
Brigham Young University Brigham Young University 

BYU ScholarsArchive BYU ScholarsArchive 

Theses and Dissertations 

2016-07-01 

Theoretical and Experimental Investigation of a Quadspectral Theoretical and Experimental Investigation of a Quadspectral 

Nonlinearity Indicator Nonlinearity Indicator 

Kyle Glen Miller 
Brigham Young University 

Follow this and additional works at: https://scholarsarchive.byu.edu/etd 

 Part of the Physical Sciences and Mathematics Commons 

BYU ScholarsArchive Citation BYU ScholarsArchive Citation 
Miller, Kyle Glen, "Theoretical and Experimental Investigation of a Quadspectral Nonlinearity Indicator" 
(2016). Theses and Dissertations. 8710. 
https://scholarsarchive.byu.edu/etd/8710 

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion 
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please 
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu. 

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F8710&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=scholarsarchive.byu.edu%2Fetd%2F8710&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/8710?utm_source=scholarsarchive.byu.edu%2Fetd%2F8710&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu


Theoretical and Experimental Investigation of a 

Quadspectral Nonlinearity Indicator 

 
 
 

Kyle Glen Miller 
 
 
 
 
 

A thesis submitted to the faculty of  
Brigham Young University 

in partial fulfillment of the requirements for the degree of 
 

Master of Science 
 
 
 
 

Kent L. Gee, Chair 
Tracianne B. Neilsen 

Brian D. Jeffs 
 
 
 
 

Department of Physics and Astronomy 

Brigham Young University 

July 2016 

 

 

 

 

Copyright © 2016 Kyle Glen Miller 
 

All Rights Reserved  



 

ABSTRACT 

Theoretical and Experimental Investigation of a 
Quadspectral Nonlinearity Indicator 

 
Kyle Glen Miller 

Department of Physics and Astronomy, BYU 
Master of Science 

 
Understanding the impact of jet noise and other high-amplitude sound sources can be 

improved by quantifying the nonlinearity in a signal with a single-microphone measurement. An 
ensemble-averaged, frequency-domain version of the generalized Burgers equation has been 
used to derive a quantitative expression for the change in spectral levels (in decibels) over 
distance due to geometric spreading, thermoviscous absorption, and nonlinearity, respectively. 
The nonlinearity indicator, called νN, is based on the quadspectral Morfey-Howell indicator, 
which has been used in the past to characterize nonlinearity in noise waveforms. Unlike the 
Morfey-Howell indicator, the νN indicator has direct physical significance, giving a change in 
decibels per meter of the sound pressure level spectrum specifically due to nonlinearity. 
 

However, a detailed characterization of the expected behavior and potential issues for the 
nonlinearity indicator has been lacking. The quadspectral nonlinearity indicator is first calculated 
for well-known solutions to several basic acoustical scenarios to determine its expected behavior 
in both the near field and far field. Next, the accuracy of νN is examined as a function of 
measurement parameters such as sampling frequency, signal bandwidth, scattering, and noise. 
Recommendations for conducting experiments are given based on the findings. Finally, the 
indicator is calculated for model-scale and military jet noise waveforms. These tests reveal the 
utility and accuracy of the νN indicator for characterizing broadband noise; the indicator gives 
frequency-dependent information about the waveform from a single-point measurement. 
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Chapter 1  
 
Introduction 

 Overview and Motivation 

Linear approximations accurately describe pressure waveforms for small oscillations 

about ambient conditions. However, loud sounds exhibit nonlinear effects when they are of 

sufficient amplitude. Waveforms steepen as they propagate, and shocks form as a result.1-3 This 

occurs as the high (low) pressures at the peaks (troughs) of the waveform increase (decrease) the 

air temperature, which in turn increases (decreases) the local sound speed. The local changes in 

sound speed causes the peaks (troughs) to travel more quickly (slowly) than the rest of the 

waveform. When a peak overtakes a trough, a shock is formed. This general behavior causes 

high-amplitude sinusoidal waveforms to distort into sawtooth waves as they propagate and 

introduces nonlinear losses, seen in Fig. 1.1. This distortion introduces harmonics of the 

fundamental that are required to resolve the discontinuity. 

However, most sounds of interest do not involve a simple sine wave, but are often 

stochastic, broadband signals. Recent work to measure the nonlinear evolution of acoustic waves 

has involved using microphones placed at various positions away from a source and 

characterizing the waveform evolution over distance4-7 or using computer simulations to 

numerically propagate a waveform.8-10 It is difficult to characterize nonlinear propagation effects 
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based on a single measurement because such characterization relies on observing the distortion 

of waveforms and spectra across distance. The focus of this thesis is to develop, implement, and 

characterize a nonlinear indicator that will give information about shock formation, nonlinear 

losses, and the comparative strength of nonlinearity to other effects from a single waveform 

measurement. 

 Background 

1.2.1 Nonlinear Acoustics 

The nonlinear model equation that will be used in most of this thesis is the generalized 

Burgers equation (GBE):11 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝑚𝑚𝜕𝜕
𝜕𝜕

= �
𝛽𝛽

𝜌𝜌0𝑐𝑐03
� 𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ �
𝛿𝛿

2𝑐𝑐03
�
𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

  , (1.1) 

where p is the sound pressure; m takes on values of 0, 0.5, or 1 for planar, cylindrical, and 

spherical waves, respectively; β is the coefficient of nonlinearity; ρ0 is the equilibrium density of 

air; c0 is the sound speed; δ is the diffusivity of sound; r is the distance from the source; and τ is 

the retarded time. Other, more generalized versions of the GBE have been used in nonlinear 

 
Figure 1.1. A sine wave of sufficient amplitude will nonlinearly deform into a sawtooth and begin 

to decay as it propagates. 
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modeling that include ray propagation and medium stratification.12, 13 Future work could involve 

an analysis similar to that presented in Section 1.3, but for a more generalized model equation. 

The rapidity and extent of the nonlinear deformation depends on the pressure waveform 

amplitude relative to ambient conditions. For an initially sinusoidal plane wave of frequency ω 

and amplitude p0, propagating in the x direction, the shock formation distance, x̅, is defined as 

 �̅�𝑥 =
𝜌𝜌0𝑐𝑐03

𝜔𝜔𝛽𝛽𝜕𝜕0
  . (1.2) 

The shape of a propagating waveform is dependent on the normalized distance, σ = x/x̅. If there 

is no thermoviscous absorption, the waveform steepens until σ = 1, where the first pressure 

discontinuity appears. The shock continues to increase in amplitude until σ = π/2, where the 

pressure discontinuity is a maximum. After this distance the waveform begins to decay in 

amplitude due to the nonlinear losses that are present at the shock. In addition, after σ = 3, 

traditionally regarded as the onset of the sawtooth regime, the waveform continues to decay and 

remains a sawtooth for all subsequent distances. 

In a thermoviscous medium, a plane wave of this type also experiences absorption 

according to the linear attenuation coefficient, α, defined as 

 𝛼𝛼 =
𝛿𝛿𝜔𝜔2

2𝑐𝑐03
  . (1.3) 

A useful parameter that quantifies the strength of nonlinearity compared to absorption is the 

well-known Gol’dberg number, Γ, which for a sinusoidal plane wave is defined as 

 Γ =
1
�̅�𝑥𝛼𝛼

=
𝛽𝛽𝜔𝜔𝜕𝜕0
𝛼𝛼𝜌𝜌0𝑐𝑐03

  . (1.4) 

The presence of absorption causes the shocks in a nonlinear waveform to be less steep than for a 

waveform without absorption. Because thermoviscous absorption increases with frequency, the 
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high frequencies required to resolve a pressure discontinuity—which are present in steepened 

waveforms—will eventually be attenuated and decrease the slope of the shock. This occurs in the 

old-age region, where the waveform continues to change shape, unlike the case with no 

absorption. The distance where the old-age region occurs depends on the value of Γ. The 

parameters in Eqs. (1.2)-(1.4) will be used in discussing the strength of the physical mechanism 

of nonlinearity. 

1.2.2 Characterizing Nonlinearity 

In hopes to gain further physical insight into wave propagation, many efforts have been 

made to characterize and quantify the degree of nonlinearity present in a waveform from the 

empirical data alone (i.e., without assuming that a particular model equation holds). These efforts 

involve using a variety of calculations to compute a nonlinearity indicator that will reveal 

quantitative information about the waveform. Examples of such nonlinearity indicators include 

the derivative skewness,5, 14 average steepening factor,15 bicoherence,16 the Morfey-Howell 

indicator,7, 17-19 and others.20-22 Due to the ambiguity of some of these indicators, their calculation 

yields a qualitative rather than a quantitative analysis. For example, the derivative skewness 

value of a waveform is a single number, but without additional analysis the value carries with it 

little physical meaning. It is simply an intuitive classification that has been found to correlate 

with nonlinearity. It has only been recently that some physical meaning has been tied to the 

derivative skewness value.23 Section 1.3 presents a new indicator that is both descriptive and 

carries physical insight. 
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 The νN Indicator 

In an attempt to reconcile the effects of geometric spreading, thermoviscous absorption, 

and nonlinearity, a frequency version of the GBE was used in conjunction with the Morfey-

Howell indicator to derive a new nonlinearity indicator.24 The Morfey-Howell indicator, known 

as Q/S, has been studied for a variety of signals25, 26 and is defined below: 

 
𝑄𝑄
𝑆𝑆

=
𝑄𝑄𝑝𝑝𝑝𝑝2

𝜕𝜕rms𝑆𝑆𝑝𝑝𝑝𝑝
=

Im{𝐸𝐸[ℱ∗{𝜕𝜕(𝑡𝑡)}ℱ{𝜕𝜕2(𝑡𝑡)}]}
𝜕𝜕rms𝑆𝑆𝑝𝑝𝑝𝑝

  . (1.5) 

Here Qpp2 is the imaginary part of the cross-spectral density (or quadspectral density) between 

the pressure and pressure squared waveforms, E denotes expectation value, ℱ denotes a Fourier 

transform, prms is the root-mean-square pressure, and Spp is the autospectral or power spectral 

density. Taking the imaginary part reveals phase coupling between two different frequencies, 

which occurs in nonlinear harmonic generation. Sum and difference-frequency generation from 

steepening waves causes energy present in different harmonics to be phase coupled. This 

coupling is referred to as quadratic phase coupling (QPC) and has been studied using the 

bispectral density,16, 26-29 defined as 

 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝(𝑓𝑓1, 𝑓𝑓2) = 𝐸𝐸[𝑃𝑃(𝑓𝑓1)𝑃𝑃(𝑓𝑓2)𝑃𝑃∗(𝑓𝑓1 + 𝑓𝑓2)]  , (1.6) 

where P is the Fourier transform of the pressure waveform, p(t). A normalization of the 

bispectral density, known as the bicoherence, has also been used to examine nonlinearity in jet-

like signals.16 

The definition of Q/S in Eq. (1.5), combined with the frequency-domain version of the 

GBE, yields an expression for the change in sound pressure level over distance:24 

 
𝜕𝜕𝐿𝐿𝑝𝑝
𝜕𝜕𝜕𝜕

= −10 log10(𝑒𝑒) × �
2𝑚𝑚
𝜕𝜕

+ 2𝛼𝛼 +
𝜔𝜔𝛽𝛽𝜕𝜕rms
𝜌𝜌0𝑐𝑐03

𝑄𝑄
𝑆𝑆
� ≡ 𝜈𝜈𝑆𝑆 + 𝜈𝜈𝛼𝛼 + 𝜈𝜈𝑁𝑁  , (1.7) 

where Lp is the sound pressure level spectrum; 10 log10(e) ≈ 4.34; 
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𝜈𝜈𝑆𝑆 ≡ −10 log10(𝑒𝑒) ×
2𝑚𝑚
𝜕𝜕

  , 

𝜈𝜈𝛼𝛼 ≡ −10 log10(𝑒𝑒) × 2𝛼𝛼  , 

𝜈𝜈𝑁𝑁 ≡ −10 log10(𝑒𝑒) ×
𝜔𝜔𝛽𝛽𝜕𝜕rms
𝜌𝜌0𝑐𝑐03

𝑄𝑄
𝑆𝑆

  . 

(1.8) 

That is, Eq. (1.8) gives an expression for the change in sound pressure level over distance due to 

geometric spreading, thermoviscous absorption, and nonlinearity, respectively. These indicators 

are especially useful because not only do they relate these separate effects directly to each other, 

but they do so in a meaningful way. Their values carry physical meaning, as defined in Eq. (1.7). 

Trends in the sum of να + νN will be examined in Chapters 4 and 5. This sum gives the 

change in sound pressure level due essentially to a modified absorption. Similar to this sum is the 

spectral Gol’dberg number, Γs, defined by Falco to be25 

 Γ𝑠𝑠 =
𝜔𝜔𝛽𝛽

2𝛼𝛼𝜌𝜌0𝑐𝑐03
𝑄𝑄𝑝𝑝𝑝𝑝2
𝑆𝑆𝑝𝑝𝑝𝑝

  . (1.9) 

In fact, this quantity is most closely related to the difference of νN – να, which directly compares 

the strength of nonlinearity and absorption. The sum να + νN can be written as 

 𝜈𝜈𝛼𝛼 + 𝜈𝜈𝑁𝑁 = 20𝛼𝛼 log10(𝑒𝑒) [1 + Γ𝑠𝑠]  , (1.10) 

but is not a comparison of the two effects. The sum να + νN will used in this thesis to compute the 

added effects of absorption and nonlinearity. 

 Thesis Outline 

The objective of this thesis is to determine the utility, potential issues, and quantitative 

behavior of a quadspectral nonlinearity indicator, νN, through numerical investigation and jet 

noise analysis. Chapter 2 explores the near-field and asymptotic behavior of the indicator for 
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various solutions to the GBE. This includes solutions with and without geometric spreading and 

thermoviscous absorption. Performing the actual calculations described by Eq. (1.7) on a 

waveform produces some complications, and these are treated in Chapter 3. Chapter 4 applies the 

νN calculations to model-scale jet data, and Chapter 5 treats the full-scale jet data. These chapters 

show that even though there are complications that are not fully understood, the analysis seems 

to work well for broadband data. 
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Chapter 2  
 
Theoretical Investigations with the 
Generalized Burgers Equation 

This chapter investigates the behavior of the quadspectral nonlinearity indicator, νN [see 

Eq. (1.8)], when dealing with well-known solutions. This will give more insight to the expected 

behavior of νN when dealing with experimental data. The first three sections in this chapter deal 

with three different solutions to the generalized Burgers equation (GBE). The first, the 

Blackstock Bridging Function (BBF),30 assumes no geometric spreading and no thermoviscous 

absorption. In other words, the geometric spreading factor, m, and diffusivity of sound, δ, in 

Eq. (1.1) are both set equal to zero. This makes for a simple case that isolates nonlinear effects. 

