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ABSTRACT

Increasing the Computational Efficiency of Combinatoric Searches

Wiley Spencer Morgan
Department of Physics and Astronomy, BYU

Master of Science

A new algorithm for the enumeration of derivative superstructures of a crystal is presented.
The algorithm will help increase the efficiency of computational material design methods such
as the cluster expansion by increasing the size and diversity of the types of systems that can be
modeled. Modeling potential alloys requires the exploration of all possible configurations of atoms.
Additionally, modeling the thermal properties of materials requires knowledge of the possible
ways of displacing the atoms. One solution to finding all symmetrically unique configurations and
displacements is to generate the complete list of possible configurations and remove those that
are symmetrically equivalent. This approach, however, suffers from the combinatoric explosion
that happens when the supercell size is large, when there are more than two atom types, or when
atomic displacements are included in the system. The combinatoric explosion is a problem because
the large number of possible arrangements makes finding the relatively small number of unique
arrangements for these systems impractical. The algorithm presented here is an extension of an
existing algorithm [1–3] to include the extra configurational degree of freedom from the inclusion
of displacement directions. The algorithm makes use of another recently developed algorithm for
the Pólya [4–6] counting theorem to inform the user of the total number of unique arrangements
before performing the enumeration and to ensure that the list of unique arrangements will fit in
system memory. The algorithm also uses group theory to eliminate large classes of arrangements
rather than eliminating arrangements one by one. The three major topics of this paper will be pre-
sented in this order, first the Pòlya algorithm, second the new algorithm for eliminating duplicate
structures, and third the algorithms extension to include displacement directions. With these tools,
it is possible to avoid the combinatoric explosion and enumerate previously inaccessible systems,
including those that contain displaced atoms.

Keywords: enumeration, algorithm, combinatorics
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Chapter 1

Introduction

1.1 Background

The discovery and application of new materials has always influenced the development of human

civilization in a variety of ways. For example, the discovery of bronze brought on the creation of

stronger metal alloys which in turn changed the balance of power among nations and resulted in the

creation and destruction of empires. In more recent times, the development of steel has changed

how the modern world operates: revolutionizing transportation, allowing for the construction of

high-rise buildings, and improving household products like blenders and scissors. The past impact

of new materials motivates ongoing searches for new materials today.

The process of finding new materials has advanced a great deal since the Bronze Age in which

metallurgists tried to discover new materials by randomly combining known materials. Such a

process is time consuming and success is infrequent. In the early 1900’s Edison [8] and Ciamician

[9] developed a “high-throughput” method of experimentally finding new materials. Their process

involved mixing hundreds to thousands of samples at a time, increasing the rate at which new

materials can be found. Since that time, the scientific community has developed a number of

1
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new tools that employ computational methods to perform first principles calculations to find new

materials. These methods have dramatically advanced the field of material science and deserve

some discussion.

One particularly powerful item in the computational material science toolbox came in 1964–

1965 when Hohenberg and Kohn, quickly followed by Kohn and Sham, published work that set

the foundation for Density Functional Theory (DFT). DFT allows scientists to calculate, from

first principles, the energy of N interacting atoms. In general this is very difficult because it

requires solving the Schrödinger equation for a nonlinearly coupled system of electrons. Due

to this coupling of the electrons there are no analytical solutions of the Schrödinger equation for

such many-body systems. Numerical solutions also fail because each electron has 3 coordinates in

the wave function and numerical solutions require a discrete space for each coordinate. In order to

model the wave function numerically using only 10 discrete points for each coordinate, we would

need 103N points. This is a problem because if we have 27 particles in our system then the number

of points we need exceeds the number of particles in the universe and cannot be stored in memory.

DFT provides a way for the Schrödinger equation to be approximated and solved using density

functions instead of wavefunctions. These density functions reduce the number of discrete points

needed in the above example from 103N to 103 since we only need to know the charge density from

the electrons at any given point in space. This method allows scientists to determine the ground

state properties of a material on a computer much faster than can be done in a lab.

Another advancement came in 1984, when Sanchez developed a basis for the Cluster Expansion

(CE) method [10]. CE is a generalized Ising model which includes more interaction types, called

clusters, than the nearest neighbor binary interactions used in the Ising model. Using these clusters

it is possible to map the configurational energies of any configuration of a system that lives on a
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lattice. The governing equation of CE is:

E(σ) = ∑
f

J f Π f (σ) (1.1)

where σ is a particular configuration of atoms on the lattice, E(σ) is the configurational energy, J f

is the effective interaction for cluster f , i.e., the f th combination of lattice sites, and the sum runs

over all possible clusters. Finally, the Π f (σ) is the “spin product” averaged over the entire lattice:

Πk,n(σ) =
1
k

1
M

1
Dk,n

M

∑
I=1

Dk,n

∑ σI1σI2...σIk (1.2)

the ∑
Dk,n runs over all unique cluster orientations where k is the number of vertices (i.e., atomic

sites) in the cluster, n is the size of the cluster (the size is often a length or area measurement), M

is the number of atomic sites in the unit cell, Dk,n is the degeneracy due to the symmetries in the

lattice, and the σIk terms contains the spin occupation for the kth vertex. Within the CE formalism

each atomic species in a system will have a different spin value of σI .

Using equations 1.1 and 1.2 it is possible to predict the energy of crystal structures by expand-

ing them in the CE basis once the effective interactions, J f , for the system have been determined.

Traditionally the J f have been found using the genetic algorithm, which mimics the natural selec-

tion process to determine the effective interactions, that is trained on a set of energies calculated

using DFT. That fit can then be used to determine the energies of configurations outside the DFT

training set. For example, if we desire to investigate silver-platinum alloys, we can pick a handful

of configurations of the two elements on the lattice and generate energy data using DFT. Then we

can use the genetic algorithm to fit the DFT data and determine the Js. Once we know the J’s

we can look for new materials outside the original training set. With CE, we no longer have to

perform DFT calculations for every configuration of the system to determine the structure of stable

materials. Instead, we can use DFT data from a finite set of the possible configurations to train the
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CE, which is then searched for stable configurations.

With DFT, we can investigate new materials faster than we can in a lab. However DFT is

still limited as it can only explore one configuration at a time. But the space of configurations is

countably infinite. Examining each of these one at a time would be a never-ending task that would

produce few stable materials. CE overcomes this obstacle by allowing us to make predictions for a

region of configuration space based on known data for only a few configurations in the region, thus

enabling us to explore the space of possible materials at a much faster rate. However, no matter

how fast CE is it still is only capable of exploring finite regions of materials space at a time since

it cannot handle a countably infinite number of configurations.

Recently, the community has been developing high-throughput computational methods for

materials science in order to create databases of materials properties that researchers can then

search to find materials with desired properties. High-throughput computational methods are those

that automatically scan over composition and structure space. The idea is to set up a program that

will, given enough time, perform calculations for a large set of possible combinations of elements

to determine their stability, and other properties, automatically. The advantage is that, rather than

trying to invent new materials, one would simply log onto a database and search for materials

with the desired characteristics. Many researchers have taken steps toward building databases

that contain high-throughput DFT calculations. These include Ceder et al. [11] who founded the

Materials Project, Curtarolo et al. [12] who made AFLOWLIB (Automatic-FLOW), and Saal et

al. [13] the founders of OQMD (Open Quantum Materials Database).

As of yet, no high-throughput CE project is in operation. One of the goals of the materials

simulation group here at BYU is to develop a a high-throughput CE code. The following work

will increase the efficiency of our high-throughput CE code. The algorithms presented here have

also been extended to include displacement directions in the enumeration of configurations, so

that models to study the thermal properties of materials can also use this code to produce training
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structures.

1.2 Methods of Generating Derivative Superstructures

Over the years there have been many codes [14–18] written that are capable of finding all the

symmetrically unique ways of arranging atoms on a lattice. The most common approach taken

by these codes to find the symmetrically unique arrangements is to cycle through every possible

arrangement of atoms and make comparisons between them using the symmetries of the lattice.

This approach has been considered necessary in order to ensure the discovery of all the unique

arrangements. However, the brute force search method that these codes employ is a shared short-

coming due to the computational cost. In some cases, this shortcoming actually limits the types

of systems that can be enumerated because their size or atomic diversity (k-nary systems where

k > 2) cause a combinatoric explosion in the number of possible structures.

This work describes two new algorithms: first a number theoretic implementation of Pòlya’s

counting theorem, and second, an efficient new algorithm for enumerating structures. These

algorithms allow us to find the unique arrangements of atoms on a fixed lattice with known

concentrations while only exploring a subset of the combinatorically possible arrangements. The

algorithm for Pòlya’s counting theorem predicts the correct number of unique configurations. This

allows us to know if the system’s unique configurations will fit in a computer’s memory before the

actual search begins. Additionally it serves as a test of the enumeration algorithm’s accuracy.

The enumeration algorithm finds the unique configurations in a novel new way that greatly

reduces the computational cost. This is accomplished by breaking the system up so that the possible

arrangements of each atomic species are considered independently. This process resembles a

tree search in which each level of the tree represents a unique atomic species. Using this tree

search approach, large sections of the tree can be eliminated by skipping any partially occupied



1.2 Methods of Generating Derivative Superstructures 6

configurations that are symmetrically equivalent to other partially occupied configurations.

The full details of the Pòlya and enumeration algorithms are provided in the following chapters.

