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Abstract 

Non-neutral plasma in a Malmberg-Penning trap has been shown computationally to 

exhibit nonlinear mode coupling between Trivelpiece-Gould modes. We used a computational 

model that shows similar mode coupling between the nz=1 and nz=2 modes. This occurs because 

of the nonlinear terms found in the momentum and the continuity equations. By driving both 

modes, we can get large enough magnitudes to see the coupling. If the magnitude of either mode 

is not large enough, coupling factors become insignificant. Also, a relation exists between the 

relative phase difference between modes and the direction of energy transfer in coupling.  

Introduction 

Hart, Spencer, and Peterson1 have previously done work analyzing the nonlinear effects 

in waves in a nonneutral plasma, primarily using high densities in their analysis. This work was 

both done computationally and experimentally. Their model shows how these nonlinear effects 

are observed in high density plasma. This low-density study will support their findings, allowing 

better understanding of confined plasma behavior.  

The momentum (Equation 1) and continuity (Equation 2) equations, shown below, each 

contain nonlinear terms, (𝒗𝒆 ⋅ 𝜵)𝒗𝒆 and 𝜵 ⋅ (𝑛𝑒𝒗𝒆), which are negligible at low oscillation 

magnitudes, but play a significant role in mode coupling when the oscillation magnitudes are 

big2.  

𝑚𝑛𝑒 [
𝛿𝒗𝒆

𝛿𝑡
+ (𝒗𝒆 ⋅ 𝜵)𝒗𝒆] + 𝑒𝑛𝑒𝑬 = 0    (1) 

𝛿𝑛𝑒

𝛿𝑡
+ 𝜵 ⋅ (𝑛𝑒𝒗𝒆) = 0     (2) 

Assuming modes of the form 

𝑛1 = 𝑛10 sin(𝜔1𝑡) sin(𝑘1𝑧) 

𝑛2 = 𝑛20 sin(𝜔2𝑡 + 𝜑) cos(𝑘2𝑧) 

the corresponding velocities are 

𝑣1 =
𝑛10𝜔1

𝑛0𝑘1
cos(𝜔1𝑡) cos(𝑘1𝑧) 

𝑣2 =
𝑛20𝜔2

𝑛0𝑘2
cos(𝜔2𝑡 + 𝜑) sin(𝑘2𝑧) 

When applied to the continuity equation, the terms with the same spatial and temporal 

dependence as the n1 and n2 modes are 
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𝛿𝑡
=

𝑛10𝑛20

2𝑛0
𝜔1 cos 𝜑 

𝛿𝑛20

𝛿𝑡
=  −

𝑛10
2

2𝑛0
𝜔1 cos 𝜑 

φ refers to the phase difference between the two modes, n1 and n2. These differential 

equations demonstrate the non-linear coupling between the two lowest-order Trivelpiece-Gould 

modes, each containing terms from the other mode. In the coupling, one mode’s large magnitude 

will cause an increase or decrease in magnitude of the other mode depending on the relative 

phase, acting as an alternating energy transfer between the two modes. This transfer alternates, 

both from the n1 mode to the n2 mode and from the n2 mode to the n1 mode, depending on the 

relative magnitudes and relative phase between the modes.  

Because each mode has its own phase, calculating for φ, the relative phase difference 

between the two modes, is necessary. φ is used as a phase shift for the ω2 frequency, if the phase 

in the ω1 frequency is zero. Calculating for φ yields our reasoning for our calculation in Figure 3.  

𝐹(𝑡) = cos(𝜔1𝑡) + cos(𝜔2𝑡 + 𝜑) = cos(𝜔1𝑡 + 𝜑1) + cos(𝜔2𝑡 + 𝜑2) 

𝐹(𝑡) = cos(𝜔1(𝑡 − 𝑡0)) +  cos(𝜔2(𝑡 + 𝑡0) + 𝜑2) 

𝜑1 = −𝜔1𝑡0 →  𝑡0 = −
𝜑1

𝜔1
 

𝜑 = 𝜑2 + 𝜔2𝑡0 

𝜑 = 𝜑2 −
𝜔2

𝜔1
𝜑1 

Because ω2 is twice that of ω1 when the modes are coupled, the equation can simplify to 

the following.  

𝜑 = 𝜑2 − 2𝜑1 

Through this simple equation, we can find the phase relationship between the two modes.  

When the product of the low order mode term and the high order mode term are found in 

the continuity and momentum equations, we get the following. 

2 cos(ω1t) cos(ω2t + φ) = cos((ω2 + ω1)t + φ) + cos((ω2 − ω1)t + φ) 

This trig identity helps explain the mode coupling energy transfer from ω1 to ω2 and 

back, depending on the relative phase between the two modes. Because ω2 is almost exactly 

twice the frequency as ω1, the difference term essentially becomes ω1, making the nz=1 mode 

grow. The addition term does the opposite, making the ω1 term shrink while the ω2 term grows. 



This explains the mode coupling caused by the nonlinear terms in the momentum and continuity 

equations.  

Methods 

In this computation, we ran a particle-in-cell code, designed to model the behavior of 

particles under electromagnetic influences using a fixed-mesh grid. In each time step, the code 

calculates the particles’ motion equations and fields, and moves the particles in each time step 

accordingly. Our grid was structured in a cylindrical coordinate system, simulating the behavior 

of the plasma using previously published code3. The code takes in parameters for a Malmberg-

Penning trap, including plasma properties, drive frequency and voltage, and time steps to run the 

simulation. The code then uses those parameters to act on a pre-calculated plasma equilibrium 

state, making the plasma fluctuate.  

