

CHAOTIC SCATTERING IN THE

2ND POST-NEWTONIAN ORDER GRAVITATIONAL

THREE-BODY PROBLEM

By

David E. Tanner

A senior thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Bachelor of Science

Department of Physics and Astronomy

Brigham Young University

August 2007

 ii

Copyright © 2007 David E. Tanner

All Rights Reserved.

 iii

BRIGHAM YOUNG UNIVERSITY

DEPARTMENT APPROVAL

of a senior thesis submitted by

David E. Tanner

This thesis has been reviewed by the research advisor, research

coordinator, and department chair and has been found to be

satisfactory.

__

Date David Neilsen, Advisor

__

Date Eric Hintz, Research Coordinator

__

Date Ross Spencer, Chair

 iv

ABSTRACT

CHAOTIC SCATTERING IN THE

2ND POST-NEWTONIAN ORDER GRAVITATIONAL

THREE-BODY PROBLEM

David E. Tanner

Department of Physics and Astronomy

Bachelor of Science

The three-body problem is explored in general relativity using the second order post-

Newtonian approximation. The results are compared to Newtonian gravity. The three

bodies are set up as a binary system with an incoming body. The system is evolved

through time for a large two dimensional space of initial values. Several properties for

both the Newtonian and relativistic systems are mapped onto the initial-value space and

analyzed. The two sets of maps show regions of similarity and contrast. The relativistic

system's chaotic behavior diverges most significantly from the Newtonian system when

the three bodies undergo relativistic interactions.

 v

ACKNOWLEDGEMENTS

A huge thanks goes to my thesis advisor, Dr. David Neilsen. He helped me to

numerically simulate planetary motion, collect data there from, and then make sense of it

all. He also greatly helped me write my whole thesis.

I would also like to thank Dr. Eric Hirschmann who helped me along my long and

bumpy journey through general relativity. Without his patience and after-school tutoring,

Christoffel symbols, Γ, would just be a game of hangman.

 Thank you especially to my wife for sharing in my excitement as I learned and

understood principles in general relativity. She is a great woman indeed for being able to

make sense of hypersurface-orthogonal vector fields.

 And thanks, finally, to my two good friends MarylouX and Marylou4 of the

Foulton Supercomputing Laboratory; their high computing power made finishing my

simulations on time possible.

 vi

Table of Contents

Table of Contents ..vi

List of Figures..viii

List of Tables .. x

Introduction.. 1

1.1 Motivation.. 1

1.2 Chaos.. 2

1.3 Three-body Problem .. 4

1.4 Post-Newtonian Gravity... 5

1.5 Significance of Comparison... 7

Problem Setup .. 8

2.1 Equations of Motion .. 8

2.2 Initial Conditions ... 10

Problem Solution.. 15

3.1 Solving the Equations .. 15

3.2 run .. 16

3.3 nbodyPN .. 17

3.4 DaFilt ... 17

3.5 Grapher .. 18

Results ... 19

4.1 Introduction.. 19

4.2 Whole Space .. 21

4.2.1 Escape Angle ... 21

4.2.2 Escape Time... 23

4.2.3 Change in Angular Momentum ... 25

4.2.4 Minimum Approach Distance.. 27

 vii

4.2.5 Maximum Momentum Dot Product... 29

4.2.6 Escaping Body ... 31

4.3 Error and Data.. 31

4.4 Four Sub-Regions .. 34

4.4.1 Escape Angle ... 34

4.4.2 Escape Time... 39

4.4.3 Change in Angular Momentum ... 44

4.4.4 Minimum Approach Distance.. 44

4.4.5 Maximum Momentum Dot Product... 53

4.4.6 Escaping Body ... 53

Conclusion .. 63

5.1 Significance.. 63

5.2 Findings.. 64

5.3 Future Research ... 65

Bibliography ... 66

Appendix... 67

 viii

List of Figures

Figure 1.1 Mandelbrot Set (zoom=1; zoom=2x105; zoom=6x1010)

Figure 1.2 Three-body chaos in center-of-mass reference frame

Figure 2.1 Three-body problem setup

Figure 4.1 Color scale for figures

Figure 4.2 Boxes outlining Regions 1-4 of Whole Space; Newtonian (top) and PPN2
(bottom). Region 1 is outlined by the lower left box; region 2 is the upper left
box; region 3 is the lower right box; region 4 is the upper right box.

Figure 4.3 Escape Angle of Whole Space; Newtonian (top) [0, 2π] and PPN2 (bottom) [0, 2 π]

Figure 4.4 Thrice-repeated figure of Angular Momentum Error of Whole Space; black
structure identifies a feature which wraps across parameter space three times.

