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ABSTRACT

COMPUTATION OF TWO-CENTER TWO-ELECTRON INTEGRALS

FOR EXCITED-STATE CALCULATIONS

Daniel S. Jensen

Department of Physics and Astronomy

Bachelor of Science

Four-orbital integrals containing the Coulomb kernel are computed to describe

the interaction between two electrons as needed in most excited-state calcula-

tions. We outline their use in both time-dependent density-functional theory

and Görling and Levy perturbation theory to find the excited-state proper-

ties of many-electron systems. The complete derivations are included to show

how these six-dimensional integrals are simplified so that only three- or four-

dimensional numerical integrations are required per integral. All numerical

integrations are performed via the adaptive Simpson’s rule. The integrals are

computed and stored for use in the ab initio density-functional theory fire-

ball program. The integrals for each of the three distinct types of orbital

arrangements are plotted for interactions between carbon and hydrogen atoms

as a function of separation distance.
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Chapter 1

Introduction

1.1 Motivation

Many theoretical discoveries in physics are made through the study of optics. Two

important examples in quantum mechanics are Bohr’s model of the hydrogen atom

and the explanation of the Zeeman effect. These theories were developed when the

current models failed to explain the observed spectrum of hydrogen. Although the

optical properties of hydrogen are now well understood, the optical properties of larger

systems are much more difficult to model. Time-dependent density-functional theory

(TDDFT) and Görling and Levy perturbation theory (GLPT) are two promising

methods for obtaining these optical properties for many-body systems.

1.2 Approximate Solutions of the Schrödinger Equa-

tion

The Zeeman effect and other excited-state properties of hydrogen are all predicted by

solutions to the Schrödinger equation [1]. Unfortunately, solving Schrödinger’s equa-

1
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tion exactly for the ground-state or excited-state properties of multielectron atoms

is intractable. The complexity of Schrödinger’s equation further increases when mul-

tiple atoms are considered as seen by writing out the complete time-independent,

non-relativistic form of the equation in atomic units [2]:

ĤΨi (r1, . . . , rN , R1, . . . ,RM) = EiΨi (r1, . . . , rN , R1, . . . ,RM) , (1.1)

where Ĥ is the Hamilton operator:

Ĥ =− 1

2

N∑
i=1

∇2
i −

1

2

M∑
A=1

1

MA

∇2
A −

N∑
i=1

M∑
A=1

ZA

|ri −RA|

+
N∑

i=1

N∑
j>i

1

|ri − rj|
+

M∑
A=1

M∑
B>A

ZAZB

|RA −RB|
. (1.2)

In equations 1.1 and 1.2 capital letters refer to the M atoms, lowercase letters refer

to the N electrons, MA is the mass of nucleus A, ZA is the charge of nucleus A, Ψi is

the wave function describing the system, and Ei is the energy of the state Ψi.

1.2.1 Born-Oppenheimer Approximation

The Born-Oppenheimer approximation is usually the first approximation made to re-

duce the complexity of the Schrödinger equation. In this approximation Schrödinger’s

equation is solved first with the electronic Hamiltonian:

Ĥelec =− 1

2

N∑
i=1

∇2
i −

N∑
i=1

M∑
A=1

ZA

|ri −RA|
+

N∑
i=1

N∑
j>i

1

|ri − rj|
, (1.3)

in which the kinetic energy of the nuclei, −1
2

∑M
A=1

1
MA
∇2

A, is assumed to be zero and

the repulsion between the nuclei,
∑M

A=1

∑M
B>A

ZAZB

|RA−RB |
, is assumed to be constant.

The solution to Schrödinger’s equation with the electronic Hamiltonian is called the

electronic wave function, Ψelec, with corresponding electronic energy, Eelec, and both

quantities depend parametrically on the nuclear coordinates. Once the electronic



1.2 Approximate Solutions of the Schrödinger Equation 3

problem is solved, the Schrödinger equation is solved using the full Hamiltonian shown

in 1.2 but this time with the electronic part of the Hamiltonian, Helec replaced by Eelec.

Thus the Born-Oppenheimer approximation solves the Schrödinger equation twice:

the first time by treating the nuclei as fixed and the second time by averaging the

electronic coordinates. This approximation is successful because the nuclei are much

heavier than the electrons, (often 20,000 times or more for atoms like carbon [2]), and

therefore move much slower than the electrons. For a qualitative introduction to the

Born-Oppenheimer approximation see [3].

1.2.2 Hartree-Fock Approximation

Building off of the Born-Oppenheimer approximation, the Hartree-Fock approxima-

tion further simplifies the Schrödinger equation by making several additional assump-

tions. The main assumption is that the N -electron wave function can be approxi-

mated by a Slater determinant, which is an antisymmetric wave function composed of

N one-electron wave functions [3]. The spin orbitals in each wave function of a Slater

determinant are then varied so as to form new wave functions while maintaining their

orthonormality. The expectation values of all of these possible Slater determinants

are found using the full electronic Hamiltonian operator 1.3 and the one that yields

the lowest energy is the closest approximation to the exact wave function according

to the variation principle.

Although in principle the expectation value of each Slater determinant with the

electronic Hamiltonian operator could be computed to find the wave function that

produces the smallest energy, in practice a different procedure is used. This procedure

involves solving a minimization problem using the nonlinear Hartree-Fock equations.

Due to the nonlinearity of the equations they must be solved iteratively by the self-

consistent-field method. If we closely examine the Hartree-Fock equations we find
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that the electron-electron interactions in the Hartree-Fock approximation involve an

averaging, that is, each equation has a potential energy term formed by the interaction

between one electron and the average of the other electrons. This averaging basically

reduces the many-electron problem to a one-electron problem.

1.2.3 Density-functional Theory

Density-functional theory (DFT) also uses the Born-Oppenheimer approximation but

differs from the Hartree-Fock approximation mainly in its focus and basic variables. In

Hartree-Fock theory the N-electron wave function is the basic quantity being derived

and it depends on 4N variables, (3N spatial variables and N spin variables), whereas

the basic quantity for density-functional theory is the electron density, which depends

only on three variables. The usefulness of this change of focus from the N-electron

wave function to the electron density comes from the Hohenberg-Kohn theorems.

These theorems state that a unique mapping exists, in principle, between the ground

state density and the ground state energy of a given system [2].

