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ABSTRACT

Computational Exploration of Vortex Nucleation In Type II Superconductors
Using a Finite Element Method in Ginzburg-Landau Theory

Alden Roy Pack
Department of Physics and Astronomy, BYU

Master of Science

Using a finite element method, we numerically solve the time-dependent Ginzburg-Landau
equations of superconductivity to explore vortex nucleation in type II superconductors. We consider
a cylindrical geometry and simulate the transition from a superconducting state to a mixed state.
Using saddle-node bifurcation theory we evaluate the superheating field for a cylinder. We explore
how surface roughness and thermal fluctuations influence vortex nucleation. This allows us to simu-
late material inhomogeneities that may lead to instabilities in superconducting resonant frequency
cavities used in particle accelerators.
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Chapter 1

Introduction

1.1 Significance of Research

Imaging is an essential component of medicine, engineering, and science. The smaller the object the

more difficult the acquisition of a clear image. Biologists studying proteins, engineers developing

semiconductor technology, and physicists studying magnetic materials all need bright, coherent,

and tunable x-ray beams for their research [1–3]. A common source for x-ray beams is syn-

chrotrons. Unfortunately the current size and costs of these accelerators restricts their accessibility

to researchers.

This work is part of a collaboration with the Center for Bright Beams (CBB), an NSF funded

science and technology center, which seeks to increase the quality and decrease the cost of beams

produced by accelerators. There are three main areas of improvement targeted by this center:

beam creation, beam acceleration, and beam storage. Our efforts are directed at the field of beam

acceleration. Specifically we wish to explore one of the limiting factors to the performance of

superconducting resonance cavities: the quench due to large induced magnetic fields.

Beam acceleration is the process of speeding up charged particles to relativistic velocities.

1
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Beam exits with a higher velocity. 

Electron beam enters here. 

Electromagnetic standing wave pulses to accelerate beam. 

The beam receives a boost at each peak. 

 Superconducting Resonant Cavity 

Figure 1.1 A series of superconducting radio frequency cavities are connected together.
The inside of the cavities are plated with niobium, a superconductor. An AC current is
tuned so that an entering bunch of electrons is accelerated at the center of each cavity.

This is done in accelerators by using superconducting radio frequency (SRF) cavities [4]. Fig. 1.1

portrays what SRF cavities look like. This image shows a series of cavities all connected together.

The interiors of the cavities are plated with a superconductor, such as niobium. An AC current

running through the cavities creates internal electromagnetic fields. The frequency of the AC current

is tuned such that an entering cluster of electrons receives a boost of energy at the center of each

cavity. The electrons are then used as an electron beam, or deflected to produce x-rays.

Much of the costs of operating SRF cavities comes from large cryogenic facilities that cool

them to around 2 degrees kelvin, well below the boiling point of liquid helium. The largest

electromagnetic fields and highest frequencies are achieved at this temperature, producing the

brightest beams. Raising this operating temperature by improving SRF cavity stability would
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eliminate large portions of the cryogenic facilities, decreasing the size and cost of maintaining

accelerators.

Superconducting materials like Nb and Nb3Sn face limitations from material inhomogeneities

[5,6]. Upon transitioning to a superconducting state magnetic fields can be trapped by imperfections.

Applied AC currents move the trapped fields, thereby dissipating heat and lowering cavity quality.

Some of these inhomogeneities include grain boundaries, surface roughness, and variations in Sn

concentrations. Experts in cavity design need to know which material inhomogeneities are the most

influential in reducing cavity stability.

Building and testing SRF cavities is expensive and the physics behind dynamic superconductivity

is difficult to measure. By using numerical methods we can paint a picture of what should happen

experimentally. We can simulate how material inhomogeneities influence accelerator performance

and guide development efforts.

1.2 Theory and Previous work

1.2.1 A Brief Review of Superconductivity

Superconductors have two hallmark phenomena: negligible DC resistance and the Meissner effect

(expulsion of magnetic fields) [7]. The negligible DC resistance in superconductors was first found

by Kamerlingh Onnes in 1911 [8]. This property is ideal for applications requiring large currents.

Note that AC currents have a small but nonnegligible resistance. The Meissner effect is due to the

formation of surface currents which induce magnetic fields that cancel out the external field (as

illustrated in Fig. 1.2). A material loses superconductivity if it exceeds the critical temperature Tc or

if the magnetic fields are so strong they break through the Meissner effect. For SRF cavities the

small AC resistance and negligible DC resistance are desired traits while the Meissner effect is a

limitation.
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Nonsuperconducting 

H 

(a)

Superconducting 

H 

J 

(b)

Figure 1.2 The expulsion of magnetic fields from within a superconductor is known as the
Meissner effect. In a nonsuperconducting state magnetic field lines are free to go through
the material. In a superconducting state surface currents form that induce magnetic fields
opposite to the external magnetic field, leaving zero magnetic field in the superconductor.

The mechanistic origin of superconductivity is the creation of Cooper pairs: 2 electrons of

opposite spin and momentum experience a positive attraction through the interaction of phonons

(lattice vibrations). Negligible resistance and the Meissner effect arise as the Cooper pairs, which

are bosons, form a Bose-Einstein condensate.

1.2.2 Ginzburg-Landau Theory: An Appropriate Model

There are many models of superconductivity [7]. Eliashberg theory and BCS theory consider

interactions of individual Cooper pairs. The simpler London model captures macroscopic features

of superconductivity but is valid only for small variations in the magnetic field. We choose to use

the Ginzburg-Landau equations as they capture macroscopic features including vortex dynamics

and the difference between type I and type II superconductors.

Phenomenological in origin, Ginzburg and Landau proposed an ansatz for the form of the

free energy difference of the superconducting and nonsuperconducting state. By minimizing this
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free energy difference one could derive partial differential equations that give the macroscopic

behavior of superconductors. They hypothesized the free energy could be approximated by a Taylor

expansion of a complex order parameter (whose norm squared is the local superconducting electron

density) centered around Tc.

Du et al. review how to derive the Ginzburg-Landau equations (GL) of superconductivity

assuming no spatial variations of the critical magnetic field Hc and Tc [9]. We will follow their

notation. The difference between the free energy in a normal state and a superconducting state is

given by

G(ψ,A) =
∫

Ω

(
fn−|ψ|2 +

1
2
|ψ|4 +

∣∣∣(− i
κ

∇−A
)

ψ

∣∣∣2 + |h|2−2h ·H
)
,

where G, the Gibbs free energy, depends on the complex order parameter ψ and the magnetic

vector potential A. Units are chosen such that if the norm squared of ψ is one then the state is

superconducting, otherwise it loses superconductivity as ψ approaches zero. The magnetic fields has

units of
√

2Hc. fn is the free energy of a superconductor in the normal state and κ , a dimensionless

constant, is the ratio of the penetration depth λ and the coherence length ξ . The penetration depth

is the distance at which the magnetic field falls off inside a superconductor. Similarly, the coherence

length is the scale over which the order parameter can vary substantially. The total magnetic field

h is given by ∇×A and H is the applied magnetic field. Ω is the superconducting region and we

will denote the boundary of that region as Γ. Note that distance is measured in terms of penetration

depth.

Solving for where the first variation of G is zero one can derive the Ginzburg-Landau equations

of superconductivity (GL) given by
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(
− i

κ
∇−A

)2
ψ−ψ + |ψ|2ψ = 0 in Ω

∇× (∇×A) =− i
2κ

(ψ∗∇ψ−ψ∇ψ
∗)−|ψ|2A+∇×H in Ω( i
κ

∇ψ +Aψ
)
·n = 0 on Γ

(∇×A)×n = H×n on Γ.