Figure 4.5 Time of Whole Space; Newtonian (top) [3.6x103, 9.7x104] and PPN2 (bottom)
[3.2x103, 2.8x107]

Figure 4.6 Change in Angular Momentum of Whole Space; Newtonian (top) [-2.2x105,
2.3x105] and PPN2 (bottom) [-2.0x105, 2.4x105]

Figure 4.7 Minimum Approach Distance of Whole Space; Newtonian (top) [9.9x10-8,
7.3x10-3] and PPN2 (bottom) [6.7x10-8, 7.3x10-3]

Figure 4.8 Max Momentum Dot Product of Whole Space; Newtonian (top) [9.0x106,
3.1x1026] and PPN2 (bottom) [3.3x1018, 1.8x1026]

Figure 4.9 Escaping Body of Whole Space; Newtonian (top) [1, 3] and PPN2 (bottom) [1, 3]

Figure 4.10 Escape Angle of Region 1; Newtonian (top) [0, 2π] and PPN2 (bottom) [0, 2π]

Figure 4.11 Escape Angle of Region 2; Newtonian (top) [0, 2π] and PPN2 (bottom) [0, 2π]

Figure 4.12 Escape Angle of Region 3; Newtonian (top) [0, 2π] and PPN2 (bottom) [0, 2π]

Figure 4.13 Escape Angle of Region 4; Newtonian (top) [0, 2π] and PPN2 (bottom) [0, 2π]

Figure 4.14 Escape Angle showing fine line of error; Newtonian (left) and PPN2 (right)

Figure 4.15 Escape Time of Region 1; Newtonian (top) [4.4x103, 6.4x106] and PPN2
(bottom) [3.2x103, 8.6x106]

Figure 4.16 Escape Time of Region 2; Newtonian (top) [4.2x103, 1.0x107] and PPN2
(bottom) [3.2x103, 1.4x107]

 ix

Figure 4.17 Escape Time of Region 3; Newtonian (top) [4.3x103, 1.4x107] and PPN2
(bottom) [3.1x103, 7.8x106]

Figure 4.18 Escape Time of Region 4; Newtonian (top) [7.8x103, 1.5x107] and PPN2
(bottom) [3.1x103, 1.0x108]

Figure 4.19 Change in Angular Momentum of Region 1; Newtonian (top) [-1.0x105,
9.8x104] and PPN2 (bottom) [-9.6x104, 1.2x105]

Figure 4.20 Change in Angular Momentum of Region 2; Newtonian (top) [-1.1x105,
2.5x105] and PPN2 (bottom) [-1.1x105, 2.4x105]

Figure 4.21 Change in Angular Momentum of Region 3; Newtonian (top) [-1.0x105,
1.4x105] and PPN2 (bottom) [-8.8x104, 1.4x105]

Figure 4.22 Change in Angular Momentum of Region 4; Newtonian (top) [-1.3x105,
2.5x105] and PPN2 (bottom) [-1.6x105, 2.5x105]

Figure 4.23 Minimum Approach Distance of Region 1; Newtonian (top) [2.7x10-8, 6.1x10-
3] and PPN2 (bottom) [1.1x10-7, 6.3x10-3]

Figure 4.24 Minimum Approach Distance of Region 2; Newtonian (top) [3.7x10-7, 6.7x10-
3] and PPN2 (bottom) [3.8x10-7, 6.8x10-3]

Figure 4.25 Minimum Approach Distance of Region 3; Newtonian (top) [1.6x10-8, 7.1x10-
3] and PPN2 (bottom) [4.6x10-9, 7.2x10-3]

Figure 4.26 Minimum Approach Distance of Region 4; Newtonian (top) [1.3x10-7, 7.3x10-
3] and PPN2 (bottom) [2.3x10-7, 7.3x10-3]

Figure 4.27 Max Momentum Dot Product of Region 1; Newtonian (top) [9.0x106,
3.8x1026] and PPN2 (bottom) [9.0x106, 2.9x1026]

Figure 4.28 Max Momentum Dot Product of Region 2; Newtonian (top) [9.0x106,
5.3x1025] and PPN2 (bottom) [3.7x1020, 1.2x1026]

Figure 4.29 Max Momentum Dot Product of Region 3; Newtonian (top) [9.0x106,
1.9x1026] and PPN2 (bottom) [2.0x1019, 6.3x1028]