In addition, the BBF has an exact solution that is valid for all distances. The second, the 

Mendousse solution,31 assumes no geometric spreading but includes thermoviscous absorption 

(i.e., only m is set to zero). This case allows for a direct comparison of nonlinearity and 

absorption effects with an elegant solution that is also valid for all distances. The third and final 

case is a numerical solution to the GBE with spherical spreading, thermoviscous absorption, and 

nonlinearity.8 There is no known analytical solution to this equation that is valid for all distances, 

but there are analytical expressions valid in the far field for weak and strong waves that will be 

examined briefly.32 The final section summarizes what was found. 
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 Blackstock Bridging Function 

The BBF was originally intended to be a connecting solution between the Fubini and Fay 

solutions to the Burgers equation.30 It is valid for a lossless propagating plane wave, which has 

m = 0 and δ = α = 0 (Γ = ∞) in Eq. (1.7). The solution is represented as an infinite sum, 

 𝜕𝜕(𝜎𝜎, 𝜕𝜕) = 𝜕𝜕0�𝐵𝐵𝑛𝑛(𝜎𝜎) sin(𝜔𝜔𝑛𝑛𝜕𝜕)
∞

𝑛𝑛=1

  , (2.1) 

where p0 is a constant and ωn = nω. The amplitude of the nth harmonic, Bn, is given by 

 𝐵𝐵𝑛𝑛(𝜎𝜎) =
2
𝑛𝑛𝑛𝑛

𝑉𝑉𝑏𝑏 +
2
𝑛𝑛𝑛𝑛𝜎𝜎

� cos{𝑛𝑛[𝛷𝛷 − 𝜎𝜎 𝑠𝑠𝑠𝑠𝑛𝑛(𝛷𝛷)]}𝑑𝑑𝛷𝛷
𝜋𝜋

𝛷𝛷min

  , (2.2) 

where Vb is a solution to the transcendental equation 

 𝑉𝑉𝑏𝑏 = sin(𝜎𝜎𝑉𝑉𝑏𝑏)  , (2.3) 

and Φmin is specified as 

 𝛷𝛷min = � 0 , 0 ≤ 𝜎𝜎 < 1
𝜎𝜎𝑉𝑉𝑏𝑏 , 𝜎𝜎 ≥ 1   . (2.4) 

The shape of the propagating waveform is dependent only on the normalized distance, σ = x/x̅, as 

described in Section 1.2.1. Figure 2.1 (a) shows the evolution of the waveform from σ = 0 to 

σ = 3. Note that the waveform first steepens until σ = 1, where the first pressure discontinuity 

   
Figure 2.1. (a) Progression of the BBF solution from a sinusoid to a sawtooth at various values of 

the normalized distance, σ. The shock first begins at σ = 1 and reaches a maximum height at 
σ = π/2. (b) Amplitude coefficients of the waveform harmonics. Note the delayed onset of 

successive harmonics. (c) Waveform spectrum. This plot is simply a logarithmic scale of part (b). 
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appears. The shock continues to increase in amplitude until σ = π/2, where the pressure 

discontinuity is a maximum (i.e., the entire height of the waveform). After this distance the 

waveform begins to decay in amplitude due to the nonlinear losses that are present at the shock. 

In addition, after σ = 3, traditionally regarded as the onset of the sawtooth regime, the waveform 

continues to decay and remains a sawtooth for all subsequent distances. 

Based on the above behavior, the values of νN can be calculated from the BBF waveform. 

For the fundamental frequency, νN should always be negative. This is because the waveform 

progresses from a single-frequency sinusoid to a sawtooth with multiple harmonics; these 

harmonics are generated from the energy contained in the fundamental frequency. The value of 

νN for higher harmonics will initially be positive (+∞) as the amplitude coefficients become 

nonzero, whose growth is seen in Figs. 2.1 (b)-(c). As the waveform steepens, an increasingly 

greater number of harmonics will need to be included in the sum because of their delayed onset 

relative to each other, easily visible in Fig. 2.1 (c). However, νN will eventually be negative for 

all harmonics because the waveform will have reached a constant shape and has simply begun to 

decay. After a certain distance, all harmonics begin to decay at the same rate. From part (c) this 

appears to happen around σ = 2, but this plot only includes up to the 20th harmonic. Based on the 

traditional onset of the sawtooth regime, after which the waveform preserves its general sawtooth 

shape, the uniform decay will begin to occur for σ > 3. 

Figure 2.2 (a) shows the values of νN for several harmonics. The colored lines represent 

the predicted change in sound pressure level (νN), and the circles represent the actual change in 

harmonic level (obtained by taking numerical derivatives). In order for the predicted and actual 

values to converge to an error of less than 5%, 12,000 terms were used in Eq. (2.1) with 24,000 

samples per period. (The error was less than 1% for all but the 20th harmonic.) Note that the 
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values for the fundamental harmonic are always negative. The curves for harmonics other than 

the fundamental begin at +∞ and eventually go negative. It appears that the curves for most of 

the harmonics become negative close to σ = π/2. This is where the maximum shock height has 

been reached, and it can be seen from Figs. 2.1 (b)-(c) that the harmonic amplitudes are decaying 

at this distance. The curves for all harmonics appear to be converging to the same value, and they 

are nearly converged at σ = 3. This is as expected, because at this point the waveform shape is 

essentially constant and is decaying. Each harmonic should decay at the same rate, as observed 

from the uniform negative slope of the harmonic amplitudes in Fig. 2.1 (c). However, the 

asymptotic value for νN is not simply a constant. As derived by Reichman et al.,24 in the old-age 

region 

 𝜈𝜈𝑁𝑁 =
𝜕𝜕𝐿𝐿𝑛𝑛
𝜕𝜕𝜎𝜎

= −20 log10(𝑒𝑒) (𝜎𝜎 + 1)−1 ≈ −20 log10(𝑒𝑒)𝜎𝜎−1  . (2.5) 

This convergence can be seen in Fig. 2.2 (b). Eq. (2.5) can also be recast as a derivative in x to 

obtain 

 𝜈𝜈𝑁𝑁 =
𝜕𝜕𝐿𝐿𝑛𝑛
𝜕𝜕𝑥𝑥

= −20 log10(𝑒𝑒) (𝑥𝑥 + �̅�𝑥)−1 ≈ −20 log10(𝑒𝑒) 𝑥𝑥−1  . (2.6) 

  
Figure 2.2. Change in sound pressure level with distance for several harmonics. (a) Near field 
results for various harmonics. The colored lines represent the predicted change, νN. The circles 

represent the numerical derivatives. Note that the values for all harmonics converge at about σ = 3. 
(b) Far field results for various harmonics. The asymptotic value is (σ + 1)-1, or more loosely σ-1. 
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 Mendousse Solution 

The Mendousse solution incorporates not only nonlinearity, but also thermoviscous 

absorption in the GBE. This is represented by m = 0 in Eq. (1.7). The form of the solution is 

given by Pierce as31 

 𝜕𝜕 = 𝜕𝜕0

4
Γ∑ (−1)𝑛𝑛+1𝐼𝐼𝑛𝑛 �

Γ
2� 𝑛𝑛𝑒𝑒

−𝑛𝑛2𝜎𝜎 Γ⁄ sin(𝜔𝜔𝑛𝑛𝜕𝜕)∞
𝑛𝑛=1

𝐼𝐼0 �
Γ
2� + 2∑ (−1)𝑛𝑛𝐼𝐼𝑛𝑛 �

Γ
2� 𝑒𝑒

−𝑛𝑛2𝜎𝜎 Γ⁄ cos(𝜔𝜔𝑛𝑛𝜕𝜕)∞
𝑛𝑛=1

  , (2.7) 

where In is the modified Bessel function of the first kind. Because thermoviscous absorption 

increases with frequency, the shocks will not be as steep as they were for the BBF at the same 

scaled distance, σ. The variability between the two solutions depends on Γ. In the limit that 

Γ → ∞, the solutions will be the same. A comparison of the waveform shape for the BBF and 

the Mendousse solution with Γ = 30 at σ = π/2 is shown in Fig. 2.3 (a). Note the smoother 

function provided by the Mendousse solution for this value of Γ. 

Based on similar behavior to the BBF solution, some of the general trends in νN should 

remain the same. For example, the waveform begins as a monofrequency sinusoid and begins to 

deform, so νN for the fundamental harmonic should always be negative. For higher harmonics, νN 

should start at +∞ as they begin to grow from a zero value. However, at this point the 

asymptotic value of νN remains uncertain because there are now two competing effects: 

nonlinearity and thermoviscous absorption. It is certain that the asymptotic value of νN + να 

should be negative, since the old-age waveform will eventually decay. 

However, additional insight can be gained from discussion of the asymptotic behavior of 

solutions to the GBE incorporating only nonlinearity and thermoviscous absorption. Blackstock 

gives an old-age, asymptotic expression for a pure-tone, high-amplitude plane wave at great 

distance (α0x » 1) and shows that the term corresponding to decay goes as e-nα0x (or equivalently 
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e-nσ Γ0⁄ ).32 Here α0 and Γ0 are the absorption coefficient and Gol’dberg number for the 

fundamental frequency, respectively. The expected decay from absorption is e-n2α0x, much greater 

than seen in the asymptotic solution. In this paper, the e-nα0x and e-n2α0x decays will be referred to 

as linear and quadratic exponential decays, respectively. Since να goes approximately as -n2α0 

(proportional to the square of the frequency) and the sum νN + να should go as –nα0, then νN 

should go asymptotically as 

 𝜈𝜈𝑁𝑁 = 20 log10(𝑒𝑒) (𝑛𝑛2 − 𝑛𝑛)𝛼𝛼0  . (2.8) 

Thus it is expected that the asymptotic (old-age) value of νN is positive for all harmonics. 

The values for να, νN, their sum, and the numerical derivative are shown in Fig. 2.3 (b)-(f) 

for the fundamental along with harmonics 2, 5, 10, and 20. The values are as expected, with both 

nonlinearity and absorption being negative for the fundamental, and the asymptotic values for νN 

   

   
Figure 2.3. (a) Comparison of the BBF and the Mendousse solution. (b)-(f) Values of νN, να, their 

sum, and the actual numerical derivative (red circles). 
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being positive for all higher harmonics. Note that νN for the second harmonic in part (b) is 

actually negative for some distances before eventually converging to a positive value (not 

pictured here). The propagation distance at which each harmonic reaches the asymptotic value 

varies, however. The sum νN + να, red circles in parts (c)-(f), becomes increasingly negative and 

is proportional to harmonic number rather than the square of harmonic number, as expected. In 

fact, the spectrum of the waveform in the old-age region (arbitrary distance of σ = 30) is shown 

in Fig. 2.4 (a). Linear (e-f ) and quadratic (e-f 2) exponential decay curves are also shown along 

with a 1/f power-law slope (or 1/f 2 spectral slope). The decay initially follows the 1/f slope, as 

expected from a sawtooth, but at high frequencies the behavior is more like a linear exponential, 

as expected from a nonlinearly decaying waveform in the far field. Part (b) shows the νN values 

as a function of frequency, and they are exactly as predicted in Eq. (2.8). 

 Generalized Burgers Equation with Spherical Spreading 

There is no analytical solution that solves the GBE with spherical spreading, 

thermoviscous absorption, and nonlinearity. However, a numerical solution can be attained using 

known methods that propagate an initial waveform with the model equations.8 The numerical 

  
Figure 2.4. (a) Harmonic amplitude of the Mendousse solution on a logarithmic scale at σ = 30. 

The decay of the high-frequency harmonic amplitude closely matches a linear exponential decay. 
(b) The νN values at the same distance. Note the values are exactly as predicted in Eq. (2.8). 

 



 15 

method is used in this section to perform a similar analysis as with the BBF and the Mendousse 

solution. In addition, there are asymptotic expressions for weak and strong spherical waves.32 Let 

the numerical source consist of a pulsating sphere of radius r0. For weak waves the asymptotic 

solution, including harmonics up through the fourth, is obtained from a perturbation solution of 

the Burger’s equation:33 

 𝜕𝜕 = 𝜕𝜕0��
𝜕𝜕0
𝜕𝜕
�
𝑛𝑛
�
Γ
4�

𝑛𝑛−1

𝑒𝑒−𝑛𝑛𝛼𝛼0(𝑟𝑟−𝑟𝑟0) sin(𝜔𝜔𝑛𝑛𝜕𝜕)
4

𝑛𝑛=1

  . (2.9) 

Once again, the thermoviscous absorption term goes as a decaying exponential linear with 

harmonic number as opposed to quadratic. However, the geometric spreading shockingly goes as 

r-n as opposed to r-1, as expected with linear theory. This is also true for the asymptotic 

expression for strong waves:34 

 𝜕𝜕 = 𝜕𝜕0
4
Γ
�𝐾𝐾𝑛𝑛 �

𝜕𝜕0
𝜕𝜕
�
𝑛𝑛
𝑒𝑒−𝑛𝑛𝛼𝛼0(𝑟𝑟−𝑟𝑟0) sin(𝜔𝜔𝑛𝑛𝜕𝜕)

∞

𝑛𝑛=1

  , (2.10) 

where Kn is an undetermined constant (independent of r). The same spreading and absorption 

dependencies are evident. 

Ultimately a decay of r-ne-nα0r is slower than the linear decay of r-1e-n2α0r in the limit that 

r → ∞ and for n > 1.32, 33 The difference between the nonlinear and linear decay rates is given by 

the asymptotic value of νN. Since the nonlinear decay rate is less than the linear decay rate, the 

difference between the rates is positive, and νN is expected to be positive in the far field. 

However, the positive value of the indicator should be smaller than its value for the Mendousse 

solution: the indicator not only conveys a reduction in absorption (positive value) but also an 

increase in spreading (slight negative value). From Eq. (1.7), it can be shown that the asymptotic 
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value of νN should be proportional to the derivative of the logarithm of the ratio of nonlinear to 

linear asymptotic decay rates: 

 

𝜈𝜈𝑁𝑁 = 20 log10(𝑒𝑒)
𝜕𝜕
𝜕𝜕𝜕𝜕

ln�
(𝜕𝜕0 𝜕𝜕⁄ )𝑛𝑛𝑒𝑒−𝑛𝑛𝛼𝛼0(𝑟𝑟−𝑟𝑟0)

(𝜕𝜕0 𝜕𝜕⁄ )𝑒𝑒−𝑛𝑛2𝛼𝛼0(𝑟𝑟−𝑟𝑟0)� 

= 20 log10(𝑒𝑒)
𝜕𝜕
𝜕𝜕𝜕𝜕

ln�(𝜕𝜕0 𝜕𝜕⁄ )𝑛𝑛−1𝑒𝑒�𝑛𝑛2−𝑛𝑛�𝛼𝛼0(𝑟𝑟−𝑟𝑟0)� 

= 20 log10(𝑒𝑒) �−
(𝑛𝑛 − 1)

𝜕𝜕
+ (𝑛𝑛2 − 𝑛𝑛)𝛼𝛼0�   . 

(2.11) 

Both the (positive) reduction in absorption and (negative) increase in spreading are seen in 

Eq. (2.11). The νN asymptotic value for a spherically spreading wave is the same as for the 

Mendousse solution in Eq. (2.8), but with an added negative term due to spreading. Other trends 

in νN are expected to be the same as they were for both the BBF and the Mendousse cases: νN 

should always be negative for the fundamental and start at +∞ for harmonics other than the 

fundamental. 