Solving the GL equations gives the state that minimizes G.

Eliashberg later generalized GL to include time dependence [10]. The time-dependent

Ginzburg-Landau equations (TDGL) are written below. With time dependence we must consider

the electric potential φ , the electric field E =−∇φ − ∂A
∂ t , and a time constant η . We set η to one

for convenience.

η
∂ψ

∂ t
+ iηκφψ +

( i
κ

∇+A
)2

ψ−ψ + |ψ|2ψ = 0 in Ω

∂A
∂ t

+∇× (∇×A)+∇φ +
i

2κ
(ψ∗∇ψ−ψ∇ψ

∗)+ |ψ|2A = ∇×H in Ω( i
κ

∇ψ +Aψ

)
·n = H×n on Γ

(∇×A)×n = H×n on Γ

E ·n = 0 on Γ

We will focus on the time-dependent case and use the time-independent problem to verify the

accuracy of steady state solutions.

1.2.3 Phases in Superconductors.

The utility of Ginzburg-Landau theory is the ability to macroscopically describe superconductivity.

We can treat G as a high dimensional surface where the solutions of the GL equations are extrema
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of G. By inspection one can see the TDGL equations are diffusive, meaning in a nonequilibrium

state the system will evolve to a state of minimal energy (a minimum of G). The global minimum

of G is the stable state while local minima are metastable states. As H changes the minima of G

may change. A local minimum can turn into the global minimum and vice versa. As an example,

for small H the global minimum of G is the superconducting state (assuming the system is below

Tc) whereas for high H the global minimum is a nonsuperconducting state. A critical magnetic field

is a field that causes a change of the global minimum. Within TDGL theory metastable states can

transition to a stable state if thermal fluctuations overcome the energy barrier [11].

The intermediate behavior between superconducting and nonsuperconducting states is deter-

mined by κ . Type I superconductors are characterized by κ < 1√
2

while type II superconductors

have κ > 1√
2
. Transtrum numerically created Fig. 1.3 based on an infinite superconducting slab

(half of space filled with vacuum and half of space filled with a superconducting material) [12]. As

the external magnetic field increases, a type I superconductor has only one critical field strength

Hc. Type II superconductors have two critical field strengths, Hc1 and Hc2. Between these two field

strengths can be a mixed state. In this state it is energetically favorable for vortices, filaments of

magnetic field, to enter the surface of the material and form a vortex lattice. These vortices are

nonsuperconducting in the center. As they move through the material, they will dissipate heat (see

Fig. 1.4). The second critical field marks where all superconductivity is lost.

We are interested in the transition from superconducting states to mixed states for type II

superconductors. The largest field in which an SRF cavity can operate without vortices forming is a

metastable superconducting state. The superheating field Hsh > Hc1 marks where the metastable

superconducting states no longer exist. This corresponds to the vanishing of the energy barrier that

prevented the system from transitioning to the mixed state [13]. We will simulate the physics near

Hsh as this is the largest field attainable by a Type II superconductor.
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Figure 1.3 Within Ginzburg-Landau theory type I superconductors are characterized by
κ < 1√

2
while type II superconductors have κ > 1√

2
. Type I superconductors have a single

critical magnetic field Hc while type II have two: Hc1 and Hc2. Between those two critical
magnetic fields is a mixed state of both superconducting and nonsuperconducting regions.
Vortices, or filaments of magnetic field, reside in the nonsuperconducting regions. It is
possible to be in a metastable state with magnetic fields greater than the critical field
(known as the superheating field) as an energy barrier must be crossed for state transitions
to occur.
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Superconductor 

Magnetic Field Lines 

Electric Current J 

Figure 1.4 In the mixed state of type II superconductors filaments of magnetic field known
as vortices form. Their centers are nonsuperconducting and their movement dissipates
heat. Each vortex is surrounded by electric current.
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1.2.4 Saddle-Node Bifurcation Theory and Free Energies

As defined in the previous section, Hsh is the magnetic field at which the energy barrier between a

metastable superconducting state and the mixed state vanishes. Below Hsh, the top of the barrier is

unstable while the bottom of the metastable state is locally stable. Upon raising the field beyond Hsh

the unstable point and stable point first approach and then annihilate each other so that the system

has one minimum, the global minimum corresponding to the mixed state. This annihilation of a

stable and unstable point is the defining characteristic of a saddle-node bifurcation [14]. We review

this theory.

The normal form of a saddle-node bifurcation is

dx
dt

= r− x2,

where x is the state variable (some combination of ψ and A). The value r is the bifurcation parameter.

The energy barrier exists for r > 0, does not exist for r < 0, and disappears at r = 0. Clearly r = 0

when |H| = Hsh. Therefore, for |H|= Hsh we can write r(H)≈ a1(|H|−Hsh)+a2(|H|−Hsh)
2+ ...

where a1,a2, ... are unknown parameters. This formulation will become useful when trying to

understand what happens when H is very close to Hsh.

1.2.5 The Finite Element Method

To solve the TDGL equations and the GL equations we choose to use the finite element method

(FEM) as there are no closed-form solutions on complicated geometries. This method discretizes the

domain of interest into finite elements that are fitted to approximate solutions to partial differential

equations. Hughes’ book is a good introduction to this method [15].

Several authors have analyzed the convergence of FEM with the GL equations and the TDGL

equations [9, 16, 17]. A particularly ingenious formulation allows finite element solutions of the
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TDGL equations to converge on any curved polyhedral domain [18, 19]. The authors reformulate

the problem into a series of Poisson and Laplace equations. We will use this approach. For the

time-independent problem we will use Du’s approach [17].

1.3 Research Goals

We mentioned that the superheating field occurs from metastability and the need to cross an energy

barrier. Vortices form once that barrier is crossed. Transtrum et al. used linear stability analysis to

find the perturbative wavelength which leads to this transition [13]. It was found that this wavelength

differs from the final spacing of vortices within the medium. The dynamics from initial nucleation to

final vortex spacing are unknown. By running time-dependent simulations we demonstrate aspects

of that evolution.

Several of our collaborators at CBB are interested in knowing the optimal smoothness for SRF

cavities. We will partially address this issue by simulating how surface roughness influences vortex

dynamics.

Finally, we apply saddle-node bifurcation theory to our simulations in order to estimate Hsh

within the TDGL equations. This provides us with a way to calculate the largest possible applied

field without the nucleation of vortices.

1.4 Organization of this Thesis

In chapter 2 we introduce our methodology. We introduce our FEM solver and the geometry of our

problem. We describe mesh generation for both a symmetric circle and a rough circle. Finally, we

describe how to use saddle-node bifurcation theory to estimate Hsh.

In chapter 3 we present our results. We create simulations above and below Hsh and we show

how adding surface roughness causes vortex nucleation at lower fields. We simulate thermal
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fluctuations by introducing noise into the system. We then estimate Hsh for the symmetric cylinder

and show how the choice of timestep and finite element type influence that estimate. We also show

how Hsh varies with κ and compare our results with previous work done by Transtrum [12]. We

also give Hsh evaluated for a rough cylinder. Finally, we compare the solution from GL to the steady

state solution for the TDGL equations.

Chapter 4 wraps up the thesis by giving a brief overview of the importance of what we have

accomplished. We then propose several avenues this research can take to further explore material

inhomogeneities and other complicated geometries.



Chapter 2

Methodology

2.1 FEniCS and the Finite Element Method

As mentioned in the introduction, we use the Finite Element Method to solve the TDGL equa-

tions and the GL equations. We use FEniCS as our finite element solver. More information on

this program can be found in [20]. For changes in implementation visit the FEniCS website,

https://fenicsproject.org.