Figure 4.30 Max Momentum Dot Product of Region 4; Newtonian (top) [9.0x106,
2.6x1026] and PPN2 (bottom) [3.8x1020, 2.0x1026]

Figure 4.31 Escaping Body of Region 1; Newtonian (top) [1, 3] and PPN2 (bottom) [1, 3]

Figure 4.32 Escaping Body of Region 2; Newtonian (top) [1, 3] and PPN2 (bottom) [1, 3]

Figure 4.33 Escaping Body of Region 3; Newtonian (top) [1, 3] and PPN2 (bottom) [1, 3]

Figure 4.34 Escaping Body of Region 4; Newtonian (top) [1, 3] and PPN2 (bottom) [1, 3]

 x

List of Tables

Table 4.1 Statistical Data for Whole Space figures

Table 4.2 Statistical Data for Region 1 figures

Table 4.3 Statistical Data for Region 2 figures

Table 4.4 Statistical Data for Region 3 figures

Table 4.5 Statistical Data for Region 4 figures

 1

Chapter 1

Introduction

1.1 Motivation

N-body problems have been widely studied and are a versatile window into physical

chaos. More specifically, the gravitational three-body problem has received much

attention because of its simple setup and its application to astrophysical systems such as

the solar system. It has been studied using different numbers of dimensions, different

equations for gravity and different constraints on the system. Most work on the three-

body problem has been done in the context of Newtonian gravity. The present work

studies chaos in general relativity, Einstein’s theory of gravitation, using the second order

post-Newtonian approximation (hereafter abbreviated PPN2). This study sets up

congruent experiments—the same except for the equations of gravity. Newton’s

equations of gravity are compared with Einstein’s PPN2. This experiment brings to light

differences and similarities between the equations especially with regard to their chaotic

behavior.

 2

1.2 Chaos

In physics, chaos denotes a dynamic system for which the outcome is highly sensitive to

the initial conditions. This sensitivity makes long-term prediction impossible, as small

uncertainties in the initial state lead to very large effects later on. The exponential

sensitivity to initial conditions can be quantified using the Liapunov exponent. Let φ1(t)

and φ2(t) represent two possible evolutions of a physical system (i.e. two solutions to the

system’s equations of motion). Let ∆φ(t) represent the difference between the two

solutions (φ2(t) - φ1(t)). As time goes on, if the solutions grow closer together (behave the

same) ∆φ(t) will approach zero. On the other hand, if the solutions consistently follow

different paths, ∆φ(t) approaches infinity (differing systems behave more and more

differently). In the following expression

tKet λφ ~)(∆

∆φ(t) approaches zero or infinity depending on whether λ is positive or negative; K is a

constant. The variable λ is the Liapunov exponent; if it is negative then long-term

motion is non-chaotic (in fact it converges to a common solution) but if it is positive then

the long-term motion is chaotic. Thus, systems are chaotic if different solutions diverge

at an exponential rate.

To illustrate the impossibility of long-term predictions for chaotic systems, consider

two states specified by 0.999999999999999 and 1. These states differ by only 1x10-15,

but to a computer these are the same floating-point number. But to a chaotic system,

these may represent initial conditions, or intermediate values, varied enough to produce

exponentially differing outcomes. It does not take much time for a numerical inaccuracy

to blow up into noticeable error. For example, transforming the above equation into

 3

tet λφφ)0()(∆=∆ and solving for how long it takes (t) for a numerical error (∆φ(t) =

1x10-15) to grow to order one (∆φ(t) = 1) using λ = ½.

tex 2151011 −=

It only takes t = 17.27 units of time for the “negligible” error to grow to order one. For

this reason, running the same chaotic computer simulation twice can produce different

results even if the initial conditions are meant to be the same.

Although chaos denotes unpredictability, it should not connote random. Buried

inside the mysteries of chaos, there can be seen beautiful patterns. One example of a

pattern born of chaos is a fractal. A fractal is a pattern which repeats itself on finer and

finer magnifications. Figure 1.1 shows three images of the Mandelbrot [1] at different

magnifications; note the pattern is ever-complex on finer and finer scales and has some

repeating features. The Mandelbrot Set is defined as the set of all complex numbers such

that ∞<)0(n
cf , where)(zf n

c is the nth iteration of czzf c += 2)(; i.e.

()() ccf c ++=
223 0)0(. The black areas in Figure 1.1 belong to the Mandelbrot set while

the colored regions are color coated according to how fast they diverge to infinity.