To verify the asymptotic behavior, a sinusoidal waveform with parameters similar to the 

model-scale jet experiment35 in Chapter 4 was numerically propagated using the GBE with 

spherical spreading, thermoviscous absorption, and nonlinearity.8 However, unlike the jet noise 

case—which exhibits range, angle, and frequency-dependent geometric spreading—spherical 

spreading was assumed at all distances. The distance was scaled with respect to a jet nozzle 

diameter (Dj), equal to 3.5 cm. In addition, the radial shock formation distance, r̅, can be found 

from the linear shock formation distance, x̅, defined in Eq. (1.2) by13 

 �̅�𝜕 = 𝜕𝜕0 exp �±
�̅�𝑥
𝜕𝜕0
�  , (2.12) 

where r0 is either the source radius or a position where the waveform is known to be sinusoidal. 

Because a spherical wave continually diverges, the radial equivalent of the linear normalized 
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distance, σ = x/x̅, cannot be found simply by taking r/r̅. Instead, the equivalent radial distance at 

which a particular value of the linear normalized distance occurs is calculated as 

 𝜕𝜕 = 𝜕𝜕0 exp �±
𝜎𝜎�̅�𝑥
𝜕𝜕0
�  , (2.13) 

where σ takes on a particular value. 

The atmospheric conditions were taken to be the same as in the experiment, with 

temperature at 22.9°C, atmospheric pressure at 96.8 kPa, and relative humidity at 53%. 

However, only thermoviscous—not atmospheric—absorption was simulated. The fundamental 

frequency of the wave was 4 kHz with amplitude of 22 kPa at 1 Dj, so as to approximate the 

root-mean-square amplitude of the jet data at 10 Dj. For accuracy in the calculations, a sampling 

frequency of 88 MHz was used with 216 total samples. Details about the accuracy and sampling 

frequency will be treated in Section 3.2. Figure 2.5 (a) compares the nonlinearly propagated 

wave with the linear approximation (includes only spreading and thermoviscous absorption) at a 

 

   

Figure 2.5. (a) Comparison of a linearly and nonlinearly propagated waveform at 1000 Dj 
(σ ≈ 6.9). (b)-(d) The values of νS, να, νN, their sum ν, and the numerical derivatives (red circles) as 

a function of the scaled distance for various harmonics. 
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distance of 1000 Dj (σ ≈ 6.9). Relative to linear propagation, significant wave steepening has 

occurred along with a slight decrease in the peak-to-peak pressure. 

The calculated νS, να, and νN indicators, along with their sum, are shown in 

Fig. 2.5 (b)-(d) as a function of distance for the fundamental, second harmonic, and tenth 

harmonic. A solid black line shows ν, the sum of νS, να, and νN, and the red circles represent the 

numerically calculated derivative from the waveform itself. The percent error between the two is 

less than 1% for all values shown. 

Very close to the source, νN is positive for all harmonics as they are first generated 

nonlinearly. Not pictured in part (c), νN is positive for the second harmonic at a distance less than 

10 Dj. However, nonlinear losses at the shock and energy transfer to even higher frequencies 

cause νN to eventually go negative for some of the harmonics, as seen in Figs. 2.5 (c)-(d). The νN 

value for the tenth harmonic eventually goes positive again at 100 Dj. For higher harmonics not 

pictured here, νN decreases but remains positive away from the source. If propagated far enough, 

the asymptotic value of νN is positive for each harmonic other than the fundamental, confirming 

that the modified nonlinear decay (r-ne-nα0r) is ultimately slower than the linear decay (r-1e-n2α0r). 

To compare the asymptotic value of νN to theory, a wave similar to that discussed in 

Fig. 2.5, but with twice the initial amplitude, was computationally propagated.8 This allowed for 

propagation into the old-age region without the waveform amplitude becoming too small to 

simulate. Figure 2.6 shows a spectral plot of νN at a radial normalized distance of about σ ≈ 10.6, 

which from Eq. (2.13) gives a radial distance of 42,235 Dj. For perspective, the waveform in 

Fig. 2.5 (a) is at a radial normalized distance of about σ ≈ 6.9 (1000 Dj). The νN curve is 

compared against the theoretical value from Eq. (2.11) along with the theoretical value from the 

Mendousse solution in Eq. (2.8), which lacks the spreading term. The νN values closely follow 
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the expected behavior from Eq. (2.11) to within 8% error, confirming that nonlinear effects 

increase the spreading decay and slow the absorption decay in the far field. Future work involves 

using the radial shock formation distance for a spherical wave and analyzing the behavior and 

accuracy of νN as a function of the radial normalized distance. Simulations with signals of 

varying bandwidth and Gol’dberg number could be tested to evaluate the accuracy of νN as a 

function of these parameters. 

 Summary of Indicator Trends 

The behavior of the quadspectral nonlinearity indicator νN has been examined for three 

types of solutions to the GBE: the BBF, which includes only nonlinearity and ignores spreading 

and thermoviscous absorption; the Mendousse solution, which includes nonlinearity and 

absorption with no spreading; and a numerical solution that includes spherical spreading, 

thermoviscous absorption, and nonlinearity. In this section the behaviors of the various indicators 

are summarized for the three different solutions. 

The asymptotic value of νN represents any deviations from linear theory in waveform 

propagation in the old-age region. This value is given in the second column of Table 2.1 for the 

 
Figure 2.6. The νN values at a radial normalized distance of about 10.6. Note the values are 

predicted from Eq. (2.11) to within 8% error. This propagated waveform had twice the initial 
amplitude as the waveform discussed in Fig. 2.5. 
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three cases studied in this chapter. The BBF has a negative asymptotic value because of the 

nonlinear losses at the shock. The waveform in the old-age region is simply decaying while 

preserving its shape, so the change in all harmonics is negative. The Mendousse solution has a 

positive asymptotic value because the nonlinear decay of e-nα0x is less than the linear decay of 

e-n2α0x. Similarly, the spherical solution has a positive asymptotic value because the nonlinear 

decay of r-ne-nα0r is less than the decay predicted by linear theory of r-1e-n2α0r. However, the 

increase in the spherical spreading decay adds an extra negative term to νN for this case, seen in 

the third row and second column of Table 2.1. In both the Mendousse and spherically spreading 

cases, the difference between the nonlinear and linear decay rates is given by νN. 

The asymptotic value of νN + να represents the total absorption decay (with compensation 

from nonlinearity) and any modifications to geometric spreading in the old-age region. This 

value is given in the third column of Table 2.1 for the three cases. The sign of νN + να is negative 

for each case. The spherical solution has the most negative asymptotic value because there is a 

linear (e-f ) exponential decay due to absorption [albeit smaller than the quadratic (e-f 2) 

exponential decay for linear theory] and an increased decay in spreading. The Mendousse 

solution has a negative asymptotic value slightly smaller in magnitude than the spherical solution 

because there is a linear exponential decay due to absorption (rather than quadratic exponential 

decay) but no spreading. The BBF has a negative asymptotic value that is smallest in magnitude 

Table 2.1. Asymptotic values of νN and the sum νN + να for the three cases studied in this chapter. 

Assumptions (solution) Asymptotic value of νN 
[divided by 20 log10(e)] 

Asymptotic value of νN + να 
[divided by 20 log10(e)] 

 

Nonlinearity only (BBF) –1/x –1/x  
Absorption and nonlinearity 

(Mendousse) (n2 – n)α0 –nα0  

Spherical spreading, absorption 
and nonlinearity (computational) –(n – 1)/r + (n2 – n)α0 –(n – 1)/r – nα0  
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because the decay goes as inverse distance. The only contribution to the νN + να sum for this case 

is from νN because να = 0. 
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Chapter 3  
 
Practical Implementation and Issues 

The previous chapter demonstrated the behavior of the indicators under study in a 

theoretical manner. When using numerical simulations, it is easy to increase the sampling 

frequency and the number of terms in sums until good results are obtained. When implementing 

the calculations for νN in the field, practical concerns such as sampling frequency, signal 

bandwidth, scattering, and noise begin to affect the accuracy of the indicator. This chapter treats 

these issues mostly computationally, but they resemble experimental issues. 

 Case Study: Sawtooth Waveform 

As described in Section 1.2.1, sine waves deform nonlinearly and approach the shape of a 

sawtooth wave before decaying. Since a sawtooth wave contains an instantaneous shock, it is 

essentially an ideal nonlinear waveform to study. The sawtooth waveform is the subject of study 

in this section. This analysis was prompted from the findings in Section 2.1, which showed that 

νN converged to the same value for all harmonics. This convergence occurred only as the 

waveform became a sawtooth. It was then questioned whether or not the value of νN for a 

sawtooth waveform could be analytically determined. 
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Consider a sawtooth wave of amplitude A, period T, and fundamental frequency f0 (i.e., 

T = 1/f0). Such a sawtooth wave is shown in Fig. 3.1. This is inverted from the usual definition of 

a sawtooth wave because shocks physically form from bottom to top. The Fourier series 

representation of this waveform is 

 𝑥𝑥(𝑡𝑡) = 𝐴𝐴�
2
𝑛𝑛𝑛𝑛

sin(2𝑛𝑛𝑛𝑛𝑓𝑓0𝑡𝑡)
∞

𝑛𝑛=1

  , (3.1) 

or in standard notation the series is given by 

 

𝑥𝑥(𝑡𝑡) =
𝑎𝑎0
2

+ �𝑎𝑎𝑛𝑛 cos(2𝑛𝑛𝑛𝑛𝑓𝑓0𝑡𝑡) + 𝑏𝑏𝑛𝑛 sin(2𝑛𝑛𝑛𝑛𝑓𝑓0𝑡𝑡)
∞

𝑛𝑛=1

  , 

𝑎𝑎0 = 𝑎𝑎𝑛𝑛 = 0  , 

𝑏𝑏𝑛𝑛 =
2𝐴𝐴
𝑛𝑛𝑛𝑛

  . 

(3.2) 

Written as a series of complex exponentials, the same series is written as 

 

𝑥𝑥(𝑡𝑡) = � 𝑐𝑐𝑛𝑛𝑒𝑒2𝜋𝜋𝜋𝜋𝑛𝑛𝑓𝑓0𝑡𝑡
∞

𝑛𝑛=−∞

  , 

𝑐𝑐𝑛𝑛 = �
0 , 𝑛𝑛 = 0

−
𝑠𝑠𝐴𝐴
𝑛𝑛𝑛𝑛

 , 𝑛𝑛 ≠ 0  . 

(3.3) 

The next step is to compute Q/S for this waveform as given by Eq. (1.5). This is done 

through use of the convolution theorem: 

 
Figure 3.1. Example sawtooth waveform that is under study in this section. 
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 ℱ∗{𝑥𝑥(𝑡𝑡)}ℱ{𝑥𝑥2(𝑡𝑡)} = 𝑋𝑋∗(𝑋𝑋⊗ 𝑋𝑋)  , (3.4) 

where X represents the Fourier transform of x(t). The convolution in Eq. (3.4) is calculated by 

 𝑋𝑋∗(𝑋𝑋⊗ 𝑋𝑋) = 𝑐𝑐𝑛𝑛∗ � 𝑐𝑐𝑝𝑝𝑐𝑐𝑛𝑛−𝑝𝑝

∞

𝑝𝑝=−∞

  , (3.5) 

and 

 � 𝑐𝑐𝑝𝑝𝑐𝑐𝑛𝑛−𝑝𝑝

∞

𝑝𝑝=−∞

=

⎩
⎨

⎧ 𝐴𝐴2

3
 , 𝑛𝑛 = 0

2𝐴𝐴2

𝑛𝑛2𝑛𝑛2
 , 𝑛𝑛 ≠ 0

  . (3.6) 

Consequently, Q/S = 0 for n = 0 since cn
* = 0. For n ≠ 0,  

 𝑄𝑄𝑝𝑝𝑝𝑝2 = Im�𝑐𝑐𝑛𝑛∗ � 𝑐𝑐𝑝𝑝𝑐𝑐𝑛𝑛−𝑝𝑝

∞

𝑝𝑝=−∞

� = Im �
𝑠𝑠𝐴𝐴
𝑛𝑛𝑛𝑛

2𝐴𝐴2

𝑛𝑛2𝑛𝑛2
� =

2𝐴𝐴3

𝑛𝑛3𝑛𝑛3
  . (3.7) 

The calculation of Spp and prms, follows as 

 

𝑆𝑆𝑝𝑝𝑝𝑝 = 𝑐𝑐𝑛𝑛𝑐𝑐𝑛𝑛∗ =
𝐴𝐴2

𝑛𝑛2𝑛𝑛2
  , 

𝜕𝜕rms = �
1
2
�𝑏𝑏𝑛𝑛2
∞

𝑛𝑛=1

=
𝐴𝐴
√3

  . 

(3.8) 

Combining these together gives 

 
𝑄𝑄
𝑆𝑆

=
𝑄𝑄𝑝𝑝𝑝𝑝2

𝜕𝜕rms𝑆𝑆𝑝𝑝𝑝𝑝
=

2√3
𝑛𝑛𝑛𝑛

  . (3.9) 

Next, Eq. (1.8) gives 

 𝜈𝜈𝑁𝑁 = −10 log10(𝑒𝑒) ×
𝜔𝜔𝛽𝛽𝜕𝜕rms
𝜌𝜌0𝑐𝑐03

𝑄𝑄
𝑆𝑆

= −40 log10(𝑒𝑒) ×
𝐴𝐴𝑓𝑓0𝛽𝛽
𝜌𝜌0𝑐𝑐03

  . (3.10) 

Eq. (3.10) gives an analytical expression for the value of νN for a sawtooth waveform. Note that 

νN is not dependent on harmonic number, n, but is constant across frequency. It is only dependent 
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on the initial amplitude, fundamental frequency, and medium parameters. With the relation that 

ρ0c0
2 = γP, where γ is the ratio of specific heats and P is the ambient pressure, along with 

β = (γ + 1)/2 for an ideal gas, Eq. (3.10) can be recast as 

 𝜈𝜈𝑁𝑁 = −20 log10(𝑒𝑒) ×
𝐴𝐴𝑓𝑓0(𝛾𝛾 + 1)

𝛾𝛾𝑐𝑐0𝑃𝑃
  . (3.11) 

The expressions for νN in Eqs. (3.10) and (3.11) will be used in the rest of this chapter as 

benchmarks. 

 Effect of Sampling Frequency: Sawtooth 

In practice, calculating νN from finitely sampled waveforms does not yield the exact 

values from Eqs. (3.10) and (3.11) at all frequencies. Instead, the error varies as a function of 

many different parameters; the effect of sampling frequency on the error is explored in this 

section for three different varieties of sawtooth waveforms. 