We have been studying electrostatic Trivelpiece-Gould modes in a nonneutral plasma. 

Our plasma is about 104 cm long and about 2 cm in radius. The plasma temperature is about 0.2 

eV. The plasma is driven at the ends with alternating 5V potential differences, at the frequency to 

excite the nz=2 mode. The plasma density was shifted by a given number of points from the 

equilibrium position to excite the nz=1 mode. If the nz=1 mode was too small, we did not observe 

any mode coupling. 

We altered the plasma equilibrium state to impose a pre-existing nz=1 mode by shifting 

all plasma particles several grid points to one side. Then, by driving the plasma at the ω2 

frequency, we provided an increase in magnitude of the ω2 frequency to a magnitude where 

nonlinear effects were observed. 

The data returned from the simulations was analyzed, providing the center of mass of the 

plasma and the root-mean-squared (RMS) length of the plasma. The center of mass shifts as the 

plasma moves side to side, characteristic of a half-wavelength mode, and the RMS length shifts 

as the length of the plasma grows and shrinks, characteristic of a full-wavelength mode. Thus, 

these two measurements correlate to their respective nz=1 and nz=2 modes. Because of the 

oscillating nature of the modes, we performed a least-squares fit to subsets of the center of mass 

and RMS length data of the plasma. Each subset was about 3000 data points – about 3-6 periods 

long, depending on the mode – providing enough points for an accurate least-squares fit, and a 

small enough section for decent resolution of the magnitude and frequency variations between 

subsets. We fit the data points to the equation 𝐴 sin(𝜔 𝑡 + 𝜑) + 𝐵, fitting for the magnitude of 

the waves (𝐴), the frequency of the waves (𝜔), the phase offset of the waves (𝜑), and the y-offset 

of the waves (𝐵).  

The returned fit variables allowed a relative plot of the magnitude, frequency, and phase 

of each mode from each subset of data. The magnitude plots are shown in Figures 2a and 3a. The 

frequency plots, scaled to the average ω2 frequency, are shown in Figure 2b. The plot in Figure 

3b shows relative phase values φ, adjusted to fit within -π < φ < π.  



Results 

There were two significant findings in this research. First, the nonlinear coupling between 

the modes is clear, and we can see the energy transfer between these modes. In Figure 1, the two 

modes from the same run are shown on an equal timescale, with negative time values being the 

time when the nz=2 mode was driven. This run had enough magnitude in both modes to clearly 

show the mode coupling. This mode coupling is demonstrated by the magnitude shifts back and 

forth between the two modes. We can see a general plot of the comparative magnitudes of these 

modes in Figures 2a and 3a. It is significant to note that the coupling causes large shifts in 

energy, until at one time, most of the energy is held in either of the two modes, and the other 

mode has very little energy stored within. These energy peaks alternate between modes. In 

Figure 2b, we see how these modes link together in frequency, so that the frequency of nz=2 is 

consistently twice that of the nz=1 mode.  

 

Figure 1: The fluctuating RMS length (nz=2) and shifting center of mass (nz=1) from one run. Time before t=0 

indicates time where the plasma was being driven. Mode coupling can be seen, as one mode increases in magnitude, 

the other decreases, and vice versa.  



 

Figure 2: The orange lines pertain to the nz=1 mode, and the blue lines to the nz=2 mode. Figure 2a shows the 

relative magnitudes of the two modes, as calculated in the least-squares fit. Figure 2b shows a scaled frequency 

plot, where the blue line is equal to ω2/mean(ω2) and the orange line is equal to 2ω1/mean(ω2). Note, the missing 

point in the plots is a point where the least-squares fit failed to fit properly.  

We see in Figure 2 that the coupling is strong when the nz=1 mode is large. This coupling 

causes the ω1 frequency to be as close to ω2/2 as possible, within reasonable error. Yet, when the 

nz=1 mode is small, the mode coupling is weaker, and we can see the departure from the mode 

frequency linkage. The points where the first mode departs from being half the frequency of the 

second mode reveals weak nonlinear mode coupling. It has yet to be determined why the ω1 

frequency increases to the value that it does at these low peaks in magnitude. 

The second significant finding involves the relationship between phase and magnitude of 

the modes. When -π/2 < φ < π/2, the nz=1 mode converts its energy to the nz=2 mode. Points 

where this is true for φ are marked in Figure 3, and the points in the magnitude plots 

corresponding to those times for φ are also marked. Noticeably, when φ < -π/2 or φ > π/2 (φ is 

limited between -π and π), the nz=2 mode converts its energy to the nz=1 mode.  



 

Figure 3a: The orange line pertains to the nz=1 mode, and the blue line to the nz=2 mode. Figure 3a shows the 

relative magnitudes of the two modes, the same as in Figure 2a. Points marked with a ‘+’ are points at times where 

-π/2 < φ < π/2. Figure 3b shows φ, calculated as φ2 – 2φ1. Points marked with a ‘+’ are points at times where -π/2 < φ 

< π/2. Note, the missing point in the plots is a point where the least-squares fit failed to fit properly.  

Conclusion 

Through these simulations, we see that the first two lowest-order Trivelpiece-Gould 

modes are strongly coupled when both modes have large magnitudes, as expected from the 

nonlinear terms in the momentum and continuity equations. Also, a correlation can be seen 

between the relative phase, φ, and the direction of energy transfer between modes. Further 

research can be done to better understand the departure frequency of the nz=1 mode, when this 

mode becomes small. Also, higher-order modes can be studied to see how the energy transfer 

behaves differently with different ωn+1/ωn ratios.  
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