We follow Li and Zhangs’ approach to discretizing the TDGL equations using FEM [18]. This

approach reduces the TDGL system to a series of Laplace and Diffusion equations. This allows us

to use piecewise linear (Lagrange) finite elements on general curved polyhedra in two dimensions.

We discretize time through a decoupled backward Euler method. The domain is described in the

next section. For the time-independent problem we will use Du’s approach [17].

2.2 Geometry

A simple physical system to consider is a cylindrical superconducting wire. We consider an

infinitely long cylinder without variations along the z-axis (see Fig. 2.1). We also assume the applied

13
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Cylindrical Geometry 

Figure 2.1 In the cylindrical geometry we have symmetry along the z-axis such that
variations occur in the x-y plane. The magnetic field is applied parallel to the z-axis.

magnetic field is parallel to the z-axis, H = Haẑ where Ha is a value that may depend on time. We

can then run simulations on a circular cross-section as the solution is independent of z. This domain

provides us with enough degrees of freedom to simulate vortex nucleation without becoming too

computationally cumbersome.

One of our goals is to see how surface roughness influences vortex nucleation. We will compare

a smooth surface with a rough one. For the smooth cylinder we’ve found that symmetry in mesh
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Figure 2.2 This is the mesh for a symmetric cylinder. It has a radius of 15 penetration
depths and vertices are uniformly distributed on concentric rings. There are more rings
near the boundary as that is where vortex nucleation occurs.

vertex locations improves simulation stability. Near the superheating field, variations in vertex

density and rough edges lead to vortex nucleation. To enforce symmetry we divide the circular

domain into smaller concentric circles of varying radii. We add vertices uniformly on each circle

and then triangulate the domain. For our domain we are mostly interested in dynamics close to the

boundary, so we include more circles with large radii to increase the number of vertices near the

boundary. Through trial and error we’ve found that the optimal mesh for running quick yet accurate

simulations is one with a radius of 15 penetration depths and 25 concentric circles (see Fig. 2.2).

To add roughness we create noise on the surface of the circle. This noise is a linear combination

of sines and cosines with random weights. Since the surface roughness breaks symmetry we let

FEniCS automatically add vertices uniformly throughout the domain (see Fig. 2.3).

2.3 Extrapolating Hsh with Bifurcation Theory

Another of our goals is to find Hsh, the superheating field. We previously discussed how the normal

form of a saddle-node bifurcation captures the dynamics of the superconducting phase transition
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Figure 2.3 This is the mesh for a rough cylinder. Note that the roughness breaks symmetry
so we can let FEniCS automatically add vertices uniformly in the domain.

near Hsh. The normal form is written as

dx
dt

= r− x2

where x is the state variable (some combination of ψ and A) and r is the bifurcation parameter. Near

a steady metastable state dx
dt ≈ 0 or x2 ≈ r and r > 0. The quantity x̃ = x−

√
r is a measure of how

far off we are from the steady state. If we add a small amount of thermal noise to the steady state

then x̃ corresponds to that noise. We can rewrite this as x = x̃+
√

r. We then get

dx
dt

=
dx̃
dt

= r− (x̃+
√

r)2

=−x̃2−2x̃
√

r.

As x̃ is small we can drop the first term and get

dx̃
dt

=−2
√

rx̃,

which can be solved to give x̃ =C0e−2
√

rt where C0 is some constant. We see that x̃, added thermal

noise to the steady state, decays exponentially to the steady state with a decay rate τ = 1
2
√

r .
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Recall from section 1.2.4 that for |H| = Hsh we can write r(H) ≈ a1(|H| −Hsh)+ a2(|H| −

Hsh)
2 + ... where a1,a2, ... are unknown parameters. We can see that when Ha is barely less than

Hsh (r ≈ 0) that x̃ will decay very slowly. As a matter of fact, as Ha→ Hsh, r→ 0, and τ → ∞. To

get around this we evaluate τ for various Ha, convert that to r, and then extrapolate to when r = 0.

This gives us when Hsh = Ha, thus an estimate for Hsh.

To find τ we consider the value of x̃ at two time points, t1 and t2. Taking the ratio of x̃(t2) and

x̃(t1) yields x̃(t2)
x̃(t1)

= e
t1−t2

τ . Solving for τ we find τ = t1−t2
log( x̃(t2)

x̃(t1)
)
.

As will be seen in chapter 3, added noise does not decay uniformly. Similar to how vibrations

on a drum can be decomposed into vibrational modes with varying decay rates, so can the added

thermal noise of a superconductor be decomposed into modes. The mode that decays the slowest

is the mode that corresponds to vortex nucleation. In other words the slowest decaying mode

corresponds to the direction of vanishing energy barrier. We use the decay rate of x̃ to estimate

r(H)≈ a1(|H|−Hsh)+a2(|H|−Hsh)
2 and then solve r(Hsh) = 0 to find Hsh.



Chapter 3

Results

Our three goals mentioned in chapter 1 are to simulate vortex nucleation, estimate Hsh, and simulate

roughness. We mention our results following that order.

3.1 Simulations Above and Below Hsh

To see the difference between states below and above Hsh we run time dependent simulations that

start in the superconducting state and raise the magnetic field to some fixed value. As we wish to

see vortex nucleation the TDGL equations are the appropriate equations to solve.

Let’s start with what happens to simulations on the symmetric cylinder above and below Hsh.

We start in a superconducting state and raise the applied field as Ha(t) = Hmax(1.0− e−t) where

Hmax is the maximum applied field. This choice for time dependence allows us to initially raise the

field quickly when the dynamics are unimportant, and then slow down as we approach the field

strength of interest, Hmax.

Remember that the superheating field depends on κ , the ratio of the penetration depth and the

coherence length (see Fig. 1.3). To analyze a type II superconductor we choose κ = 4. Consider

what happens for Hmax = 0.7 and compare it to the results for Hmax = 0.785.

18
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The dynamics for Hmax = 0.7 can be seen in Fig. 3.1. At various time steps we plot the norm

squared of the order parameter |ψ|2, the magnetic field h, the supercurrent j, and |ψ|2 on the surface

of the cylinder. We can see that as time increases |ψ|2 decreases near the boundary. At the same

time we see that the magnetic field increases inside the superconductor near the boundary. This

indicates that the density of superconducting electrons decreases as the magnetic field increases.

The supercurrent increases near the boundary to keep out the external magnetic field. Also note that

|ψ|2 on the surface is uniform. Att = 75 the system ceases to change and we have reached a stable

steady state.

The dynamics for Hmax = 0.785 differ significantly as seen in Fig. 3.2. |ψ|2 on the surface

decreases until it loses uniformity, becomes zero periodically on the boundary, and then increases.

Each low region of |ψ|2 is also a location for large h. These are the vortices. Note that each vortex

has the same size and field strength. We have simulated how a superconductor transitions from a

superconducting to a mixed state. Clearly Hmax = 0.74 < Hsh while Hmax = 0.785 > Hsh.

3.2 Thermal Fluctuations, Bifurcation, and Finding Hsh

We expect that below the superheating field, which is a stable state, that added thermal fluctuations

will decay. If we are close to the superheating field or in an unstable state then noise should cause

vortices to form. One could procedurally look for Hsh by raising the field, waiting for the system

to enter a steady state, and then add noise to see if the noise decays. Eventually one would add

an infinitesimal amount of noise infinitesimally close to Hsh until they reach the precision they

desire. Unfortunately the closer one gets to Hsh, the longer the system takes to equilibrate. Using

saddle-node bifurcation theory we can avoid this conundrum.