Figure1.1 Mandelbrot Set (zoom=1; zoom=2x105; zoom=6x1010)

Notice the chaotic border shown in the left-most figure. By zooming in almost a million

times on the border, the center image is found. And zooming in almost a million times

 4

more produces the far right image. These beautiful patterns seem to exist on ever finer

and finer scales. Similar features can also be found in the chaotic gravitational three-

body problem, discussed in Section 1.3. Though they are both chaotic and therefore

extremely sensitive to initial conditions, they are not random—they feature beautiful

patterns.

1.3 Three-body Problem

Gravitating bodies has been a very popular system for exploring chaos. The gravitational

three-body problem is a very simple chaotic system; three masses orbit each other under

their mutual gravitational attraction. They are in a vacuum (no drag) and the only forces

they feel are gravitational forces. Figure 1.2, taken from [2], illustrates how three bodies

may evolve in each other’s gravitational field. The two body gravitational problem, on

Figure 1.2 Three-body chaos in center-of-mass reference frame

the other hand, is quite simple to solve analytically. Newton was the first person to do so,

which provided a new understanding of Kepler’s laws. The gravitational two-body

problem has a closed-form solution—a solution which can be written as a function. The

solutions are conic sections: an elliptical orbit if their energies are negative, a parabola if

their energies are zero or a hyperbola if their energies are positive. The solution is

 5

deterministic and cannot behave chaotically.

The three-body problem, however, is much more complicated. It does not have a

general analytic solution. Interestingly, over 100 years ago Poincaré discovered that the

three-body problem is chaotic [3]. Because the n≥3-body problems are chaotic, orbits in

our solar system can only be predicted accurately on the order of millions of years [4].

For general three-body problems, the equations of motion must be solved numerically.

 Much research has already been done on the three-body problem. Chicone et al

[5] setup a binary system which was driven by obliquely incident gravitational radiation

and was dampened by radiating its own gravitational energy—it behaved similar to a

driven dampened harmonic oscillator. Their driven dampened stellar system was made to

behave both smoothly and chaotically. Hock [6] studied the Eüler problem (two fixed

bodies and one orbiting body), sometimes called the restricted three-body problem, and

showed that for Newtonian gravity, the solution was non-chaotic, whereas implementing

equation of general relativity produced a chaotic system. Others have allowed three

bodies to move freely in one dimension. Hietarinta et al [7] showed that a Newtonian

three-body system, in one dimension, still behaves chaotically. Burnell et al [8] studied

the chaotic behavior of the one-dimensional problem using general relativity. The

Newtonian and general relativity gravity comparison is furthered in this study by looking

at the three-dimensional three-body problem.

1.4 Post-Newtonian Gravity

When most think of gravity, they think of Sir Isaac Newton. Newton’s Universal Law of

Gravitation says that the force of gravitational attraction (F) between any two bodies is

 6

r
r

mm
GF

vv

3
21=

where G is the universal gravitational constant, m1 and m2 are the masses of bodies 1 and

2, and r is the distance vector between the masses. According to Newton, the force

between two masses is related only to the distance between them. For the most part, he

was right…

About one hundred years ago Albert Einstein formulated a new—more complex—

model of gravity called general relativity. To contrast their complexity, the average

student will learn about Newton’s Law of Universal Gravitation in middle school,

whereas a typical astrophysicist does not learn Einstein’s theory of general relativity until

graduate school. This difference is due to the mathematical complexity of general

relativity, which uses tensor equations on curved manifolds. Einstein showed that

Newton’s Law of Gravity it a simple approximation of general relativity. Since that time,

mathematicians and physicists have extracted correctional terms to study, in a

perturbative manner, Newtonian-like systems in general relativity.

Einstein models space and time as a curved manifold. Energy and mass curve

space-time and this curvature is manifest as a “gravitational force.” In the case of the

three-body problem, the gravitational fields of the three bodies would determine the

curvature. The bodies then move along the natural curves (known as geodesics) of space-

time. Solving the full equations of general relativity for three-bodies in three dimensions

would be far too complex. To avoid an exact analytical solution of such complex

equations, this paper explores the three-body problem using PPN2. A second-order

perturbative approximation is acceptable for weak fields such as a modeled solar system.

This approximation generates only ordinary differential equations, whereas the full

 7

equations of general relativity are partial differential equations (which are harder to

numerically integrate).

1.5 Significance of Comparison

The general three-body problem has previously been explored using Newtonian gravity.