Density-functional theory based on the Kohn-Sham approach is, in principle, ex-

act. Unlike Hartree-Fock theory, which introduces an approximation right from the

start by using Slater determinants as approximations to the N-electron wave function,

density-functional theory only contains approximations in the exchange-correlation

potential. This potential contains a portion of the kinetic energy that cannot be

treated exactly and the non-classical exchange and correlation effects [2]. Many ap-

proximations to the exchange-correlation potential exist such as the local-density

approximation (LDA) the generalized gradient approximation (GGA) etc. and their

accuracy has the greatest influence on the quality of the density-functional approach.

The mathematical machinery used in DFT is very similar to that found in the

Hartree-Fock method. In the Kohn-Sham formalism of DFT we again have a min-
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imization problem of nonlinear equations which must be performed using the self-

consistent-field method. These nonlinear equations are called the Kohn-Sham equa-

tions and the orbitals that yield the smallest energy in the minimization are termed

the Kohn-Sham orbitals. Although Slater determinants of these orbitals do not pro-

duce the exact wave function of the system in question, they do prove to be very

useful in excited-state calculations.

1.2.4 Time-dependent Density-functional Theory and Görling

and Levy Perturbation Theory

The Kohn-Sham orbital energies found in DFT play a very important role in both

time-dependent density-functional theory (TDDFT) and Görling and Levy pertur-

bation theory (GLPT). Both TDDFT and GLPT use the Kohn-Sham eigenvalue

differences as a starting point for finding the excitation energies of a given system.

Both theories also need additional integrals containing the Coulomb interaction kernel

in order to correct these eigenvalue diffences and find the true excitation energies.

The Kohn-Sham eigenvalue differences play a key role in GLPT. Görling shows

in [4] that these differences are well-defined approximations of the excitation energies.

This result is achieved through a combination of his Kohn-Sham formalism for excited

states and the DFT perturbation theory first described in [5]. Based on this approach,

which is exact in principle, the first order correction to the Kohn-Sham eigenvalue

differences is:

1∆E (T, i → v) =
〈
φν |v̂NL

x − v̂x [n0] |φν

〉
− 〈φi|v̂x [n0] |φν〉 − 〈νi|νi〉 , (1.4)

for the triplet state and

1∆E (S, i → v) =
〈
φν |v̂NL

x − v̂x [n0] |φν

〉
−

〈
φi|v̂NL

x − v̂x [n0] |φi

〉
− 〈νi|νi〉+ 2 〈νi|iν〉 ,

(1.5)
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for the singlet state [4]. In 1.5 and 1.4 v̂NL
x is a nonlocal exchange operator, v̂x [n0] is

the local density exchange potential, and

〈ij|st〉 =

∫
dr

∫
dr′φ∗i (r) φ∗j (r) φs (r′) φt (r′) / |r − r′| . (1.6)

In these transitions one electron is being excited from an occupied Kohn-Sham orbital

φi to an unoccupied orbital φν . It is important to note that none of the integrals in 1.5

and 1.4 involving the Coulomb interaction kernel, 1/ |r − r′|, are needed in DFT so

incorporating GLPT in a normal DFT program requires the additional computation

of these integrals.

TDDFT also uses the Kohn-Sham eigenvalue differences and two-electron integrals

involving the Coulomb interaction kernel in its calculations of excited-state energies

[6].

1.3 Additional Two-electron Integrals

Due to their common basis in density-functional theory (DFT), TDDFT and GLPT

are particularly attractive theories for finding the optical properties of many-body

systems. Unfortunately, both TDDFT and GLPT require additional two-electron

integrals containing the Coulomb interaction kernel as shown in 1.2.4 and 1.2.4. The

computation of these integrals for use in TDDFT and GLPT is the main focus of this

paper.



Chapter 2

Computation of Coulomb and

exchange integrals

The two-electron integrals that describe electron interactions for use in time-dependent

density-functional theory, (TDDFT), and Görling and Levy perturbation theory,

(GLPT), are challenging both theoretically and computationally. In this paper we

show how to compute these two-electron integrals composed of the Coulomb operator

and four fireball orbitals. By only considering two-center integrals and making other

analytical considerations we significantly reduce the complexity of these integrals so

as to effectively compute them for use in the fireball program.

2.1 Orbital Composition

The atomic orbitals in our four-orbital integrals are slightly excited pseudo-atomic-

orbitals commonly called fireballs. These orbitals are each composed of a radial wave-

function multiplied by a corresponding real spherical harmonic. The radial wavefunc-

tions are created using a Herman-Skillman-like program [7] and are slightly excited

7
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Figure 2.1 Radial fireball wavefunctions for hydrogen and carbon have
finite cutoffs.

due to their finite cutoffs. (For more information on how the finite cutoffs are chosen

see [8].) Although complex spherical harmonics are easier to work with theoretically

we use real spherical harmonics (RSH) because the orbital rotations in the fireball

program are based on RSH. (It is possible to perform the integrations using complex

spherical harmonics and then convert the answers to real spherical harmonics but this

requires additional computational time and memory.) For other advantages to using

RSH and to see their relationship to complex spherical harmonics see [9].

Using the radial wavefunctions and spherical harmonics described above we can
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write a general fireball orbital φ centered at the origin as

φ (r) = R (r) Yl,m (Ω)

= R (r)

[
(2l + 1)

4π

(l − |m|)!
(l + |m|)!

] 1
2

Pl,|m| (cos θ)


√

2 sin (|m|φ) if m < 0

1 if m = 0
√

2 cos (mφ) if m > 0

(2.1)

where R (r) is the radial wavefunction, Pl,|m| (cos θ) is the associated Legendre poly-

nomial without the (−1)m Condon-Shortly factor, θ is the angle between the z-axis

and the radial vector r, and φ is the angle between the x-axis and the projection of

the radial vector on the x-y plane. To help visualize these orbitals the radial wave-

functions for hydrogen and carbon are shown in Fig. 2.1 and their corresponding

spherical harmonics are seen in Fig. 2.2.

2.2 Two-electron integrals

The two-electron integrals that we compute for excited-state calculations are com-

posed of the product of four fireball orbitals and the Coulomb kernel all integrated

over the spaces of both electrons. (For those readers familiar with Hartree-Fock

theory, linear combinations of these integrals can be used to form the Hartree and ex-

change integrals.) The four fireball orbitals can be located on one, two, three, or four

different atoms to form what are called, respectively, one-, two-, three-, or four-center

integrals. At this point in time we restrict ourselves to the computation of one- and

two- center integrals based on the assumption that the three- and four-center integrals

are very small at normal molecular bonding distances.