In chapter 2 we derived an expression for x̃, a small quantity that decays at different rates

depending on a bifurcation parameter. To see how our thermal fluctuations match the behavior of x̃
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(a) (b)

(c) (d)

Figure 3.1 As we raise the field to Hmax = 0.7 we observe the order parameter decreases
near the boundary and the magnetic field increases. At t = 75 the system reaches a steady
state. This indicates we are below the superheating field.
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(a) (b)

(c) (d)

Figure 3.2 As we raise the field to Hmax = 0.785 the order parameter decreases until it
loses uniformity, becomes zero periodically, and then increases. Vortices begin penetrating
the surface at t = 69.5 and are fully resolved at t = 75. The penetration of vortices means
the Meissner state is unstable.
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consider Fig. 3.3, where we have run the simulation to the steady state for Hmax = 0.7 and added

noise, d|ψ|2. We can see that the random noise added to |ψ|2 dies off very quickly in the middle

of the cylinder. Near the edge of the cylinder a periodic pattern of high and low values for d|ψ|2

develops. The noise near the boundary dies off slower than the rest of the system. This pattern is

the combination of parameters that causes the system to transition from a superconducting state to a

mixed state. We have found x̃.

By picking a vertex where this mode of decay is high we calculate how noise on this vertex

decays and calculate the decay rates for varying applied fields. Fig. 3.4 shows the location of the

vertex we have chosen to observe, indicated by a red dot. We purposely chose a region where this

decaying mode is large. Fig. 3.5 shows how noise on this vertex decays as we vary the applied field.

There is initially some transient dynamics due to regions of high and low noise interacting, but once

the majority of the noise has died, the remaining noise, x̃, decays exponentially. The rate of decay

for the final exponential behavior increases as we raise Hmax. We can use the tools of section 2.3 to

calculate τ and r. In Fig. 3.6 we use a quadratic fit to extrapolate the bifurcation parameter to where

it becomes zero, which is where Hmax = Hsh. We estimate Hsh = 0.738333.

Transtrum et al. evaluated Hsh for varying κ and found that Hsh = 0.7224 for κ = 4.037 [13].

In their approach they considered a bulk superconductor (space half filled with vaccum and half

filled with superconductor) while we considered a cylinder. We attribute the difference in Hsh to

this difference in geometry.

A table of values comparing the results of this work with Transtrum’s work is given in table 3.1.

Note that as κ increases Hsh decreases. The relative difference is also calculated. In the table the

vertices chosen for evaluating Hsh were based on the lowest value of x̃. The previous value of Hsh

was evaluated on a vertex picked out visually. Hence the difference in value.
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(a) (b)

(c) (d)

Figure 3.3 We add noise to the superconducting cylinder in the steady state with an
applied field of 0.7. Noise in the center of the cylinder decays quickly. Noise at the edges
persist in a periodic pattern of low and high regions. This mode is what initiates vortex
nucleation. In these images this mode disappears, indicating the system is stable.
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Figure 3.4 The red dot indicates a vertex in a region of large negative noise. Calculating
the decay rate of noise at this vertex gives us a way to measure the decay rate of this mode.

Cylinder Hsh Slab Hsh Relative Difference

κ = 4 0.7427 0.7224 0.0281

κ = 5 0.7447 0.7015 0.0616

κ = 6 0.7181 0.6880 0.0438

κ = 8 0.7056 0.6653 0.0606

Table 3.1 Variations in Hsh depending on κ . Note that as κ increases Hsh decreases.
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Figure 3.5 We observe the behavior of noise added to the order parameter at a given
vertex and varying magnetic fields Ha. After a few time steps we introduce noise to the
cylinder. Due to the interaction of this vertex with its neighbors we observe transient
fluctuating behavior. For t > 2 the noise decays exponentially except for Ha = 76 which
appears to stay constant.
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Figure 3.6 The red dots indicate various values of the bifurcation parameter at varying
applied fields. A quadratic fit to this data yields a superheating field of 0.7383.
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p1 p2

dt = 0.1 0.73834 0.73564

dt = 0.05 0.73810 0.73565

dt = 0.01 0.73791 0.73528

Table 3.2 The estimated value for Hsh is accurate for 2 decimal places as we vary timestep
and the order of the finite elements.

3.3 Surface Roughness

The previous results are useful in visualizing the critical wavelength and finding Hsh, but physical

SRF cavities are not perfectly symmetric. Considering roughness on a cylinder takes us one step

closer toward simulating SRF cavities. We now consider the rough cylinder mentioned in chapter

2. In Fig. 3.7 we see what happens when we set Hmax = 0.7 for a rough cylinder. The vortices

no longer penetrate the surface uniformly. Instead they prefer to nucleate in the troughs of the

surface. For this geometry Hsh = 0.6866 with κ = 4. This shows that adding roughness can lead to

a decrease in Hsh.

3.4 Accuracy of Results

Li et al. have already performed an error analysis of several geometries for their formulation of

the TDGL equations [18]. Our previous choices for the timestep and mesh density were based on

balancing accuracy of expected physics and minimizing time to run simulations. We can increase

mesh density and adjust the timestep until physical observables (|ψ|2, Hsh) meet desired accuracy.

Table 3.2 shows how Hsh varies as we change the timestep and polynomial order of our finite

elements. Keeping the mesh the same we can see that second order polynomials reduces Hsh and

raising the step size increases Hsh. This table shows we are accurate to two significant figures.
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(a) (b)

(c) (d)

Figure 3.7 We raise the field to Ha = 0.7 on a rough cylinder. Unlike the symmetric
cylinder the order parameter is not uniform before vortex nucleation. As the field increases
the vortices form in the troughs of the surface.
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We have also calculated the mean squared error between |ψ|2 from the steady state solution of

the time-dependent problem with |ψ|2 from the time-independent problem with Ha = 0.7. The error

is 1.2644e-05.

Based on these two results and the ability to reproduce expected physics we are confident our

simulations are meaningful.



Chapter 4

Conclusion and Possible Extensions

We have created software that solves the TDGL equations to capture interesting physics in supercon-

ductors. We have seen how surface roughness and thermal fluctuations influence vortex dynamics

on a cylindrical superconductor. Finally we demonstrated how to use saddle-node bifurcation theory

to estimate Hsh.

Much of our efforts were dedicated to implementing FEM in FEniCS, debugging code, and

evaluating the accuracy of our simulations. As interesting physics surfaced and collaborators

suggested new ideas we found there are ways to continue this research. The following are potential

extensions and applications of our methods.

4.1 Possible Extensions

Spatial Variations

We assumed no spatial variations in Tc or Hc. This is true of a material that contains the same

quantity of atoms uniformly. In reality all superconducting materials are dirty. In a real SRF

cavity there may be regions of nonsuperconducting material. Often grain boundaries can introduce

30
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discontinuities. These inhomogeneities could be accounted for by letting κ vary spatially. We would

have to rederive the GL equations and implement the changes in our software.

Surface Roughness

As part of our work described here, we analyzed how surface roughness on a cylinder lowered Hsh

and how vortex nucleation changed. The next step is to create a database of meshes of varying

roughness, evaluate their corresponding Hsh, and statistically infer when roughness matters.

Varying Magnetic Field Dynamics

We raised the field exponentially from zero so that initially the field increased rapidly but slowed

down near Hsh. This allowed us to approach Hsh in a reasonable amount of time without forcing a

transition due to rapid changes in magnetic fields. AC fields are used in SRF cavities. It would be

informative to see how vortices enter and exit a superconducting material in an oscillating field.

Generalizing to 3-D

Our cylindrical geometry is limited to z-independent variations. The magnetic field must also be

perpendicular to our circular cross section. There are some approaches to solving TDGL in 3-D [21].