I explore the same system using PPN2 and compare the results. An elegant study of he

Newtonian three-body problem was conducted by Boyd and McMillan in 1993 [9]. I

reproduce some of their results using Newtonian gravity then perform the same

experiments using Einstein’s PPN2 gravity. It is proposed that the two systems will

differ the most when the bodies undergo relativistic interactions (high velocities and close

approaches) as this is what PPN2 takes into account. This experiment will give insight

into the chaotic behavior of general relativity.

 8

Chapter 2

Problem Setup

2.1 Equations of Motion

The first step in simulating planetary motion is establishing the equations of motion

which will govern the behavior of the planetary bodies. Two sets of equations are

implemented in this study: one for Newtonian gravity and one for PPN2. The equations

are presented as a system of ordinary differential equations derived from their respective

Hamiltonians. The Hamiltonian for Newtonian gravity is

∑∑∑ ∑
≠

−+=
a ab ab

ba

a a a

a
a r

mm
G

m

p
mH 2

1
2

2
1 .

The first term sums the rest energy of the masses, the second term sums the kinetic

energy of all the masses, and the third term sums the gravitational potential energy

between each pair of masses. The Hamiltonian for Einstein’s PPN2 was derived by

Schäfer [10]:

 9

()()

() () ()()()

() ()

() ()()

()() ()()

()() ()()

()()

()
()()

()

()() ()()

() ()

()[]

