated or not, or thermally damped
or not. Since such global correlations must be true for all GBs in

Fig. 3 Learning rate of AS R vs. LER for mobility classification. The
x-axis is the number of GBs used in the training set, with the
remaining GBs held out for validation. The accuracy was calculated
over 25 independent fits. It appears that the LER accuracy increases
slightly faster with more data, though a larger data set is necessary
to confidently establish this point
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Fig. 4 Histogram comparing the fraction of total LAEs for high and
low GB energy. The 15 highest-energy GBs are compared against the
15 lowest-energy GBs using the 10 most-important LAEs for energy
prediction. There are clear differences between the relative
abundances of these LAEs in deciding whether a GB will have high
or low energy
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the system, we assume that they are tied to underlying physical
processes.
Figure 5a shows a LAE centered around a leading partial

dislocation. GBs with partial dislocations emerging from the
structure have been associated with thermally activated mobility
and immobility, depending upon their presence in simple or
complex GB structures;34 in addition, these structures have also
been associated with shear coupled motion or the lack thereof.
We now know that there is a strong correlation between the
presence of these LAEs and their mobility type, though the
presence of other structures is also important in the determination
of the exact mobility type. This LAE was presented on equal
footing with all others in the feature matrix that trained the
machine. In the training, it was selected as important and we can
easily see that it has relevant physical meaning.
In Fig. 5b, another LAE has obvious physical meaning as it

captures edge dislocations in the environment of the selected
atom. Interestingly, arrays of these edge dislocations, as in Fig. 5b,

are the basis for the energetic structure-property relationship of
the Read-Shockley model.27

Thus, in these first two cases, we see that the LER approach
discovers well-known, and physically important structures or
defects that are commonly identified in metallic structures.
Perhaps even more interesting is the second LAE in Fig. 5b, which
has the highest relative importance of all (≈9%). The centro-
symmetry parameter (CSP) for the atom at the center of the LAE is
0.125, or close to a perfectly structured FCC lattice, as visual
inspection of the LAE would suggest. However, the CSP cannot be
directly compared with the LAE because CSP examines only
nearest neighbors while the LAE encompasses a larger environ-
ment, including the defect at the edge of the LAE.47 Most
importantly, this structure may not be immediately identified with
any known metallic defect, but we know that it is highly correlated
with thermally activated mobility across all the GBs in the data set.
In Fig. 6, the most important LAE for predicting thermally damped

mobility is shown. Interestingly, it has found the “C” structural unit
that is readily found in [100] axis symmetric tilt GBs,26 though the
LAE spans multiple kite structures. More important to note, however,
is the fact that most of the important LAEs for predicting thermally
damped mobility, are LAEs that are not present in thermally damped
GBs. In other words, the machine learning algorithm is able to
determine which structures will exhibit thermally damped mobility
by the lack of certain LAEs in those structures.
The machine can determine some LAEs that are associated with

well-known structures and properties, while also finding other
LAEs that are not readily recognizable but are apparently
important. This fact offers an exciting avenue to discover new
mechanisms and structures governing physical properties. The
physical nature of those LAEs that we already understand
suggests that these are the building blocks underlying important
physical properties and that we may be on the precipice of
understanding the atomic building blocks of GBs.
Despite the formidable dimensionality of a raw grain boundary

system, machine learning using SOAP-based representations
makes the problem tractable. In addition to learning useful
physical properties, the models provide access to a finite set of
physical building blocks that are correlated with those properties
throughout the high-dimensional GB space. Thus, the machine
learning is not just a black box for predictions that we do not
understand. The work shows that analyzing big data regarding
materials science problems can provide insight into physical

Fig. 6 Illustration of the most important LAE for classifying
thermally damped GB mobility, as identified in a Σ5 (36.9° symmetric
tilt about the [100] axis, 0 1 3

� �
boundary planes) GB. The LAE

shown has a relative importance of 6.8% and is centered at the point
of a kite structure but includes parts of the kites on either side.
These kite structures are “C” structural units that are regularly
observed in [100] axis symmetric tilt GBs. The open and filled circles
denote atoms on the two unique stacking planes along the [100]
direction. The atoms are colored according to common neighbor
analysis (CNA) such that blue, and red atoms have a local
environment that is FCC, or unclassifiable

(a) (b)

Fig. 5 Illustration of important LAEs for classifying thermally activated GB mobility, as identified in two different GBs. The GB shown in a is a
Σ51a (16.1° symmetric tilt about the [110] axis, 1 1 10

� �
boundary planes) GB, and has one LAE identified. The LAE shown in a has a relative

importance of 3% over the entire system and includes a leading partial dislocation that originates from the GB. The GB shown in b is a Σ85a
(8.8° symmetric tilt about the [100] axis, 0 1 13

� �
boundary planes) GB, and has two LAEs identified. The leftmost LAE has a relative importance

of 9% (for all GBs in the data set) but its structural importance is not immediately clear, offering an exciting opportunity to discover new
physics. The second LAE in b encloses edge dislocations, which are regularly spaced to form a tilt GB, (relative importance of 2.7% across all
GBs). The open and filled circles denote atoms on the two unique stacking planes along the [100] or [110] direction. The atoms are colored
according to common neighbor analysis (CNA) such that blue, green, and red atoms have a local environment that is FCC, HCP, or unclassifiable
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structures that are likely associated with specific mechanisms,
processes, and properties but which would otherwise be difficult
to identify. Accessing these building blocks opens a broad
spectrum of possibilities. For example, the reduced space can
now be searched for extremal properties that are unique (i.e.,
special GBs). Poor behavior in certain properties can be
compensated for by searching for combinations of other proper-
ties. In short, a path is now available to develop methods that
optimize GBs (at least theoretically) at the atomic-structure scale.
These methods may also provide a route to connect the
crystallographic and atomic structure spaces so that existing
expertize in the crystallographic space can be further optimized
atomistically or vice versa.
While this is exciting within grain boundary science, the

methodology presented here (and the SOAP descriptor in
particular) has general applicability for building order parameters
while studying changes that involve local structure. For example, it
can be applied in studying phase change materials, point defects
in solids, amorphous materials, cheminformatics, and drug binding.
The physical interpretability of the machine learning representa-
tions, in terms of atomic environments, will also transfer well to
new applications. This can lead to increased physical intuition
across many fields of research that are confronted with the same,
formidable complexity as seen in grain boundary science.