In the fireball program all integrals are precomputed on a numerical grid and

stored in tables. When the integrals for specific geometries and configurations of

atoms are needed their values are found by interpolation and rotation of the tabular
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values. Since we are only considering one- and two-center integrals we use a similar

setup found in [7] for the kinetic and overlap matrix elements. In this setup the first

atom lies at the origin and the second atom lies on the z-axis a positive distance d

from the first atom. We are able to compute both the one- and two-center integrals

with the same code because the two-center integrals are really one-center integrals

when d = 0. With this arrangement of atoms we have three unique types of two-

electron integrals to compute based on the position of the fireball orbitals. We call

these three types of integrals no-overlap, one-overlap, and two-overlap integrals.

The no-overlap integrals have two orbitals centered on the first atom in the first

coordinate system and two orbitals centered on the second atom in the second coor-

dinate system. The one-overlap integrals have two orbitals centered on the first atom

in the first coordinate system, one orbital centered on the first atom in the second

coordinate system, and one orbital centered on the second atom in the second coor-

dinate system. The two-overlap integrals have one orbital centered on the first atom

in the first coordinate system, one orbital centered on the second atom in the first

coordinate system, one orbital centered on the first atom in the second coordinate

system, and one orbital centered on the second atom in the second coordinate system.

Diagrams of these unique arrangements can be seen in Fig 2.3.

The φ integrations in both coordinate systems of all three integral types described

above are performed analytically thus leaving at most four dimensions of these six-

dimensional integrals to be integrated numerically. With the aid of Gaunt’s formula

[10] the θ integration in the first coordinate system of the no- and one-overlap integrals

can also be performed analytically thus leaving three dimensions to be integrated

numerically. These remaining numerical integrations are performed using an adaptive

Simpson quadrature routine as described in [11] but with a recursive approach as

opposed to the suggested stack approach. The complete integral derivations are
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Figure 2.3 Placement of orbitals on different atoms to form two-, one-, and
no-overlap integrals.
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shown in Appendix A.



Chapter 3

Results and Conclusions

Plots of all unique two-center two-electron integrals needed for excited-state calcu-

lations are displayed below. Since all of these integrals contain the Coulomb op-

erator as explained in chapter 2 we do no write it explicitly for each integral in

order to save space. We use Dirac’s notation to distinguish between integrals so that

〈100, 21− 1‖210, 211〉 means that orbital A is a s orbital, orbital B is a py orbital,

orbital C is a pz orbital, and orbital D is a px orbital where orbitals A, B, C, and D

appear in the same order as shown in the derivations of appendix A. The first number

describing each orbital is the shell number while the second and third numbers are

the l and m values respectively.

3.1 Results

The no-overlap integrals for the hydrogen-hydrogen, hydrogen-carbon, and carbon-

carbon interactions are shown in figures 3.1, 3.2, and 3.3. All of these integrals have

an absolute error of 10−4 and the grid between the two atoms has a spacing of 0.05

Å. Notice that the integrals with squared orbitals in both the bra and the ket follow

14
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Figure 3.1 First plot of no-overlap integrals for hydrogen and carbon atoms.

a strict 1/d relationship after about 4 Å where d is the separation distance between

the two atoms.

The one-overlap integrals for the hydrogen-hydrogen, hydrogen-carbon, and carbon-

carbon interactions are shown in figures 3.4, 3.5, 3.6, 3.7, 3.8. All of these integrals

have an absolute error of 10−4 and the grid between the two atoms has a spacing of

0.05 Å. Notice that at a 3.5 Å separation distance between the two atoms the absolute

value of all of the one-overlap integrals is less than 0.12 eV.

The two-overlap integrals for the hydrogen-hydrogen, hydrogen-carbon, and carbon-

carbon interactions are shown in figures 3.9, 3.10, and 3.11. All of these integrals have

an absolute error of 10−4 and the grid between the two atoms has a spacing of 0.05

Å. Since the sum over l does not terminate for the two-overlap integrals, (see A.2),

we stop the summation at l = 4, at which point the contributions to the integral are
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Figure 3.3 Third set of plots of no-overlap integrals for hydrogen and carbon
atoms.
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Figure 3.4 First set of plots of one-overlap integrals for hydrogen and
carbon atoms.
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Figure 3.5 Second set of plots of one-overlap integrals for hydrogen and
carbon atoms.
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Figure 3.6 Third set of plots of one-overlap integrals for hydrogen and
carbon atoms.
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Figure 3.7 Fourth set of plots of one-overlap integrals for hydrogen and
carbon atoms.
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Figure 3.8 Fifth set of plots of one-overlap integrals for hydrogen and
carbon atoms.

less than 10−3 eV. Notice that at a 2.75 Å separation distance between the two atoms

the absolute value of all of the two-overlap integrals is less than 0.18 eV.

3.2 Conclusions

Although all three types of two-center two-electron integrals studied here make signif-

icant contributions to the integrals needed for excited-state calculations, it is obvious

from our plots in 3.1 that the no-overlap integrals make the largest contribution.

Furthermore, the no-overlap integrals with squared orbitals in both the bra and the

ket make significant contributions even at large separation distances due to their 1/d

relationship, where d is the separation distance between the two atoms. It is also

apparent from the aforementioned plots that in general the one-overlap integrals are

larger in magnitude than the two-overlap integrals.
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Figure 3.9 First set of plots of two-overlap integrals for hydrogen and
carbon atoms.
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Figure 3.10 Second set of plots of two-overlap integrals for hydrogen and
carbon atoms.
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Figure 3.11 Third set of plots of two-overlap integrals for hydrogen and
carbon atoms.

Our derivations of the two-, one-, and no-overlap integrals show that it is possi-

ble to perform two-center two-electron integrals with real spherical harmonics versus

the more commonly used complex spherical harmonics. Instead of relying on the

Clebsch-Gordon coefficients for the analytical evaluation of integrals with three com-

plex spherical harmonics, we use Gaunt’s formula to analytically integrate products

of three associated Legendre functions. We also use a phase factor in the φ and φ′

integrals to write all of the terms as cosine terms and analytically integrate their sum.