The algorithms are presented in the order that they are used. That is the Pòlya algorithm is

presented first followed by the enumeration algorithm for finding the unique derivative superstruc-

tures. The text of sections detailing the algorithms represent two seperate papers. The paper on the

Pólya algorithm has been accepted for publication while the paper on the enumeration algorithm

is going to be submitted soon.



Chapter 2

Pòlya’s Enumeration Algorithm

The following text is a paper that has been accepted for publication authored by Conrad W.

Rosenbrock, Wiley S. Morgan, Gus L. W. Hart, Stefano Curtarolo, and Rodney W. Forcade. The

authors contributions were the following: Conrad W. Rosenbrock was the creator of the algorithm,

developed it into a user friendly package, and has written most of the text of this section; Wiley S.

Morgan performed initial research into the possible design of the algorithm, translated the original

Python code into Fortran, and performed extensive tests to check the algorithm’s performance; Gus

L. W. Hart oversaw the development and testing of the algorithm, clarified the ideas surrounding

the algorithm, and developed illustrative examples; Stefano Curtarolo reviewed the written paper;

Rodney W. Forcade introduced the theorem to the group, wrote the mathematical analysis of

its performance and scaling, and generated the necessary groups needed to rigorously test the

algorithm. Rosenbrock, C. W., Morgan, W. S., Hart, G. L. W., Curtarolo, S., Forcade, R. W. 2016,

Journal of Experimental Algorithmics (in press) 17 pages.

7
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Figure 2.1 Top row: All possible two-color colorings of a circle divided into 4 equal
sectors (left side of figure). Bottom row: All symmetrically-distinct binary colorings
of the circle. Arrows indicate combinatorically-distinct colorings that are equivalent by
symmetry.

2.1 Introduction

A circle partitioned into 4 equal sectors can be colored 16 different ways using two colors, 24 = 16,

as shown in Fig. 2.1. But only 6 of these colorings are symmetrically-distinct, several others

being equivalent (under rotations and reflections) as shown by the arrows in the figure. The Pólya

enumeration theorem provides a way to determine how many symmetrically-distinct colorings

there are with, for example, all sectors red (only one, as shown in the figure); or one red sector and

three green (again, only one); or the number with two red sectors and two green sectors (two, as

shown in the figure). Borrowing a word from physics and chemistry, we refer to the partition of

red and green sectors as the stoichiometry. For example, a coloring with 1 red sector and 3 green

sectors has a stoichiometry of 1:3.

The Pólya theorem [4, 5] produces a polynomial (generating function), shown in the figure,

whose coefficients answer the question of how many distinct colorings there are for each stoi-

chiometry (each partition of the colors). For example, the 2r2g2 term in the polynomial indicates
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that there are two distinct ways to color the circle with 2:2 stoichiometry ( ). For all other

stoichiometries (4:0, 0:4, 1:3, and 3:1), the polynomial coefficients are all 1, indicating that for

each of these cases there is only one distinct coloring, as is obvious from the figure.

A common problem in many fields involves enumerating1 the symmetrically-distinct colorings

of a finite set, similar to the toy problem of Fig. 2.1. The Pólya theorem has shown its wide

range of applications in a variety of contexts. Classically, it was applied to counting chemi-

cal isomers [5, 19, 20] and graphs [21]. Recent examples include confirming enumerations of

molecules in bioinformatics and chemoinformatics [22, 23]; unlabeled, uniform hypergraphs in

discrete mathematics [24]; analysis of tone rows in musical composition [25]; commutative binary

models of Boolean functions in computer science [26]; generating functions for single-trace-

operators in high energy physics [27]; investigating the role of nonlocality in quantum many-body

systems [28]; and photosensitizers in photosynthesis research [29].

In computational materials science, chemistry, and related subfields such as computational

drug discovery, combinatorial searches are becoming increasingly important, especially in high-

throughput studies [30]. As computational methods gain a larger market share in materials and drug

discovery, algorithms such as the one presented in this paper are important as they provide vali-

dation support to complex enumeration codes. Pólya’s theorem is the only way to independently

confirm that an enumeration algorithm has performed correctly. The present algorithm has been

useful in checking a new algorithm extending the work in Refs. [7, 31, 32], and Pólya’s theorem

was recently used in a similar crystal enumeration algorithm [33] that has been incorporated into

the CRYSTAL14 software package [34].

Despite the widespread use of Pólya’s theorem in different science and mathematics contexts,

a low-level, numerical implementation is not available. Typical approaches use Computer Algebra

Systems (CASs) to symbolically generate the Pólya polynomial. This strategy is ineffective for

1The Pólya theorem does not generate the list of unique colorings (which is generally a much harder problem),
but it does determine the number of unique colorings.
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two reasons. First, CASs are too slow for large problems that arise in a research setting, and

secondly, generating the entire Pólya polynomial (which can have billions or trillions of terms) is

unnecessary when one is interested in only a single stoichiometry.

Here we demonstrate a low-level algorithm for finding the polynomial coefficient correspond-

ing to a single stoichiometry. It exploits the properties of polynomials and a priori knowledge of

the relevant term. We briefly describe the Pólya enumeration theorem in Section 2.2, followed by

the algorithm for calculating the polynomial coefficients in Section 2.3. In the final Section, we

investigate the scaling and performance of the algorithm.

2.2 Pólya Enumeration Theorem

2.2.1 Introduction to the Pólya Enumeration Theorem

Pólya’s Theorem provides a simple way to construct a generating polynomial whose coefficients

count the numbers of symmetrically distinct colorings for each possible stoichiometry. The poly-

nomial in Fig. 1 above was easy to verify because we were able to hand-count the symmetrically

distinct colorings. But suppose there were dozens of colors and dozens of sites to be colored, and

hundreds of symmetries to apply. In that case it is easier to use Pólya’s theorem to construct the

polynomial directly from the symmetry group.

To describe this very useful theorem, we refer once more to Fig. 1. There are four symmetries—

the identity, two 90◦ rotations (clockwise and counterclockwise), and a 180◦ rotation. If we label

the colorable sectors 1, 2, 3 and 4, and write the permutations in disjoint cycle notation, we have

(1)(2)(3)(4) for the identity, the two 90◦ rotations are represented by (1234) and (1432), while

the 180◦ rotation is (13)(24) in cycle notation.

Now Pólya’s theorem simply tells us to replace each cycle of length λ with a sum of λ th powers

of variables corresponding to the colors available. For example, letting r and g stand for red and
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green, the identity is represented by (r + g)(r + g)(r + g)(r + g), the two 90◦ rotations are each

replaced by (r4 + g4), and the 180◦ rotation is replaced by (r2 + g2)(r2 + g2). When we average

these four polynomials, we get the Pólya polynomial predicted above:

P(r,g) =
1
4
(
(r+g)(r+g)(r+g)(r+g)+(r4 +g4)+(r4 +g4)+(r2 +g2)(r2 +g2)

)
= r4 + r3g+2r2g2 + rg3 +g4.

(2.1)

In other words, Pólya’s theorem relies on a structural representation of the symmetries as

permutations written in disjoint-cycle notation, to construct the generating polynomial we need.

The problem with Pólya however, is that it requires us to compute the entire polynomial when

we may need only one of its coefficients. For example, if we have fifty sites to color, and twenty

colors available, the number of terms in our polynomial (regardless of symmetries) would be about

4.6×1016. That is a lot of work (and memory) to compute the entire polynomial (and all of those

very large terms) if we needed only to know the number of symmetrically distinct colorings for a

single stoichiometry. That information is contained in just one term out of the 46 quadrillion terms

of the Pólya polynomial. Can we spare ourselves the work of computing all the others?

Suppose we have a target stoichiometry [c1 : c2 : · · · : cξ ], where ξ is the number of colors and

∑
ξ

j=1 c j = n is the number of sites to be colored. To find the number of symmetrically distinct

colorings with those frequencies, we must determine the coefficient of the single term in the Pólya

polynomial containing the product xc1
1 xc2

2 . . .x
cξ

ξ
. The Pólya polynomial is the average

P(x1,x2, . . . ,xξ ) =
1
|G|

(
∑

π∈G
Pπ(x1,x2, . . . ,xξ )

)
(2.2)

of the polynomials Pπ(x1,x2, . . . ,xξ ) computed for each permutation π in the symmetry group G,
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each Pπ being formed by multiplying the representations of each disjoint cycle in π (as illustrated

in Section 2.1).

Clearly, if we are only interested in the coefficient of xc1
1 xc2

2 . . .x
cξ

ξ
in P, we may simply find

the coefficient of that product in each Pπ and add those partial coefficients together. Thus, given

a permutation π with k1 cycles of length r1, k2 cycles of length r2, etc., up to kt cycles of length

rt , with ∑
t
i=1 riki = n (the number of sites, t is the number of cycle types), we must compute the

coefficient of xc1
1 xc2

2 . . .x
cξ

ξ
in Pπ .

It is well known that a product of sums is equal to the sum of all products one can obtain by

taking one summand from each factor (generalizing the familiar FOIL rule used by undergrads to

multiply two binomials). Thus the polynomial Pπ is the sum of all products of the form ∏s xλ (s)
is

(where the product runs over all cycles s, λ (s) is the length of the cycle s, and xis is one of the colors

chosen from the sum for that cycle). Thus the product we want, xc1
1 xc2

2 . . .x
cξ

ξ
, has a coefficient

which simply counts the number of products of the form ∏s xλ (s)
is where the sum of the exponents

for each xi is equal to the target ci.