3.2.1 Ideal Sawtooth Waveform 

As a mathematical example, consider an ideal sawtooth wave similar to that in Fig. 3.1, 

with amplitude A = 1 Pa and frequency f0 = 1 Hz. Absorption is ignored, so the low frequency is 

unimportant. For air with β = 1.2, ρ0 = 1.20 kg/m3, and c0 = 343 m/s, Eq. (3.10) gives 

νN ≈ -4.30 × 10-7 dB/m. However, calculating νN directly from the waveform results in errors at 

high frequencies. Figure 3.2 shows (a) the calculated νN and (b) error from the analytical value 

for different sampling rates. The calculation of νN is done by using one full period of the 

waveform with no windowing. The value of νN is zero for frequencies other than integer 

multiples of the fundamental, but since exactly one period of the waveform is used with no 
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windowing in the calculation, only integer multiples of the fundamental frequency are included 

in the frequency array of the Fourier transform. Part (a) is plotted up to 512 Hz on the x axis, 

which is the Nyquist frequency for the first case shown in blue. The other curves show that the 

accuracy is better at 512 Hz when the waveform is sampled at higher frequencies. Part (b) shows 

the percent error, with 20% error occurring at about one-quarter the Nyquist frequency for each 

curve. 

The source of this error is revealed by examining the power spectral density (PSD) of 

each waveform. Because the sawtooth contains an infinite number of frequencies, there is a 

wrap-around error in the PSDs due to a finite sampling rate. The wrap-around error is evident in 

Fig. 3.3, which shows the PSDs of both the sawtooth waveform and the waveform squared. The 

colors correspond to the same sampling frequencies as in Fig 3.2. The PSD of the waveform 

  

Figure 3.2. (a) Calculations of νN for an ideal sawtooth waveform sampled at various rates. (b) The 
error in νN compared to the analytic value. A 20% error occurs at about one-quarter the sampling 

frequency. 

 

 
Figure 3.3. PSD of the sawtooth waveform and the waveform squared. The cross-spectrum 
between these two values is used to calculate Q/S. Errors due to aliasing can be seen in both 

quantities. The blue, red, and green curves are sampled at 1024, 2048, and 4096 Hz, respectively. 
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squared is included because Q/S is calculated from the cross-spectral density of the Fourier 

transform of the waveform and waveform squared. As expected from Eq. (3.1), the PSD is a 

straight line that is inversely proportional to frequency. However, near the Nyquist frequency for 

each case, an increase of a few decibels is observed due to the wrap-around error. The same error 

is observed in the PSD of the waveform squared and occurs near the Nyquist frequency. These 

errors combine to cause the error in νN near the Nyquist frequency. 

3.2.2 Bandlimited Sawtooth Waveforms 

The ideal sawtooth waveform plotted in Fig. 3.1 is not measurable in practical 

applications, because it requires an infinite bandwidth to adequately capture the discontinuity. 

When taking measurements in the field, bandwidth limitations cause the series in Eq. (3.1) to be 

truncated. In effect, a limited bandwidth translates to the presence of Gibbs phenomenon, or 

oscillations around the shock discontinuity. However, these small oscillations translate to a huge 

error in νN. To demonstrate, the same calculations used to make Figs. 3.2 and 3.3 were done for a 

sawtooth with a truncated instead of infinite series as in Eq. (3.1). Figs. 3.4 (a) and (b) show the 

νN values and error from the analytical value, respectively. Instead of a 20% error at one-quarter 

  
Figure 3.4. (a) Calculations of νN for a sawtooth waveform calculated from a truncated Fourier 
series for various sample rates. (b) The error in νN compared to the analytic value. A 20% error 
occurs at about one-hundredth the sampling frequency, much lower than for the ideal sawtooth 
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the sampling frequency, this error occurs at one-hundredth the sampling frequency. In Fig. 3.5, 

the PSD of the waveform is completely flat due to the truncated series. It is in effect like a 

perfect brick-wall filter with no aliasing. However, for some reason the PSD of the squared 

waveform contains large errors at low frequencies. 

The cause of this error is somehow inherent in the truncated series sawtooth waveform. 

The error could possibly be attributed to a natural effect in a bandlimited system measuring a 

sawtooth waveform. Perhaps the error from each of these tests results from the fact that Eq. (1.5) 

relies on the expectation of a random process, and the sawtooth waveform used in this section is 

deterministic. In an attempt to make the signal less deterministic, the phase of the waveform was 

randomized in each block of the PSD calculation. However, since Qpp2 depends on the phase 

difference between the waveform and squared waveform, and the phase randomization affected 

both waveforms, the calculated νN value was exactly the same. Future work is to explore 

alternate methods of calculating Qpp2, such as integrating the bispectrum, which do not require 

taking the cross-spectral density between the pressure and pressure squared waveforms. 

In practice, an anti-aliasing filter is used instead of a hypothetical brick-wall filter to 

remove the spectral content higher than the Nyquist frequency, and these filters have some kind 

 
Figure 3.5. PSD of the waveform and the waveform squared for a sawtooth calculated from a 
truncated Fourier series. The sampling rates for each color line are as in Fig. 3.4. There is no 

aliasing error because the series is truncated. The error for the PSD of x2(t) is very large. 
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of roll-off. This can be simulated computationally by using a Butterworth filter on an ideal 

sawtooth waveform. This has been done, and the νN values and errors, along with the PSDs, look 

similar to those in Figs. 3.4 and 3.5. The main difference is that the PSDs of both the waveform 

and squared waveform roll off at the higher frequencies, but the errors occur at about the same 

frequencies. 

3.2.3 Experimental Sawtooth Waveform 

To confirm the numerical results, a National Instruments PXI DAQ was used to measure 

the voltage output of a function generator creating a sawtooth waveform. The function generator 

used was an Agilent 33220A with 20 MHz resolution. The sampling frequency of the PXI 4462 

card was set at 204.8 kHz. The sawtooth waveform had an amplitude of 1 V and a fundamental 

  

  
Figure 3.6. (a) Experimentally measured sawtooth waveform. (b) Calculated value of νN. (c) Error 

from the expected analytic value. A 20% error occurs at about 2% the sampling frequency. 
(d) PSD of the waveform and waveform squared. Note the sharp rolloff in the waveform PSD and 

the large error in the waveform squared PSD. 
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frequency of 1 kHz. The sawtooth and corresponding calculations from the waveform are shown 

in Fig. 3.6. The calculations were done as if the wave had an amplitude of 1 Pa. The error in the 

PSD of the squared waveform is similar to that of the truncated Fourier series waveform and 

results in the error in νN as well. This is seen in parts (b)-(d). The error reaches 20% at a 

frequency of about 2% the sampling frequency. 

One important takeaway from the experimental results is that having a non-integer 

number of samples per period does not fix the issues seen in either Section 3.2.1 or Section 3.2.2. 

The indicator values for the computational sawtooth waveforms were calculated from exactly 

one period of the waveform that was periodic in the window. Any error that may have been a 

product of these exact conditions would have disappeared from the experimental data. The error 

seen in Fig. 3.6 must therefore be a result of the direct calculation of νN from a bandlimited 

sawtooth waveform. 

3.2.4 Mendousse Solution Revisited 

The error in νN appears to be large for a sawtooth waveform, but what about waveforms 

that are shock-like but do not have a perfect sawtooth shape? Due to thermoviscous absorption, 

the Mendousse solution preserves a finite shock thickness, as exhibited in nature. An important 

point regarding sampling rate limitations is illustrated by examining the accuracy of νN at various 

stages of the solution. For a Gol’dberg number of Γ = 30, the waveform shapes are shown for 

various values of the normalized distance, σ, in Fig. 3.7 (a). Part (b) shows the PSD amplitudes 

of the same waveforms. Part (c) shows the percent error in νN calculated for each waveform, 

where the actual change in level was calculated by taking numerical derivatives of the spectra 
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with a step size of Δσ = 0.05. The black vertical line is located at one-quarter the sampling 

frequency, which for this example was taken to be 256 times the fundamental frequency. 

The frequencies at which the curves exceed 20% error in part (c), in order of increasing 

distance, are 5.1%, 16.8%, 28.9%, 40.2%, and 22.7% the sampling frequency. The PSDs in 

Fig. 3.7 (b) do not have large amounts of energy out to the Nyquist frequency—they begin to roll 

off faster than a power-law slope due to absorption—which appears to increase the effective 

bandwidth of the νN calculation. Comparing the curves in parts (b) and (c) reveals that the error 

in νN for most of the curves occurs near where the PSDs deviate from their smooth behavior due 

to numerical round-off error. The round-off error is introduced at different frequencies for each 

waveform because of the complicated nature of the solution in Eq. (2.7). In other words, the 

accuracy of νN may be even better with increased numerical precision. The accuracy of νN is 

 

  
Figure 3.7. (a) Mendousse solution waveforms at various normalized distances with Γ = 30. 

(b) Spectral amplitudes of the waveforms. (c) Percent error in the νN indicator. The vertical black 
line is at one-quarter the sampling frequency. The legend in part (a) applies to parts (b) and (c) as 

well. 
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better for the analytical Mendousse solution than for any other waveform, indicating the 

accuracy may depend on waveform type. 

 Effect of Sampling Frequency: Bandwidth 

The error in the sawtooth waveforms from Section 3.2 is very large, and one might 

wonder how νN could be useful at all. This section shows that the error magnitude of the 

indicator depends on the bandwidth of the signal under analysis. In fact, some types of 

waveforms show little to no error below one-quarter of the sampling frequency, suggesting they 

behave as ideal cases. 

3.3.1 Narrowband Gaussian Noise 

To illustrate the effect of increased bandwidth on the behavior of νN, an example of 

narrowband noise is performed computationally. To compare with the data presented in 

Chapter 4, some experimental conditions were copied from the model-scale jet noise tests. 

Consider an ideal monopole source of radius 4 cm (called 1 Dj), radiating narrowband Gaussian 

noise with a root-mean-square amplitude of 22 kPa. The source radiates spherically, and the 

atmospheric conditions are as follows: temperature is 22.9°C, ambient pressure is 0.956 atm, and 

relative humidity is 53.3%. The Gaussian noise is centered spectrally at 1 kHz, with 3-dB down 

points at 973 and 1030 Hz. In addition, the noise was filtered to have a power-law decay for high 

frequencies, as seen from the curve at 1 Dj in Fig. 3.8 (d). The signal was propagated out to 

1000 Dj, and the resulting waveform, along with the linear approximation and original waveform 

(amplitude compensated for with geometric spreading), is plotted in Fig. 3.8 (a). The output 

waveform closely resembles a sawtooth waveform. 
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Shocks develop in the waveform quickly, as demonstrated by the shock rise time36 in 

part (b). Part (c) shows the νN spectral values from 1 Dj to 9 Dj at intervals of 2 Dj. (The νN values 

at 1 Dj are zero.) A vertical black line marks one-quarter the sampling frequency. Note the large 

initial growth in the 10-kHz range as the shocks first begin to form. At 3 Dj, the νN values are 

very noisy above 15 kHz due to the very small amplitude of the PSD. As the waveform 

propagates farther, the noisy oscillations diminish and the curves become smoother. However, 

the smoothness does not necessarily imply accuracy. Figure 3.9 shows νS, να, νN, their sum, and 

the actual numerical derivative for six different harmonics of the waveform. The term 

“harmonic” is used loosely here, since the initial signal is of finite bandwidth. The agreement 

between ν and ΔL/ΔDj can be seen to worsen slightly as harmonic number increases. From 

  

  
Figure 3.8. (a) Comparison of the linear (spreading and absorption), and output (including 

nonlinearity) waveforms. (b) Shock rise time of the largest shock in the waveform. The waveform 
quickly shocks up over a short distance. (c) The νN values for various distances. The νN curve at 

1 Dj is zero everywhere. The vertical black line marks one-quarter the sampling frequency. 
(d) PSD at various distances. The initial spectrum at 1 Dj has a power-law decay in the high 

frequencies. Note the waveform becomes more broadband due to nonlinear harmonic generation. 
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part (f), at 965 Dj the error between the ν prediction and the actual numerical derivative, ΔL/ΔDj, 

for 10 kHz is 19.6%. However, the nature of the error in νN depends on the waveform shape. 

Figure 3.10 shows (a) the PSDs and (b) the percent error in νN calculated at various distances. In 

the far field (1000 Dj), the 20% error occurs at only 5% the sampling frequency, less than the 

expected one-quarter the sampling frequency for the exact sawtooth waveform (see Fig. 3.2). At 

the other distances reported—except for 25 Dj—the accuracy of νN is good to much higher 

frequencies. Note that the initially large errors around 300 and 400 Hz for the red and blue 

curves are due to the large changes that are happening very quickly at those frequencies. The 

error is only large because the step size in distance is not large enough. Figure 3.10 seems to 

imply a similar result as Fig. 3.7: the accuracy of νN depends on the waveform shape and type, 

and it seems to perform better in the pre-shock region. 

 
Figure 3.9. Values of νS, να, νN, their sum (ν), and the actual numerical derivative (ΔL/ΔDj) for six 
different harmonics of narrowband Gaussian noise. The fundamental frequency is defined as the 

center frequency of the lowest noise band. The agreement between the prediction and the 
numerical derivative worsens with harmonic number. 
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The narrowband noise error in the far field is less than the error for the bandlimited 

sawtooth waveform, where 20% error occurs at just 1% the sampling frequency (see Fig. 3.4). 

The improvement in the narrowband Gaussian noise is likely due to two factors: one, the final 

waveform is not an exact sawtooth because it has been smoothed out by absorption, and two, the 

signal is initially narrowband instead of monofrequency. However, the simulation from 

Section 2.3, similar to that given above but starting with a sinusoid waveform rather than 

narrowband Gaussian noise, shows the improvement is largely due to bandwidth. In the sinusoid 

simulation, the >20% error occurs at only 0.3% the sampling frequency. Thus it appears that νN 

calculations for narrowband signals are valid to much higher frequencies than for initially 

monofrequency signals. 

In part (d) of Fig. 3.8, the initial spectrum rolloff can be seen from the curve at 1 Dj. In 

addition, the troughs in the PSD begin to decrease in depth as the waveform propagates. This is 

because of nonlinear harmonic generation, but also because the bandwidth of each harmonic 

increases with frequency.37 However, as opposed to the monofrequency sawtooth wave, sum-and-

difference harmonic generation occurs for all frequencies present in this signal. Nonlinear 

generation then occurs for many more frequencies in the upper-frequency range. With sufficient 

  
Figure 3.10. (a) PSDs of the computationally propagated narrowband Gaussian noise at various 
distances. (b) Percent error in νN for the same distances. At 1000 Dj, a 20% error occurs at about 

5% the sampling frequency. 
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propagation and harmonic generation, essentially all frequencies will eventually be nonlinearly 

generated if the waveform is of sufficient amplitude. The evolved PSD is approaching a smooth 

1 f 2⁄  power-law spectral slope typical of jet noise. Comparing parts (c) and (d) of Fig. 3.8, νN 

begins to increase for the 3 Dj curve just as the PSD for the same distance begins to deviate from 

the power-law spectral slope. This indicates the nonlinear behavior of going from sine wave to 

sawtooth, which exhibits the same power-law spectral slope. 