∑∑

∑∑ ∑

∑∑ ∑∑∑∑∑∑∑

∑∑ ∑

∑∑ ∑∑∑

∑∑∑

∑∑∑

∑∑

∑∑∑∑∑∑

∑∑∑∑ ∑

≠

≠ ≠

≠ ≠≠ ≠≠ ≠

≠ ≠

≠ ≠≠

≠ ≠

≠ ≠

≠

≠ ≠≠

≠

−

++−+++−−−

−−−





















⋅−
−

⋅−
−

⋅⋅−⋅
−

⋅⋅−⋅

++
+









+++−

++
++

+






 ⋅
−++





















⋅⋅
−

⋅
⋅−⋅+

⋅⋅
+

⋅⋅

+





















⋅⋅
⋅+

⋅⋅
+

⋅⋅
−

⋅
+

⋅
−

⋅
−+

+





















⋅⋅
−

⋅⋅⋅
−

⋅
+

⋅
−−









+









++







 ⋅⋅
−

⋅
−−









−−+=

a ab ab

ba

a ab bac
abbcbcabbcabbcacabbcabacabbcabacab

bcacab

cba

a ab bac bcacab

cba

a ab ac acab

cba

a ab ac bcab

cba

a ab bac

a

aaba

c

cabc

ba

babaabba

ca

babaabca

abcabcab

cba

a ab bac

a

ajai

c

cjci

ba

bjai

ca

ciaj

ba

cjai

j
cb

j
ab

i
ac

i
ab

cabcab

cba

a ab ba

ba

b

b

a

a

ab

ba

c

caccab

c

cac
acab

c

c
acab

cb

cacbab

ca

cacaab

a ab ac ab

cba

a ab ac

cb

cacbab
acab

cb

cabaab

ba

babaab

cb

cb

ba

ba

b

bab

b

b

a

a

acab

cba

a ab

ba

babaab

ba

babaabba

ba

baba

ba

ba

ba

ba

a

a

ab

ba

a a

a
a

a ab ac acab

cba

ba

babaab

ba

ba

a

a

a ab ab

ba

a a

a
a

a ab ab

ba

a a a

a
a

r

mm
G

rrrrrrrrrrrrrrrrr
rrr

mmm
G

rrr

mmm
G

rr

mmm
G

rr

mmm
G

m

pnp

m

pnp

mm

pnpnpp

mm

pnpnpp

rrrr

mmm
G

m

pp

m

pp

mm

pp

mm

pp

mm

pp

nnnn
rrr

mmm

G
mm

pp

m

p

m

p

r

mm
G

m

pnpn

m

pn
nn

m

p
nn

mm

pnpn

mm

pnpn

r

mmm
G

mm

pnpn
nn

mm

pnpn

mm

pnpn

mm

pp

mm

pp

m

pn

m

p

m

p

rr

mmm
G

mm

pnpn

mm

pnpnpp

mm

pnp

mm

pp

mm

pp

m

p

r

mm
G

m

p
m

rr

mmm
G

mm

pnpn

mm

pp

m

p

r

mm
G

m

p
m

r

mm
G

m

p
mH

3

22
3

,

4433222222
33

2
3

64
1

,

2
3

8
3

2

2
3

8
3

2

2
3

2
1

,

2

22

2

22

2
2
1

,

22

2

2
2
1

2

2

2

2

2

2
2

4
1

2

22

2

2
2

8
1

2

2

2

2

2

2

2
8
1

22

22

2222

22

22

2

22

222

2

2

16
1

3

2

2

16
12

2
1

2

2

4
1

2

2

2

8
1

2
1

2

2
1

635725660246018

4

38

43168

2

14

522

14

14175021418

3

121021110

76

vvvv

vvvvvvvvvvvv

vv

vvvv

vv
vvvv

vvvvvvvv

vvvv
vv

vvvv

vvvvvvvvvv

vvvv

vvvvvvvvvv

vvvvvv

where G is a gravitational constant, ma is the mass of body a, pa is the momentum vector

of body a, rab is the position vector between bodies a and b ()ba rr
vv − , and abn

v
 is the

normalized position vector between bodies a and b 













−
−

=
ba

ba
ab rr

rr
n vv

vv

. The reader will

notice that later terms are higher orders of
r

1
 and are therefore supposed to play a lesser

 10

role than prior terms. Because the bodies are represented as point masses, this

perturbative assumption is violated when the bodies approach infinitely close to one

another and the later terms grow larger then the prior terms. Also of note is the presence

of vector dot products in the PPN2. The behavior of the three bodies will change

depending on their relative momentum vectors, not just their relative positions as with

Newtonian gravity. It is clear that the Hamiltonian PPN2 is much longer and more

complex than that of Newtonian gravity.

The equations of motion for the three bodies are derived from the above

Hamiltonian using Hamilton’s Equations:

i
i

i
i q

H
p

p

H
q

∂
∂−=

∂
∂= && , ,

where H is the Hamiltonian; q is a generalized coordinate vector, i ranges over all 3

masses as well as all 3 vector components (creating 18 equations in all), and p is the

conjugate momentum, defined as
j

j q

L
p

&∂
∂= , where L is the Legrangian. The 18

equations for both models of gravity are generated using Maple which also converts them

to Fortran code for computational use. To exemplify the complexity of PPN2, it took six

thousand lines of code to implement. This high level of complexity renders improbable

the idea of writing a customized ODE solver; it is explained later that an ODE solver with

an adaptive time step was needed to integrate such difficult equations.

2.2 Initial Conditions

As explained previously, the three-body problem has 18 equations and 18 unknown

variables: each of the three bodies has three positional variables and three momentum

 11

variables. The same problem setup as [9] is followed; imposing the laws of conservation

of energy and conservation of momentum (both linear and angular) reduces the number

of unknowns to 14. Restricting motion to a plane further reduces the number of

unknowns to 8. Writing the equations in the center of mass frame imposes two more

constraints. I use an initial configuration, shown in Figure 2.1, which is specified by only

two free parameters: ρ and φ, which will be addressed below. Though the number of

initial parameters has been pared down to two, the full 18 equations must be solved.

Figure 2.1 Three-body problem setup

The initial three-body configuration is shown in Figure 2.1. Two of the masses

form a stable Newtonian binary star system; they initially orbit each other in a circle,

separated a distance a apart. The third body is separated a distance 30a from the binary's

center of mass. The two free parameters are the initial phase angle (φ) of the binary and

the impact parameter (ρ) of the incoming field star. For φ=0, both masses one and two lie

on the x-axis. ρ measures the perpendicular distance of mass three from the x-axis. The

 12

arrows in Figure 2.1 show the initial trajectory of the three masses. The initial conditions

are calculated as follows:

7101xm =

mmmm === 321

1110673.6 −= xG

7.1=a

() ()






= 0,sin

2
,cos

21 φφ aa
x
v

() ()






 −−= 0,sin

2
,cos

22 φφ aa
x
v

{ }0,,303 ρax =v

a

m
Gv

2
=

a

Gm
vc 2

3=

() (){ }0,cos,sin1 φφ vvv −=v

() (){ }0,cos,sin2 φφ vvv −=v

{ }0,0,2
1

3 cvv −=v

Because this system is chaotic, a minute change in the initial ρ or φ can drastically

change the system’s behavior. To fully explore the system’s behavior, many

combinations of (ρ, φ) initial conditions are explored. The initial conditions have a ρ

range of -4.5a ≤ ρ ≤ 7.5a (no chaotic scattering is observed outside this range; verified by

[9] and this study). The φ range used is 0 ≤ φ ≤ π; because the two binary bodies have

equal masses, the range of π ≤ φ ≤ 2π is identical to 0 ≤ φ ≤ π.