Each cycle, of length ri (i = 1 . . . t), gets assigned to one of the colors. Let si j be the number

of cycles of length ri assigned to color j ( j = 1 . . .ξ ). This defines a t × ξ matrix S = (si j) of

non-negative integers, where (1) the sum of row i equals the number of cycles of length ri:

ξ

∑
j=1

si j = ki (row sum condition); (2.3)

and (2) weighted sum of column j must equal the target frequency of the jth color:

t

∑
i=1

risi j = c j (column sum condition), (2.4)

in order to achieve our target stoichiometry.

For each such matrix, there are a number of possible ways to assign colors to the cycles, with
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multiplicities prescribed by S. The number is

F(S) =
t

∏
i=1

(
ki

si1,si2, . . . ,siξ

)
, (2.5)

the product of the number of ways to do it for each cycle. Thus we are obliged to sum the function

F(S), so computed, over all matrices S meeting the given row and column sum conditions (2.3)

and (2.4).

If we do this computation for each permutation π , and average them (add them and divide

by |G|), we then get the coefficient of the Pólya polynomial P(x1,x2, . . . ,xi) corresponding to

our target stoichiometry [c1 : c2 : · · · : cξ ]. This calculation depends only on the cycle type of

the permutation, the number of disjoint cycles of different lengths comprising the disjoint-cycle

representation. Thus we only need to make an inventory of the cycle-types for our permutations,

and do the calculation once for each distinct cycle-type. There will not be more such cycle-types

than the number of conjugacy classes in the symmetry group. Also, note, the utility of multinomial

coefficients in this context stems from the likelihood that our permutations will have many cycles

of the same length.

Algorithmically, the process is straightforward. First, we must find all matrices S which meet

the row and sum conditions (2.3) and (2.4) above. For each successful matrix, we then compute

the product of row-multinomial-coefficients. We add those up and multiply by the number of

permutations in the conjugacy class, sum those results for the conjugacy classes, and divide by the

group order. That gives us the Pólya coefficient for the given stoichiometry.

For example, suppose our permutation is made up of (2) 1-cycles, (3) 2-cycles and (1) 4-cycle

(so the number of sites is 12), and we have three colors with frequencies (red:green:blue→ 4:6:2)

respectively. Then we are looking for 3× 3 matrices S whose rows sum to (231)T and whose

columns (when dotted with the cycle-lengths (124)T ) sum to 4, 6 and 2 respectively. There are

exactly five such matrices (see Figure 2.3 and discussion in Section 2.3):
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1 2

34

1

3 2

14

D1

1 4

32

D2

2 1

43

M1

4 3

21

M2

4 1

23

R1

3 4

12

R2

2 3

41

R3

Figure 2.2 The symmetry
group operations of the
square. This group is known
as the dihedral group of
degree 4, or D4. The dashed
lines are guides to the eye for
the horizontal, vertical and
diagonal reflections (M1,M2
and D1, D2).


0 0 2

0 3 0

1 0 0

 ,


0 0 2

2 1 0

0 1 0

 ,


0 2 0

0 2 1

1 0 0

 ,


0 2 0

2 0 1

0 1 0

 ,


2 0 0

1 1 1

0 1 0

 (2.6)

In each case the multinomial coefficient for the top row is
( 2

2,0,0

)
=
(2

2

)
= 1 and for the bottom

row is
( 1

1,0,0

)
=
(1

1

)
= 1, so the F(S) in each case is equal to the multinomial coefficient of the

middle row; thus
(3

3

)
= 1 in the first case,

( 3
2,1

)
= 3 for the middle three matrices, and

( 3
1,1,1

)
= 6

for the right-hand matrix. So our count for this problem is 1 + 3 + 3 + 3 + 6 = 16. We may

check this by computing (r+g+b)2(r2 +g2 +b2)3(r4 +g4 +b4) (a la Pólya) and noting that the

coefficient of r4g6b2 is indeed 16.

Clearly we can do that for each permutation in the group and sum the results. That is equivalent

to determining in how many ways we may assign a single color to each cycle in the permutation—

in such a way that the total number of occurrences of each color achieves its target frequency.

2.2.2 Example: Applying Pólyas Theorem

Here we present a simple example showing how Pólya’s theorem is applied to a small, finite group.

The square has the set of symmetries displayed in Figure 2.2. These symmetries include four
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Op. Disjoint-Cyclic Polynomial Expanded Coeff.

1 (1)(2)(3)(4) (x+ y)4 x4 +4x3y+ 6x2y2 +4xy3 + y4 6

D1 (1,3)(2)(4) (x2 + y2)(x+ y)2 x4 +2x3y+ 2x2y2 +2xy3 + y4 2

D2 (1)(2,4)(3) (x2 + y2)(x+ y)2 x4 +2x3y+ 2x2y2 +2xy3 + y4 2

M1 (1,2)(3,4) (x2 + y2)2 x4 + 2x2y2 + y4 2

M2 (1,4)(2,3) (x2 + y2)2 x4 + 2x2y2 + y4 2
R1 (1,4,3,2) (x4 + y4) x4 + +y4 0

R2 (1,3)(2,4) (x2 + y2)2 x4 + 2x2y2 + y4 2
R3 (1,2,3,4) (x4 + y4) x4 + +y4 0

Table 2.1 Disjoint-cyclic form for each group operation in D4 and the corresponding
polynomials, expanded polynomials and the coefficient of the x2y2 term for each.

rotations (by 0, 90, 180 and 270 degrees; labeled 1, R1, R2, and R3) and four reflections (one

horizontal, one vertical and two for the diagonals; labeled M1, M2 and D1, D2). This group is

commonly known as the dihedral group of degree four, or D4 for short2.

The group operations of the D4 group can be written in disjoint-cyclic form as in Table 2.1. For

each r-cycle in the group, we can write a polynomial in variables xr
i for i = 1 . . .ξ , where ξ is the

number of colors used. For this example, we will consider the situation where we want to color

the four corners of the square with only two colors. In that case we end up with just two variables

x1,x2, which are represented as x,y in the Table.

The Pólya representation for a single group operation in disjoint-cyclic form results in a product

of polynomials that we can expand. For example, the group operation D1 has disjoint-cyclic form

(1,3)(2)(4) that can be represented by the polynomial (x2 +y2)(x+y)(x+y), where the exponent

on each variable corresponds to the length of the r-cycle that it is part of. For a general r-cycle, the

polynomial takes the form

(xr
1 + xr

2 + · · ·+ xr
ξ
), (2.7)

2The dihedral groups have multiple, equivalent names. The dihedral group of degree 4, D4, is also called Dih4 or
the dihedral group of order 8 (D8) within the various naming schemes.
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for an enumeration with ξ colors. As described in section 2.2.1, we exchange the group operations

acting on the set for polynomial representations that obey the familiar rules for polynomials.

We will now pursue our example of the possible colorings on the four corners of the square

involving two of each color. Excluding the symmetry operations, we could come up with
(4

2

)
= 6

possibilities, but some of these are equivalent by symmetry. The Pólya theorem counts how many

unique colorings we should recover. To find that number, we look at the coefficient of the term

corresponding to the overall color selection (in this example, two of each color); thus we look for

coefficients of the x2y2 term for each group operation. These coefficient values are listed in Table

2.1. The sum of these coefficients, divided by the number of operations in the group, gives the total

number of unique colorings under the entire group action, in this case (6+2+2+2+2+0+2+

0)/8 = 16/8 = 2.

Next, we apply the procedure discussed in connection with equation (2.6) to construct the

matrix S for one of the permutations of the square. It illustrates the idea behind the general

algorithm presented in the next section.

In the symmetries of the square there is a cycle-type consisting of two one-cycles and one

two-cycle. The two permutations with that type are (1)(3)(24) and (2)(4)(13). The cycle-lengths

are 1 (with multiplicity 2) and 2 (with multiplicity 1). So each of those permutations requires a

matrix S =

s11 s12

s21 s22

 satisfying s11 + s12 = 2 and s21 + s22 = 1 (row sum condition (2.3)) and

s11 + 2s21 = 2 and s12 + 2s22 = 2 (column sum condition (2.4)). There are only two matrices of

non-negative integers satisfying those conditions simultaneously:

2 0

0 1

 and

0 2

1 0

 . (2.8)
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For each of these matrices, the row-multinomial coefficients are
( 2

0,2

)
= 1 and

( 1
0,1

)
= 1 so each

matrix yields a product 1. Thus each permutation of this cycle type contributes 2 to the sum. This

corresponds to the fact that the coefficient of x2y2 in (x+ y)2(x2 + y2) is 2.

Since there are two permutations of this cycle-type, the total contribution of the cycle type to

the overall Pólya polynomial is 4 (which must then be divided by the number of symmetries in the

group).

Thus, in general, the only problem is to find an efficient way of generating these matrix solu-

tions. Since the problem is equivalent to enumerating all lattice points within a high-dimensional

polytope, we presume that a tree-search (implemented recursively or via a backtracking algorithm)

may be the most efficient way to achieve this.

2.3 Coefficient-Finding Algorithm

Our implementation of the tree search is fundamentally identical to the method of the last section;

however, the details may not be immediately recognizable as such.3 In this section we rephrase the

row and column sum conditions (2.3) and (2.4) to highlight the logical connections between our

specific implementation and the general ideas from Section 2.2. We adopt this approach because

1) for pedagogical value the matrix approach is much easier to visualize and, 2) the algorithms

presented here mirror the accompanying code closely, which we consider valuable.