3.3.2 Experimental Broadband Noise 

The ability of νN to quantify the rate of nonlinear waveform steepening is further 

improved when the noise is broadband instead of narrowband. The example from this section is 

  

 
Figure 3.11. Predicted change in sound pressure level—ν, or the sum νS + να + νN—with numerical 

derivatives of the PSD levels between microphones. The derivatives are taken between 
(a) microphones 1 and 2, (b) microphones 2 and 3, and (c) microphones 3 and 4. 
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drawn from experimental data reported in Sections 4.1 and 4.2 rather than simulation because of 

better accuracy. The noise was measured from a Mach-2.0 model-scale jet with diameter 3.5 cm 

(1 Dj). The data was sampled at 192 kHz along a radial with the first four microphones spaced 

10 Dj apart. Figure 3.11 compares the predicted change in sound pressure level—ν, or the sum 

νS + να + νN—with numerical spatial derivatives of the PSD levels between microphones. The 

derivative, ΔL/Δr, found in part (a) is a centered-difference between microphones 1 and 2. The 

νN values are shown for microphones 1 and 2 as well. Part (b) shows a derivative between 

microphones 2 and 3, part (c) between microphones 3 and 4. Since the ν values are instantaneous 

derivatives and the numerical derivative is centered between the microphones, the ΔL/Δr curve is 

expected to lie somewhere between the two ν curves. 

The error in the low frequencies of each part of Fig. 3.11 is due to the frequency-

dependent directivity of the source.16, 38 There are changes in the frequency content simply due to 

directivity, not nonlinearity, that are not predicted by the ν metrics. In addition, spherical 

spreading is assumed for the νS metric, which may or may not be accurate for measurements near 

a model-scale jet. However, from about 10 kHz to 50 kHz the agreement is good. A sharp 

increase in the ν curves is seen around 40 kHz, which is 21% the sampling frequency. Besides 

this sharp increase, the predictions seem to follow the actual derivatives fairly well. For certain, 

the agreement between νN and measured values is good above 5% the sampling frequency, or 

about 10 kHz. 

Another indication of the reliability of νN when working with experimental data is found 

in the PSD of the square of the waveform. Examples from Section 3.2 show significant errors in 

the PSD of the waveform squared. However, the PSDs of various model-scale jet noise 

waveforms reported in Section 4.1 are shown along with the PSDs of those waveforms squared 
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in Fig. 3.12. There is no indication of large errors in the PSDs of the squared waveforms, which 

gives further confidence as to the reliability of the νN indicator for broadband data. Experimental 

broadband data such as that examined in this section is currently the best confirmation for the use 

of νN as a nonlinearity indicator. 

3.3.3 Broadband Noise from the Literature 

As a further examination of the effect of the sampling frequency on broadband noise, 

other papers which use the Morfey-Howell indicator, Q/S, and which report results for noise data 

are examined for probable errors heretofore undetected. McInerny et al.21 give Q/S values for 

high-intensity rocket noise sampled at 48 kHz. For example, parts (c)-(e) of Fig. 12 show a 

steady upward slope in the magnitude of Q/S from about 10 to 20 kHz. This type of increase is 

expected since in the far field nonlinearity increases with frequency to slow absorption. 

However, there is an even steeper increase in Q/S starting at about 20 kHz, followed by a sharp 

decrease down to zero due to the rolloff in the spectra. It is likely that the second increase and 

subsequent decrease are due to bandwidth limitations of the Morfey-Howell indicator. It is 

difficult to know whether or not the steady upward slope beginning at 10 kHz is due to error, but 

  
Figure 3.12. (a) PSDs of model-scale jet noise waveforms. (b) PSDs of the same model-scale jet 

noise waveforms squared. The PSDs of the waveforms squared exhibit a smooth behavior. 
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the increase with frequency is expected in the far field. Regardless, the data appears to behave 

well up to about one-quarter the sampling frequency. Similar behavior is seen in Fig. 13 of 

Ref. [21], but the data are shown only up to 20 kHz instead of 24 kHz. Parts (b) and (d) of 

Fig. 13 show the steady upward slope in Q/S, but there appears to be no secondary sharp 

increase; the absence of a sharp increase implies accurate values for the indicator up to at least 

one-quarter the sampling frequency for this case. 

McInerny et al.39 give Q/S values for aircraft flyover data sampled at 96 kHz. The spectra 

in Ref. [39] appear to roll off significantly due to absorption beginning around 5 kHz. 

Figures 12-15 show increasing Q/S values up to about 12 kHz, where the curves kink and the 

values suddenly begin to decrease in magnitude. It is likely that the initial increase shows the 

accurate slowing of absorption due to nonlinear growth, but the final decrease could either be a 

product of the low sound pressure levels measured at high frequencies or a product of limitations 

in the indicator. However, it is difficult to know whether or not the increasing Q/S values are 

reliable without performing spatial derivatives on data from multiple microphones as a 

verification. Similarly, Downing et al.40 give Q/S values for the Concorde, Boeing 727 and 

Boeing 757 aircrafts sampled near 45 kHz. Figures 1 and 2 show an increase in the magnitude of 

Q/S up to about 10 kHz, followed by a sudden decrease in magnitude to zero. Though not 

completely clear, the initial increase appears to be accurate, and the sudden decrease seems to be 

from limitations inherent in the indicator; the steep decrease begins almost right at one-quarter 

the sampling frequency. The Q/S values shown in Fig. 3 are very noisy and imply little 

nonlinearity in the signal, but the magnitude of the noise increases distinctly above 10 kHz. The 

increased noise at high frequencies adds credibility to the idea that the decreasing Q/S 

magnitudes above 10 kHz in Figs. 1 and 2 are erroneous. 
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Petitjean et al.7 sampled high-speed jet noise near 180 kHz or higher and report Q/S 

values in Figs. 15 and 16 up to about 50 kHz. These findings show no sign of the errors 

investigated in this section. The curves are relatively smooth and show transition of energy from 

low to high frequencies. Gee et al.41 sample noise from supersonic jets at 298.5 kHz and show 

Q/S values up to 100 kHz. In Fig. 2 there is evidence of a slight decrease in the Q/S magnitude 

beginning around 70 kHz, close to one-quarter the sampling frequency. Finally, Gee et al.42 

report high-performance jet aircraft noise sampled at 44.1 kHz. They give Q/S values up to just 

under one-quarter the sampling frequency. A sharp transition from increasing to decreasing Q/S 

magnitude is visible in Fig. 6 at about 8 kHz, while the increase becomes steeper in Fig. 7 around 

the same frequency. It is unclear whether or not these effects are due to bandwidth limitations of 

the Morfey-Howell indicator. 

In summary, the vast majority of papers reporting Q/S values do not exhibit the large 

errors observed in the sawtooth and narrowband noise observed in Sections 3.2 and 3.3. Errors 

do seem to occur for frequencies above one-quarter the sampling rate, but this is as expected 

from the ideal sawtooth in Section 3.2.1. Of course, the examination of the literature here is 

mostly qualitative, and a quantitative analysis of the data from the papers would be necessary to 

confirm the accuracy of Q/S for each case. However, a viable conclusion is that the Morfey-

Howell indicator—and by connection νN—is much more accurate for experimentally measured 

broadband noise than for either simulated noise or sawtooth waveforms. 

Future work to provide further understanding of the accuracy of the νN indicator requires 

a controlled environment where high-amplitude signals of several varieties can be tested and 

physically propagated. This could be done in a plane-wave tube experiment. However, past 

experiments have shown that even small discontinuities in the tube can cause scattering and 
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ringing in the waveform,15, 43, 44 so care must be taken to ensure a proper experiment. A high-

amplitude sinusoid could be propagated such that it deforms into a sawtooth waveform, and νN 

could be calculated on the waveform to search for errors similar to those found in Section 3.2. 

Similarly, narrowband and broadband data could be propagated to more systematically determine 

the effect of bandwidth on the accuracy of νN. Studies of this type could give more conclusive 

evidence as to why the indicator seems to behave so much better for experimental broadband 

data than for monofrequency tones or computationally propagated waveforms. 

 Effect of Scattering and Measurement Noise 

3.4.1 Effect of Scattering 

Because the νN indicator is so sensitive to errors at high frequencies, scattering can create 

large issues in its accuracy. For example, some measurements from the F-35 reported in 

Chapter 5 were taken with relatively large microphone holders that caused scattering. 

Measurements from one microphone in particular showed oscillations of about ±2 dB in the 

PSDs from 2 to 20 kHz. Figure 3.13 shows the one-third-octave band (a) PSD and (b) νN 

  
Figure 3.13. One-third-octave (OTO) band (a) SPL and (b) νN values for F-35 noise data at two 

different power levels and with and without scattering. The scattering most adversely affects νN for 
the high-intensity noise. 
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calculations for a clean measurement and one with scattering at two different power levels. The 

clean and scattered measurements were taken at the same distance and just 10° apart; the 

difference between these measurements was due to variation of microphone placement in their 

holders during experimental setup. 

The high-power condition with scattering has nearly completely corrupted the νN values. 

The narrowband calculations, not shown here, exhibited variations in νN of over 200% the 

uncorrupted values. However, the low-power condition with scattering shows νN values similar 

to those computed from the data without scattering up to about 10 kHz. It is unclear why νN is 

corrupted by scattering for one measurement (high intensity) and not for another (low intensity). 

Care must be taken to ensure that scattering effects do not invalidate the νN metric. Ground 

reflections also pose an issue for νN and Q/S,42 as discussed and illustrated in Sections 5.2 

and 5.3.1. 

3.4.2 Effect of Measurement Noise 

General measurement noise also causes problems for νN calculations. This is in part 

because the noise is increased when the waveform is squared in the Q/S calculation. This is 

evident in Fig. 3.14, which shows νN calculations for an ideal sawtooth waveform with added 

noise at a signal-to-noise ratio (SNR) of 60, 80, and 100 dB. The sampling frequency was 

1024 Hz. Parts (a) and (b) show that for an SNR of 60 dB, the indicator is valid only up to about 

6% the sampling frequency. While this is much worse than the ideal case with no noise, the 

adverse effect is much less important than a bandlimited system (compare Fig. 3.4). Perhaps for 

this reason, measurements with an SNR of 60 dB can still be used for νN calculations. Part (c) of 

Fig. 3.14 shows that the added noise is emphasized in the PSD of the waveform squared, which 
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is what causes such a large error in the νN values. In part (d), a one-third-octave band calculation 

of νN is used, and the values are much more accurate. See Appendix A for information on 

calculating νN for one-third-octave bands. 

 Summary and Experimental Recommendations 

This section summarizes the findings and advises on experimental conditions necessary 

to use the νN indicator (and by extension the Morfey-Howell, Q/S indicator). The frequency at 

which the error in νN is greater than 20%, given in percentage of the sampling frequency (fS), is 

listed in Table 3.1 for the separate cases studied in Sections 2.3, 3.2, and 3.3. The accuracy is 

best for analytical or infinite-bandwidth signals. The next best signal is experimentally measured 

  

  
Figure 3.14. (a) Values of νN for an ideal sawtooth waveform with added noise. (b) Error 

compared to the analytical value for the same. (c) PSD of the waveform and waveform squared. 
The noise more adversely affects the waveform squared PSD than the waveform PSD, creating the 
error. (d) OTO band averages of νN from part (a). The noise does not produce much effect for 80 

and 100 dB SNR. 
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broadband noise, for which the νN predictions appear to agree with the measured spatial 

derivatives for frequencies up to 21% of the sampling frequency. Next best is computationally 

propagated narrowband noise. Bandlimited measurements of a sawtooth waveform (experimental 

then computational) and a computationally propagated sinusoid give the worst agreement. 

Overall, noise with some finite bandwidth tends to give better accuracy than non-ideal, 

bandlimited sawtooth waves. Based on Table 3.1, under ideal conditions the maximum 

frequency up to which data should be trusted is 24%, or about one-quarter of the sampling 

frequency. This frequency limit also makes intuitive sense, since squaring a waveform to 

calculate Qpp2 introduces sum-and-difference frequencies, including a component at double that 

of each original frequency. Because of the Nyquist limit, the doubled components will only be 

accurately represented for original frequencies up to half the Nyquist frequency, or one-quarter 

the sampling frequency. 

The restriction to one-quarter of the sampling frequency seems to be due to a limitation 

inherent either in the indicator itself or in the method of calculating νN. In an ideal measurement 

with an infinite-bandwidth signal, aliasing errors in the waveform and squared waveform spectra 

for a fully developed weak shock (sawtooth waveform) cause the error. If the measurement is 

bandlimited, the error is exacerbated for both a brick-wall filter and a more traditional anti-

Table 3.1. Frequency ratio at which νN exhibits greater than 20% error for various cases. 

Case Frequency with 20% error in νN (% of f/fs) 
Mendousse solution at σ = 3 40% 

Ideal sawtooth with finite sampling rate 24% 
Experimental model-scale jet data 21% 

Computationally propagated narrowband 
Gaussian noise in the far field 5% 

Experimentally generated sawtooth 2% 
Computationally filtered sawtooth 1% 

Computationally propagated sinusoid 0.3% 
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aliasing filter. Likely errors above one-quarter the sampling frequency are seen in several papers 

reporting Q/S measurements. However, the maximum reliable frequency for Q/S and νN seems to 

be much higher for experimental broadband noise signals than for a bandlimited sawtooth 

waveform or computationally propagated noise. In fact, in the jet- and rocket-noise literature, the 

expected smooth behavior is largely observed below one-quarter the sampling frequency. The 

experimental broadband signals appear to behave nearly like an ideal sawtooth waveform. 

Both scattering and measurement noise can be large sources of error when using the νN 

indicator. Since the indicator is proportional to frequency (see Eq. [1.8]), even small variations at 

high frequencies can disrupt the indicator values dramatically. In addition, the effect of 

measurement noise increases when the waveform is squared, further disrupting the indicator 

values. The effect of scattering on the indicator seems to depend on the nature of the source 

(bandwidth, amplitude, etc.). Judgment should be made on a case-by-case basis as to the impact 

of scattering when calculating νN. However, the adverse effects of scattering and measurement 

noise seem to be overall less important than those of a finite sampling frequency and a finite-

bandwidth signal. 