They require complex finite elements and solvers to produce accurate results.

4.2 Conclusions

This work enables further study of many interesting phenomena near the superheating transition.

We hope that this work will serve as a foundation for many future projects that can answer many

questions that are beyond the scope of the current project. We will continue to collaborate with

members of CBB and colleagues at Brigham Young University to explore this fascinating field.
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Our source code that solves the TDGL equations is found in appendix A and code that compares

the TDGL solutions with GL solutions in appendix B.



Appendix A

TDGL Code

The file T DGL_Arbitrary_Long.py initializes the objects used in FEniCS to solve TDGL. I have

included occasional comments to explain what each section of code does but much of it will require

familiarity with FEniCS to make any sense.

import dolfin as d

import numpy as np

###

##Introduction

###

###This script sets up the problem of solving the Time-Dependent Ginzburg-Landau

equations (TDGL). The TDGL_Arbitrary class should be loaded in the oneRun.py

script. This seperates the nitty gritty detail of implementing TDGL in FEniCS

from the simpler steps of adjusting physical parameters, choosing how long to

run the simulation, and where to save the solution.

33
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###

## Derived Expression classes

###

### An expression is a general way to express equations, values, functions etc in

FEniCS. We use these expressions as terms in our equations and as a way to

create initial values. ha is the current applied field, t is the time to

evaluate the function at. HA is the FEniCS friendly format fo the applied field

, DHADT is the time derivative of that field, InitialFF includes the initial

conditions for the order parameter and InitialQ gives the initial conditions

for the magnetic potential vector.

class HA(d.Expression):

def __init__(self,t, ha, degree=None):

self.t = t

self.ha = ha

def eval(self, values, x):

values[0]=(self.ha)*(1.0 - np.exp(-self.t))

class DHADT(d.Expression):

def __init__(self, t, ha, degree=None):

self.t = t

self.ha = ha

def eval(self, values, x):

values[0]=(self.ha)*(np.exp(-self.t))

class InitialFF(d.Expression):
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def eval(self, values, x):

#Real

values[0]=0.8

#imaginary

values[1]=0.6

def value_shape(self):

return (2,)

class InitialQ(d.Expression):

def eval(self, values, x):

values[0]=0.0

values[1]=0.0

def value_shape(self):

return (2,)

###This function is used to determine if a vertex on the mesh is on the boundary of

the mesh.

def boundary(x, on_boundary):

return on_boundary

###

##TDGL_Arbitrary class

###

###This class accepts an applied field ha, the material parameter kappa, the mesh

to use mesh_in, the time step dt, and the polynomial order of the finite

elements. The class then sets up solvers that solve TDGL. It also creates
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initial values or loads in previous values.

class TDGL_Arbitrary:

def __init__(self, ha, kappa, mesh_in, dt, poly, restart=False, prev_in=None):

poly = poly

##Create the mesh.

self.ha = ha

self.dt = dt

self.kappa = kappa

self.eta = 1.0

self.mesh = d.Mesh(mesh_in)

self.meshsize = len(self.mesh.coordinates())

##Define the function spaces, the test and trial functions, and function

assigners.

#F

self.F = d.FunctionSpace(self.mesh, "Lagrange", poly)

self.Felem=d.FiniteElement("Lagrange", self.mesh.ufl_cell(),poly)

self.FF = d.FunctionSpace(self.mesh, self.Felem * self.Felem)

self.ff = d.Function(self.FF)

self.dff = d.TrialFunction(self.FF)#This is used in calculating the

jacobian

self.ff0 = d.Function(self.FF)

self.fr, self.fi = d.split(self.ff)

self.frtest, self.fitest = d.TestFunctions(self.FF)

self.fr_0 = d.Function(self.F)

self.fr_1 = d.Function(self.F)

self.fi_0 = d.Function(self.F)
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self.fi_1 = d.Function(self.F)

self.ffassigner = d.FunctionAssigner(self.FF, self.FF)

self.fftofrassigner = d.FunctionAssigner(self.F, self.FF.sub(0))

self.fftofiassigner = d.FunctionAssigner(self.F, self.FF.sub(1))

self.frtoffassigner = d.FunctionAssigner(self.FF.sub(0), self.F)

self.fitoffassigner = d.FunctionAssigner(self.FF.sub(1), self.F)

self.fassigner = d.FunctionAssigner(self.F, self.F)

#Q

self.Q = d.VectorFunctionSpace(self.mesh, "Lagrange", poly)

self.q = d.Function(self.Q)

self.q_0 = d.Function(self.Q)

self.q_1 = d.Function(self.Q)

self.qassigner = d.FunctionAssigner(self.Q, self.Q)

self.qsubassigners = [d.FunctionAssigner(self.Q.sub(i), self.F) for i in

range(2)]

self.q_1x = d.Function(self.F)

self.q_1y = d.Function(self.F)

#p, q2, u, v

self.p = d.Function(self.F)

self.p_0 = d.Function(self.F)

self.p_1 = d.Function(self.F)

self.ptrial = d.TrialFunction(self.F)

self.ptest = d.TestFunction(self.F)

self.q2 = d.Function(self.F)

self.q2_0 = d.Function(self.F)

self.q2_1 = d.Function(self.F)

self.q2trial = d.TrialFunction(self.F)
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self.q2test = d.TestFunction(self.F)

self.u = d.Function(self.F)

self.u_0 = d.Function(self.F)

self.u_1 = d.Function(self.F)

self.utrial = d.TrialFunction(self.F)

self.utest = d.TestFunction(self.F)

self.ubv = d.Constant(0.0)

self.ubc = d.DirichletBC(self.F,self.ubv, boundary)

self.v = d.Function(self.F)

self.v_0 = d.Function(self.F)

self.v_1 = d.Function(self.F)

self.vtrial = d.TrialFunction(self.F)

self.vtest = d.TestFunction(self.F)

self.w = d.Function(self.F)

self.w_0 = d.Function(self.F)

self.w_1 = d.Function(self.F)

self.wtrial = d.TrialFunction(self.F)

self.wtest = d.TestFunction(self.F)

###Initialize or load previous values

if restart == False:

#F

self.ff_init = InitialFF(degree=2)

self.ff0.interpolate(self.ff_init)

self.fftofrassigner.assign(self.fr_0,self.ff0.sub(0))

self.fftofiassigner.assign(self.fi_0,self.ff0.sub(1))
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#Q

self.q_init = InitialQ(degree=2)

self.q_0.interpolate(self.q_init)

self.t = 0.0

#Solve for initial u_0 and v_0

self.uLHS0 = d.inner(d.grad(self.utrial),d.grad(self.utest))*d.dx

self.uRHS0 = d.inner(self.q_0,d.curl(self.utest))*d.dx

#set up problem for v

self.vLHS0 = d.inner(d.grad(self.vtrial),d.grad(self.vtest))*d.dx

self.vRHS0 = d.inner(self.q_0,d.grad(self.vtest))*d.dx

##solve for inital v and u

d.solve(self.uLHS0 == self.uRHS0, self.u, self.ubc)

self.fassigner.assign(self.u_0, self.u)

d.solve(self.vLHS0 == self.vRHS0, self.v)

self.fassigner.assign(self.v_0, self.v)

###Do I need to solve for w_0? Current default w_0 = 0

else:

###Note, this assumes you save the solution based on degrees of freedom

stuff=np.load(prev_in)

self.pfr = stuff['fr'][-1]

self.pfi = stuff['fi'][-1]

self.pq = stuff['q'][-1]

self.pu = stuff['u'][-1]

self.pv = stuff['v'][-1]

self.pw = stuff['w'][-1]

self.t = stuff['t'][-1]