First, for a generic polynomial

(xr
1 + xr

2 + · · ·+ xr
ξ
)d, (2.9)

3If all you are looking for is a working code, you now know enough to use it. Download it at
https://github.com/rosenbrockc/polya.
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the exponents of each xi in the expanded polynomial are constrained to the set

V = {0,r,2r,3r, . . . ,dr}. (2.10)

Next, we consider the terms in the expansion of the polynomial:

(xr
1 + xr

2 + · · ·+ xr
ξ
)d = ∑

k1,k2,...,kξ

µk

ξ

∏
i=1

xrki
i (2.11)

where the sum is over all possibles sequences k1,k2, . . . ,kξ such that the sum of the exponents

(represented by the sequence in ki) is equal to d,

k1 + k2 + · · ·+ kξ = d. (2.12)

As described in the introduction, the coefficients µk in the polynomial expansion Equation

(2.11) are found using the multinomial coefficients

µk =

(
n

k1,k2, . . . ,kξ

)
=

n!
k1!k2! · · ·kξ !

=

(
k1

k1

)(
k1 + k2

k2

)
· · ·
(

k1 + k2 + · · ·+ kξ

kξ

)
=

ξ

∏
i=1

(
∑

i
j=1 k j

ki

)
. (2.13)

Finally, we define the polynomial (2.7) for an arbitrary group operation π ∈G as4

Pπ(x1,x2, . . . ,xξ ) =
m

∏
α=1

Mrα

α (x1,x2, . . . ,xξ ) (2.14)

4We will use Greek subscripts to label the polynomials in the product and Latin subscripts to label the variables
within any of the polynomials.
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where each Mrα
α is a polynomial of the form (2.9) for the α th distinct r-cycle, and dα is the

multiplicity of that r-cycle; m is the number of cycle types in Pπ . Linking back to the matrix

formulation, each Mrα
α is equivalent to a row Si in matrix S.

Since we know the fixed stoichiometry term T = ∏
ξ

i=1 Ti = ∏
ξ

i=1 xci
i in advance, we can limit the

possible sequences of ki for which multinomial coefficients are calculated. This is the key idea of

the algorithm and the reason for its high performance.

For each group operation π , we have a product of polynomials Mrα
α . We begin filtering the

sequences by choosing only those combinations of values viα ∈Vα = {viα}dα+1
i=1 for which the sum

m

∑
α=1

viα = Ti, (2.15)

where Vα is the set from Eq. (2.10) for multinomial Mrα
α . At this point it is useful to refer to Figure

2.3 to make the connection to the recursive tree search for possible matrices. The Vα are equivalent

to all the possible values that any of the elements in a row of the matrix may take. If we take Mr1
1

as an example, then V1 is the collection of all values that show up in row 1 of any matrix in the

figure, multiplied by the number of of cycles with length r1. Constraint (2.15) is equivalent to the

column sum requirement (2.4).

We first apply constraint (2.15) to the x1 term across the product of polynomials to find a set of

values {k1α}m
α=1 that could give exponent T1 once all the polynomials’ terms have been expanded.

This is equivalent to finding the set of first columns in each matrix that match the target frequency

for the first color. Once a value k1α has been fixed for each Mrα
α , the remaining exponents in the

sequence {k1α}∪{kiα}ξ

i=2 are constrained via (2.12). We can recursively examine each variable

xi in turn using these constraints to build a set of sequences

Sl = {Slα}m
α=1 = {(k1α ,k2α , . . . ,kξ α)}m

α=1 (2.16)
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Figure 2.3 (Color online) A recursive tree search for some of the possible matrices S
for the problem of Section 2.2: two 1-cycles, three 2-cycles and one 4-cycle. We have
restricted the figure to include only the zero pendants of the tree, which produce four of
the five relevant matrices in Eqn. (2.6). Matrix elements in red (blue) represent the only
possible values that would satisfy the row (column) sum conditions. A red (blue) cross
over a matrix shows that it fails the row (column) sum condition, and its descendants need
not be examined. Matrices with green borders are solutions to the tree search problem.
The purple squares show the current row and column that the recursive search is operating
on.
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where each Slα defines the exponent sequence for its polynomial Mrα
α that will produce the target

term T after the product is expanded. Each Slα ∈ Sl represents the transposed matrix S that survives

both the row and column sum conditions (highlighted in green in the figure). Thus, Sl is the set of

these matrices for the group operation π . The maximum value of l depends on the target term T

and how many possible viα values are filtered out using constraints (2.15) and (2.12) at each step

in the recursion.

Once the set S = {Sl} has been constructed, we use Equation (2.13) on each polynomial’s

{kiα}ξ

i=1 in Slα to find the contributing coefficients. The final coefficient value for term T resulting

from group operation π is

tπ = ∑
l

τl = ∑
l

m

∏
α=1

(
dα

Slα

)
. (2.17)

To find the total number of unique colorings under the group action, this process is applied to each

element π ∈G and the results are summed and then divided by |G|.

We can further optimize the search for contributing terms by ordering the exponents in the

target term T in descending order. All the {k1α}m
α=1 need to sum to T1 (2.15); larger values for T1

are more likely to result in smaller sets of {kiα}m
α=1 across the polynomials. This happens because

if T1 has smaller values (like 1 or 2), we end up with lots of possible ways to arrange them to sum

to T1 (which is not the case for the larger values). Since the final set of sequences Sl is formed

using a Cartesian product, including a few extra sequences from any Ti prunings multiplies the

total number of sequences significantly. In the figure, this optimization is equivalent to completing

a row with red entries because all the remaining, unfilled entries are constrained by the row sum

condition.

Additionally, constraint (2.12) applied within each polynomial will also reduce the total number

of sequences to consider if the first variables x1,x2, etc. are larger integers compared to the target

values T1,T2, etc. This speed-up comes from the recursive implementation: if x1 is already too

large (compared to T1) then possible values for x2,x3, . . . are never considered. This optimization
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is equivalent to completing matrix columns with blue entries because of the column sum constraint.

2.3.1 Pseudocode Implementation

Note: Implementations in Python and Fortran are available in the supplementary material.

For both algorithms presented below, the operator (⇐) pushes the value to its right onto the list

to its left.

For algorithm (1) in the EXPAND procedure, the ∪ operator horizontally concatenates the

integer root to an existing sequence of integers.

For BUILD_Sl , we use the exponent k1α on the first variable in each polynomial to construct a

full set of possible sequences for that polynomial. Those sets of sequences are then combined in

SUM_SEQUENCES (alg. 3) using a Cartesian product over the sets in each multinomial.

When calculating multinomial coefficients, we use the form in Eq. (2.13) in terms of binomial

coefficients with a fast, stable algorithm from Manolopoulos [35].

In practice, many of the group operations π produce identical products Mr1
1 Mr2

2 . . .Mrm
m . Thus

before computing any of the coefficients from the polynomials, we first form the polynomial

products for each group operation and then add identical products together.

2.4 Computational Order and Performance

The algorithm is structured around the a priori knowledge of the target stoichiometry. At the

earliest possibility, we prune terms from individual polynomials that would not contribute to the

final Pólya coefficient in the expanded product of polynomials (see Figure 2.3). Because the Pólya

polynomial for each group operation is based on its disjoint-cyclic form, the complexity of the

search can vary drastically from one group operation to the next. That said, it is common for groups

to have several classes whose group operations (within each class) will have similar disjoint-cyclic
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ALGORITHM 1: Recursive Sequence Constructor

Procedure initialize(i, kiα , Mrα

α , Vα ,T)
Constructs a Sequence Object tree recursively for a single Mrα

α by filtering possible exponents on each
xi in the polynomial. The object has the following properties:
root: kiα , proposed exponent of xi in Mrα

α .
parent: proposed Sequence for ki−1,α of xi−1.
used: the sum of the proposed exponents to left of and including this variable ∑

i
j=1 kiα .

i: index of variable in Mrα

α (column index).
kiα : proposed exponent of xi in Mrα

α (matrix entry at iα).
Mrα

α : Pólya polynomial in Pπ (2.14).
Vα : possible exponents for Mrα

α (2.10).
T: {Ti}ξ

i=1 target stoichiometry.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
if i = 1 then

self.used← self.root + self.parent.used
else

self.used← self.root
end

self.kids← empty
if i≤ ξ then

for p ∈Vα do
rem← p− self.root
if 0≤ rem≤ Ti and |rem| ≤ dαrα − self.used and |p− self.used|modrα = 0 then

self.kids⇐ initialize(i+1,rem,Mrα

α ,Vα ,T)
end

end
end

Function expand(sequence)
Generates a set of Slα from a single Sequence object.
sequence: the object created using initialize().
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
sequences← empty
for kid ∈ sequence.kids do

for seq ∈ expand(kid) do
sequences⇐ kid.root∪ seq

end
end

if len(sequence.kids) = 0 then
sequences←{kid.root}

end

return sequences
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ALGORITHM 2: Recursive Sequence Constructor (Cont.)