Overall, the νN indicator seems to work best for experimentally measured broadband 

signals, but the sampling frequency should be made as large as possible to ensure measurement 

reliability. In experiment, Q/S and νN values should not be taken as accurate above one-quarter 

the sampling frequency. Measurements can be made along a propagation radial with relatively 

small spacing to ensure that the spatial derivatives predicted by νN match the actual derivatives in 

the data, as done in Section 3.3.2 (Fig. 3.11). Perhaps verification of νN on a case-by-case basis is 

necessary until further experiments can be conducted with a spatial grid of microphones to better 

determine its accuracy for experimental noise. 
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Chapter 4  
 
Nonlinearity Analysis of Model-Scale Jet 
Data 

Despite the issues discussed in Chapter 3, the νN indicator seems to perform well for 

analyzing broadband jet noise data.35 Prior to treating jet-noise from a full-scale military aircraft 

in Chapter 5, this chapter deals with noise from a model-scale jet. It is devoted to analysis of the 

experimental data taken, along with comparison between engine conditions. Results are not 

reported above one-quarter the sampling frequency. Parts of the analysis refer to Section 2.3, 

which contains a computational analysis of a monopole emitting a sinusoidal signal with 

conditions similar to those in which the jet noise data were taken. This entire chapter is modeled 

after Ref. [35], and the same dataset has been analyzed previously using other nonlinearity 

indicators.5, 16, 45 

 Spectral Analysis for Mach 2.0 

Unheated laboratory-scale jet noise data were collected in an anechoic chamber on jets of 

nozzle diameter 3.5 cm. Jet conditions were varied between subsonic Mach 0.85, overexpanded 

Mach 1.8, and ideally expanded Mach 2.0. The analyses in Sections 4.1 and 4.2 treat the 

Mach-2.0 case and Section 4.3 treats the other two. Waveforms sampled at 192 kHz were 
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acquired at distances between 10-75 jet nozzle diameters (Dj) and along radials from 80° to 150° 

in 5° increments (relative to upstream axis). Six microphones with diameters of 3.18 mm and 

6.35 mm were mounted in an array whose origin was located 4 Dj downstream of the nozzle exit. 

This origin is upstream from the expected overall noise source region,38 but facility configuration 

constraints required this positioning. 

The overall sound pressure level (OASPL) for the Mach-2.0 case is shown in Fig. 4.1 (a), 

along with an arrow indicating the direction of jet flow. Note the primary radiation lobe along 

the 145° radial, which is one line of microphones in from the top-most edge. In this figure, 

circles represent 3.18-mm microphones and filled diamonds represent 6.35-mm microphones. 

The OASPL is large enough that nonlinear behavior is to be expected near the principal lobe.5, 16, 

45 In part (b), the peak frequency at each microphone is displayed. The peak frequency was 

calculated by finding the geometric mean of the frequency range 3 dB down from the spectrum 

maximum. Note that the line of microphones along the 150° radial (closest to the jet plume) has 

a predominantly lower peak frequency than the surrounding microphones. This is due to the 

directivity of the jet, with lower frequencies being projected at steeper angles from the nozzle 

  
Figure 4.1. Plots for the Mach-2.0 model-scale jet noise data. (a) Overall sound pressure level 

(OASPL) for the microphone array. Circles represent 3.18-mm microphones and filled diamonds 
represent 6.35-mm microphones. (b) Peak frequency map. 
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head. In addition, very close to the source, a few microphones have a very high peak frequency. 

These locations are in the near field, so their spectra are relatively flat with a high peak 

  

  

  

  
Figure 4.2. Sound pressure level maps for eight different frequencies at Mach 2.0. Note that the 

angle of radiation decreases (moves farther from the jet plume) with frequency. 
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frequency. Figure 4.2 shows the sound pressure level (SPL) for eight individual frequencies. 

Here a slight change in directivity is visible for each frequency, with the higher frequencies 

radiating at shallower upstream angles (farther away from the jet flow). This correlates well with 

the peak frequency plot in Fig. 4.1 (b). 

Characteristics of the source can be observed through examination of the power spectral 

densities (PSDs). Figure 4.3 (a) shows the measured PSDs along the 145° radial as a function of 

distance. This radial is at the maximum far-field radiation angle. A shift in peak frequency is 

observed along the radial from 10 to 60 Dj, due to those microphones being in the geometric near 

field of a source with frequency-dependent source location, directivity, and spreading rate.46 It is 

important to note that this downward shift in peak frequency is not related to nonlinear effects 

(see discussion regarding Fig. 4 in Ref [46]). For example, low-frequency noise is generated 

farther downstream from the nozzle than is high-frequency noise,38 so their propagation radials 

are different from each other and from the microphone array before converging at ~60 Dj. This is 

visible in the peak frequency plot and SPL plots in Figs. 4.1 (b) and 4.2, respectively. The high-

frequency spectral shapes in Fig. 4.3 (a) reveal nonlinear propagation effects. Between 

10-20 kHz the roll-off changes from ~28 dB/decade at 10 Dj, the decay rate for large-scale 

  

Figure 4.3. (a) PSD for the six microphones along the principal radiation radial for Mach 2.0. Note 
the decrease in peak frequency along with a relatively constant high-frequency spectrum. (b) The 
νN values for the same microphones. The zero-crossing frequency of the indicator decreases with 

radius, tracking the decrease in peak frequency from part (a). 
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structure radiation,47 to ~20 dB/decade (1 f 2⁄  spectral slope), typical of shock-containing noise.48 

This spectral shape of the high frequencies remains fairly constant with distance after about 

40 Dj, indicating that the energy losses due to absorption and energy gains due to nonlinearity are 

of similar magnitude. This is explored quantitatively in the next section. 

 Nonlinearity Analysis at Mach 2.0 

Quantitative trends due to nonlinearity are seen by investigation of the νN indicator. 

Figure 4.3 (b) shows νN along the same radial as in part (a). Negative and positive values of νN 

indicate loss of energy and gain in energy due to nonlinearity, respectively. The frequency at 

which the sign of νN changes from negative to positive tracks the downward trend in PSD peak 

frequency with propagation into the far field. The results indicate energy losses from the largest-

amplitude region of the spectrum at a given location, with corresponding nonlinear energy gains 

at higher frequencies, similar to the results from Chapter 2. The overall amplitude of νN 

diminishes with propagation into the far field as well. This is not only because the amplitude of 

the noise decreases due to geometric spreading, but also because shocks have mostly formed by 

about 30 Dj (seen in the 1 f 2⁄  spectral slope). 

Similar to the SPL plots, spatial maps of νN are shown in Fig. 4.4. The maps were created 

using a linear interpolation of the color scheme, and they quantitatively confirm that nonlinear 

effects are localized at angles near the maximum radiation direction, as indicated by prior 

analyses.45, 46, 49 Along the principal radiation lobe (145°), the energy loss rate (~ -0.01 

to -0.05 dB/𝐷𝐷𝑗𝑗) at 10 kHz and gain rate at 40 kHz (~ +0.03 to +0.1 dB/𝐷𝐷𝑗𝑗) are very similar in 

magnitude to the νN values shown in Fig. 2.5. Similar to the numerically propagated sine wave in 

Section 2.3, nonlinearity is more dominant than absorption close to the source, but the two 
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effects are close to the same strength in the far field. However, Fig. 4.4 (h) shows a small 

negative region close to the source at about 130°, where energy is still being lost at 40 kHz. The 

  

  

  

  
Figure 4.4. Spatial maps of νN for eight different frequencies at Mach 2.0. The transition to 

nonlinear loss (driving other harmonics) to nonlinear gain (being nonlinearly driven) can be seen. 
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peak frequency in this region is about twice that of the principal radiation radial, and energy is 

being lost at this frequency to generate energy at higher frequencies. At all microphones in the 

tested region, the change due to spherical spreading is stronger than both nonlinearity and 

absorption. For comparison, the values for να and νS are given in Fig. 4.5. Absorption gives a 

change of only -0.004 dB/Dj at 10 kHz and -0.05 dB/Dj at 40 kHz, while spreading gives a 

change of more than -0.1 dB/Dj everywhere. The atmospheric absorption model used in this 

chapter and in Chapter 5 is that of Bass et al.,50 which includes both thermoviscous and 

vibrational relaxation processes. 

Based on the argument from Sections 2.2 and 2.3, the nonlinear decay due to absorption 

of the spectra in the far field should be linear (e-f ) exponential rather than quadratic (e-f 2) 

exponential. This type of decay is not exactly visible in the PSD in Fig. 4.3 (a) because there has 

not been sufficient radial propagation. However, the trend towards the expected linear 

exponential behavior can be seen by examining the sum νN + να. This sum essentially gives the 

modified absorption due to nonlinearity. That sum for all the microphones along the principal 

radiation radial (145°) is given in Fig. 4.6 on (a) linear and (b) logarithmic axes. In addition, να 

(black dash-dotted line) is plotted along with a linear exponential decay (red dashed lined). The 

να curve has the same slope as a quadratic exponential decay from about 4 to 40 kHz, as was 

  

Figure 4.5. (a) Value of να (independent of position). The absorption decay closely follows a 
quadratic exponential decay from about 4 to 40 kHz. (b) Spatial map of νS. Its values are distinctly 

larger than either να or νN, showing that spreading is the most dominant effect. 
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seen in Fig. 4.5 (a). The linear exponential curve in Fig. 4.6 fits the decay at 75 Dj almost 

perfectly, exhibiting the same asymptotic behavior as predicted from Sections 2.2 and 2.3. Fiévet 

et al.51 report derivative skewness values for a dataset collected from a similar model-scale jet. 

The derivative skewness values peak at about 80 Dj, indicating the decay of shocks after this 

distance. The negative values of νN + να at 75 Dj correlate well with these derivative skewness 

values. 

 Comparison of Jet Conditions 

The Mach-2.0 engine condition exhibited the most nonlinearity, but comparison to the 

other conditions is also valuable. First, the OASPL and peak frequency maps are shown in 

Fig. 4.7 for Mach 0.85 and 1.8. The levels in part (a) are much lower than for either the Mach-

1.8 or Mach-2.0 data, and negligible nonlinearity is expected in the data.16 Note the secondary 

radiation lobe occurring in the Mach-1.8 data at about 125°, as seen in part (c). This corresponds 

to the transition region from low to high peak frequency, as seen in part (d).5 

Comparing the OASPL maps between the Mach-1.8 and Mach-2.0 data, the Mach-2.0 

case only has values 2-4 dB higher than the Mach-1.8 case. The directivity has changed, with the 

  
Figure 4.6. (a) Value of the sum νN + να along the principal radiation radial (145°) for Mach 2.0. 
Note that in the far field the sum is slightly negative. In addition, the rolloff with frequency is a 

linear exponential decay. (b) The same plot as (a) but on a logarithmic scale. Only negative values 
are shown. 
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main lobe being located more downstream at Mach 1.8. The νN values are compared together for 

the three test cases in Fig. 4.8. As expected, part (a) shows negligible nonlinearity for the Mach-

0.85 case. The plot contains only noise, and the small fluctuations in νN contain no real 

information. The Mach-1.8 and Mach-2.0 cases in parts (b) and (c), respectively, are plotted with 

  

  
Figure 4.7. (a) OASPL and (b) peak frequency spatial maps for Mach 0.85. (c)-(d) Similar maps 

for Mach 1.8. 

 

   

Figure 4.8. The νN values at 40 kHz for the three engine conditions: (a) subsonic (Mach 0.85), 
(b) overexpanded (Mach 1.8), and (c) ideally expanded (Mach 2.0). Parts (b) and (c) are plotted on 
the same scale. The nonlinearity for Mach 2.0 is nearly twice that at Mach 1.8. Part (c) is a copy of 

Fig. 4.4 (h). 
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the same color mapping to more directly compare their values. Even though the OASPL levels 

are only about 3 dB higher (factor of √2) at Mach 2.0, the νN values are nearly twice as large 

along their respective principal radiation lobes at this frequency. This highlights the nonlinear 

process occurring, with only a small increase in OASPL causing a large nonlinear generation of 

high frequencies. 

To examine the decay due to nonlinearly adjusted absorption, the same plots are given as 

in Section 4.2 but for the other engine conditions. The sum νN + να is given along with να and a 

linear exponential decay in Figs. 4.9 (a)-(b) for Mach 0.85 and Figs. 4.9 (c)-(d) for Mach 1.8. 

Each is along the principal radiation radial for that condition: 150° and 145° for Mach 0.85 and 

Mach 1.8, respectively. For the Mach-0.85 data, there is almost no contribution to the sum from 

  

  
Figure 4.9. The sum νN + να on linear and logarithmic scales for (a)-(b) Mach 0.85 along 150° and 
(c)-(d) Mach 1.8 along 145°, respectively. The contribution due to nonlinearity is essentially zero 

for (a)-(b), the Mach-0.85 case, and the rolloff goes as absorption only (close to a quadratic 
exponential decay). For Mach 1.8, or (c)-(d), the rolloff approaches a linear exponential decay, 

though not as exact as in Fig. 4.6. The linear exponential decay does, however, indicate a 
reduction in the expected absorption decay due to nonlinearity. 
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νN; the decay is simply according to atmospheric absorption. For the Mach-1.8 data, however, the 

decay is similar to that of the Mach-2.0 data: a linear exponential decay at 60 and 75 Dj. 

4.3.1 Summary of Comparisons 

As the jet condition increases, the OASPL increases and the directivity of the principal 

lobe moves upstream. Different from the other conditions, Mach 1.8 shows a secondary radiation 

lobe in the same region as a sharp increase in peak frequency. The peak frequencies of this 

condition are nearly twice as large as for Mach 2.0. The OASPL for Mach 0.85 is about 25 dB 

less than Mach 1.8, which is about 3 dB less than Mach 2.0. The nonlinearity observed from the 

νN indicator is negligible at the lowest condition, and about twice as large at Mach 2.0 compared 

to Mach 1.8. The sum of the effects of absorption and nonlinearity produce a nearly quadratic 

(e-f 2) exponential decay in the far field at Mach 0.85, but the far-field decay is that of a linear 

(e-f ) exponential for Mach 1.8 and Mach 2.0. This shows that nonlinearity is significant enough 

for these two conditions to change the far-field nature of the waveforms. This confirms the 

expected results from Section 2.3, namely that a nonlinear waveform experiences a smaller 

decay in the far field than does a linear waveform. 
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Chapter 5  
 
Quadspectral Analysis of Military Aircraft 
Jet Noise Data 

Military jets pose hearing loss problems for military veterans and aircraft personnel, 

create annoyance in neighborhoods surrounding airports, and can even cause structural damage. 

When of sufficient amplitude, the noise from these jets exhibits a characteristic sound known as 

crackle,52 a phenomenon closely related to nonlinearity.53-55 Each of these characteristics 

contribute to the need to understand the physics behind the noise propagation from these sources 

and the role of nonlinearity in each. This chapter addresses measurements taken from an F-35A 

military jet aircraft at Edwards Air Force Base in 2013.56 These and previously collected F-35 

data have been analyzed with nonlinearity indicators such as average steepening factor,57 

derivative skewness,54, 57 crackle,54 crest factor,58 and Gol’dberg number.59 Here, a nonlinearity 

analysis using the νN indicator is presented. 

 Experimental Setup 

The ground run-up measurements of the F-35A aircraft consisted of 235 unique 

microphone locations. The 90 locations reported here had radii of 19.1, 28.6, 38.1, 76.2, 152, and 

305 m (63, 94, 125, 250, 500, and 1000 ft). The microphone array reference point was located 
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6.6 m (21.6 ft) behind the nozzle of the aircraft. Microphones were located for different angles at 

each radius, but ranged from 0° to 160° relative to the upstream direction. The heights of the 

microphones ranged from 1.5 to 9.1 m (5 to 30 ft). The spread of microphones and experiment 

layout is shown in Fig. 5.1. Data was sampled at 204.8 kHz at all microphones except at 305 m 

(1000 ft). At 305 m, data was sampled at 96 kHz from 0° to 80° and at 51.2 kHz from 90° to 

160°. Spectra are reported from 20 Hz to 20 kHz, well below one-quarter the sampling frequency 

for all but a few microphones at 305 m. 