As efficient as our computations of the two-center two-electron integrals are,

there are many improvements that could be made. Although our adaptive Simp-

son quadrature subroutine is much improved over the normal Simpson quadrature

subroutines used throughout fireball, there do exist more efficient quadrature al-

gorithms such as Gauss-Kronrod and Clenshaw-Curtis quadrature. What’s more,
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these other quadrature methods are much better at handling discontinuities such as

those resulting from the Coulomb operator. We have also found that the Monte-Carlo

based quadrature rules found in the Cuba library (see [12]) are very efficient at com-

puting these two-electron integrals even when left as six-dimensional integrals. The

ability to compute these six-dimensional integrals numerically may lead in the future

to the inclusion of three- and four-center integrals.
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Appendix A

Two-electron integral derivations

In the following derivations number subscripts refer to atoms and letter subscripts

refer to orbitals. All integrals without limits indicate integration over all space. Let

Ri be a vector in the r coordinate system that gives the location of the ith atom

and φµ (r) = Rµ (r) Ylµ,mµ (θ, ϕ) be a specific type of orbital (i.e. φµ (r) is a s orbital

when lµ = 0 and mµ = 0). Each orbital consists of a radial wave function Rµ (r)

and a real spherical harmonic Ylµ,mµ (θ, φ). Thus orbital µ located on atom i can be

written as follows: (Diagram and further explanation of θi and φi. The associated

Legendre polynomials do not contain the Condon-Shortley factor.)

φµ (r −Ri) = Rµ (|r −Ri|) Ylµ,mµ (θi, φi) = Rµ (ri) Ylµ,mµ (θi, φi)

= Rµ (ri)

[
(2lµ + 1)

4π

(lµ − |mµ|)!
(lµ + |mµ|)!

] 1
2

Plµ,|mµ| (cos θi)


√

2 sin (|mµ|φi) if mµ < 0

1 if mµ = 0
√

2 cos (mµφi) if mµ > 0

25
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With the above notation a general four-center two-electron integral with the Coulomb

kernel can be written as∫
drφA (r −R1) φB (r −R2)

∫
dr′

e2

|r − r′|
φC (r′ −R3) φD (r′ −R4)

= e2

∫
drφA (r −R1) φB (r −R2)∫

dr′
∞∑
l=0

l∑
m=0

(2− δm,0)
(l −m)!

(l + m)!

(
rl
1<

rl+1
1>

)
Pm

l (cos θ)

Pl,m (cos θ′) cos [m (φ− φ′)] φC (r′ −R3) φD (r′ −R4)

= e2

∞∑
l=0

l∑
m=0

(l −m)!

(l + m)!

∫
drRA (r1) YlA,mA

(θ1, φ1)

RB (r2) YlB ,mB
(θ2, φ2) Pl,m (cos θ)

∫
dr′

(
rl
1<

rl+1
1>

)
Pl,m (cos θ′)

(2− δm,0) cos [m (φ− φ′)] RC (r′3) YlC ,mC
(θ′3, φ

′
3) RD (r′4) YlD,mD

(θ′4, φ
′
4)

= e2

∞∑
l=0

l∑
m=0

(l −m)!

(l + m)!

∫
(r1)

2 dr1RA (r1) RB (r2)∫
dΩYlA,mA

(θ1, φ1) YlB ,mB
(θ2, φ2) Pl,m (cos θ)∫

(r′1)
2
dr′1

(
rl
1<

rl+1
1>

)
RC (r′3) RD (r′4)

∫
dΩ′YlC ,mC

(θ′3, φ
′
3) YlD,mD

(θ′4, φ
′
4)

Pl,m (cos θ′) (2− δm,0) cos [m (φ− φ′)] ,

where we have used the Addition Theorem for spherical harmonics to replace the

1/ |r − r′| term with a double sum of associated legendre polynomials multiplied by

cosine terms (see [13]).

A.1 Two-center integrals

Consider the cases where all orbitals are centered on only two atoms. These integrals

are commonly known as two-center integrals. We place the center of the first atom
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at the origin and the center of the second atom a positive distance d from the first

atom along the z-axis. One of the benefits of such an arrangement is that φ1 = φ2

and φ′1 = φ′2 so we can let φ = φ1 = φ2 and φ′ = φ′1 = φ′2. We call the three unique

cases that arise depending on which orbitals lie on which atoms the two-, one-, and

no-overlap integrals. The general equation for these integrals is

∞∑
l=0

l∑
m=0

(l −m)!

(l + m)!

∫
(r1)

2 dr1RA (r1) RB (r1 or 2)

∫
dΩYlA,mA

(θ1, φ) YlB ,mB
(θ1 or 2, φ)

Pl,m (cos θ1)

∫
(r′1)

2
dr′1

(
rl
1<

rl+1
1>

)
RC (r′1 or 2) RD (r′2)

∫
dΩ′YlC ,mC

(θ′1 or 2, φ
′)

YlD,mD
(θ′2, φ

′) Pl,m (cos θ′1) (2− δm,0) cos [m (φ− φ′)] .
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Both the φ and the φ′ integrals can be solved analytically after expanding the real

spherical harmonics as follows:

=
∞∑
l=0

l∑
m=0

(l −m)!

(l + m)!

∫
(r1)

2 dr1RA (r1) RB (r1 or 2)

∫
dΩPl,m (cos θ1)

[
(2lA + 1)

4π

(lA − |mA|)!
(lA + |mA|)!

] 1
2

PlA,|mA| (cos θ1)


√

2 sin (|mA|φ) if mA < 0

1 if mA = 0
√

2 cos (mAφ) if mA > 0


[
(2lB + 1)

4π

(lB − |mB|)!
(lB + |mB|)!

] 1
2

PlB ,|mB | (cos θ1 or 2)


√

2 sin (|mB|φ) if mB < 0

1 if mB = 0
√

2 cos (mBφ) if mB > 0


∫

(r′1)
2
dr′1

(
rl
1<

rl+1
1>

)
RC (r′1 or 2) RD (r′2)

∫
dΩ′Pl,m (cos θ′1) (2− δm,0) cos [m (φ− φ′)]

[
(2lC + 1)

4π

(lC − |mC |)!
(lC + |mC |)!