Function build_Sl(k,V,Pπ ,T)
Constructs Sl from {k1α}m

α=1 for a Pπ (2.14).
k: {k1α}m

α=1 set of possible exponent values on the first variable in each Mrα

α ∈ Pπ .
V: {Vα}m

α=1 possible exponents for each Mrα

α (2.10).
Pπ : Pólya polynomial representation for a single operation π in the group G (2.14).
T: {Ti}ξ

i=1 target stoichiometry.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
sequences← empty
for α ∈ {1 . . .m} do

seq← initialize(1,k1α ,M
rα

α ,Vα ,T)
sequences⇐ expand(seq)

end

return sequences

forms and thus also scale similarly. However, from group to group, the set of classes and disjoint-

cyclic forms may be very different; this makes it difficult to make a statement about the scaling

of the algorithm in general. As such, we instead provide a formal, worst-case analysis for the

algorithm’s performance and supplement it with experimental examples. For these experiments,

we crafted special groups with specific properties to demonstrate the various scaling behaviors as

group properties change.

2.4.1 Worst-Case Scaling

Heuristically the behavior of our algorithm should depend roughly on the size of the group: the

number of permutations we have to analyze. That seems consistent with our experiments. But that

can also be mitigated by noting that some groups of the same size have many more distinct cycle

types than others. For example, if our group is generated by a single cycle of prime integer length

p, then there are only two cycle-types, despite the group having order p.

The majority of computation time should be spent in enumerating those matrices S, and be

proportional to the number of same (see Figure 2.4). Numerical experiments confirm5 that the

5Figures are included in the code repository. See supplementary material.
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ALGORITHM 3: Coefficient Calculator
Function sum_sequences(Sl)

Finds τl (2.17) for Sl = {Slα}m
α=1 (2.16)

Sl: a set of lists (of exponent sequences {kiα}ξ

i=1) for each polynomial Mrα

α in Pπ (2.14).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Kl ← Sl1×Sl2×·· ·×Slm = 〈{(kiα)

ξ

i=1}m
α=1〉l

coeff← 0
for each {(kiα)

ξ

i=1}m
α=1 ∈ Kl do

if ∑
m
α=1 kiα = Ti ∀ i ∈ {1 . . .ξ} then
coeff← coeff+∏

m
α=1

( dα

{kiα}ξ

i=1

)
end

end

return coeff
Function coefficient(T, Pπ , V)

Constructs S = {Sl} and calculates tπ (2.17)
T: {Ti}ξ

i=1 target stoichiometry.
Pπ : Pólya polynomial representation for a single operation π in the group G (2.14).
V: {Vα}m

α=1 possible exponents for each Mrα

α (2.10).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
if m = 1 then

if r1 > Ti ∀ i = 1..ξ then
return 0

else
return

( d1
T1T2...Tξ

)
end

else
T← sorted(T)
possible←V1×V2×·· ·×Vm

coeffs← 0

for {k1α}m
α=1 ∈ possible do

if ∑
m
α=1 k1α = T1 then
Sl ← build_Sl({k1α}m

α=1,V,Pπ ,T)
coeffs← coeffs+ sum_sequences(Sl)

end
end

return coeffs
end
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Figure 2.4 Normalized algorithm
scaling with the number of rele-
vant matrices to enumerate. For
large matrix counts, the behavior
appears linear, supporting the hy-
pothesis that the algorithm scales
roughly with the number of ma-
trices. The scatter is appreciable
only for small matrix counts (less
than 106).

number of matrices scales exponentially with the number of colors (fixed group and number of

elements in the set), linearly with the number of elements in the set (fixed number of colors and

group), and is linear with the group size (fixed number of colors and elements in the set). The

number of entries in the matrix S is tξ (see the discussion above Eqn. (2.3)) and the height of the

entries is (roughly) bounded by the number of cycles and (very roughly) by the color frequencies

divided by cycle lengths. This makes computing a time estimate based on these factors very

difficult, but in worst case, it could grow like the tξ th power of the average size of the entries,

which will depend on the size of the target frequencies, etc. This would be a very complex function

to estimate, but we may expect it to grow exponentially for very large input. We did not find that

to be an impediment for the sizes of problems we needed to solve.

2.4.2 Experiments Demonstrating Algorithm Scaling

In Figure 2.5, we plot the algorithm’s scaling as the number of colors in the enumeration increases

(for a fixed group and number of elements). For each r-cycle in the disjoint-cyclic form of a group

operation, we construct a polynomial with ξ variables, where ξ is the number of colors used in the
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Figure 2.5 Log plot of the algo-
rithm scaling as the number of col-
ors increases. Since the number
of variables xi in each polynomial
increases with the number of col-
ors, the combinatoric complexity
of the expanded polynomial in-
creases drastically with each addi-
tional color; this leads to an expo-
nential scaling. The linear fit to
the logarithmic data has a slope of
0.403.

enumeration. Because the group operation results in a product of these polynomials, increasing

the number of colors by 1 increases the combinatoric complexity of the polynomial expansion

exponentially. For this scaling experiment, we used the same transitive group acting on a finite set

with 20 elements for each data point, but increased the number of colors in the fixed color term

T . We chose T by dividing the number of elements in the group as equally as possible; thus for 2

colors, we used [10,10]; for 3 colors we used [8,6,6], then [5,5,5,5], [4,4,4,4,4], etc. Figure 2.5

plots the log10 of the execution time (in ms) as the number of colors increases. As expected, the

scaling is linear (on the log plot).

As the number of elements in the finite set increases, the possible Pólya polynomial represen-

tations for each group operation’s disjoint-cyclic form increases exponentially. In the worst case,

a group acting on a set with k elements may have an operation with k 1-cycles; on the other hand,

that same group may have an operation with a single k-cycle, with lots of possibilities in between.

Because of the richness of possibilities, it is almost impossible to make general statements about

the algorithm’s scaling without knowing the structure of the group and its classes. In Figure 2.6,

we plot the scaling for a set of related groups (all are isomorphic to the direct product of S3 × S4)

applied to finite sets of varying sizes. Every data point was generated using a transitive group with
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Figure 2.6 Algorithm scaling as
the number of elements in the fi-
nite set increases (for 2 colors).
The Pólya polynomial arises from
the group operations’ disjoint-
cyclic form, so that more ele-
ments in the set results in a richer
spectrum of possible polynomials
multiplied together. Because of
the algorithm’s aggressive pruning
of terms, the exact disjoint-cyclic
form of individual group opera-
tions has a large bearing on the al-
gorithm’s scaling. As such it is not
surprising that there is some scat-
ter in the timings as the number of
elements in the set increases.

144 elements. Thus, this plot shows the algorithm’s scaling when the group is the same and the

number of elements in the finite set changes. Although the scaling appears almost linear, there is a

lot of scatter in the data. Given the rich spectrum of possible Pólya polynomials that we can form

as the set size increases, the scatter is not surprising.

Finally, we consider the scaling as the group size increases. For this test, we selected the

set of unique groups arising from the enumeration of all derivative super structures of a simple

cubic lattice for a given number of sites in the unit cell [7]. Since the groups are formed from

the symmetries of real crystals, they arise from the semidirect product of operations related to

physical rotations and translations of the crystal. In this respect, they have similar structure for

comparison. In most cases, the scaling is obviously linear; however, the slope of each trend varies

from group to group. This once again highlights the scaling’s heavy dependence on the specific

disjoint-cyclic forms of the group operations. Even for groups with obvious similarity, the scaling

may be different.
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Figure 2.7 Normalized algorithm scaling with group size for an enumeration problem
from solid state physics [7]. We used the unique permutation groups arising from all
derivative superstructures of a simple cubic lattice for a given number of sites in the unit
cell. The behavior is generally linear with increasing group size.
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2.4.3 Comparison with Computer Algebra Systems

In addition to the explicit timing analysis and experiments presented above, we also ran a group

of representative problems with our algorithm and MATHEMATICA (a common CAS). We also

attempted the tests with MAPLE, but were unable to obtain consistent results between multiple

runs of the same problems 6. So, we have opted to exclude the Maple timing results. For the

comparison with MATHEMATICA, we used Mathematica’s Expand and Coefficient functions to

return the relevant coefficient from the Pólya polynomial 2.8.
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Figure 2.8 Comparison of the CPU time (a) and memory usage (b) between the Fortran
implementation of our algorithm and MATHEMATICA as the number of colors increases.
These are the times needed to generate the data in Figure 2.5.

2.5 Summary

Until now, no low-level, numerical implementation of Pólya’s enumeration theorem has been

readily available; instead, a computer algebra system (CAS) was used to symbolically solve the

polynomial expansion problem posed by Pólya. While CAS’s are effective for smaller, simpler
6The inconsistency manifests in MAPLE sometimes returning 0 instead of the correct result, and sometimes

running the same problem unpredictably in hours or seconds.
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calculations, as the difficulty of the problem increases, they become impractical solutions. Ad-

ditionally, codes that perform the actual enumeration of the colorings are often implemented in

low-level codes and interoperability with a CAS is not necessarily easy to automate.

We presented a low-level, purely numerical algorithm and code that exploits the properties of

polynomials to restrict the combinatoric complexity of the expansion. By considering only those

coefficients in the unexpanded polynomials that might contribute to the final answer, the algorithm

reduces the number of terms that must be included to find the significant term in the expansion.

Because of the algorithm scaling’s reliance on the exact structure of the group and the disjoint-

cyclic form of its operations, a rigorous analysis of the scaling is not possible without knowledge

of the group. Instead, we presented some numerical timing results from representative, real-life

problems that show the general scaling behavior.