The temperature varied between 19.4°C and 23.1°C, and the relative humidity varied 

between 37.6% and 45.7%. These parameters were taken into account when calculating 

atmospheric absorption. The average wind speed was 3.3 kts (1.7 m/s). This chapter will focus 

on steady engine conditions of 50%, 75% (intermediate), 100% (military), 130% (minimum 

afterburner), and 150% (maximum afterburner) engine thrust request (ETR). Multiple data 

acquisition systems were used to collect the data from different organizations, and data taken by 

Brigham Young University, Blue Ridge Research and Consulting, LLC, and Wyle Laboratories 

will be reported here. See Ref. [56] for more information on the experimental setup and 

conditions. 

  
Figure 5.1. Depiction of the experimental setup out to (a) 76.2 m (250 ft) and to (b) 305 m 

(1000 ft). The microphone array is centered 6.6 m (21.6 ft) behind the aircraft nozzle. Microphone 
angles ranged from 0° to 160° relative to the engine inlet. 
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 Spectral Analysis 

In this section, trends in OASPL, peak frequency, and PSD will be examined. However, 

before treating these, it is important to address the effect of ground reflections. The effect is 

dependent on ground conditions, source height, microphone height, distance, and frequency. The 

jet nozzle was at a nominal height of 2.1 m (81 in). Based on the microphone heights at each 

location, the change in measured SPL due to ground reflections was calculated at each 

microphone arc, modeling the ground as exposed earth with effective flow resistivity of 

4000 kPa s/m2.60 The only spectra for the F-35 shown here are OTO band data, so the relative 

SPL is given in OTO bands in Fig. 5.2. The main interference nulls occur between 400–1000 Hz, 

so caution must be used when interpreting νN results around these frequencies. The effect of 

ground reflections on Q/S calculations for high-performance military aircraft has been shown 

previously in the literature.42 The calculation of νN and Q/S assumes one source nonlinearly 

 
Figure 5.2. Relative OTO SPL due to ground reflections at varying distances. Each curve was 

calculated based on the height of the microphone and modeling the ground with flow resistivity of 
4000 kPa s/m2. 
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interacting with itself rather than the superposition of two sources far from one another. Nulls 

also occur at higher frequencies, but they are mostly averaged out by the larger OTO 

bandwidths. 

Spatial maps of the OASPL are given in Fig. 5.3 for the five engine conditions. The 

radial distances of the microphone are as listed in Section 5.1, and the aircraft pictured near the 

origin is to scale. The levels are similar to those of the Mach-1.8 model-scale jet data from 

Section 4.3. A trend in directivity is visible, with the direction of the main radiation radial 

moving farther from the jet plume as engine condition increases. The highest level also increases 

by about 15 dB from lowest to highest engine condition. Peak frequency maps for each engine 

condition are displayed in Fig. 5.4. The peak frequency was found from the center-band 

  

  

 
Figure 5.3. OASPL maps for each engine condition. The main radiation lobe moves upstream and 

levels increase with engine condition. 
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frequencies of the OTO spectral peaks. An average of these center-band frequencies was 

performed across four separate runs at each condition to make the plots in Fig. 5.4. The general 

trend is that low frequencies are present at large angles (measured from the upstream direction) 

where the radiation is strongest, high frequencies are present perpendicular to the jet, and mid-

range frequencies are present in the upstream direction. This is due to the varying directivity of 

the source, with high frequencies projecting farther upstream. The frequencies that are 

nonlinearly generated along each radial will depend on the peak frequency in that region, as seen 

in Section 5.3. 

The trends in peak frequency with angle and distance can be viewed in a different light 

by examining the PSDs as a function of radius and angle. The peak frequency and pressure 

  

  

 
Figure 5.4. Peak frequency maps for each engine condition. Low frequencies are present in the 
peak radiation area, high frequencies perpendicular to the jet, and mid-range frequencies in the 

upstream direction. 
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amplitude close to the source impacts the spectral evolution even 305 m from the source. The 

OTO SPL levels along six different radials are shown for the 130% engine condition in Fig. 5.5. 

Note the high-frequency noise that is a result of scattering off microphone holders (this is even 

more obvious in the narrowband data, not shown here). See Section 3.4 for more information on 

scattering and the accuracy of νN. At 130° and 135°, the 1000-ft data exhibit little to no deviation 

from a 1/f 2 power-law slope in the high frequencies, implying that the effects of nonlinearity and 

absorption are balanced. These angles have low peak frequencies and are located most closely to 

the peak radiation radial seen in Fig. 5.3 (d). The high-amplitude, low frequencies nonlinearly 

generate high frequencies very efficiently. At 125° and 140°, the 1000-ft data is only beginning 

to deviate from the power-law slope. The spectral peaks at these angles are starting to transition 

to higher frequencies, and the peak is more broad. This means that nonlinear generation will 

occur at a larger variety of frequencies. At 110° and 120° the deviation from a power-law slope 

   

   

Figure 5.5. OTO SPL for six different angles and 130% ETR. Each plot displays the OTO SPL for 
all available microphones along the radial as a function of frequency. The peak frequency is larger 
for smaller angles. In addition, the rolloff at 1000 ft (305 m) is less at 130° and 135° than for the 

other angles. 
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is significant, implying that absorption losses have begun to overcome nonlinear gains. The peak 

frequency is much higher at these angles, and the amplitude is slightly smaller. With propagation 

into the far field, however, the peak frequency begins to decrease. This is a function of the 

varying directivities of the low and high frequencies. Because the “fundamental” frequency is 

changing, it appears that nonlinear generation is not sufficient to balance absorption, but the high 

frequencies start to decay significantly. However, the decay away from a power-law slope at 

110° and 120° is more shallow than either a linear (e-f ) or quadratic (e-f 2) exponential decay. 

Because a linear exponential decay is expected in the far field of a nonlinear waveform, all of the 

waveforms in Fig. 5.5 appear to be short of the far field and contain evolving shocks. 

 Nonlinearity Analysis 

5.3.1 Spectral and Spatial Plots of νN for Minimum Afterburner 

The scattering that is visible in the OTO SPL plots in Fig. 5.5 is also visible in the 

spectral plots of νN. The νN spectra are shown in Fig. 5.6 for the same angles and radials as in 

Fig. 5.5. All data shown is below one-quarter the sampling frequency except for a few 

microphones at 1000 ft, as discussed in Section 5.1. For some angles, νN starts off as negative 

close to the source and then eventually ends up positive. This is curious, because it is not 

expected that high frequencies close to the source would be losing energy. However, 

examination of the narrowband νN spectral values (not pictured) reveals contamination due to 

scattering that is averaged to incorrect values in OTO bands. Therefore, unfortunately nearly all 

the negative νN values at high frequencies and along the principal radiation lobe are due to 

scattering in the data and cannot be taken as accurate. It can be seen from Fig. 5.6 that the effect 
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of scattering on νN is generally worst for the 63 and 125 ft data, but the curves are fairly smooth 

at 500 and 1000 ft. However, there is still scattering present at these distances in the PSDs. So 

then why would the scattering affect some νN curves and not others? Investigating the 

narrowband PSDs and νN curves reveals that at 130% ETR, the spectral slope of the PSD up to 

  

  

  
Figure 5.6. OTO νN values for six different angles. The curves that go negative for distances close 
to the source are erroneous and due to scattering in the PSDs. Strong nonlinearity is present for all 

angles. 
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250 ft is a power-law slope typical of jet noise. However, at 500 and 1000 ft, the slope is steeper, 

showing some sign of absorption. It appears that the oscillations due to scattering when the PSD 

is near a power-law slope affect νN more than when the rolloff is faster. 

Despite these problems with scattering, spatial maps of νN reveal what appear to be 

accurate trends in the data. The reliability of νN for the full-scale jet is determined in a manner 

similar to that shown in Fig. 3.11 for the model-scale jet. Figure 5.7 shows the predicted and 

actual changes in sound pressure level between 500 and 1000 ft, calculated by summing the ν 

indicators and performing numerical derivatives, respectively. The calculation is done for both 

(a) 110° and (b) 135°. The ν values give instantaneous derivatives and the numerical derivative is 

a centered-difference between the microphones, so the ΔL/Δr curve is expected to lie somewhere 

between the two ν curves at 500 and 1000 ft. To illustrate the increased accuracy given when 

accounting for spreading, absorption, and nonlinearity (black lines), the sum of only spreading 

and absorption effects is also shown (green lines). Though the nonlinear predictions (black lines) 

do not exactly line up with the numerical derivatives (red lines), and scattering can be seen to 

negatively impact the nonlinear prediction, the agreement is close and the error is small. In fact, 

the slopes of the black and red lines are very similar, with only a vertical offset between them. 

  
Figure 5.7. Predicted and actual changes in sound pressure level between 500 and 1000 ft at angles 

of (a) 110° and (b) 135°. The nonlinear predictions (black lines) are generally closer to the 
numerical derivatives (red lines) than are the linear predictions (green lines). 
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This offset with a consistent shape has been seen before in numerical propagation of the same 

dataset.61 General trends given by the νN indicator can be treated as mostly reliable for this 

dataset, particularly beyond 500 ft. 

To further diminish errors due to scattering, νN values from four different tests at the 

same engine power (130% ETR) were averaged. The averaged νN values are presented for eight 

different frequencies in Fig. 5.8. Negative and positive values represent losses and gains in 

  

  

  

  
Figure 5.8. Spatial maps of νN for eight different frequencies at 130% ETR. The trend shows loss 

of energy (negative values) at low frequencies and a transition to a gain of energy (positive values) 
at high frequencies. Ground reflections cause the 1-kHz data in (d) to be especially noisy. 
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energy due to nonlinearity, respectively. At very low frequencies, energy is being lost along the 

principal radiation lobe around 130°, and energy is being gained along the secondary radiation 

lobe around 40°. Part (b) shows a loss nearly everywhere. This is because 400 Hz is close to the 

peak frequency of both radiation lobes, so energy is being lost from this frequency and 

transferred to others. At 630 Hz, part (c) shows a transition from nonlinear loss to nonlinear gain 

at 130°, but the 1 kHz data in part (d) is contaminated by ground reflections (see Fig. 5.2). 

Figures 5.8 (e) and (f) have gains along the principal lobe and losses along the secondary lobe, 

illustrating the importance of peak frequency in nonlinear frequency generation. As frequency 

increases, the maximum νN also increases for each map, seen in parts (e)-(h). The slight negative 

values near the source for parts (g) and (h) are potentially due to scattering in the data. However, 

they could also be a result of the increased losses due to nonlinear geometric spreading discussed 

at the beginning of Section 2.3. The asymptotic behavior of an initial sinusoid with 

thermoviscous absorption and spherical spreading is a nonlinear decay of r-ne-nαr that is 

ultimately less than the linear decay of r-1e-n2αr. If this larger spreading decay was somehow 

present close to the source for the jet noise data, then νN could be negative, indicating increased 

spreading losses. However, the increased spreading decay is only expected asymptotically, so it 

is likely that the negative νN values are not due to increased spreading losses but due to scattering 

in the data. 

5.3.2 Comparison of Engine Conditions 

To compare engine conditions, not only the nonlinearity indicator will be used, but also 

the sum of the absorption and nonlinearity indicators. This will allow for determining the 

asymptotic behavior of the noise by looking in the far field. As a reference, Fig. 5.9 shows the να 
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values for the average atmospheric conditions given in Section 5.1. Based on the discussion in 

Section 2.3, νN should be positive and the sum να + νN should be slightly negative in the far field, 

corresponding to a decreased absorption. However, from Fig. 5.5, some far-field spectra have 

begun to exhibit a linear (e-f ) exponential decay and others continue in a 1/f 2 spectral power-law 

decay. Where the power-law decay is still present, this means that effects from nonlinearity and 

absorption are nearly equal, and the sum να + νN should be close to zero; the spectral shape 

remains constant and the spatial derivative is nonzero only due to spreading. At these points, the 

total energy is sufficient to continue to drive nonlinear frequency generation and the waveform is 

not yet in the old age. 

The directivity changes in OASPL for each condition (see Fig. 5.3) are expected to be 

mirrored by νN. Figure 5.10 shows the νN values for 100 Hz and 10 kHz for each engine 

condition. For each 100-Hz plot, the lobe where energy is lost tracks the OASPL lobe as engine 

condition increases. Similarly, νN at 10 kHz shows not only the same varying directivity, but the 

overall magnitude of the indicator also increases with condition. The spatial rate of change due to 

nonlinearity increases by nearly a factor of four between 50% and 150% ETR [compare parts (b) 

and (j)]. Most interesting, however, are the plots for the sum να + νN shown in Fig. 5.11. The 50% 

  
Figure 5.9. The spatial rate of change in SPL due to absorption, να, as a function of frequency for 

typical measured weather conditions. The parameter να is shown on a (a) linear and (b) logarithmic 
scale. 
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and 75% ETR plots in parts (a) and (b), respectively, show that absorption is stronger than 

nonlinearity everywhere: the sum is never positive. The sum for the 100% ETR case in part (c), 

however, goes to zero along the principal radiation lobe at 152 m (500 ft). For local propagation 

  

  

  

  

  
Figure 5.10. Spatial maps of νN. The first column shows νN at 100 Hz. Nonlinear losses are seen in 
the peak radiation range. The second column shows νN at 10 kHz. Nonlinear growth increases with 

engine condition, and the directivity moves upstream as well. 
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away from 152 m, the spectral shape thus remains constant, neither increasing nor decreasing 

from its power-law shape. The weak shocks here have formed and are possibly near their 

maximum heights; the waveform has not yet entered the old-age region. It is expected from the 

asymptotic solution that in the far field, the sum να + νN will go negative. This is exactly what 

happens at 305 m (1000 ft) in part (c). Here absorption has overcome nonlinearity, and a linear 

exponential decay has begun. 

Note that the sum is negative within 76.2 m (250 ft) for all conditions. This is definitely 

unexpected for 130% and 150% ETR, because there should be initial high-frequency growth due 

to nonlinearity. Recall, however, that the scattering off the microphone holders generally 

decreases the value of νN (see Section 5.3.1), which could make the sum negative when it should 

be positive. For the 130% and 150% ETR maps in Figs. 5.11 (d) and (e), the sum becomes 

  

  

 
Figure 5.11. Spatial maps of the sum νN + να at 10 kHz. Nonlinearity balances or overcomes 

absorption only for the 100%, 130%, and 150% engine conditions. 
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positive for some microphones at 152 m (500 ft) before going negative again at 305 m (1000 ft). 

It is unclear why the amplitude of the 10-kHz frequency should be increasing that far from the 

source, rather than simply remaining constant. Based on the spectral shapes in Fig. 5.5, the 

characteristic power-law slope seems to have formed by 28.6 m (94 ft). Little or no change in the 

spectrum at 10 kHz is observed along the main radiation radial, so the sum in Fig. 5.11 (d) is 

expected to be zero at 152 m (500 ft) as it is in part (c). However, the color bar reveals that the 

positive amplitude is small. It is likely that at this frequency, which is about 5% the sampling 

frequency, a small amount of positive error is present in νN (see errors from Section 3.2). This 

small positive error makes the sum slightly positive instead of close to zero. 