The kinetic and potential energies of the binary system are determined by their

masses and separation distance a. The potential energy of the third mass is set by the

 13

masses of the three bodies and by its separation distance (30a) from the binary system.

The third mass is given a velocity of half the critical velocity (velocity for the third body

which makes the system’s total energy exactly zero) which ensures that the system’s total

energy is negative. This negative energy guarantees the incoming field star can become

bound to the binary such that all three bodies can be simultaneously bound.

In the computational simulations below, the three-body interaction ends when one

of the three masses is ejected from the system—it is far from the remaining two bodies

and its kinetic energy (escape velocity) is enough to break free of the gravitational pull of

the remaining two masses. When the simulation ends, several system characteristics or

escape values are recorded and their values are assigned to the initial condition

coordinate (ρ, φ). The escape values are:

1. Escape Angle: angle at which the escaping body is traveling

2. Escape Time: how long the simulation ran before a body escaped

3. Change in Angular Momentum: initialfinal LL −

4. Minimum Approach Distance: minimum separation of all three bodies

(r12+r13+r23) attained during simulation

5. Maximum Momentum Dot Product: maximum P1·P2 + P1·P3 + P2·P3

6. Escaping Body: which of the three bodies escaped

To monitor the accuracy of the simulation, I also record the following conserved

quantities (discussed in Section 4.3):

7. Linear Momentum Error: initialfinal PP −

8. Angular Momentum Error:
initial

initialfinal

L

LL −

9. Total Energy Error:
initial

initialfinal

E

EE −

 14

The energy and momentum quantities are calculated according to Newtonian definitions.

Calculating PPN2 energy in the Newtonian way may be a contributor to the energy error

discussed in Section 4.3. It is also of note that some of these escape values and

conserved quantities are physically meaningful (coordinate independent) and some are

not (coordinate dependant). Regardless, it is still helpful to track quantities which have

no strict physical value, since they do give insight into the behavior of the equations.

The most sensible way to compare all these extracted values is to graph them by

initial conditions (ρ, φ) coordinates. The images in Chapter 4 contain these graphs. The

x, y axes represent ρ, φ and the escape variable’s value is represented by a color (ranging

from blue to red). Generating colored maps of the escape values is an effective method

of analyzing the overall behavior of the three-body system.

 15

Chapter 3

Problem Solution

3.1 Solving the Equations

In order to explore the behavior of the three-body problem, computational tools are

needed to numerically solve the differential equations analyze the solution. Hamilton’s

equations of motion are first order equations of the form

),(ytf
dt

dy =

where y is a state vector of the unknowns (x, y, z, vx, vy, vz) for each body and f is a

vector function. These equations are solved numerically using the Adams-Bashforth

method

()∑
=

−−+ +=
s

j
jnjnjnn ytfbhyy

0
1 , , 0 ≤ r ≤ n,

()
() ()∫ ∏

≠=

+
−

−=
1

0
,0!!

1 s

jii

j

j duiu
jsj

b , j=0,…,s.

This scheme can support different orders of approximation, and therefore different orders

 16

of dependency in y. I use LSODA: the Livermore Solver for Ordinary Differential

equations with Automatic method switching for stiff and non-stiff problems; it is publicly

available at http://netlib.org. This integrator adaptively adjusts the time steps and

automatically switches to implicit methods for stiff problems. A stiff differential

equation is one in which two drastically different time scales are present in the solution.

The result is that the integration must use a very small time step to achieve a reasonably

accurate solution. It is proposed that the system of bodies used in this study does become

stiff since two differing time scales do exist—when a tightly bound binary revolves very

fast while the third body executes a large slow orbit around the binary. In this instance

LSODA must use a very small time step and an implicit solver; if the needed time step is

smaller than the minimum threshold, the integration will terminate with an error.

LSODA was in fact encountering stiff situations while solving the equations in this paper.

Because Hamilton’s equations are symplectic, a symplectic integrator would be

preferred as it guarantees strict conservation of the Hamiltonian. However, such

integrators require fixed time steps. A more robust integrator with an adaptive time step

is required to handle the overwhelming complexity of the three-body equations. Because

a non-ideal integrator is used, energy conservation is monitored to ensure an accurate

integration.