Data availability
Additional details about the machine learning models and data
are described in the accompanying Supplementary Information.
The feature matrices and code to generate them are available on
request.
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CHAPTER 6

Software Packages

The works presented in the previous chapters drove development of several software packages,
some of which are useful is multiple contexts.

6.1 MACHINE LEARNING FOR GRAIN
BOUNDARIES

https://github.com/rosenbrockc/gblearn

The analysis presented in Chapter 5 was refac-
tored and combined into a high-level API that
allows the full analysis presented in the paper to
be completed in five lines of code and about 15
minutes. We are encouraging a new paradigm
in computational science where all results are
accompanied by docker containers that have
all the necessary code and dependencies to
reproduce the results in an afternoon. The
high-level API produced for the GB machine
learning project is a step toward this paradigm.

We are currently working on a methods
paper that includes the additional details that
couldn’t fit into the original paper and which
shows how to reproduce the results using very
few lines of code. Upon publication, the source
code will be available at the above URL.

6.2 NUMERICAL ALGORITHM FOR PÓLYA
ENUMERATION

https://github.com/rosenbrockc/polya

As discussed in Chapter 2, the algorithm to
count the number of symmetrically unique
colorings of a lattice is available for both
python and fortran.

6.3 AUTO-COMPLETE AND UNIT TESTING
FOR FORTRAN

https://github.com/rosenbrockc/fortpy

One of the most important skills a computa-
tional scientist can develop is to adopt industry-
standard development protocols for the code
they write. This includes each of the following:

• Committing early and often to a source
control repository so that multiple
researchers can work together on the same
project and so that errors can easily be
corrected by rolling code back to an earlier
version.

• Requiring full unit test coverage of any code
produced; this means that there is at least
one test for every line of code. A test
is simply an input/output pair where the
output has been verified by the coder to be
the correct answer. As long as the code
produces the correct output for each input,
it is doing what it was designed to do.

• Implementing a continuous integration (CI)
server. Whenever a code change is being
proposed for the project, the CI server takes
the current code and the proposed changes
and merges them offline so that unit tests can
be run against the proposed code base. This
ensures that the changes don’t break existing
functionality.

• Protecting the master branch so that code
changes cannot be merged into the master
branch if test coverage drops or any of the
unit tests fail. This ensures consistent results
across versions.

• Having internally documented source code
so that documentation is automatically kept
up to date as the code changes.
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Since a lot of our development takes place in
fortran, I developed a package called fortpy
that provides:

• Automated unit testing for fortran subrou-
tines and functions. Only input and output
need to be specified and the framework
will generate the program files, compile the
code and run the tests. Profiling, timing
and other conveniences are also handled
automatically.

• Context-dependent code completion for
emacs; this reduces development time
by providing hints about signatures for
functions or subroutines and members of
user-defined types.

• Code checking for bugs that are otherwise
hard to find; for example user-defined types
that have uninitialized pointers being passed
as output parameters.

fortpy is currently being used by twelve
groups worldwide (outside of BYU). We have
used it internally for development and unit
testing of several codes, including:

1. The Pólya code discussed in Chapter 2.

2. The enumeration and symmetry codes refer-
enced in Chapter 2.

3. A scattering transform code for machine
learning alloy potentials [72, 73].

4. Bayesian Compressive Sensing solver
discussed below in Section 6.5.

6.4 API FOR SEARCHING AFLOWLIB

https://github.com/rosenbrockc/aflow

As discussed above, recent advances in
computation have enabled the creation of
large, materials databases using Density

Functional Theory [5, 6]. aflowlib [74, 75]
is one of the largest with more than 1.7M
material compounds (as of November 2017,
http://aflowlib.org/). Recently, the AFLUX
search API [76] was introduced to provide
improved access to the materials’ data in
a uniform request format via REST [77].
Because the API is based on REST, it
allows access to the data from a variety
of programming languages through standard
libraries.

Unfortunately, the data for material
properties and calculation parameters are
not stored in a standard format. While the
custom serialization format is documented,
each property must be parsed individually
to access standard formats (such as numpy
[78] arrays for python). Thus, a researcher
attempting to access aflowlib data for the first
time must 1) read and understand the AFLUX
request format; 2) lookup the documentation
for the properties of interest and 3) deseri-
alize them appropriately. aflowlib fields are
stored as strings of values that may be comma-
separated, colon-separated or have a more
complex structure (such as for the kpoints
property). Deserialization refers to the transfor-
mation of these strings into high-level objects
such as dictionaries or arrays. Even though
such tasks are well within the abilities of a
computational scientist, they are not tasks that
leverage scientific expertise.

I developed a high-level python API that
abstracts the request and deserialization tasks
so that there is virtually no access barrier for
newcomers to the aflowlib database. An
introduction and instructions are published [79]
and the code is available open source at the
above URL and via the python package index
using pip install aflow.

This package is an essential component of
the alloy potential automation project that was
briefly mentioned in the concluding remarks of

https://github.com/rosenbrockc/aflow
http://aflowlib.org/
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the introductory chapter.

6.5 BAYESIAN COMPRESSIVE SENSING
SOLVER

https://github.com/rosenbrockc/bcs

A difficult problem in Cluster Expansion was
solved by Nelson et al. using Bayesian
Compressive Sensing (BCS) [61, 62]. BCS
allows underdetermined linear systems to be
solved by minimizing the `2 error in the approx-
imating function subject to minimization of the
`1 norm. Much of the work in developing the
algorithm was done by Lance Nelson. I refac-
tored the core code to be stand-alone so that
it could easily be applied to other problems
outside of the Cluster Expansion context.

The code has been used by collaborators
for doing lattice dynamics with compressive
sensing [80] and was used extensively for the
robustness analysis discussed in Chapter 3.

6.6 AUTOMATED CLUSTER EXPANSION

Before we realized that Cluster Expansion (CE)
would be replaced by alloy potentials that
can handle lattice dynamics, I refactored some
scripts provided by Lance Nelson and expanded
the library to create a package called ancle
that fully automates the various steps of CE
from creation of the independent and identi-
cally distributed structures for DFT, through
fitting, verification and finally searching for
stable ground states to create the convex hull. It
was designed to be hands-off so that all aspects
of the workflow would be handled by scheduled
tasks on the server.