###Assign values to functions
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self.fr_0.vector()[:] = self.pfr

self.fi_0.vector()[:] = self.pfi

self.q_0.vector()[:] = self.pq

self.u_0.vector()[:] = self.pu

self.v_0.vector()[:] = self.pv

self.w_0.vector()[:] = self.pw

###Assign values to mixed space

self.frtoffassigner.assign(self.ff0.sub(0),self.fr_0)

self.fitoffassigner.assign(self.ff0.sub(1),self.fi_0)

##Set initial time

self.ts = [self.t]

self.dts = [0.0]

#define Ha and dHdt

self.Ha = HA(self.t, self.ha, degree=1)

self.dHdt = DHADT(self.t, self.ha, degree=1)

#set up problem for f (psi)

self.F1 = (-self.fi_0*self.fitest + self.fi*self.fitest - self.fr_0*self.

frtest + self.fr*self.frtest)*d.dx + self.dt/(self.kappa**2)*(d.inner(d.

grad(self.fi),d.grad(self.fitest)) + d.inner(d.grad(self.fr),d.grad(self

.frtest)))*d.dx + self.dt/self.kappa*(d.inner(self.q_0,d.grad(self.fr))*

self.fitest - d.inner(self.q_0,d.grad(self.fi))*self.frtest)*d.dx + self

.dt/self.kappa*(-d.inner(self.q_0,d.grad(self.fitest)) *self.fr + d.

inner(self.q_0,d.grad(self.frtest))*self.fi)*d.dx + self.dt*d.inner(self

.q_0,self.q_0)*(self.fi*self.fitest + self.fr*self.frtest)*d.dx + self.

dt*(-self.fi*self.fitest + self.fi_0**2*self.fi*self.fitest + self.fi*

self.fr_0**2*self.fitest - self.fr*self.frtest + self.fi_0**2*self.fr*

self.frtest + self.fr_0**2*self.fr*self.frtest)*d.dx + self.dt*self.eta*
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self.kappa*(d.inner(self.q_0, d.grad(self.fr))*self.fitest - d.inner(

self.q_0, d.grad(self.fi))*self.frtest + d.inner(self.q_0,d.grad(self.

fitest))*self.fr - d.inner(self.q_0, d.grad(self.frtest))*self.fi)*d.dx

self.F2 = (self.fr_0*self.fitest - self.fr*self.fitest - self.fi_0*self.

frtest + self.fi*self.frtest)*d.dx + self.dt/(self.kappa**2)*(-d.inner(d

.grad(self.fr),d.grad(self.fitest)) + d.inner(d.grad(self.fi),d.grad(

self.frtest)))*d.dx + self.dt/self.kappa*(d.inner(self.q_0,d.grad(self.

fi))*self.fitest + d.inner(self.q_0,d.grad(self.fr))*self.frtest)*d.dx +

self.dt/self.kappa*(-d.inner(self.q_0,d.grad(self.fitest))*self.fi - d.

inner(self.q_0,d.grad(self.frtest))*self.fr)*d.dx + self.dt*d.inner(self

.q_0,self.q_0)*(-self.fr*self.fitest + self.fi*self.frtest)*d.dx + dt*(

self.fr*self.fitest - self.fi_0**2*self.fr*self.fitest - self.fr*self.

fr_0**2*self.fitest - self.fi*self.frtest + self.fi_0**2*self.fi*self.

frtest + self.fr_0**2*self.fi*self.frtest)*d.dx + self.dt*self.eta*self.

kappa*(d.inner(self.q_0, d.grad(self.fi))*self.fitest + d.inner(self.q_0

, d.grad(self.fr))*self.frtest + d.inner(self.q_0,d.grad(self.fitest))*

self.fi + d.inner(self.q_0, d.grad(self.frtest))*self.fr)*d.dx

self.Fs = self.F1+self.F2

self.a1 = d.derivative(self.Fs, self.ff, self.dff)

## We have None for the boundary conditions because it is taken care of in

the weak form

self.fproblem = d.NonlinearVariationalProblem(self.Fs, self.ff, None, self.

a1)

self.fsolver = d.NonlinearVariationalSolver(self.fproblem)

##set up problem for P

self.pbv = d.Constant(0.0)

self.pbc = d.DirichletBC(self.F,self.pbv, boundary)
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self.pRHS =d.inner(self.q_0*(self.fi_0*self.fi_1+self.fr_0*self.fr_1)+1.0/

self.kappa*(d.grad(self.fr_1)*self.fi_0 - d.grad(self.fi_1)*self.fr_0),d

.curl(self.ptest))*d.dx

self.pLHS = d.inner(d.grad(self.ptrial),d.grad(self.ptest))*d.dx

self.pproblem = d.LinearVariationalProblem(self.pLHS, self.pRHS, self.p,

bcs = self.pbc)

self.psolver = d.LinearVariationalSolver(self.pproblem)

self.psolver.parameters['krylov_solver']['error_on_nonconvergence'] = False

self.err = []

self.i = 0

##set up problem for q

self.q2RHS =d.inner(self.q_0*(self.fi_0*self.fi_1+self.fr_0*self.fr_1)+1.0/

self.kappa*(d.grad(self.fr_1)*self.fi_0 - d.grad(self.fi_1)*self.fr_0),d

.grad(self.q2test))*d.dx

self.q2LHS = d.inner(d.grad(self.q2trial),d.grad(self.q2test))*d.dx

self.q2problem = d.LinearVariationalProblem(self.q2LHS, self.q2RHS, self.q2,

bcs = None)

self.q2solver = d.LinearVariationalSolver(self.q2problem)

self.q2solver.parameters['krylov_solver']['error_on_nonconvergence'] =

False

self.q2solver.parameters['krylov_solver']['nonzero_initial_guess'] = False

##set up problem for u

self.uLHS = self.utrial*self.utest*d.dx + self.dt*d.inner(d.grad(self.

utrial),d.grad(self.utest))*d.dx

self.uRHS = self.u_0*self.utest*d.dx + self.dt*(self.Ha - self.p_1)*self.

utest*d.dx

#set up problem for v
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self.vLHS = self.vtrial*self.vtest*d.dx + self.dt*d.inner(d.grad(self.

vtrial),d.grad(self.vtest))*d.dx

self.vRHS = self.v_0*self.vtest*d.dx - self.dt*(self.q2_1)*self.vtest*d.dx

#set up problem for w

self.wLHS = self.wtrial*self.wtest*d.dx + self.dt*d.inner(d.grad(self.

wtrial),d.grad(self.wtest))*d.dx

self.wRHS = self.w_1*self.wtest*d.dx - self.dt*d.inner(self.q_0*(self.fi_0*

self.fi_1+self.fr_0*self.fr_1)+1.0/self.kappa*(d.grad(self.fr_1)*self.

fi_0 - d.grad(self.fi_1)*self.fr_0),d.curl(self.wtest))*d.dx-self.dt*d.

inner(self.dHdt,self.wtest)*d.dx#include dHadt term when considering

time case

#save sols

self.frsols = [self.fr_0.vector().array()]

self.fisols = [self.fi_0.vector().array()]

self.qsols = [self.q_0.vector().array()]

self.usols = [self.u_0.vector().array()]

self.vsols = [self.v_0.vector().array()]

self.psols = [self.p_0.vector().array()]

self.q2sols = [self.q2_0.vector().array()]

self.wsols = [self.w_0.vector().array()]

self.bsols0 = d.project(self.Ha + self.w_0, self.F)

self.ts = [self.t]

self.N = len(self.fi_0.compute_vertex_values())