In contrast to the CAS solutions whose execution times range from milliseconds to hours, our

algorithm consistently performs in the millisecond to second regime, even for complex problems.

Additionally, it is already implemented in both high- and low-level languages, making it useful

for confirming enumeration results. This makes it an effective substitute for alternative CAS

implementations.

2.6 Supplementary Material

The source code implementing this algorithm is available for both python and Fortran at:

https://github.com/rosenbrockc/polya

The home page on github has full instructions for using either version of the code as well a battery

of over 50 unit tests that were used to verify and time the algorithm. The unit tests can be executed
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using the FORTPY framework available via the Python Package Index. Instructions for running the

unit tests are also on the github home page.



Chapter 3

Enumeration Algorithm

3.1 Introduction

In computational material science, one frequently needs to list the “derivative superstructures” [36]

of a given lattice. A derivative superstructure is a structure with lattice vectors that are multiples

of a “parent lattice” and have atomic basis vectors constructed from the lattice points of the parent

lattice. For example, many phases in metal alloys are merely “superstructures” of fcc, bcc, or hcp

lattices (L10, L12, B2, D019, etc.). When modeling alloys it is necessary to explore all possible

configurations and concentrations of atoms within these superstructures. When determining if a

material is thermodynamically stable, the energies of the unique arrangements are compared to

determine which has the lowest energy.

Derivative superstructures are found using combinatoric searches [1–3, 14, 15, 17, 18], com-

paring every possible combination of atoms to determine which are unique. However, these

searches can be computationally expensive for systems with high configurational freedom and

are sometimes impractical due to the large number of possible arrangements.

The inefficiency of combinatoric searches makes finding the unique derivative superstructures a

33
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limiting factor in searches for high entropy alloys (HEA) [37–39]. The configurational complexity

of HEAs prevents them from phase separating and this same complexity makes listing every

possible arrangement of atoms impractical with current algorithms.

Other fields limited by the inefficacy of current enumeration methods include modeling mate-

rials that have disorder in their structures, such as site-disordered solids [40]. There are numerous

techniques available for modeling these systems including cluster expansion (CE) [10] and a

recently developed “small set of ordered structures” (SSOS) method. [41] However, the accuracy of

these methods is still linked to the enumeration of the configurations being modeled. Increasing the

number of configurations used to train the models can improve their predictive powers. Increasing

the number of structures being used requires a more efficient enumeration technique than those

currently available.

Leveraging the concepts of the algorithm presented in Ref. [3], we have developed an enumer-

ation algorithm which has more favorable scaling in multinary cases than previous approaches.

Our new algorithm uses a modified tree search to skip large numbers of symmetrically equivalent

arrangements without generating any of the skipped configurations by using “partial colorings.”

Partial colorings are configurations in which the supercell is only partially occupied by the sys-

tem’s constituent atomic species. The partial colorings allow us to eliminate large classes of

arrangements at once by determining if a partial coloring is unique and skipping the resultant

branch of the tree if it is not.

Our algorithm also makes use of stabilizers from group theory. Stabilizers are a subgroup of

the symmetry group that leave partial colorings invariant. Using the stabilizers, we reduce the

number of group elements used to compare partial colorings further down in the tree.

The memory requirements of the search are greatly reduced by this algorithm’s use of partial

colorings and stabilizers. The increase in efficiency allows the algorithm to be extended to include

discrete displacements in the enumeration. Enumerations with discrete displacements are used to
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Figure 3.1 (Color online) The empty lattice and 8 of the 36 configurations with only red
atoms are shown for the example discussed in section 3.3. Above each partial coloring is
a vector that indicates it’s location in the tree, i.e. (xr,xy,xp), where the xis are integers
that indicate which arrangement of that color is on the lattice and a • means that no
atoms of that color have been placed. Below each configuration is either the label of a
symmetrically equivalent configuration, along with the group operation that makes them
equivalent, or the letters A and B. A and B are the branches that are built from the 1-partial
colorings that are unique and are displayed in Fig. 3.2

train phonon models [42, 43] that were previously too computationally expensive.

3.2 Supercell selection and the Symmetry Group

The first step in enumerating derivative superstructures is the enumeration of unique supercells.

This step has already been solved by Hart and Forcade [1], but due to its importance to the

algorithm a brief overview is provided.

The supercells, of size n, are found by constructing all Hermite Normal Form (HNF) matrices
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whose determinant is n. An HNF matrix is an integer matrix with the following form and relations:


a 0 0

b c 0

d e f

 ,0≤ b < c,0≤ d < f ,0≤ e < f ,a,c, f > 0 (3.1)

where ac f = n. The HNFs determine all possible supercells for the system. For example, consider

a 9-atom cell. In this case. n= 9 and a, c, f are limited to permutations of (1,3,3) and (1,1,9). Then,

following the rules for the values of b, d, and e, every HNF for this system can be constructed.

These HNFs represent all the possible supercells of size n of the selected lattice. Some of these

are equivalent by symmetry, so the symmetry group of the parent lattice is used to eliminate any

duplicates.

Next, we convert the symmetries of the lattice to a list of permutations of atomic sites. There

is a one to one mapping between the symmetries of the lattice and atomic site permutations.

The mapping from the symmetry operations to the permutation group is accomplished using the

quotient group G = L/L′, where L is the lattice, constructed from the unit cell, and L′ is the

superlattice, constructed from the supercell. The quotient group G is found directly from the

Smith Normal Form (SNF) matrices which can be constructed from the HNFs. This is done by

solving the equation UHV = S where H is the HNF, U and V are integer matrices with determinant

±1 and S is the resultant SNF. The SNFs are diagonal matrices with positive integer entries where

each diagonal divides the next one down. The group, G, is then G = Zs1

⊕
Zs2

⊕
Zs3 , where si is

ith diagonal of the SNF and Zsi represents the cyclic group of order n.

Once the supercells have been found and their symmetry groups have been converted to the

isomorphic permutation group, the algorithm can begin finding the unique arrangements of atoms

within each supercell in a tree search framework. This is accomplished by treating each supercell

with its symmetry group as separate enumeration problems. The results of the enumeration across
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all supercells are then combined to produce the full enumeration.

3.3 Tree Search

The enumeration algorithm resembles a tree search in which each branch corresponds to a specific

configuration of atoms, many of which are not fully populated and are called partial colorings (see

Fig. 3.2). The partial colorings are identified using a vector that indicates their locations within

the tree. Once a partial coloring is constructed, the symmetry group operations that are stabilizers

for that partial coloring are found. The stabilizers allow for the comparison of branches within the

tree in a manner that minimizes the number of group operations used. These tools, partial coloring

and stabilizers, are used to “prune” branches of the tree as they are being constructed, eliminating

large classes of arrangements at once.

We will use a 2D lattice of 9 atoms as an illustrative example of the algorithm. The lattice

will be populated with the following atomic species; 2 red atoms, 3 yellow atoms, and 4 purple

atoms. A subset of the possible arrangements of this system are shown in Fig. 3.2. The concepts

illustrated with this 2D example are equally applicable in 3D.

3.3.1 Partial Colorings

When searching for all unique configurations, it is useful to know a priori how many configurations

are expected. Fortunately, a recently developed numerical algorithm for the Pólya enumeration

theorem [4,5] allows us to do this quickly and cheaply. Use of the Pólya enumeration algorithm [6]

determines the memory requirements of storing the unique arrangements. Also knowing how many

configurations to expect confirms the algorithm’s accuracy by verifying that the number found

matches the prediction. For the 9 atom system considered here, the Pólya algorithm predicts that

there are 24 unique arrangements to be found.
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Figure 3.2 (Color online) Here the A and B branches of the tree from Fig. 3.1 are shown.
Each branch starts with the initial 1-partial coloring the branch is built from ((0,•,•) and
(3,•,•) respectively). The branches then show a selection of the 2-partial colorings for
that branch, and the unique full colorings that are found. As in Fig. 3.1 the vectors that
indicate the configuration’s location in the tree are displayed above the configurations.
In the B branch configuration (3,19,0) is outlined for reference because it is used as an
example later in the text.
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The algorithm places atomic species on the lattice according to their concentrations from lowest

to highest. In this case the red atoms have the lowest concentration and are placed in the first two

sites of the cell creating the first 1-partial coloring (a partial coloring is a configuration with only

a subset of the atoms decorating the lattice). This is shown in the leftmost configuration, labeled

(0,•,•), in the second row of Fig. 3.1. The general procedure is to apply the symmetry group

to each partial coloring in order to make comparisons between partial colorings and determine if

they are symmetrically equivalent. For example in Fig. 3.1, the configuration labeled (1,•,•) is

equivalent to configuration (0,•,•) by a translation of the lattice. At this stage we only have one

partial coloring so it is unique and no comparisons need to be made, however the symmetry group

is still applied to find the stabilizers described in section 3.3.2.

Comparisons between configurations are made by using a hash function. In computer science

any data set can be placed in a hash table which associates a hash, or label, with the data. In our

case, the configurations are listed within the hash table in the order they are created. The hash

function then maps the configuration to a vector of integers with an entry for each species, color,

in the system. The hash function used is similar to the one described in Ref. [3]. However, due to

its importance in this algorithm, an overview of how the hash function works is provided.