We had planned to let ancle loose to
create CE models for every possible binary
alloy system, a project we called CE-flash, but
which was waiting for the k-point problem to
be solved before execution. Although it wasn’t

used for its intended purpose, the compo-
nents have been re-used many times in various
contexts. The alloy potential automation
project supersedes this.

6.7 AUTOMATED COMPUTATIONAL
RESEARCH NOTEBOOK

https://github.com/rosenbrockc/acorn

In the spirit of scientific reproducibility, we
set out to create an auto-documenting research
notebook for computational science. Since
ipython notebooks have become the defacto
standard for computational science, it seemed
to be a logical place to inject the automation.

acorn is an open-source project that
provides the following features:

• Automatic “smart” logging of all code
executed in an ipython notebook. By
“smart”, we mean that the logging system is
aware of variables being passed to functions
and methods and internally documents and
gathers statistics on the nature of the
variables at execution time, rather than just
logging the text that was typed into the cell.

• Logging of markdown typed between code
cells.

• Logging of plot thumbnails as they are
produced by plotting functions.

• Customizable filters to decide which code
calls are logged and which are ignored.

acorn works by wrapping all function calls
with new versions that provide the variable-
sensitive logging functionality before and after
executing the original call. While simple to
state, the internals represent some of the most
complex python coding I have ever done.

https://github.com/rosenbrockc/bcs
https://github.com/rosenbrockc/acorn
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6.8 MACHINE-LEARNED ALLOY
POTENTIAL AUTOMATION

https://github.com/rosenbrockc/matdb

One of the shortcomings of historical
approaches to creating interatomic potentials
is scientific reproducibility. Almost all of the
published potentials only include details as to
how the training databases were created, but
do not provide access to those databases or
include the necessary code and parameters to
recreate them from scratch. This makes it
difficult to reproduce the published results or to
improve upon existing potentials. For example,
creating a machine-learned alloy potential for
comparison with a published Embedded Atom
Method potential is difficult in most cases
because the training databases are not available
and cannot easily be recreated using only the
publication as a reference.

Inasmuch as the fitting of alloy poten-
tials using machine learning is essentially an
automated process, the bottleneck to successful
potential creation is now the training databases.
Recent successes [81, 82] required 3 years
of hand-tuning by students and postdocs to
generate such excellent potentials. The matdb
project provides scientifically rigorous methods
to generate alloy databases using a single file
that contains all parameters needed to create

the training database from scratch and to train
the machine-learned potential. Once the final
potential has been generated by trial and error,
the project provides a finalize function that
packages the database, potential and all the
code needed to recreate them into a single
archive that can be referenced in a publication.

Abstracting the creation and fitting
functionality behind a single file that contains
only free parameters has several advantages:

1. Scientists can make high-level decisions
about the information content of the training
databases and the flexibility of the repre-
sentation without worrying about the imple-
mentation details.

2. In a high-throughput situation, the scripts
for automating the calculations only have
to configure the high-level specification file
because the details are taken care of.

3. As bug-fixes and enhancements roll out,
existing databases and specification files still
work because of the abstraction layer.

While matdb is being used actively for our
alloy automation project, it is still private while
we work through stability issues, etc. We plan
to release it publicly for academic use once we
have proved it.

https://github.com/rosenbrockc/matdb


APPENDIX A

Equating Cluster Expansion with the SOAP Kernel

As discussed above, an exciting part of the continuing research into machine learning the quantum
physics of alloys involves equating the Cluster Expansion basis and Smooth Overlap of Atomic
Positions kernel to extract the space-dependent species interaction terms. We have already invested
several years into this project and it is nearing completion. As soon as we demonstrate machine-
learned alloy potentials that are phonon-accurate, we will be able to equate the two approaches
using the mathematics presented here.

A.1 GAUSSIAN PROCESS REGRESSION FOR SITE ENERGIES

The total energy E is assumed to be the sum of site energies given by a universal site energy
function ε that is a function of the neighbour environment, which has compact support and is
described by a “descriptor” vector d. Define the list of atomic positions and species of the atoms
as

|~ρ 〉= |~r (s1)
1 ,~r (s2)

2 , . . . ,~r
(sNsites)

Nsites
〉. (A.1)

Then we can write the total energy for any crystal (a single point in the space |~ρ 〉) as

〈~ρ |E〉 =
Nsites

∑
i

ε(〈~ρ |di(~r)〉)

= ∑
i

ε(〈~ρ |di〉). (A.2)

As an example, di might be the charge density in the neighborhood of site i expanded as a sum of
Gaussians (see Eq. (A.4)). 〈~ρ |di〉 defines the parameter space over which d is defined; for each
value of~r within a crystal (parameterized by ~ρ), d returns a scalar. It could thus also be written

equivalently as di(~r,~r
(s1)
1 ,~r (s2)

2 , . . . ,~r
(sNsites)

Nsites
). However, we retain the notation for clarity later on.

In Gaussian process regression, the site energy is given by a linear combination of basis
functions (kernels), each centered on a data point in descriptor space,

ε(〈~ρ |d〉) =
database

∑
i

αiK(〈~ρ |di〉,〈~ρ |d〉) (A.3)

where α are the coefficients obtained from the regularized fit. The database for the regular-
ization is described in detail by Szlachta et al. [82]. Essentially, for a given material with total
energy calculated using DFT, the site energies are extracted analytically with the Hellmann-
Feynmann theorem; thus a crystal with 5 atoms in the basis will produce 5 entries in the database.
Since many local environments are similar, the database does not necessarily include all atomic
descriptors from every material in the database.

An additional note for clarity: the |~ρ 〉 above describes the space of all possible materials that
can be formed using a list of atomic positions with corresponding species information at each one.

60



A.2 SOAP Kernel Introduction 61

Mathematically, it is a direct sum of Nspecies copies of R3, one for each atom, with corresponding
species labels. The descriptor contraction 〈~ρ |di〉 in Eq. (A.3) shows that the descriptor di used
in the kernel regression was evaluated for some specific member of the space |~ρ 〉.