##I used to step forward in time
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def TimeStep(self):

self.i +=1

self.t += self.dt

self.Ha.t = self.t

self.dHdt.t = self.t

# self.fsolver.solve(self.tol)

self.fsolver.solve()

self.fftofrassigner.assign(self.fr_1,self.ff.sub(0))

self.fftofiassigner.assign(self.fi_1,self.ff.sub(1))

# d.solve(self.pLHS == self.pRHS, self.p, self.pbc, solver_parameters={'

krylov_solver':{'error_on_nonconvergence':False}})

self.psolver.solve()

self.fassigner.assign(self.p_1, self.p)

self.q2solver.solve()

# d.solve(self.q2LHS == self.q2RHS,self.q2, solver_parameters={'

krylov_solver':{'error_on_nonconvergence':False}})

self.fassigner.assign(self.q2_1, self.q2)

d.solve(self.uLHS == self.uRHS, self.u, self.ubc, solver_parameters={'

krylov_solver':{'error_on_nonconvergence':False}})

self.fassigner.assign(self.u_1, self.u)

d.solve(self.vLHS == self.vRHS, self.v, solver_parameters={'krylov_solver':{

'error_on_nonconvergence':False}})

self.fassigner.assign(self.v_1, self.v)

d.solve(self.wLHS == self.wRHS,self.w, solver_parameters={'krylov_solver':{

'error_on_nonconvergence':False}})

self.fassigner.assign(self.w_1, self.w)

#calculate q_1



45

self.q_1x = d.project(self.u_1.dx(1) + self.v_1.dx(0),self.F)

self.q_1y = d.project(-self.u_1.dx(0) + self.v_1.dx(1),self.F)

comps = [self.q_1x, self.q_1y]

[self.qsubassigners[i].assign(self.q_1.sub(i),comp) for i, comp in

enumerate(comps)]

#Append new save values

self.frsols.append(self.fr_1.vector().array())

self.fisols.append(self.fi_1.vector().array())

self.qsols.append(self.q_1.vector().array())

self.q2sols.append(self.q2_1.vector().array())

self.psols.append(self.p_1.vector().array())

self.vsols.append(self.v_1.vector().array())

self.usols.append(self.u_1.vector().array())

self.wsols.append(self.w_1.vector().array())

self.dts.append(self.dt)

self.ts.append(self.t)

#assign new values for next step

self.fassigner.assign(self.fr_0,self.fr_1)

self.fassigner.assign(self.fi_0,self.fi_1)

self.qassigner.assign(self.q_0, self.q_1)

self.fassigner.assign(self.u_0, self.u_1)

self.fassigner.assign(self.v_0, self.v_1)

self.fassigner.assign(self.w_0, self.w_1)

def AddNoise(self, nzs):

for j in range(len(self.frsols[0])):

nscale = float(nzs)
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val = self.fr_0.vector()[j]+np.random.normal(scale=nscale)

self.fr_0.vector()[j]=val[0]

val = self.fi_0.vector()[j]+np.random.normal(scale=nscale)

self.fi_0.vector()[j]=val[0]

val = self.u_0.vector()[j]+np.random.normal(scale=nscale)

self.u_0.vector()[j]=val[0]

val = self.v_0.vector()[j]+np.random.normal(scale=nscale)

self.v_0.vector()[j]=val[0]

These files do not need to be accessed by the user to run simulations. I have created an interface

that calls the previous script, runs simulations, and saves the result. This file oneRunFinal.py is

what follows.

#!/apps/python/3.6.2/bin/python3

import time as time2

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.tri as tri

from dolfin import *

import imp

###used to plot

def mesh2triang(mesh):

xy = mesh.coordinates()

return tri.Triangulation(xy[:, 0], xy[:, 1], mesh.cells())

###plots scalar functions
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def plot(obj):

plt.clf()

plt.gca().set_aspect('equal')

plt.tripcolor(mesh2triang(tdgl.mesh), obj, shading = 'gouraud')

plt.clim(min(obj),max(obj))

plt.colorbar()

# plt.set_cmap('jet')

restart = True

savesol = True

savefreq = 100 ###Every nth step will be saved as a checkpoint.

addnoise = True

noisestep = 3

steptol = 1E-4

set_log_active(False) # this gets rid of some annoying output.

### This function determins what quantities you want to save.

def savedata():

np.savez(outFileName, fr = tdgl.frsols, fi = tdgl.fisols, q = tdgl.qsols, t =

tdgl.ts, dt = tdgl.dts, u = tdgl.usols, v = tdgl.vsols, ttr = ttr, w = tdgl.

wsols)

##initial parameters

##time step

dt = 0.1

dts = '.1'
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pdts = '.1'

##applied field

ha = 0.4

Has = '4'

pHas = Has

##number of steps to take

steps = 100

kappa=4.0

ks = '4'

###nzs is the amplitude of noise you add if you restart the simulation.

nzs='0.01'

rs = '15'

cs = '25'

poly = 1

###

##Mesh to load

###

seednum = 1

numk = 80 #number of wavelengths

k0 =20.0 #ko is where the gausian weights are centered

sigma = 20.0 #this modifies how wide the gaussian curve is

nzAmp = 80.0#changes amplitude of final noise

density = 40.0#the higher the density the more vertices will be on the mesh.

dist = 0.2 #adds more vertices on boundary if dist is smaller
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# mesh_in = "./tmp/RoughCyl_seed%d_numk%d_k0%d_sigma%d_amp%d_dens%d_dist%.2f.xml" %

(seednum, numk, k0, sigma, nzAmp, density, dist)

mesh_in = "./tmp/SymCylr%sc%s.xml" % (rs, cs)

###

##Outfile name

###

# outFileName = './tmp/tmpNZsol.npz'

# outFileName = './tmp/restarttmpNZsol.npz'

outFileName = './tmp/restarttmpsymsol.npz'

###

##Previsous input name

###

prev_in = './tmp/tmpsymsol.npz'

###

##Everything below here should not need to be adjusted.

###
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###

#Load Problem

###

import TDGL_Arbitrary_Long

imp.reload(TDGL_Arbitrary_Long)

Arbitrary = TDGL_Arbitrary_Long.TDGL_Arbitrary

if restart == False:

tdgl = Arbitrary(ha, kappa, mesh_in, dt,poly)

else:

tdgl = Arbitrary(ha, kappa, mesh_in, dt,poly, restart=True, prev_in=prev_in)

###

#Solve problem

###

##start a timer

start_time = time2.time()

###Run timesteps, save every 100th step

for i in range(steps):

tdgl.TimeStep()

print(i)

if addnoise == True:

if i == noisestep:

tdgl.AddNoise(nzs)

if savesol:

if i % savefreq == 0 and i > 0:
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ttr = time2.time() - start_time

savedata()

ttr = time2.time() - start_time

##save time it took to run

print("Solver␣finished")

###

#Plotting options

###

###convert mesh to triangulation

def mesh2triang(mesh):

xy = mesh.coordinates()

return tri.Triangulation(xy[:, 0], xy[:, 1], mesh.cells())

###plots scalar functions

def plot1(obj):

plt.clf()

plt.gca().set_aspect('equal')

plt.tripcolor(mesh2triang(tdgl.mesh), obj, shading = 'gouraud')

plt.clim(min(obj),max(obj))

plt.colorbar()

###converts 1 solution to plottable format
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def convertsol(sol):

f = Function(tdgl.F)

f.vector()[:] = sol

return f.compute_vertex_values()