] 1
2

PlC ,|mC | (cos θ′1 or 2)


√

2 sin (|mC |φ′) if mC < 0

1 if mC = 0
√

2 cos (mCφ′) if mC > 0


[
(2lD + 1)

4π

(lD − |mD|)!
(lD + |mD|)!

] 1
2

PlD,|mD| (cos θ′2)


√

2 sin (|mD|φ′) if mD < 0

1 if mD = 0
√

2 cos (mDφ′) if mD > 0


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=
1

16π2

∞∑
l=0

l∑
m=0

(l −m)!

(l + m)!

[
(2lA + 1)

(lA − |mA|)!
(lA + |mA|)!

] 1
2
[
(2lB + 1)

(lB − |mB|)!
(lB + |mB|)!

] 1
2

[
(2lC + 1)

(lC − |mC |)!
(lC + |mC |)!

] 1
2
[
(2lD + 1)

(lD − |mD|)!
(lD + |mD|)!

] 1
2
∫

(r1)
2 dr1RA (r1) RB (r1 or 2)

∫
dΩPl,m (cos θ1) PlA,|mA| (cos θ1) PlB ,|mB | (cos θ1 or 2)


√

2 sin (|mA|φ) if mA < 0

1 if mA = 0
√

2 cos (mAφ) if mA > 0




√
2 sin (|mB|φ) if mB < 0

1 if mB = 0
√

2 cos (mBφ) if mB > 0


∫

(r′1)
2
dr′1

(
rl
1<

rl+1
1>

)
RC (r′1 or 2) RD (r′2)

∫
dΩ′Pl,m (cos θ′1) PlC ,|mC | (cos θ′1 or 2) PlD,|mD| (cos θ′2) (2− δm,0) cos [m (φ− φ′)]
√

2 sin (|mC |φ′) if mC < 0

1 if mC = 0
√

2 cos (mCφ′) if mC > 0




√
2 sin (|mD|φ′) if mD < 0

1 if mD = 0
√

2 cos (mDφ′) if mD > 0


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=
1

16π2

∞∑
l=0

l∑
m=−l

(l −m)!

(l + m)!
clA,mA

clB ,mB
clC ,mC

clD,mD

∫ ∞

0

(r1)
2 dr1RA (r1) RB (r1 or 2)∫ π

0

sin θ1dθ1Pl,m (cos θ1) PlA,|mA| (cos θ1) PlB ,|mB | (cos θ1 or 2)∫ ∞

0

(r′1)
2
dr′1

(
rl
1<

rl+1
1>

)
RC (r′1 or 2) RD (r′2)∫ π

0

sin θ1dθ′1Pl,m (cos θ′1) PlC ,|mC | (cos θ′1 or 2) PlD,|mD| (cos θ′2)

π2

π2

∫ 2π

0

dφ1


√

2 sin (|mA|φ) if mA < 0

1 if mA = 0
√

2 cos (mAφ) if mA > 0




√
2 sin (|mB|φ) if mB < 0

1 if mB = 0
√

2 cos (mBφ) if mB > 0


∫ 2π

0

dφ′1 (2− δm,0) cos [m (φ− φ′)]
√

2 sin (|mC |φ′) if mC < 0

1 if mC = 0
√

2 cos (mCφ′) if mC > 0




√
2 sin (|mD|φ′) if mD < 0

1 if mD = 0
√

2 cos (mDφ′) if mD > 0



=
1

16π2

∞∑
l=0

mmax∑
m=mmin

(l −m)!

(l + m)!
clA,mA

clB ,mB
clC ,mC

clD,mD

∫ ∞

0

(r1)
2 dr1RA (r1) RB (r1 or 2)∫ π

0

sin θ1dθ1Pl,m (cos θ1) PlA,|mA| (cos θ1) PlB ,|mB | (cos θ1 or 2)

∫ ∞

0

(r′1)
2
dr′1

(
rl
1<

rl+1
1>

)
RC (r′1 or 2) RD (r′2)

∫ π

0

sin θ′1dθ′1Pl,m (cos θ′1) PlC ,|mC | (cos θ′1 or 2) PlD,|mD| (cos θ′2)

π2 · phiphip (m, mA, mB, mC , mD)
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where we have let

clµ,mµ =

[
(2lµ + 1)

(lµ − |mµ|)!
(lµ + |mµ|)!

] 1
2

,

mmin = max (||mA| − |mB|| , ||mC | − |mD||) ,

mmax = min (||mA|+ |mB|| , ||mC |+ |mD|| , l) , and

phiphip (m, mµ1, mµ2, mµ3, mµ4) =
1

π2

∫ 2π

0

dφ


√

2 sin (|mµ1|φ) if mµ1 < 0

1 if mµ1 = 0
√

2 cos (mµ1φ) if mµ1 > 0




√
2 sin (|mµ2|φ) if mµ2 < 0

1 if mµ2 = 0
√

2 cos (mµ2φ) if mµ2 > 0


∫ 2π

0

dφ′1 (2− δm,0) cos [m (φ− φ′)]


√

2 sin (|mµ3|φ′1) if mµ3 < 0

1 if mµ3 = 0
√

2 cos (mµ3φ
′
1) if mµ3 > 0




√
2 sin (|mµ4|φ′1) if mµ4 < 0

1 if mµ4 = 0
√

2 cos (mµ4φ
′
1) if mµ4 > 0

 .

For a complete derivation of the phiphip integral see A.4.

=
1

16

∞∑
l=0

mmax∑
m=mmin

(l −m)!

(l + m)!
clA,mA

clB ,mB
clC ,mC

clD,mD
phiphip (m, mA, mB, mC , mD)∫ ∞

0

(r1)
2 dr1RA (r1) RB (r1 or 2)

∫ π

0

sin θ1dθ1P
m
l (cos θ1) P

|mA|
lA

(cos θ1)

P
|mB |
lB

(cos θ1 or 2)

∫ ∞

0

(r′1)
2
dr′1

(
rl
1<

rl+1
1>

)
RC (r′1 or 2) RD (r′2)∫ π

0

sin θ′1dθ′1P
m
l (cos θ′1) P

|mC |
lC

(cos θ′1 or 2) P
|mD|
lD

(cos θ′2) (A.1)

A.2 Two-overlap integrals

In our canonical ordering for the two-overlap integrals we place orbitals A and C on

atom 1 and orbitals B and D on atom 2. Applying this definition to A.1 allows us
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to write the general two-overlap integral as

=
1

16

∞∑
l=0

mmax∑
m=mmin

(l −m)!