A.2 SOAP KERNEL INTRODUCTION

The kernel compares environments, and needs to take the value 1 only if the two environments
are the same up to symmetries (global rotations and permutations of similar atoms). We define
the neighbour density of atom i as

〈~ρ |ρis〉 = ∑
~ri j∈|~ρ 〉

e−(~ri j−~r)2/2σ2
atom fcut(|~ri j|)δss j

〈~ρ |ρi〉 =

nspecies⊕
s=1

〈~ρ |ρis〉, (A.4)

where fcut is a smooth cutoff function that ensure compact support, and s j is the species of the
atom at site j.

The overlap of two different site environments is defined as

S(〈~ρ |ρi〉,〈~ρ |ρk〉) =
∫

d3r〈~ρ |ρi〉†〈~ρ |ρk〉

=
species

∑
ss′

∫
〈~ρ |ρis〉†〈~ρ |ρks′〉〈~ρ |ςss′(~r)〉dr. (A.5)

with 〈~ρ |ςss′(~r)〉 defining the “overlap of species” s and s′; its value is derived explicitly later.
Here we see the first deviation from the original SOAP formalism. The atomic environments are
expanded for each species independently; thus, in the absence of a way to describe the overlap
function ςss′(~r), it defaults to δss′ . In this limit, the formalism only makes sense for pure elements
and is not concentration dependent. If we examine the mathematical space |~ρ 〉, we find that
the species-independent SOAP basis is defined over a subspace of |~ρ 〉, the subspace of all pure
elements, no matter how the spatial orientation of their atoms changes.

The overlap in Eq. (A.5) is permutationally invariant (because of the sum in ρis), but not
yet rotationally invariant. In order to make it so, we integrate it over all rotations of one of its
arguments.

K̃(〈~ρ |ρi〉,〈~ρ |ρk〉) =
∫

dR̂ |S(〈~ρ |ρi〉,〈~ρ |R̂ρk〉)|p, (A.6)

where R̂ is a 3D rotation operator (element of SO(3)), and p is a small integer, e.g. 2. Finally the
normalised SOAP kernel is

K(〈~ρ |ρi〉,〈~ρ |ρk〉) =
K̃(〈~ρ |ρi〉,〈~ρ |ρk〉)√

K̃(〈~ρ |ρi〉,〈~ρ |ρi〉)K̃(〈~ρ |ρk〉,〈~ρ |ρk〉)
. (A.7)

Now we derive the efficient formula to evaluate the SOAP kernel, in which the species
dependent term will be explicitly seen. For clarity, we show this only for a single overlap between
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ρis and ρks′ . Since the integrals are linear, these steps apply equally well to each term in the sum
over ss′ in Eq. (A.5).

We start by expanding the neighbour density for each species in an orthonormal basis,

〈~ρ |ρis(~r)〉= ∑
nlm
〈~ρ |ci,snlm〉gn(r)Ylm(r̂), (A.8)

where g are an orthonormal radial basis, Ylm are spherical harmonics, and 〈~ρ |ci,snlm〉 are the
expansion coefficients. The neighbour density corresponding to each species is expanded indepen-
dently. The effect of the rotation operator acting on ρks is written in terms of Wigner matrices,

〈~ρ |R̂ρks′(~r)〉= ∑
nlmm′

Dl
mm′(R̂)〈~ρ |ck,s′nlm′〉gn(r)Ylm(r̂). (A.9)

So the overlap S is given by

S(〈~ρ |ρi〉,〈~ρ |R̂ρk〉) = ∑
ss′

∑
nlmm′
〈~ρ |ςss′nlmm′〉〈~ρ |ci,snlm〉†Dl

mm′(R̂)〈~ρ |ck,s′nlm′〉. (A.10)

where the constants 〈~ρ |ςss′nlmm′〉 have been introduced to represent the effect of the species
overlap function ςss′(~r) within each “shell” of the basis gn(r)Ylm(r̂) for an element of |~ρ 〉. We
now need to square this expression and integrate over all rotations. This is aided by the formula∫

dR̂Dl
mm′(R̂)D

λ

µµ ′(R̂) = δlλ δmµδm′µ ′
1√

2l +1
(A.11)

We get the unnormalised kernel K̃(〈~ρ |ρi〉,〈~ρ |ρk〉) =

∑
ss′

s′′s′′′

∑
nn′

lmm′

〈~ρ |ςss′nlmm′〉〈~ρ |cisnlm〉†〈~ρ |cks′n′lm′〉〈~ρ |ςs′′s′′′n′lmm′〉〈~ρ |cis′′n′lm〉†〈~ρ |cks′′′n′lm′〉√
2l +1

(A.12)

where s and s′′ run over species in the neighbourhood of atom i and s′ and s′′′ run over species in
the neighbourhood of atom k.

We can write this kernel as a dot product of rotationally invariant descriptors of the two
environments which we call the “power spectrum”. In order to simplify the notation, we also
introduce the set of indices x ≡ nl and x′ ≡ n′l; thus the expression ∑x ≡ ∑nl , and ∑x′ ≡ ∑n′l
In doing so, we explicitly retain the indices s and s′ to show how the species dependence carries
through the derivation. Also, we change the order of the “dummy” indices x and ss′ so that we
can refer to them as “pixies” basis functions |pi,xss′ 〉.

〈~ρ |pi,xss′〉=
l

∑
m=−l
〈~ρ |ci,snlm〉†〈~ρ |ci,s′n′lm〉, (A.13)

which shows that in the absence of contraction with |~ρ 〉, the |pi,xss′ 〉 can be thought of as a basis
function. We have retained the explicit references to |~ρ 〉 up to this point to emphasize that a
specific crystal (a single point in the space |~ρ 〉) can be expanded in a basis of |pi,xss′ 〉. As long as
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we can describe the species overlap function ςss′(~r) sufficiently well, the |pi,xss′ 〉 basis spans the
entire materials space |~ρ 〉. We can now write the full, un-normalized kernel as

K̃(〈~ρ |ρi〉,〈~ρ |ρk〉) = ∑
xss′

x′s′′s′′′

〈~ρ |pi,xss′〉〈~ρ |pk,x′s′′s′′′〉〈~ρ |κxss′x′s′′s′′′〉 (A.14)

with κxss′x′s′′s′′′ = ςxss′ςx′s′′s′′′ . Then, we rewrite the site energy as (using the normalized kernel
K(di,dk) again):

ε(〈~ρ |dk〉) =
database

∑
i

αiK(〈~ρ |di〉,〈~ρ |dk〉)