However, a trend is still visible through the errors: at 152 m (500 ft) in Fig. 5.11 (d), 

nonlinearity remains of similar strength as absorption, and only at 305 m (1000 ft) does the 

expected asymptotic decay begin to happen. In fact, the 150% ETR condition even shows some 

microphones at 305 m (1000 ft) that have not begun to show the old-age decay. Evidence is 

found in Fig. 5.11 (e), which shows some microphones between 100° and 120° at 305 m where 

the sum να + νN is zero. In the old-age region, a small negative decay is expected (the spectrum 

develops a linear exponential decay), but νN remains large enough out to 305 m that nonlinear 

generation is still prevalent. In summary, the strength of nonlinearity varies greatly between 

engine conditions, but growth due to nonlinearity is seen to balance the decay due to nonlinearity 

before an overall decay is experienced in the far field. 

5.3.3 Other Nonlinearity Metrics 

In addition to the analysis given here, these same F-35 data have been analyzed 

previously.56 The parameters reported include OASPL, OTO SPL, directivity, pressure 
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skewness, and pressure time-derivative skewness. The pressure skewness was seen to peak at 

angles upstream of the OASPL maximum, but the pressure time-derivative skewness peaked 

close to the OASPL maximum. For background information, the pressure time-derivative 

skewness is calculated by 

 Sk �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡
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This indicator has been studied specifically for shock-containing noise, and a derivative 

skewness value of five has been found to indicate presence of significant shocks.23 In Ref. [56], 

the derivative skewness values were approximately zero for the lowest power engine condition. 

The derivative skewness for the 130% ETR condition is shown in Fig. 5.12. The values 

exceed 23 around 210 m before decreasing again in the far field. This increase and decrease 

suggests a large initial increase in weak shocks followed by a decay of the shocks. The derivative 

skewness is proportional to the cube of the pressure derivative [see Eq. (5.1)], so it is most 

sensitive to the largest shock in the entire waveform. The large shocks will form, decay, and 

thicken faster than the smaller shocks, which may still be increasing in magnitude out to 152 or 

 
Figure 5.12. Derivative skewness values for 130% ETR. The derivative skewness peaks at 76.2 m 
(250 ft) due to its dependence on the cube of the pressure derivative, or sensitivity to the largest 

shocks. 

 



 73 

even 305 m (500 or 1000 ft). This sensitivity causes the derivative skewness to peak and 

decrease quickly after 76.2 m (250 ft). The width of the derivative skewness lobe increases with 

propagation, suggesting an increase in weak shocks across larger angles with propagation. 

Similar increase in magnitude and breadth of this indicator corresponds with the results of the νN 

indicator. As seen in the 10-kHz plots in Fig. 5.10, the indicator grows for high engine conditions 

before decaying again in the far field. The breadth of the lobe also experiences significant growth 

with propagation. Like the pressure time-derivative skewness, νN at 10 kHz peaks close to the 

same angle as the OASPL, rather than upstream—like the pressure skewness. 

Another indicator that can be used to characterize nonlinearity is the average steepening 

factor (ASF).15 The ASF is the ratio of the average positive slope to the average negative slope, 

or 

 ASF =
𝐸𝐸[�̇�𝜕+]
𝐸𝐸[�̇�𝜕−]  , (5.2) 

where a dot above the pressure variable indicates a derivative. The ASF increases with shocks in 

a waveform. This indicator has not been calculated before from these data, but results are given 

here. Figure 5.13 shows the ASF for the five different engine conditions. Similar to νN and the 

derivative skewness, the ASF increases in value and broadens with propagation from the source. 

However, unlike the other indicators, the ASF remains large in the far field; there is little change 

between the values at 500 and 1000 ft for each plot in Fig. 5.13. The ASF is an indicator 

averaged over the entire waveform, so it is less sensitive to the largest shocks in the data. 

Current and future work involves characterizing the amount of annoyance due to crackle 

from the F-35 noise waveforms, then looking for correlations between nonlinearity indicators. 

Preliminary results from a subjective evaluation of crackle show a strong correlation between 

crackle, the derivative skewness, the ASF, and νN. 
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At high frequencies, the νN indicator behaves similarly to the pressure time-derivative 

skewness and ASF nonlinearity indicators. However, the derivative skewness is sensitive to the 

maximum shock amplitude while the ASF and νN indicator look more at average properties. But 

the νN indicator is so useful because it contains important information as a function of frequency. 

It characterizes energy loss at low frequencies along with the overall nonlinear trends given by 

other indicators. It is sensitive to the peak frequency of shock containing noise as well. However, 

a limiting factor is the error in the indicator at high frequencies; care must be taken to ensure a 

sufficiently large sampling frequency is used. Overall, these features make νN a viable candidate 

to be a nonlinearity indicator and possibly a metric for other annoyances due to nonlinearity. 

  

  

 
Figure 5.13. Average steepening factor (ASF) for five engine conditions. Similar to νN and the 

derivative skewness, the breadth of the lobe increases with propagation. However, the ASF 
uniquely remains high in the far field. 
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Chapter 6  
 
Concluding Discussion 

The study of a single-point nonlinearity indicator aids the understanding of noise from 

high-amplitude sources, such as high-performance military aircraft. This indicator, referred to as 

νN, yields information about the rate at which nonlinear energy transfer and waveform steepening 

is occurring. The indicator value from a single measurement can provide similar information as 

can the traditional method of comparing the spectra measured at multiple locations in space. In 

addition, use of the indicators νS, να, and νN makes for an easy comparison of the effects of 

geometric spreading, thermoviscous absorption, and nonlinearity. These indicators give a spatial 

derivative of the sound pressure level spectrum due to the different effects. 

 Summary of Findings 

To understand the expected behavior of νN, tests were first performed on various well-

known analytical and computational solutions to the generalized Burgers equation (GBE) for 

initial sinusoids in Chapter 2. The νN indicator is large and positive as harmonics are first 

nonlinearly generated. Asymptotically with distance, the indicator is positive with increasing 

magnitude as a function of frequency and acts to slow the decay from absorption. The only 
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exception is for the Blackstock Bridging Function (BBF), where spreading and absorption are 

ignored and νN is asymptotically negative, signifying nonlinear losses at the shock. 

With increased intuition from the analytical solutions, the impact of experimental 

conditions was then examined in Chapter 3. The effect of sampling frequency, bandwidth, 

scattering, and noise was explored. Though large errors are present for some analytical and 

computational nonlinear waveforms, the indicator is fairly accurate for experimentally measured 

broadband noise to about one-quarter the sampling frequency. In Chapters 4 and 5, low- and 

high-amplitude experimental signals were tested to show that νN is only nonzero for high-

amplitude signals, both in the model-scale and full-scale jet data. For high-amplitude signals, νN 

shows nonlinear growth of high frequencies and decay of low frequencies as shocks develop. In 

the far field, absorption and nonlinearity combine to cause a linear (e-f ) exponential decay as 

predicted by theory. Despite the care to be taken with experimental conditions, the νN indicator 

reveals valuable insights into broadband noise data. 

 Summary of Contributions 

This section summarizes the unique contributions to this work by the author. The 

numerical test cases in Chapter 2 were calculated and plotted, allowing for a better understanding 

of the expected behavior of νN for various scenarios. In addition, the asymptotic expressions of 

νN for the Mendousse and spherically spreading cases were determined. The investigations in 

Chapter 3 concerning the potential issues with νN were original and carried out by the author, 

including the derivation found in Section 3.1. These investigations shed light on the proper use 

of the Morfey-Howell indicator and cautioned against improper past and future use. To the 

author’s knowledge, no other known document treats the impact of sampling frequency on the 
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accuracy of this quadspectral nonlinearity indicator and its inaccuracy at frequencies lower than 

the Nyquist. The model-scale jet data has been analyzed with other nonlinearity indicators,5, 16, 45 

but for the first time the νN indicator was used. In addition, the author examined the behavior of 

the indicators and drew unique conclusions by relating them to theory. Data from F-35 aircraft 

have been analyzed previously,14, 57, 59 including the particular dataset reported in Chapter 5.56 

However, the detailed examination of spectra, OTO levels, and the νN indicator is original to this 

dataset. In addition, experimental recommendations were made based on the observed scattering 

in the dataset. 

 Implications and Recommendations 

From the investigations in Chapters 3-5, a few recommendations can be made about 

conducting experiments for determining the nonlinearity in a signal using νN. As a general rule, 

νN values should never trusted above one-quarter the sampling frequency. However, even the 

error at one-quarter the sampling frequency can be as large as (or larger than) 20%. The 

sampling frequency should therefore be made as high as reasonably possible to provide an 

adequate frequency range for nonlinearity calculations. Because the high-frequency data is so 

crucial to these nonlinearity calculations, care should be taken to minimize the scattering in the 

data. Especially when the PSD has a characteristic 1 f 2⁄  power-law slope, scattering can 

drastically impair the accuracy of the νN indicator unless extensive averaging is used. It is 

recommended that, until further experiments are conducted with a diversity of signals measured 

by closely spaced microphones—varying sampling frequency, bandwidth, scattering, etc.—the 

accuracy of νN be verified with experimentally measured spatial derivatives up to one-quarter the 

sampling frequency as done in Section 3.3.2. 
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Future work most importantly includes using a controlled environment where 

experimental waveforms of various types can be tested and characterized for errors in νN. The 

accuracy of the indicator appears to depend drastically on sampling frequency and waveform 

type, and this dependence must be explored through experimental data, perhaps in a plane-wave 

tube. For other future endeavors, indicators similar to the ν indicators, but for model equations 

other than the generalized Burgers equation could be developed. Alternate methods of computing 

the quadspectral density, Qpp2, could also be explored. One such method deals with integrating 

the bispectrum, which does not involve calculating the cross-spectrum of the waveform and 

waveform squared. In addition, the behavior of nonlinearly propagating waveforms with 

spherical spreading could be more fully studied in relation to a normalized spherical distance, 

characterizing waveform shape as a function of that normalized distance. Finally, correlation of 

the perception of crackle with νN and other nonlinearity metrics could be performed to determine 

their utility as crackle indicators. 

The νN indicator has been shown to provide meaningful information about the nonlinear 

growth and decay of harmonics for well-known solutions. It has been shown to depend on the 

amplitude of a signal, giving nonzero results only when nonlinearity is present in the data. The 

indicator provides a quantitative spatial change in sound pressure level due to nonlinearity alone, 

which can be verified by experiment. The νN indicator is especially valuable because it is 

frequency dependent, and correlation of νN with other nonlinearity indicators shows its 

significance. 
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Appendix A  
 
Computing νN for One-Third-Octave Bands 

When computing νN for one-third-octave (OTO) bands, simply summing the narrowband 

νN values over frequency bins does not provide a correct answer. The indicator has units of 

dB/m, and decibels cannot be summed in the same way that pressure units can be summed. 

Instead, the change in dB/m must first be converted to a change in Pa/m and then summed. This 

appendix outlines how this is to be done. 

First, νN represents a change in sound pressure level over distance, or 

 𝜈𝜈𝑁𝑁 = lim
𝑑𝑑𝑑𝑑→0

10 log10�𝜕𝜕22 𝜕𝜕ref2⁄ � − 10 log10�𝜕𝜕12 𝜕𝜕ref2⁄ �
𝑑𝑑𝑥𝑥

= lim
𝑑𝑑𝑑𝑑→0

10 log10(𝜕𝜕22 𝜕𝜕12⁄ )
𝑑𝑑𝑥𝑥

  , (A.1) 

where p1 is the pressure at x and p2 is the pressure at x + dx. Solving Eq. (A.1) for p2, the 

predicted pressure, and removing the limit expression gives 

 𝜕𝜕22 = 𝜕𝜕1210𝜈𝜈𝑁𝑁𝑑𝑑𝑑𝑑 10⁄   . (A.2) 

Using Eq. (A.2), the derivative of the squared pressure can then be found in terms of νN and the 

initial pressure, p1: 

 𝑑𝑑𝜕𝜕2

𝑑𝑑𝑥𝑥
= lim

𝑑𝑑𝑑𝑑→0

𝜕𝜕22 − 𝜕𝜕12

𝑑𝑑𝑥𝑥
= lim

𝑑𝑑𝑑𝑑→0

𝜕𝜕12

𝑑𝑑𝑥𝑥
�10𝜈𝜈𝑁𝑁𝑑𝑑𝑑𝑑 10⁄ − 1� =

𝜕𝜕12𝜈𝜈𝑁𝑁
10

ln(10)  . (A.3) 

This expression can now be summed over OTO bands. 
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After summing, the derivative of pressure squared must then be converted back to a 

change in dB/m. Variables that have been summed over OTO bands are denoted with an overbar. 

Solving Eq. (A.3) for the predicted squared pressure summed over OTO bands, p2
2� , gives 

 𝜕𝜕22��� = lim
𝑑𝑑𝑑𝑑→0

𝜕𝜕12𝜈𝜈𝑁𝑁������� 𝑑𝑑𝑥𝑥
10

ln(10) + 𝜕𝜕12���  . (A.4) 

Averaging Eq. (A.1) over OTO bands and using Eq. (A.4) to calculate the averaged indicator, νN���, 

then yields the useful form, 

 𝜈𝜈𝑁𝑁��� = lim
𝑑𝑑𝑑𝑑→0

10 log10�𝜕𝜕22��� 𝜕𝜕12���� �
𝑑𝑑𝑥𝑥

= lim
𝑑𝑑𝑑𝑑→0

10
𝑑𝑑𝑥𝑥

log10 �
𝜕𝜕12𝜈𝜈𝑁𝑁�������

𝜕𝜕12���
𝑑𝑑𝑥𝑥
10

ln(10) + 1� =
𝜕𝜕12𝜈𝜈𝑁𝑁�������

𝜕𝜕12���
  . (A.5) 

One other method to calculated the averaged νN��� value goes back to its definition in 

Eq. (1.8). All of the terms are constants over frequency except for the terms grouped in 

parentheses in the following equation: 

 𝜈𝜈𝑁𝑁 = −10 log10(𝑒𝑒) ×
𝛽𝛽

𝜌𝜌0𝑐𝑐03
�
𝜔𝜔𝑄𝑄𝑝𝑝𝑝𝑝2
𝑆𝑆𝑝𝑝𝑝𝑝

�  . (A.6) 

Thus an alternate way of computing the averaged indicator is 

 𝜈𝜈𝑁𝑁��� = −10 log10(𝑒𝑒) ×
𝛽𝛽

𝜌𝜌0𝑐𝑐03
�
𝜔𝜔𝑄𝑄𝑝𝑝𝑝𝑝2��������

𝑆𝑆𝑝𝑝𝑝𝑝���� �  . (A.7) 

Both Eqs. (A.5) and (A.7) have been tested experimentally and yield identical results for νN over 

OTO bands. 
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