(l + m)!
clA,mA

clB ,mB
clC ,mC

clD,mD
phiphip (m, mA, mB, mC , mD)∫ ∞

0

(r1)
2 dr1RA (r1) RB (r2)

∫ π

0

sin θ1dθ1P
m
l (cos θ1) P

|mA|
lA

(cos θ1)

P
|mB |
lB

(cos θ2)

∫ ∞

0

(r′1)
2
dr′1

(
rl
1<

rl+1
1>

)
RC (r′1) RD (r′2)∫ π

0

sin θ′1dθ′1P
m
l (cos θ′1) P

|mC |
lC

(cos θ′1) P
|mD|
lD

(cos θ′2) .

Since the φ integrals have already been computed we are only left with integrals in r

and θ, which can easily be arranged into polar coordinates:

=
1

16

∞∑
l=0

mmax∑
m=mmin

(l −m)!

(l + m)!
clA,mA

clB ,mB
clC ,mC

clD,mD
phiphip (m, mA, mB, mC , mD)∫ ∞

0

r1dr1

∫ π

0

dθ1r1 sin θ1RA (r1) RB (r2) Pm
l (cos θ1) P

|mA|
lA

(cos θ1) P
|mB |
lB

(cos θ2)∫ ∞

0

r′1dr′1

∫ π

0

dθ′1r
′
1 sin θ′1

(
rl
1<

rl+1
1>

)
RC (r′1) RD (r′2)

Pm
l (cos θ′1) P

|mC |
lC

(cos θ′1) P
|mD|
lD

(cos θ′2)

Now we switch from polar coordinates to cartesian coordinates: ρ = r sin θ, z =

r cos θ, tan θ = ρ
z
, r =

√
ρ2 + z2,

∫ ∞
0

rdr
∫ π

0
dθ1 =

∫ ∞
−∞ dz

∫ ∞
0

dρ. To shorten the

derivation we continue to use the r variable but with the understanding that it is now

a function of z and ρ: r1 (z, ρ) =
√

z2 + ρ2, r2 (z, ρ) =
√

(z − d)2 + ρ2. With this

notation we can write sin θ1 = ρ/r1, cos θ1 = z/r1, and cos θ2 = (z − d) /r2. Since

ρ1 = ρ2 we let ρ = ρ1 = ρ2 so that the two-overlap equation becomes:

=
1

16

∞∑
l=0

mmax∑
m=mmin

(l −m)!

(l + m)!
clA,mA

clB ,mB
clC ,mC

clD,mD
phiphip (m, mA, mB, mC , mD)∫ ∞

−∞
dz1

∫ ∞

0

dρr1
ρ

r1

RA (r1) RB (r2) P
|m|
l

(
z1

r1

)
P
|mA|
lA

(
z1

r1

)
P
|mB |
lB

(
z2

r2

)
∫ ∞

−∞
dz′1

∫ ∞

0

dρ′r′1
ρ′

r′1

(
rl
1<

rl+1
1>

)
RC (r′1) RD (r′2) P

|m|
l

(
z′1
r′1

)
P
|mC |
lC

(
z′1
r′1

)
P
|mD|
lD

(
z′2
r′2

)
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Since our orbitals are fireball orbitals (see [7]) they have finite radial cutoffs that

we will write as rcA, rcB, rcC , and rcD. These finite cutoffs affect the limits of

integration as follows: (see diagrams for more info)

=
1

16

∞∑
l=0

mmax∑
m=mmin

(l −m)!

(l + m)!
clA,mA

clB ,mB
clC ,mC

clD,mD
phiphip (m, mA, mB, mC , mD)

∫ min(rcA,d+rcB)

max(− rcA,d−rcB)

dz1

∫ min
“√

rc2A −z2
1 ,
√

rc2B −z2
2

”
0

dρ1ρ1RA (r1) RB (r2) Pm
l

(
z1

r1

)

P
|mA|
lA

(
z1

r1

)
P
|mB |
lB

(
z2

r2

) ∫ min(rcC ,d+rcD)

max(− rcC ,d−rcD)

dz′1

∫ min

„q
rc2C −(z′

1)
2
,
q

rc2D −(z′
2)

2
«

0

dρ′1

ρ′1

(
rl
1<

rl+1
1>

)
RC (r′1) RD (r′2) Pm

l

(
z′1
r′1

)
P
|mC |
lC

(
z′1
r′1

)
P
|mD|
lD

(
z′2
r′2

)

A.3 One- and no-overlap integrals

Now we consider the cases where both orbitals A and B are on atom 1 and therefore

are centered at the origin.

=
1

16

∞∑
l=0

mmax∑
m=mmin

(l −m)!

(l + m)!
clA,mA

clB ,mB
clC ,mC

clD,mD
phiphip (m, mA, mB, mC , mD)∫ ∞

0

(r1)
2 dr1RA (r1) RB (r1)

∫ π

0

sin θ1dθ1P
m
l (cos θ1) P

|mA|
lA

(cos θ1) P
|mB |
lB

(cos θ1)∫ ∞

0

(r′1)
2
dr′1

(
rl
1<

rl+1
1>

)
RC (r′1 or 2) RD (r′2)

∫ π

0

sin θ′1dθ′1

Pm
l (cos θ′1) P

|mC |
lC

(cos θ′1 or 2) P
|mD|
lD

(cos θ′2)

Since the phiphip (m, mA, mB, mC , mD) function must have m = |mA| + |mB| or

|mA| = m + |mB| or |mB| = m + |mA| to be nonzero we can apply Gaunt’s formula

to the θ1 integral after a simple change of variables (u = cos θ1) and multiplication



A.3 One- and no-overlap integrals 34

by 2 · 1
2

= 1:

=
1

16

∞∑
l=0

mmax∑
m=mmin

(l −m)!

(l + m)!
clA,mA

clB ,mB
clC ,mC

clD,mD
phiphip (m, mA, mB, mC , mD)∫ ∞

0

(r1)
2 dr1RA (r1) RB (r1) (2)

(
1

2

∫ 1

−1

duPm
l (u) P

|mA|
lA

(u) P
|mB |
lB

(u)

)
∫ ∞

0

(r′1)
2
dr′1

(
rl
1<

rl+1
1>

)
RC (r′1 or 2) RD (r′2)

∫ π

0

sin θ′1dθ′1P
m
l (cos θ′1)

P
|mC |
lC

(cos θ′1 or 2) P
|mD|
lD

(cos θ′2)

=
1

8

lmax∑
l=lmin

mmax∑
m=mmin

(l −m)!