=
database

∑
i

αi ∑
xss′

x′s′′s′′′

〈~ρ |pi,x′s′′s′′′〉〈~ρ |pk,xss′〉〈~ρ |κxss′x′s′′s′′′〉

= ∑
xss′
〈~ρ |pk,xss′〉 ∑

x′s′′s′′′
〈~ρ |κxss′x′s′′s′′′〉

(
database

∑
i

αi〈~ρ |pi,x′s′′s′′′〉
)

= ∑
xss′
〈~ρ |pk,xss′〉〈~ρ |Bxss′〉, (A.15)

where we have defined

〈~ρ |Bxss′〉= ∑
x′s′′s′′′

〈~ρ |κxss′x′s′′s′′′〉
(

database

∑
i

αi〈~ρ |pi,x′s′′s′′′〉
)
. (A.16)

Now that the site energy expansion is linear in |pk,xss′ 〉, we next derive an expansion for
the cluster basis functions in this same |pi,xss′ 〉 basis. But first, a quick side not on the use and
meaning of indices.

A.2.1 A Note on Indices

Unfortunately, it is not easy to describe a general atomic environment simply. The set of indices
we use to describe the |pi,xss′ 〉 do have important physical meaning. Here we describe why it is
essential to keep the various single, double, and triple primed indices on s and n in the context of
maintaining physical invariances (rotational and permutational specifically).

The local atomic environments expanded in |pi,xss′ 〉 are defined for each site in the material’s
unit cell. Thus, for a cell with multiple atoms in its basis, we have a set of environment expan-
sions. When we dot any two of these |pi,xss′ 〉 together (which may also be from different
materials), we are looking for the similarity between them; it should be 1 only if they are identical.
Now, imagine the environment ρi is rotated slightly relative to ρk. The rotational information
about atom i’s surroundings is encoded in the n and l indices; thus, we expect changes in the
values of the |pi,xss′ 〉 as the environment rotates.

Now, imagine that atom k shared the same indices n and l, instead of having its own n′ and
l′. Its |pk,xss′ 〉 values would not allow atom i to rotate independently; we would lose angular
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resolution in the atomic representation and its ability to distinguish between environments would
be reduced. By keeping separate indices, we allow the environments to maintain independent
angular resolution with respect to each other.

The same logic applies to the use of indices s and s′ etc. to track species occupations. If we
don’t use the full range of primes, it would be possible to permute the atoms in one environment
without changing the similarity between it and the one we are comparing it to.

A.3 CLUSTER BASIS FUNCTION EXPANSION IN |PI,XSS′ 〉

The SOAP basis |pi,xss′ 〉 is continous, differentiable and has all the necessary physical invariances
to represent any material. Since we are interested in equating the two bases, we wish to expand
the CE basis functions Θat in the basis of |pi,xss′ 〉, since these have validity everywhere in space
and composition. We will show later that such an expansion leads to a smoothly varying formu-
lation that matches CE on the lattice, but also provides a good approximation (extrapolation) for
deviations from the ideal lattice positions.

The basis of configurational functions used in CE is defined by symmetrically unique permu-
tations of atomic sites in a crystal1. In this derivation we index them by a, which lists the lattice
sites defining the cluster. The label a can thus be directly correlated to the vector ~ρ of the atomic
positions in the crystal. In order for the basis to be complete, we also need to adjust each cluster
for the number of unique species in the system. For example, in a binary expansion we need at
least two functions (called point functions) defined for each lattice site. If the system is ternary
we need three. We introduce the label t to define which of these point functions is being used to
define the cluster basis function.

Next, we consider the site energy ε obtained via cluster expansion of unrelaxed crystal struc-
tures:

ε(〈~σ |ρi〉) = ∑
at

jat〈~σ |Θiat〉. (A.17)

where ρi is understood to implicitly contain the configuration information ~σ , and 〈~σ |Θiat〉 is the
value of cluster function |Θat 〉 evaluated with its center on atom i in |~σ 〉. The vector space |~σ 〉
is the space of all possible configurations of any material with a regular lattice. For a specific
lattice type, say FCC, the number of configurations is countable. The materials space |~ρ 〉, on
the other hand, has an uncountably infinite number of values because it varies smoothly in space.
As an example, the material space |~ρ 〉 can be likened to the real line (which has an uncountably
infinite number of values); the set of integers on the real line are a subspace of the reals with a
countably infinite set of values. Similarly, the space of all configurations on regular lattices forms
a subspace of all possible materials.

By expanding |Θiat 〉 in |pi,xss′ 〉, we are using a basis that has validity everywhere in materials
space, and we are evaluating it only at points in the subspace. Any points that lie outside of that
subspace become interpolations or extrapolations. Returning to the example of the 1D line, it can
be likened to interpolating a function over the reals by evaluating it only at integer points, and

1By crystal, we mean any material with definite translational and rotational symmetries.
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then using a specific basis set (e.g. polynomials) to predict between points. Our interpolating
functions are the |pi,xss′ 〉 and we are evaluating them for specific values in the cluster subspace.

Mathematically then, |~σ 〉 ∈ |~ρ 〉, and

|~σ 〉= |r̄ (s1)
1 , r̄ (s2)

2 , . . . , r̄
(sNsites)

Nsites
〉, (A.18)

with r̄i indicating that the vector position of the atom i is tied to an ideal lattice point.

A.3.1 Motivation for Expandability

Next, we need to motivate the idea that a function of configuration for an entire crystal with
nspecies can be expanded in a set of basis functions |pi,xss′ 〉 that individually depend only on
two species s and s′ at a time. The discussion above regarding |~σ 〉 as a subspace of |~ρ 〉 shows
validity in the vector spaces. Our goal here is to show that it also makes sense for functions over
the composition in those spaces |~σ 〉.

1. Given a specific configuration in |~σ 〉 on the lattice, we can rewrite it in terms of an ordered
set of N2 two-point configuration terms {σi, j}N

i, j=1. Thus, a function of the configuration such
as the energy 〈~σ |E〉 could also, in theory, be written as a many-body function that takes the
set of two-point configuration terms as its parameters/inputs.

2. The SOAP power spectrum basis |pi,xss′ 〉 is evaluated for every combination of s and s′ that
can be formed with the set of nspecies unique species. Note also that the |pi,xss′ 〉 have validity
through all materials space |~ρ 〉.