The hash function for the algorithm uses the principles of combinatorics to uniquely identify

each partial coloring using an integer vector. Its construction starts by finding the number of pos-

sible ways of arranging the colors on the lattice. This number can be found using the multinomial

coefficient, which is equivalent to the product of binomial coefficients for each individual color:

C =

(
n

a1,a2, ..,ak

)
=C1C2...Ck =(

n
a1

)(
n−a1

a2

)
...

(
n−a1−a2− ...−ak

ak

)
,

(3.2)

where n is the number of sites in the unit cell and a1,a2, ...,ak are the number of atoms of species i



3.3 Tree Search 40

such that ∑i ai = n. The binomials determine the number of ways to place the atoms of each color

within the lattice once the previous colors have been placed. By assigning each partial coloring an

integer, xi, from 0 to Ci−1, where i is the color, we can build a vector that identifies the location,

(x1,x2, ...,xk), of the configuration within the tree. For example, there are Cr =
(9

2

)
= 36 ways to

place the red atoms on the empty lattice. After the red atoms are placed there remain Cy =
(7

3

)
= 35

ways to place the yellow atoms on the remaining lattice sites. This leaves Cp =
(4

4

)
= 1 way to

place the purple atoms on the lattice. Within Fig. 3.1 and 3.2 the vector locations have the form

(xr,xy,xp) and if the color has not been assigned yet then the xis are replaced by dots indicating an

empty vector site.

The hash function is a one to one mapping of the configurations to the location vectors. These

numbers are constructed by considering each color separately and building a binary string of the

color and the remaining empty lattice sites, where the color is a one and the empty site is a zero

within the string. From the binary string we can then use a series of binomial coefficients to find

the xi’s. The binomial coefficients are found by taking each 0 in the string that has 1’s to the right

of it and computing
( p

q−1

)
, where p is the number of digits to the right and q is the number of 1’s

to the right of the 0. Summing this binomial for each zero that qualifies produces a number that

tells us how many configurations came before the current one.

As an example of the hash function that constructs the location vector, consider configuration

(3,19,0) of Fig. 3.2B. The construction begins with the red atoms represented as the following

binary string (1,0,0,0,1,0,0,0,0) where every atom that is not red has been represented by a 0 and

the red atoms by a 1. This string has 3 zeros that have a single 1 to their right, the first zero has

7 digits to its right, the second has 6 atoms to its right and the third has 5 atoms to its right. The

resultant sum of binomials is xr =
(7

0

)
+
(6

0

)
+
(5

0

)
= 1+1+1 = 3. This result is the first entry in

our location vector.

The second entry in the location vector is constructed for the yellow atoms. The bit string
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representation of the yellow atoms is (0,1,0,1,1,0,0), there are only 7 digits because the 2 red

atoms have already been placed, so xy =
(6

2

)
+
(4

1

)
= 15+ 4 = 19. The last entry in the location

vector is built for the purple atoms which have the following bit string (1,1,1,1) so xp = 0. The

location vector is complete once all atoms within a configuration have been included.

The location vectors allow us to quickly determine if a configuration is unique by checking

to see if the symmetry group maps the configuration to a configuration with a smaller location

vector. This check is performed by applying the symmetry group one element at a time. The

effect of the symmetry operations is to map the configuration’s location to a second equivalent

location. Uniqueness can then be determined by comparing the original and mapped locations

for the configuration; if the mapped configuration has already be enumerated, that is if xoriginal >

xmapped, the configuration is not unique since it is equivalent to one we have already visited. For

example, configuration (2,•,•) shown in Fig. 3.1 can be turned into configuration (0,•,•) by a

180 degree rotation about the diagonal. Since (2,•,•) and (0,•,•) are equivalent we conclude that

(2,•,•) is not unique because 2 > 0. In summary, if any element of the symmetry group makes the

vector “smaller”, then the current configuration is not unique.

3.3.2 The Stabilizers

The use of the stabilizer subgroup increases the efficiency of the algorithm by reducing the number

of symmetry operations needed to compare partial colorings. Each partial coloring has its own

stabilizer subgroup. Fortunately, the stabilizers can be found when the symmetry group is applied

to the partial colorings in the previous section, so finding the stabilizers costs nothing computa-

tionally. As an example of a stabilizer consider the cell (3,•,•), displayed in Fig. 3.1, and reflect

it about the diagonal. We can see that the red atoms are unaffected. This means that a reflection

about the diagonal is a stabilizer for the 1-partial coloring (3,•,•). In general, only a small subset

of the symmetry group are stabilizers for any partial coloring.
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Figure 3.3 (Color online) The configuration (3,0,•), shown on the left, is acted on by
a reflection about the diagonal resulting in configuration (3,6,•), shown on the right.
Because the symmetry group operation is a stabilizer for the configuration (3,•,•) the
red atoms were not affected. A stabilizer is a group element that leaves the set invariant.
The yellow atoms, however, were mapped to a different configuration. This means we can
use just the stabilizers for the (3,•,•) configuration to compare all the 2-partial colorings
of the form (3,xy,•), where (0≤ xy ≤Cy−1), because any other group operation would
map us to a different branch of the tree.

The stabilizers leave the desired n-partial coloring the same, where n is the number of atomic

species on the lattice. Once another color is added making an (n+1)-partial coloring the stabilizers

for the n-partial coloring become the only group operations that can be applied without affecting

the n-partial coloring, see Fig. 3.3. In other words, if we were to use any other group elements we

would be comparing configurations that we already know are equivalent on the n-partial coloring

level.

Once a unique n-partial coloring and its stabilizers have been found, the algorithm proceeds

down the branch to the (n+ 1)-partial colorings, see Fig. 3.2. To check the uniqueness of the

(n+1)-partial colorings the stabilizers from the n-partial coloring are used and any stabilizers for

the (n+1)-partial colorings are stored. When a unique configuration is found on the (n+1) level

another color is added, making the (n+ 2)-partial colorings, and the process starts over again.

The algorithm proceeds down a branch of the tree until a unique full configuration is found, such

as (0,0,0) of Fig. 3.2. When the full configuration is found, the algorithm backs up one level

and considers the next partial coloring. When no partial colorings are available on a level, the

algorithm backs up until it finds a level with untested partial colorings. In this manner, the entire

tree is explored while only sections with unique configurations are explored in detail.
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For an example of the complete algorithm consider Figs. 3.1 and 3.2. The algorithm starts

at (•,•,•) then builds the 1-partial coloring at (0,•,•), which is unique by virtue of being the

first partial coloring considered on this level, and records its stabilizers which are the only group

operations that need to be applied on the 2-partial colorings (as seen in 3.3. The yellow atoms are

then added to the configuration to build the 2-partial coloring at (0,0,•), of Fig. 3.2 A, which is

also unique, and records its stabilizers. Next, it places the purple atoms to get the configuration

at (0,0,0); this configuration is saved, then the algorithm backs up to the 2-partial coloring level

to consider the configuration (0,1,•) and find its stabilizers. Once this process has been repeated

for all 34 partial colorings in the vector (0,xy,•) (0 ≤ xy ≤ 34 =Cy), the algorithm retreats to the

1-partial coloring level shown in the second row of Fig. 3.1 and finds that (1,•,•) and (2,•,•) are

equivalent to (0,•,•). It then begins to build the (3,•,•) branch, of Fig. 3.2 B, in the same manner

as the (0,•,•) branch.

Since there are only two unique 1-partial colorings for this system, once both branches that

originate from these 1-partial colorings have been explored the algorithm is complete. In the

end, 24 unique configurations are found (shown in Fig. 3.2A and 3.2B), in agreement with the

prediction from the Pòlya enumeration algorithm.

3.3.3 Extension to Include Additional Degrees of Freedom

Having established the algorithm, we will now address its extension to include displacement

directions. In order to construct a basis for the space of displaced atoms we need only consider

displacements along the axis of the cartesian coordinate system. These enumerations are more

difficult because including displacement directions in the enumeration introduces a new degree of

freedom into the system. Displacement directions are simply a way of indicating the direction that

an atom could be displaced off the lattice. The enumeration of structures that include displacement

directions can be used to build databases [11] of possible structures with displacements included.
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Our algorithm changes only slightly if displacement directions are included in the enumeration.

First, the atoms that will be displaced are treated as a different atomic species so that each displaced

atom’s unique locations can be determined (see Fig. 3.4 for an example where yellow displaced

atoms are replaced with the red atoms from the example system used above). Once the arrows

have been replaced by atomic species, the algorithm proceeds as normal until a full configuration

is found. The algorithm then restores the arrows and uses the stabilizers of the full configuration

to check for equivalent arrow configurations.

In order to determine if the combined arrow and color configuration is unique, each group

element has to be paired with a second permutation that affects the arrows. The effect on the arrows

is represented as a permutation of the numbers 0 to d−1 where each number represents a different

displacement direction up to the d directions being considered. For example, if we consider the

system in Fig. 3.4 we have two atoms being displaced along one of the 6 cardinal directions, then

any arrow could have values of between 0 and 5 where each integer has an associated direction;

up=0, right=1, down=2, left=3, into the page=4, and out of the page=5. The initial arrow vector,

shown in the figure, is (up,up) and is represented as (0,0).