###plots the nth step of fsqr

def plotfsqr(n):

fr = convertsol(tdgl.frsols[n])

fi = convertsol(tdgl.fisols[n])

fsqr = fi**2 + fr**2

plot1(fsqr)

###plots f on the surface

def plotf(n):

t = tdgl.ts[n]

fvals = []

thetas = []

##create may to mark vertices on the boundary

V = FunctionSpace(tdgl.mesh, "CG",1)

bc = DirichletBC(V, 1, DomainBoundary())

u = Function(V)

bc.apply(u.vector())

d2v = dof_to_vertex_map(V)

coords = tdgl.mesh.coordinates()

#vertices on boundary

vob = d2v[u.vector()==1.0]
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fr = convertsol(tdgl.frsols[n])

fi = convertsol(tdgl.fisols[n])

for i in vob:

xy = coords[i]

val = np.arctan2(xy[1],xy[0])

if val < 0.0:

thetas.append(val+2.0*np.pi)

else:

thetas.append(val)

fsqr = fr[n][i]**2+fi[n][i]**2

fvals.append(fsqr)

# plt.gca().set_aspect('equal')

thetas, fvals = (zip(*sorted(zip(thetas, fvals))))

thetas, fvals = (list(t) for t in zip(*sorted(zip(thetas,fvals))))

plt.plot(thetas,fvals)

# plt.clf()

plt.ylim(0,1.0)

###plots fsqr at vertex n

def plotfsqrvert(n):

fr = [convertsol(i) for i in tdgl.frsols]

fi = [convertsol(i) for i in tdgl.fisols]

fsqrval=[fr[i][n]**2+fi[i][n]**2 for i in range(len(tdgl.frsols))]

plt.plot(range(len(tdgl.frsols)),fsqrval)

plt.show()

###plots scalar functions but with fixed colorbar
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def plot2(obj):

plt.clf()

plt.gca().set_aspect('equal')

plt.tripcolor(mesh2triang(tdgl.mesh), obj, shading = 'gouraud', vmin = 0, vmax

= 2.0)

plt.colorbar()

def degree2vertex(vec):

d2v= dof_to_vertex_map(tdgl.F)

sorted1 = zip(d2v,vec)

sorted2 = list(sorted1)

sorted2.sort(key=lambda tup: tup[0])

sorted3 = [float(i[1]) for i in sorted2]

return sorted3

def degree2vertex2(vec):

d2v= dof_to_vertex_map(tdgl.Q)

sorted1 = zip(d2v,vec)

sorted2 = list(sorted1)

sorted2.sort(key=lambda tup: tup[0])

sorted3 = [float(i[1]) for i in sorted2]

return sorted3

###

#Save solution

###
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if savesol:

savedata()



Appendix B

GL Code

The following script uses a previous steady state solution as an initial guess to the time-independent

problem.

from dolfin import *

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.tri as tri

###used to plot

def mesh2triang(mesh):

xy = mesh.coordinates()

return tri.Triangulation(xy[:, 0], xy[:, 1], mesh.cells())

###plots scalar functions

def plot(obj):

plt.clf()

plt.gca().set_aspect('equal')

56
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plt.tripcolor(mesh2triang(mesh), obj, shading = 'gouraud')

plt.clim(min(obj),max(obj))

plt.colorbar()

class HA(Expression):

def __init__(self, ha, degree=None):

self.ha = ha

# self.theta = np.

def eval(self, values, x):

values[0]=self.ha

def boundary(x, on_boundary):

return on_boundary

pHas = '7'

ha = 0.7

pdts = '.1'

pdts1 = '.1'

rs = '15'

cs = '25'

mesh_in = "FindingHa/meshes/SymCylmeshr%sc%s.xml" % (rs, cs)

prev_in = 'r%sc%ssols/ha%sr%sc%sdt%s.npz' % (rs, cs, pHas, rs, cs, pdts)

kappa = 4.0

mesh = Mesh(mesh_in)

stuff=np.load(prev_in)
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pfr = stuff['fr'][-1]

pfi = stuff['fi'][-1]

pq = stuff['q'][-1]

F = FunctionSpace(mesh, "Lagrange", 1)

Felem=FiniteElement("Lagrange", mesh.ufl_cell(),1)

Q = VectorFunctionSpace(mesh, "Lagrange",1)

Qelem = VectorElement("Lagrange",mesh.ufl_cell(),1)

MS = FunctionSpace(mesh, MixedElement([Felem, Felem, Qelem]))

ms = Function(MS)

mst = TestFunction(MS)

frtomsassigner = FunctionAssigner(MS.sub(0), F)

fitomsassigner = FunctionAssigner(MS.sub(1), F)

Atomsassigner = FunctionAssigner(MS.sub(2), Q)

#Assign previous fr vals

fr0 = Function(F)

fr0.vector()[:] = pfr

#Assign previous fi values

fi0 = Function(F)

fi0.vector()[:] = pfi

#Assign previous A values

A0 = Function(Q)

A0.vector()[:] = pq
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Ha = HA(ha, degree=1)

frtomsassigner.assign(ms.sub(0),fr0)

fitomsassigner.assign(ms.sub(1),fi0)

Atomsassigner.assign(ms.sub(2),A0)

(fr,fi,A) = split(ms)

(vr,vi,dA) = split(mst)

### Set up equations

F1 = (2/kappa**2*inner(grad(fr),grad(vr)) - 2/kappa*inner(grad(fi),A)*vr + 2/kappa*

fi*inner(A,grad(vr)) - 2*fr*vr + 2*inner(A,A)*fr*vr + 2*fi**2*fr*vr + 2*vr*fr

**3)/2*dx

F2 = (2/kappa**2*inner(grad(fi),grad(vi)) + 2/kappa*inner(grad(fr),A)*vi - 2/kappa*

fr*inner(A,grad(vi)) - 2*fi*vi + 2*inner(A,A)*fi*vi + 2*fr**2*fi*vi + 2*vi*fi

**3)/2*dx

y = Expression('x[1]',degree=1)

x = Expression('x[0]', degree=1)

r = Expression('pow(x[0],2)+pow(x[1],2)',degree=1)

F3 = ((-A[0].dx(1)+A[1].dx(0))*(-dA[0].dx(1)+dA[1].dx(0)) - Ha*(-dA[0].dx(1)+dA[1].

dx(0)) + 1/kappa*fi*inner(grad(fr),dA) - 1/kappa*fr*inner(grad(fi),dA) + fi**2*
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inner(A,dA) + fr**2*inner(A,dA))*dx + ((-A[0].dx(1)+A[1].dx(0))-Ha)*(dA[0]*y/r-

dA[1]*x/r)*ds

Fs = F1+F2+F3

dms = TrialFunction(MS)

a1 = derivative(Fs, ms,dms)

problem = NonlinearVariationalProblem(Fs, ms, None, a1)

solver = NonlinearVariationalSolver(problem)

#solve and assign solutions

solver.solve()

frsol = ms.compute_vertex_values()[:N1]

fisol = ms.compute_vertex_values()[N1:2*N1]

Asol = ms.compute_vertex_values()[2*N1:]

H = project(-A[0].dx(1)+A[1].dx(0),F)

###used to plot

def mesh2triang(mesh):

xy = mesh.coordinates()

return tri.Triangulation(xy[:, 0], xy[:, 1], mesh.cells())

###plots scalar functions

def plot(obj):

plt.clf()
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plt.gca().set_aspect('equal')

plt.tripcolor(mesh2triang(mesh), obj, shading = 'gouraud')

plt.clim(min(obj),max(obj))

plt.colorbar()

resH = assemble(((-A[0].dx(1)+A[1].dx(0))-Ha)*(A[0]*y/r-A[1]*x/r)*ds)
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