3. The 〈~σ |Θiat〉 cluster functions are first symmetrized by summing over all rotationally equiv-
alent cluster positions.

4. 〈~ρ |pi,xss′〉 are formed by summing index m in the expansion coefficients 〈~ρ |ci,snlm〉. Because
of the form of the spherical harmonics, Ylm, this sum over m produces a spherically symmetric
expansion while preserving angular information.2.

Comparing point 1 to point 2, and point 3 to point 4, we see that functions of the global
configuration can formally be expanded in the symmetrized basis of the |pi,ss′x 〉; thus, our cluster
functions 〈~σ |Θiat〉 can also be expanded in this basis.

We use the geometric information in the cluster descriptor a to expand the cluster function
vertices (with a Gaussian on each vertex) in the gn(r)Ylm(r̂) basis. We do this once for each
unique species s in the cluster. Thus, for each set of cluster vertices, we expand only those
atomic positions in |~σ 〉 occupied by species s,

〈~σ |aist〉= ∑
~r j∈as

e−(~r j−~r)2/2σ2
s = ∑

nlm
〈~σ |ciat,snlm〉gn(r)Ylm(r̂), (A.19)

2Think, for example, of the sum of p-type orbitals px, py and pz in the Hydrogen atom; the sum of all three
orbitals produces a spherically symmetric shell. It can be shown to be general for all l
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with ais representing the set of vectors pointing from atom i to the vertices specified by the
cluster index a when it is centered on i. Using the 〈~σ |ciat,snlm〉 obtained from this expansion, we
can define the cluster power spectrum around site i, 〈~σ |piat,ss′x〉, as before:

〈~σ |piat,ss′x〉=
l

∑
m=−l
〈~σ |ciat,snlm〉†〈~σ |ciat,s′n′lm〉. (A.20)

Notice that in all these definitions, the same geometric cluster |Θiat 〉 is evaluated on a specific
configuration of the relevant lattice points for each point function set t. Hence, we retain the
indexing over both a and t,

〈~σ |Θiat〉= ∑
xss′

βiat,xss′ 〈~σ |piat,xss′〉. (A.21)

For each cluster function |Θiat 〉 we have a whole set of functions expanded in |piat,xss′ 〉, one
for each unique configuration |~σ 〉 that can exist on the lattice. If we want to use a single set of
βiat,xss′ for all possible configurations, we would need to solve a system of equations that has
all possible configurations well represented. Obviously there are a very large number of possible
configurations on a lattice (MN for M species and N lattice points) and it quickly becomes compu-
tationally impossible to compute the entire set. Thus, we resolve instead to stochastically sample
the configuration space in a way that represents all possible values of |~σ 〉 “well”. For example,
we could imagine using the Pólya enumeration theorem to count the number of symmetrically
unique arrangements on the lattice and weight the stochastic sampling by each concentration’s
contribution to the total number of unique arrangements for the entire system.

With this expansion, we can rewrite the site energy as

ε(〈~σ |ρi〉) = ∑
at

jat ∑
xss′

βiat,xss′ 〈~σ |piat,xss′〉. (A.22)

A.3.2 Calculation of βiat,xss′ Coefficients

We now turn to the calculation of the βiat,xss′ coefficients. For a given order n of spherical
harmonic, the number of basis functions |piat,xss′ 〉 can be quite large. Because of the enormous
number of possible configurations ~σ on the lattice, it will always be possible to match the number
of 〈~σ |piat,xss′〉 contractions with data points through the stochastic configuration sampling discussed
in the previous section. Thus, the calculation of the βiat,xss′ values will come by inversion of a
large (104× 104) matrix of values. One such linear solution will be calculated for each cluster
function |Θiat 〉.

Once a sparse CE has been trained for the unrelaxed alloy system, the number of cluster
functions describing the alloy energetics should be relatively small. For each of these, we
generate the possible combinations of a and t indices for each |Θiat 〉 and evalute the cluster
functions stochastically over the set of all possible configurations until we have enough equations
to have an invertible linear system. For a cluster with k vertices in a system of M species, there
are kM variations of |Θiat 〉 to evaluate. A typical CE solution has about≈40 relevant clusters; the
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number of each type of cluster (2-body, 3-body, etc.) decreases rapidly with increasing number
of vertices. In such a CE, the total number of unique |Θiat 〉 cluster functions is about 500.

Because of the generality employed up to this point, we could imagine solving this problem
for all Bravais lattices simultaneously (or specific combinations of Bravais lattices). We would
merely add additional equations to the system for each of the subsequent lattices’ cluster functions.
The set of βiat,xss′ found in solving the composite system would represent an interpolation between
cluster functions on different underlying lattices. For a subset of similar Bravais lattices, the inter-
polation may be better than for a solution that interpolates all the Bravais lattices; so, it may still
be worthwhile to expand combinations of them separately. The reason we can do this in one, foul
swoop is because in all cases we are expanding the |Θiat 〉 in the same basis. However, we should
exercise caution in doing so: we need to stochastically sample the configuration space for each
Bravais lattice well. As we add additional lattices to the solution, we also need to expand the
number of |piat,xss′ 〉 by increasing the order n of the spherical harmonics. Matrix inverses scale at
best as n≈2.3, which sets a hard limit computationally on the number of lattices that can be done
concurrently.

One other important point is that once a cluster function has been expanded in |piat,xss′ 〉, those
values are valid forever and can be tabulated. This allows any cluster expansion to be transformed
into the |piat,xss′ 〉 basis,

ε(〈~σ |ρi〉) = ∑
xss′

(
∑
at

jat〈~σ |piat,xss′〉βiat,xss′

)
. (A.23)

A.4 TYING THE FORMALISMS TOGETHER

In the previous two sections, we described 1) the linearization of the SOAP kernel expansion of
total energy in the |pi,xss′ 〉 basis; 2) the transformation of the |Θiat 〉 cluster basis functions into
the |piat,xss′ 〉 basis. In this section we discuss the possible ways in which these two formalisms
can be combined to provide a species-aware mathematical description of materials suitable for
machine learning.