The comparison of the rotated and unrotated arrows is also achieved by use of a hash func-

tion. This function gives each arrow configuration a unique label that corresponds to the or-

der it is constructed with the algorithm. This hash function takes a vector of arrow directions

(a0,a1,a2, ....,ak), where ai is an integer from 0 to d− 1 indicating the direction of the ith arrow

and k+1 is the number of arrows, and finds:

xa =
k

∑
i=0

aidi (3.3)

This gives each arrow arrangement a unique integer label that we can then compare between

symmetry operations. As was the case for the configurations, if the effect of a symmetry operation

results in a relationship of xold > xnew, then the arrow configuration is not unique and can be
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Figure 3.4 (Color online) To include displacement directions to the algorithm we repre-
sent the atoms to be displaced by a unique color and then convert them back once a unique
configuration is found. In this figure two displaced yellow atoms are represented by red
atoms until the previous portion of the algorithm is complete, then they are replaced by
arrows again for the arrow enumeration.

ignored.

The stabilizers for the unique color configuration are used to map the arrows to new directions

and the hash function is used to compare the original and mapped arrows. After an arrow arrange-

ment is checked, the algorithm then increases the magnitude of the last ak in the vector by 1 and

checks it for uniqueness with the stabilizers. If increasing the magnitude of ak would cause it to be

greater than the value of d−1 then ak becomes 0 again and ak−1 is increased by 1. This process is

repeated until all the entries in the arrow vector are equal to d−1.

For example, the initial arrow vector for the system shown in Fig. 3.4 is (up,up) and is repre-

sented as (0,0). It is found to be unique since it is the first arrangement. For the next arrangement

the arrow on the right is rotated to point to the right creating the arrangement represented as (0,1).

This arrangement is also checked to see if it is unique. The rightmost arrow continues to be rotated

every time a new arrangement is constructed until it is pointing out of the page and the arrangement

represented as (0,5) has been considered. At this point all possible arrangements that have the first

arrow pointing up have been considered so we reset the second arrow to point up and rotate the

first arrow to make the arrangement (1,0). We then go back to increasing the last entry in the vector

to create new arrangements in order to determine if any of them are unique until (1,5) is reached.

The process is repeated until all possible arrangements, i.e., all 2-tuples of 0...(d− 1), have been

considered. Once all the vectors have been considered, the algorithm goes back down the tree to
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find the next unique configuration of colors.

In this manner, discrete displacement directions can be added to the configurations without

risk of memory overflow. In the example of this paper when the arrows are included in the

enumeration the number of possible arrangements is 45360. However, the resultant number of

unique arrangements, built by adding the arrows to the 24 configurations of Fig. 3.2, is only 663.1

3.4 Conclusion

Our previous algorithms [1–3] explored configuration space by comparing all possible configura-

tions of the atoms to eliminate those that were symmetrically equivalent. The algorithm described

here finds the same unique arrangements while only searching a subset of the combinatorically

possible arrangements. With this enhancement we can now explore larger systems than our previ-

ous algorithm could handle. Additionally the new algorithm’s efficiency allows for its extension to

include displacement directions which can be used to train phonon models that predict the thermal

properties of materials.

The algorithm’s efficiency stems from its use of partial colorings of the lattice, in which only a

subset of a system’s atomic species populate the lattice, in a tree search algorithm. The partial

colorings allow us to implement an indexing scheme that tracks where in the tree search we

are. This then allows us to skip large sections of the tree that have symmetrically equivalent

partial colorings. Skipping large classes of configurations in this manner avoids the combinatoric

explosion of possible configurations which greatly reduces the memory requirements and runtimes

for the enumeration.

The tree search also makes use of the stabilizer subgroup from group theory. The use of

the stabilizer subgroup to compare partial colorings later in the tree greatly reduces the number

1This number can also be predicted by the Pòlya Enumeration Algorithm included within our code which has been
modified slightly. The modifications allow for the algorithm to make predictions which include the extra degrees of
freedom.
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of symmetry operations used. Since using the stabilizers results in fewer comparisons being

performed the overall runtime of the enumeration is also reduced. While this reduction in runtime

is much smaller than the time saving from skipping over sections of the tree, its effects are still

noticeable.

In order to include displacement directions in the enumeration we had to construct group

actions that moved the atoms while changing the direction of displacement. To construct the group

actions we combined each rotation with a second operation that changed the arrow directions so

that each symmetry operation consists of two permutations; the first a permutation of the lattice

sites, and the second a permutation of the displacement directions. These operations are then used

within the algorithm to compare the possible displacement directions for the system on the fully

populated lattice in order to determine which are unique.

With this new algorithm it is now possible to find the unique arrangements of systems for large

systems, and systems with atomic diversity can be enumerated more efficiently. The code for the

tree search portion of this algorithm is available for download 2.

2A python implementation of this code is available at https://github.com/wsmorgan/phonon-enumeration



Chapter 4

Conclusion

4.1 Concluding Remarks

A common problem in many fields involves enumerating the symmetrically-distinct colorings of

a finite set, such as the derivative superstructures of a lattice in computational materials science.

Within computational materials science the unique derivative superstructures are needed in order to

determine the stable phases of a material. This is done by determining which superstructure has the

lowest energy and will therefore be favored in nature. Other fields that benefit from knowing the

symmetrically-distinct ways of arranging a set include the counting of chemical isomers [5,19,20]

and graphs [21]; bioinformatics and chemoinformatics [22, 23]; unlabeled, uniform hypergraphs

in discrete mathematics [24]; analysis of tone rows in musical composition [25]; commutative

binary models of Boolean functions in computer science [26]; generating functions for single-

trace-operators in high energy physics [27]; investigating the role of nonlocality in quantum many-

body systems [28]; and photosensitizers in photosynthesis research [29].

In some of these applications it is not necessary to know what every possible unique arrange-

ment of the set actually is, sometimes all that is needed is knowledge of the actual number of

48
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unique arrangements. In this context the Pólya counting theorem has been widely used in the

past via Computer Algebra Systems (CAS) such as Mathematica. While these CAS approaches

produce accurate results they can be slow for complex systems and are hard to incorporate into

the increasing number of automated high-throughput codes. The low-level algorithm for the

Pólya counting theorem presented here is much faster than the CAS algorithms and can easily

be incorporated into the automated codes that are currently in use or under development making it

extremely useful to for research groups in multiple fields.

In materials science (and related fields), however, a complete knowledge of the unique deriva-

tive superstructures is needed to determine materials properties. When all the unique arrangements

of a set are needed it becomes necessary to use combinatoric searches to explore the space of

possible arrangements. Combinatoric searches, which compare every possible combination of

elements to determine which are unique, can be computationally expensive and are sometimes

impractical. This is especially true when additional degrees of freedom, such as displacements

from a lattice, are included in the enumeration.

The inefficiency of these combinatoric searches limits the accuracy of the predictive models

like the Cluster Expansion (CE) because they limit the regions of configuration space included

in the models. In order to improve the predictive power of models like CE, it is necessary to

increase the region of configuration space we use to train them. The new enumeration algorithm

presented here accomplishes that goal. This algorithm has more favorable scaling in multinary

cases than previous approaches enabling researches to access larger regions of configuration space.

This improvement was accomplished by using a modified tree search that skips large numbers of

symmetrically equivalent arrangements without generating any of the skipped configurations. In

this way this enumeration algorithm will allow researchers to improve the training models they use

to make predictions about materials properties.

The increase in the algorithm’s efficiency also allowed for its extension to include discrete
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displacements directions, the directions that an atom can be displaced from the lattice, in the

enumeration. Enumerations with discrete displacements are used to train phonon models [42, 43].

With this extension of the algorithm, it is now possible to build databases [11] of structures with

displacement directions that can be used by researchers to train the phonon models used to predict

a material’s thermal properties.

While both the Pólya algorithm and the enumeration algorithm have many potential appli-

cations independent of each other, together they represent a vast improvement in our ability to

explore the configuration space of materials. This improvement will allow researchers to build

better models for predicting the stable structures of materials. Additionally, the inclusion of

displacement directions in the enumeration will allow researchers to build models for predicting

the thermal properties of materials.

An example of how the paired algorithms will benefit materials science is that they give us more

options for exploring the configuration space of materials, such as choosing to enumerate only a

subset of the unique arrangements. For example, as a test of the new algorithm’s performance

we attempted to enumerate all the unique structures for a high-entropy alloy (HEA), HEAs are

systems with 4 or more atomic species with equal concentrations [37–39]. The HEA chosen was

a 20 atom system with 5 atomic species of equal concentration, for which there are 3× 1011

possible configurations. A python implementation of the new algorithm was able to find all the

unique arrangements for a single supercell of this system, around 109 unique arrangements, in 24

hours. Our previous algorithm was unable to run to completion due to the memory requirements.

While this result is impressive, a list of 109 unique structures contains too much information to

be useful for most applications. The Pólya algorithm paired with the new enumeration algorithm

provides a way to produce a useful subset of the possible structures across multiple supercells

and concentration ranges. This is accomplished by using the Pólya algorithm to determine the

number of unique structures for each superstructure and concentration range desired and then
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enumerating a subset of the total number of structures following a carefully selected distribution.

In this manner, systems with a large number of unique configurations that would normally be

awkward or impossible to handle become much more tractable.

Implementing these algorithms into a CE code, such as UNCLE [44], will also bring us one step

closer to a high-throughput CE code. Such a code would benefit the materials science community

by increasing the rate at which materials could be explored and added to the existing databases,

such as the Materials Project, for the use of the community at large. By including displacement

directions in our enumeration model, this code also allows for the databases to include more

information on these materials’ thermal properties.
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