(l + m)!
clA,mA

clB ,mB
clC ,mC

clD,mD
phiphip (m, mA, mB, mC , mD)

gaunt (l,m, lA, mA, lB, mB)

∫ min(rcA,rcB)

0

(r1)
2 dr1RA (r1) RB (r1)

∫ ∞

0

(r′1)
2
dr′1(

rl
1<

rl+1
1>

)
RC (r′1 or 2) RD (r′2)

∫ π

0

sin θ′1dθ′1P
m
l (cos θ′1) P

|mC |
lC

(cos θ′1 or 2) P
|mD|
lD

(cos θ′2)

=
1

8

lmax∑
l=lmin

mmax∑
m=mmin

(l −m)!

(l + m)!
clA,mA

clB ,mB
clC ,mC

clD,mD
phiphip (m, mA, mB, mC , mD)

gaunt (l,m, lA, mA, lB, mB)

∫ ∞

0

(r′1)
2
dr′1RC (r′1 or 2) RD (r′2)

∫ π

0

sin θ′1dθ′1

Pm
l (cos θ′1) P

|mC |
lC

(cos θ′1 or 2) P
|mD|
lD

(cos θ′2)∫ min(rcA,rcB)

0

(r1)
2 dr1

(
rl
1<

rl+1
1>

)
RA (r1) RB (r1) ,

where we have let lmin and lmax be as defined by the triangular condition given

in [10].

Since the r1 integral has no dependence on d we can compute it once for all d and

then store it as a function of r′1:

r1 integralA,B (r′1) =

∫ min(rcA,rcB)

0

(r1)
2 dr1

(
rl
1</rl+1

1>

)
RA (r1) RB (r1),

for each pair of orbitals A and B. Since we only store the integral for discrete values

of r′1 we must interpolate when using this function in the remaining integrals. Using
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this function we can once again simplify the one- and no-overlap integrals:

=
1

8

lmax∑
l=lmin

mmax∑
m=mmin

(l −m)!

(l + m)!
clA,mA

clB ,mB
clC ,mC

clD,mD
phiphip (m, mA, mB, mC , mD)

gaunt (l,m, lA, mA, lB, mB)

∫ ∞

0

(r′1)
2
dr′1RC (r′1 or 2) RD (r′2)∫ π

0

sin θ′1dθ′1P
|m|
l (cos θ′1) P

|mC |
lC

(cos θ′1 or 2) P
|mD|
lD

(cos θ′2) r1 integralA,B (r′1) .

As in the two-overlap case we convert the remaining integrals to cartesian coordinates:

=
1

8

lmax∑
l=lmin

mmax∑
m=mmin

(l − |m|)!
(l + |m|)!

clA,mA
clB ,mB

clC ,mC
clD,mD

phiphip (m, mA, mB, mC , mD)

gaunt (l,m, lA, mA, lB, mB)

∫ ∞

−∞
dz′1

∫ ∞

0

dρ′1r
′
1

ρ′1
r′1

RC (r′1 or 2) RD (r′2)

Pm
l

(
z′1
r′1

)
P
|mC |
lC

(
z′1
r′1

or
z′2
r′2

)
P
|mD|
lD

(
z′2
r′2

)
r1 integralA,B (r′1)

A.3.1 One-overlap integrals

We call the integrals with orbital C on atom one the one-overlap integrals so their

general formula is

1

8

lmax∑
l=lmin

mmax∑
m=mmin

(l − |m|)!
(l + |m|)!

clA,mA
clB ,mB

clC ,mC
clD,mD

phiphip (m, mA, mB, mC , mD)

gaunt (l,m, lA, mA, lB, mB)

∫ ∞

−∞
dz′1

∫ ∞

0

dρ′1ρ
′
1RC (r′1) RD (r′2)

Pm
l

(
z′1
r′1

)
P
|mC |
lC

(
z′1
r′1

)
P
|mD|
lD

(
z′2
r′2

)
r1 integralA,B (r′1)

=
1

8

lmax∑
l=lmin

mmax∑
m=mmin

(l − |m|)!
(l + |m|)!

clA,mA
clB ,mB

clC ,mC
clD,mD

phiphip (m, mA, mB, mC , mD)

gaunt (l,m, lA, mA, lB, mB)

∫ min(rcC ,d+rcD)

max(− rcC ,d−rcD)

dz′1

∫ min
“√

rc2C −z2
1 ,
√

rc2D −z2
2

”
0

dρ′1

ρ′1

(
rl
1<

rl+1
1>

)
RC (r′1) RD (r′2) Pm

l

(
z′1
r′1

)
P
|mC |
lC

(
z′1
r′1

)
P
|mD|
lD

(
z′2
r′2

)
r1 integralA,B (r′1) .
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A.3.2 No-overlap integrals

We call the integrals with orbital C on atom 2 the no-overlap integrals so their general

formula is

1

8

lmax∑
l=lmin

mmax∑
m=mmin

(l −m)!

(l + m)!
clA,mA

clB ,mB
clC ,mC

clD,mD
phiphip (m, mA, mB, mC , mD)

gaunt (l,m, lA, mA, lB, mB)

∫ ∞

−∞
dz′1

∫ ∞

0

dρ′1ρ
′
1

(
rl
1<

rl+1
1>

)
RC (r′2) RD (r′2) Pm

l

(
z′1
r′1

)
P
|mC |
lC

(
z′2
r′2

)
P
|mD|
lD

(
z′2
r′2

)
r1 integralA,B (r′1)

=
1

8

lmax∑
l=lmin

mmax∑
m=mmin

(l −m)!

(l + m)!
clA,mA

clB ,mB
clC ,mC

clD,mD
phiphip (m, mA, mB, mC , mD)

gaunt (l,m, lA, mA, lB, mB)

∫ min(d+rcC ,d+rcD)

max(d−rcC ,d−rcD)

dz′1

∫ min

„q
rc2C −(z′

2)
2
,
q

rc2D −(z′
2)

2
«

0

dρ′1

ρ′1

(
rl
1<

rl+1
1>

)
RC (r′2) RD (r′2) Pm

l

(
z′1
r′1

)
P
|mC |
lC

(
z′2
r′2

)
P
|mD|
lD

(
z′2
r′2

)
r1 integralA,B (r′1) .