A.4.1 Determination of 〈~ρ |κxss′x′s′′s′′′〉

For a given material in |~ρ 〉, 〈~ρ |κxss′x′s′′s′′′〉 is the non-linear, global species overlap term between
two atomic environments. Combining Eq. (A.15) with Eq. (A.23), we obtain a connection
between the two expansions. The important point here is that the |pi,xss′ 〉 are a linearly independent
set. Thus each term (indexed by x, s and s′) in the separate expansions must be equal. This gives

∑
at

jat〈~σ |piat,xss′〉βiat,xss′ = 〈~σ |pi,xss′〉〈~σ |Bxss′〉. (A.24)

where we have switched the “dummy” indices i and k on the right-hand side of Eq. (A.15) to
match the CE expansion on the left. Taken as an entire set (i.e. by summing over at), the |Θiat 〉,
expanded as |piat,xss′ 〉 provide a connection between the subspace |~σ 〉 and the global materials
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space |~ρ 〉. Inserting the definition of Bxss′ , we see the relationship between the expansion coeffi-
cients βiat,xss′ and the non-linear species overlap coefficients 〈~ρ |κxss′x′s′′s′′′〉,

∑
at

jat〈~σ |piat,xss′〉βiat,xss′ = 〈~σ |pi,xss′〉 ∑
x′s′′s′′′

〈~ρ |κxss′x′s′′s′′′〉
(

database

∑
k

αk〈~ρ |pk,x′s′′s′′′〉
)
. (A.25)

For each atomic environment i and tuple xss′, we can generate the LHS by cluster expanding
the site energy and then transforming it to |piat,xss′ 〉. This represents the “pinning down” of the
basis to specific points in the subspace |~σ 〉 for which CE is defined.

Similarly, we can perform Gaussian Process Regression as described earlier on a database of
local atomic environments to produce the RHS of Eq. (A.25). This pins the global |pi,xss′ 〉 basis
to the pure elemental materials for which the current SOAP implementation is valid.

As we accumulate additional environments for each i and each tuple xss′, we form a system
of equations that can be solved or approximated using standard numerical methods.

A.4.2 Determination of 〈~ρ |ςss′nlmm′〉

Another alternative is to access the linear species overlap functions between only two species
s and s′ directly. This reduces the problem to finding the values of 〈~ρ |ςss′nlmm′〉. Because of
the inherent non-linearity in ci,snlm, it is not possible to access 〈~ρ |ςss′nlmm′〉 by equating CE and
SOAP on total energy. Instead, we choose to equate the CE and SOAP expansions on electrostatic
energy only. In doing so, we assume that the overlap 〈~σ |ςss′nlmm′〉 derived from a CE for only
electrostatic energy will be a good representative even for quantum contributions to the material
properties. If we confine ourselves to energetic calculations, this is not far-fetched (since the
quantum contributions are also directionally dependent). As long as the other properties are
extracted from higher-order methods based on the forces or potential energies, the assumption
should be satisfactory.

First, we derive an expression for the electrostatic energy 〈~ρ |Ẽ〉 that is linear in the charge
density. Formally, if we restrict ourselves to a finite volume, this energy (for an individual atomic
site with cutoff radius rcut) is defined as:

ε̃(〈~ρ |ρi〉) =
1
2

∫ rcut

0

∫
π

0

∫ 2π

0
〈~ρ |ρi(~r)〉〈~ρ |φi(~r)〉d3r (A.26)

=
1
2

∫ rcut

0

∫
π

0

∫ 2π

0
∑
nlm
〈~ρ |ci,snlm〉gn(r)Ylm(r̂)〈~ρ |φi(~r)〉d3r.

The trick whereby we avoid the non-linearity in ρi is to take the electrostatic potential φi as
given. Since DFT codes have the ability to output a representation of φi (in a different basis
than |pi,xss′ 〉), we can take it as a known function and just expand the charge density as shown
in Eq. (A.26). In doing so, we use the spherically averaged electrostatic potential; without this
approximation the integrals in the derivation below would be a nightmare.3

3Software already exists for extracting the spherically averaged potential φ(r), within a sphere of finite volume
using the LOCPOT file in VASP. See “Electronic Chemical Potentials of Porous MetalâĂŞOrganic Frameworks”,
Keith T. Butler, Christopher H. Hendon, and Aron Walsh; J. Am. Chem. Soc., 2014, 136 (7), pp 2703âĂŞ2706. See
also https://github.com/WMD-group/MacroDensity
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Following the same derivation in Eq. (A.19), we expand the |Θiat 〉, but this time we restrict
ourselves to the coefficients ciat,snlm instead of continuing to the power spectrum. Then,

ε̃(〈~σ |ρi〉) = ∑
at

jat ∑
snlm
〈~σ |ciat,snlm〉gn(r)Ylm(r̂) (A.27)

is the cluster expanded electrostatic site energy in gn(r)Ylm(r̂) . We can now equate these two
expressions, once again using the orthogonality of gn and Ylm and re-arranging the order of
summation and integration in Eq. (A.26).

ε̃(〈~σ |ρi〉) = ∑
at

jat〈~σ |ciat,snlm〉gn(r)Ylm(r̂) (A.28)

=
1
2

∫ rcut

0

∫
π

0

∫ 2π

0
〈~ρ |ci,snlm〉gn(r)Ylm(r̂)〈~ρ |φ̃i(~r)〉d3r,

φ̃i being the spherically averaged potential within the cutoff sphere around atom i, which varies
only with r. We now exploit the orthogonality of our gnYlm basis,∫ 2π

0

∫
π

0
Y ∗

λ µ
(r̂)Ylm(r̂)sinθdθdφ = δlλ δmµ , (A.29)

first for the cluster expanded energy.