A.4 Phi and phi prime integral

The combined φ, φ′ integral is used in all of our two-center integrals. We only

consider m > 0 and m, m1, m2, m3, m4 ∈ I since the loop over m is nonnegative and
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all of the m values must be integers. The derivation proceeds as follows:

phiphip (m, m1, m2, m3, m4)

=
1

π2

∫ 2π

0

dφ


√

2 sin (|m1|φ) if m1 < 0

1 if m1 = 0
√

2 cos (m1φ) if m1 > 0




√
2 sin (|m2|φ) if m2 < 0

1 if m2 = 0
√

2 cos (m2φ) if m2 > 0


∫ 2π

0

dφ′1 (2− δm,0) cos [m (φ− φ′)]
√

2 sin (|m3|φ′1) if m3 < 0

1 if m3 = 0
√

2 cos (m3φ
′
1) if m3 > 0




√
2 sin (|m4|φ′1) if m4 < 0

1 if m4 = 0
√

2 cos (m4φ
′
1) if m4 > 0



=
factorm,m1,m2,m3,m4

π2

∫ 2π

0

dφ

 sin (|m1|φ) if m1 < 0

cos (m1φ) if m1 > 0


 sin (|m2|φ) if m2 < 0

cos (m2φ) if m2 > 0


∫ 2π

0

dφ′1 cos [m (φ− φ′)]

 sin (|m3|φ′1) if m3 < 0

cos (m3φ
′
1) if m3 > 0


 sin (|m4|φ′1) if m4 < 0

cos (m4φ
′
1) if m4 > 0


where

factorm,m1,m2,m3,m4 =

 1 if m = 0

2 if m 6= 0


 1 if m1 = 0

√
2 if m1 6= 0


 1 if m2 = 0

√
2 if m2 6= 0


 1 if m3 = 0

√
2 if m3 6= 0


 1 if m4 = 0

√
2 if m4 6= 0

 .

Now we convert the sine terms into cosine terms using the sin (θ) = cos
(
θ − π

2

)
identity:

=
factorm,m1,m2,m3,m4

π2

∫ 2π

0

dφ cos
(
|m1|φ + γ1

π

2

)
cos

(
|m2|φ + γ2

π

2

)
∫ 2π

0

dφ′1 cos [m (φ− φ′)] cos
(
|m3|φ + γ3

π

2

)
cos

(
|m4|φ + γ4

π

2

)
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where γa =

 −1 if ma < 0

0 if ma > 0
for a = 1, 2, 3, 4. Applying the trigonometric identity,

cos θ cos φ =
1

2
[cos (θ − φ) + cos (θ + φ)] ,

repeatedly until the integrand becomes just a sum of cosine terms gives us:

=
factorm,m1,m2,m3,m4

π2

∫ 2π

0

dφ

∫ 2π

0

dφ′1
1

16

1∑
i1,i2,i3,i4=0

cos {

[
(−1)i1 |m1|+ (−1)i2 |m2| −m

]
φ +

[
(−1)i3 |m3|+ (−1)i4 |m4|+ m

]
φ′

+
[
(−1)i1 γ1 + (−1)i2 γ2 + (−1)i3 γ3 + (−1)i4 γ4

] π

2

}
=

factorm,m1,m2,m3,m4

16π2

1∑
i1,i2,i3,i4=0

∫ 2π

0

dφ

∫ 2π

0

dφ′1 cos {

[
(−1)i1 |m1|+ (−1)i2 |m2| −m

]
φ +

[
(−1)i3 |m3|+ (−1)i4 |m4|+ m

]
φ′

+
π

2

4∑
j=1

(−1)ij γj

}

The π
2

∑4
j=1 (−1)ij γj term is the phase and in this particular sum it can take on the

values mπ
2

where m ranges from −4 to 4. If m is odd then the integrand becomes

a ± sine term and if m is even then the integrand becomes a ± cosine term. Since∫ 2π

0
dφ

∫ 2π

0
dφ′1 sin [aφ + bφ′] = 0 and

∫ 2π

0
dφ

∫ 2π

0
dφ′1 cos [aφ + bφ′] = 4π2 · δa,0 · δb,0 for
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all a, b ∈ I we have the integral simplifies to:

factorm,m1,m2,m3,m4

16π2

1∑
i1,i2,i3,i4=0

phasefactorP4
j=1(−1)ij γj

∫ 2π

0

dφ

∫ 2π

0

dφ′1

cos
{[

(−1)i1 |m1|+ (−1)i2 |m2| −m
]
φ +

[
(−1)i3 |m3|+ (−1)i4 |m4|+ m

]
φ′

}
=

factorm,m1,m2,m3,m4

16π2

1∑
i1,i2,i3,i4=0

phasefactorP4
j=1(−1)ij γj

·4π2 · δ(−1)i1|m1|+(−1)i2|m2|−m,0 · δ(−1)i3|m3|+(−1)i4|m4|+m

=
factorm,m1,m2,m3,m4

4

1∑
i1,i2,i3,i4=0

phasefactorP4
j=1(−1)ij γj

·δ(−1)i1|m1|+(−1)i2|m2|−m,0 · δ(−1)i3|m3|+(−1)i4|m4|+m,0

where phasefactork =


0 if k is odd

1 if |k| = 0 or 4

−1 if |k| = 2

since cos
(
θ + 0π

2

)
= cos (θ), cos

(
θ ± π

2

)
=

∓ sin (θ), cos
(
θ ± 2π

2

)
= − cos (θ), cos

(
θ ± 3π

2

)
= ± sin (θ), and cos

(
θ ± 4π

2

)
=

cos (θ).

Notice that since m1, m2, m3, and m4 are all fixed in the delta functions above only

a certain range of m values can possibly result in a nonzero integral. Remembering

that m can only take on positive values the only values we need consider must be in the

interval from max (||m1| − |m2|| , |m3| − |m4||) to min (||m1|+ |m2|| , |m3|+ |m4||).

Note: rather than combine all of the terms into a sum of cosine terms it is also

possible to consider the different cases that arise from the product of the four sine

or cosine terms (the cos [m (φ− φ′)] doesn’t change). Six unique cases arise after

ordering the numbered m values.
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