4π

∫
∞

0
ε̃

2(〈~σ |ρi〉)e−rd3r =
∫

∞

0
∑
at

j∗at jat〈~σ |ciat,snlm〉†〈~σ |ciat,snlm〉g∗n(r)gn(r)e−rr2dr

=

(
∑
at

∑
ητ

∑
ss′

j∗at jητ〈~σ |ciat,snlm〉†〈~σ |ciητ,s′nlm〉
)∫

∞

0
g∗n(r)gn(r)e−rr2dr

= ∑
ss′
〈~σ |ζi,snlm〉†〈~σ |ζi,s′nlm〉

∫
∞

0
g∗n(r)gn(r)e−rr2dr, (A.30)

where we have added e−r so that the integral over the constant value ε̃2 converges, and defined

〈~σ |ζi,snlm〉= ∑
at

jat〈~σ |ciat,snlm〉. (A.31)

And again for the SOAP expanded electrostatic energy:∫
∞

0
ε̃

2(〈~ρ |ρi〉)e−rdr =
1
4 ∑

ss′
〈~ρ |ςss′nlm〉〈~ρ |ci,snlm〉†〈~ρ |ci,s′nlm〉

∫
∞

0
g∗n(r)gn(r)φ̃ 2

rcut
(r)e−rr2d3r

= ∑
ss′
〈~ρ |ςss′nlm〉〈~ρ |ci,snlm〉†〈~ρ |ci,s′nlm〉 φ̄ 2, (A.32)

where we define the integral

φ̄ 2 =
1
4

∫
∞

0
g∗n(r)gn(r)φ̃ 2

rcut
(r)e−rr2dr (A.33)
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for clarity. Since φ̄ 2 is strictly positive, there won’t be any unfortunate cancellation in potential-
neutral environments to interfere with the coefficients. We can now equate the CE version of the
electrostatic energy with the one we derived from the charge density,

〈~σ |ζi,snlm〉†〈~σ |ζi,s′nlm〉
∫

∞

0
g∗n(r)gn(r)e−rr2dr = 〈~ρ |ςss′nlm〉〈~ρ |ci,snlm〉†〈~ρ |ci,s′nlm〉 φ̄ 2. (A.34)

This can be simplified to obtain the value of 〈~ρ |ςss′nlm〉,

〈~ρ |ςss′nlm〉=
〈~σ |ζi,snlm〉†〈~σ |ζi,s′nlm〉
〈~ρ |ci,snlm〉†〈~ρ |ci,s′nlm〉

∫
∞

0 g∗n(r)gn(r)e−rr2dr∫
∞

0 g∗n(r)gn(r)φ̃ 2
rcut

(r)e−rr2dr
(A.35)

As long as the integrals converge and the value for φ̄ 2 6= 0, the value will be defined. A good
course of action would be to calculate the global, non-linear overlap coefficients 〈~ρ |κxss′x′s′′s′′′〉
and the local, linear coefficients 〈~ρ |ςss′nlm〉 and compare them to gain possible physical insights.

A.5 OFF-LATTICE CLUSTER EXPANSION

Before we embark on the complicated journey described in the previous section, we would like
to get a feel for how easily the cluster functions can be transformed into the |piat,xss′ 〉 basis.

As a first approximation to an off-lattice CE, we use a regular CE trained on a group of
systems in which only the lattice parameter is allowed to relax. All internal degrees of freedom
remain fixed so that the CE basis is complete. In that instance, we have an expansion similar to
Eq. (A.8) for each structure in |~σ 〉,

〈~σ |ρi(~r)〉 = ∑
snlm
〈~ρ |ci,snlm〉gn(r)Ylm(r̂)

= ∑
xss′
〈~σ |pi,xss′〉. (A.36)

This allows us to expand the CE energy as

ε(〈~σ |ρi〉) = ∑
xss′
〈~σ |pi,xss′〉χi,xss′, (A.37)

where the χxss′ are the expansion parameters. Since the number of structures and |pi,xss′ 〉 basis
functions may not always be equal, we imagine a rectangular matrix Pi = 〈~σ |pi,xss′〉 and compute
its pseudo-inverse using Singular Value Decomposition (SVD).4 Using the pseudo-inverse, we
can obtain the χi,xss′ values using ~χi = VS+U∗ε(〈~σ |ρi〉) where SVD(Pi) = USV∗ and S+ is the
pseudoinverse of matrix S.

Once the value for χi,xss′ has been calculated from the on-lattice cluster expansion energies
and structures, it can be treated as constant. Then for a new structure (including one with small
relaxations from the ideal lattice positions), we can calculate a new expansion in |pi,xss′ 〉 and use

4There are many solvers for underdetermined linear systems based on various norms (e.g. `1 norm solvers with
compressing sensing).
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the on-lattice~χi to approximate the off-lattice energy. For small deviations we expect the energies
to be in good agreement.

To gain intuition for the range of applicability, we return to the idea of pinning the full
materials space basis functions using values calculated in a subspace. The χi,xss′ values calcu-
lated allow the |pi,xss′ 〉 basis functions to interpolate between the known values produced by
the CE. When we move off-lattice, the predictions will be in good agreement until we “fall
off the manifold” for which the interpolations are defined. Inasmuch as the material space is
high-dimensional and complicated, it is difficult to quantify the range of applicability without
numerical experiments.

This first attempt at an off-lattic CE is a useful starting point to prove the applicability of the
derivation up to this point. If we can expand the on-lattice CE values in the |pi,xss′ 〉 basis with
high accuracy, it gives us confidence to pursue the more involved calculation of the βiat,ss′x or
〈~ρ |ςss′nl〉 described earlier.

A.5.1 Cluster Expansion Transformation to |pi,xss′ 〉

Using the method described, we set out to see if the |pi,xss′ 〉 basis could reproduce CE results
for on-lattice structures. Since those structures are on the manifold of the training data, they
should be reproducible without much difficulty if the |pi,xss′ 〉 can accurately represent the cluster
functions. Keep in mind that here we are not expanding individual cluster functions, but rather
summing over all the cluster functions (index at) from the CE and summing over all the |pi,xss′ 〉
(index xss′), which merely shows that when taken as a set, the two approaches are equivalent.

Using a CE of Cu-Pt with 41 terms, we performed the pseudoinverse described below Eq.
(A.37). We trained on 3710 data points from both unrelaxed and relaxed systems, leaving 850
points for validation. RMS error on the test set was 4.5 meV/atom. Considering that the error on
the CE itself was on the order of 7.1 meV/atom, this is suitable proof that the CE basis functions,
at least when taken together for the whole model, can be expanded in the pixies basis.

We also expanded the individual contributions of each cluster basis function in the pixies
basis and performed the pseudoinverse to predict on-lattice cluster values within the SOAP
basis. Across the 3-body and higher cluster functions, we obtained an average RMS error
of 0.15 meV/atom on the test sets. This shows that the cluster basis functions can also be
expanded individually and that the mathematical formalism is sufficient within the assumptions
and constraints that we have specified.
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