3.2 run

Because the three-body problem in both Newtonian and PPN2 gravity allows only

numerical solutions, many different programs were needed to step from the initial setup

to the color maps. The first program needed is a Perl script called run. Run converts the

initial conditions (ρ, φ) into the numerical setup of the three body system and begins its

 17

evolution. The user may specify the value of G, the universal gravitational constant, and

the masses of the three bodies. The user also specifies the range of the initial conditions

as well as how many simulations to run in that interval. For example, one may select a φ

range of ¼π ≤ φ ≤ ½π and to perform one hundred simulations in that interval. In this

case run will execute a three-body simulation with an initial φ of π
400

100
, π

400

101
,

π
400

102
,…, π

400

200
, and a similar group of values for ρ. After calculating the system setup

from the ρ, φ initial value pair as well as gravity and mass values, the information is

given to nbodyPN which evolves the system.

3.3 nbodyPN

NbodyPN is a FORTRAN program which evolves n gravitating bodies in either

Newtonian or PPN2 gravity. NbodyPN stores in two of its subroutines the ordinary

differential equations of motion for both models of gravity. It reads the initial conditions

from run.

 At its core, nbodyPN uses LSODA to perform the differential equation

integration. NbodyPN uses this integrator to step the three bodies along their paths of

motion until one of the three bodies meets the escape requirements. A body has escaped

when its distance from the center of mass is almost one hundred times the original

separation of the field body from the binary’s center and its energy is positive. At this

point, all escape values are printed to a data file.

3.4 DaFilt

The data file needs to be processed before its information can be extracted. DaFilt (“Data

 18

Filter”), a Java program, filters the data, to ensure that all the correct information has

been recorded and all erroneous data has been corrected. The raw data file has numbers

scattered across many lines which belong in a group. DaFilt reads all the information,

analyzes it, and rewrites it cleanly to a new file. DaFilt records the ranges of ρ and φ, dρ,

dφ, the number of runs in each dimension, and how many errors were present in the file.

Errors are substituted with dummy numbers (such as -99) so that the data file can still be

processed but that errors are not misunderstood as actual data.

3.5 Grapher

Grapher, a MatLab program, is used to analyze all the data and display it visually as the

colored maps shown in Chapter 4. This program uses an array of matrices to store all the

data which it reads from the file generated by DaFilt. Each matrix has the same

dimensions as ρ and φ. Each escape variable gets its own matrix. The value for that

escape variable for every run within the ρ, φ range is loaded into the matrix.

 Because the escape values can have a wide range of values, they are normalized

for visualization purposes. The time duration of a simulation, for example, can range

from a few seconds to several million seconds. First, the most extreme values are

brought within the average range. For example, if most of the simulation times were

between one and two thousand seconds, any values below one thousand seconds were set

equal to one thousand seconds and all values above two thousand seconds were set equal

to two thousand seconds. Second, that average range is scaled between 0�60 which

MatLab interprets as a color ranging from blue (0) to red (60) (Figure 4.1).

 19

Chapter 4

Results

4.1 Introduction

This chapter presents the results of the three-body simulations. The figures in this

chapter compare the chaotic features between the Newtonian and PPN2 models of gravity

by plotting the data against the initial data parameters ρ and φ. Each physical

characteristic listed in Section 2.2 is plotted in five different figures below. The first

shows the entire parameter space (titled whole space), and the remaining four show

detailed regions that highlight the distinctions between Newtonian and PPN2 gravity.

Figure 4.1 is a reference showing the color spectrum for all plots.

Figure 4.1 Color scale for figures

The two maps in Figure 4.2 of the whole space’s Escape Angle identify sub-

regions 1 through 4. The map on the top represents Newtonian gravity, while the map on

 20

the bottom represents Einstein’s gravity. Region 1 is outlined by the lower left box;

region 2 is the upper left box; region 3 is the lower right box; region 4 is the upper right

box. The colors in each graph represent the value of the variable being mapped. In the

case of these two maps, the colors represent the Escape Angle.

Figure 4.2 Boxes outlining Regions 1-4 of Whole Space; Newtonian (top) and PPN2
(bottom). Region 1 is outlined by the lower left box; region 2 is the upper left box;
region 3 is the lower right box; region 4 is the upper right box.

Each region is discussed individually in the next sections, contrasting the features of the

Newtonian and PPN2 plots.

 21

4.2 Whole Space

4.2.1 Escape Angle

Figure 4.3 features both regions of smooth flowing color and chaotic speckled colors.

The colors in these two maps (and all others labeled Escape Angle) represent the angle at

which the escaping body was ejected from the system. Smooth colors, where the red

transitions into orange, yellow, green and finally to blue, represent regions of non-chaotic

interactions. This means that changing the initial conditions slightly, either in the ρ or φ

dimensions (moving vertically or horizontally on the map by a pixel), results in a slightly

different outcome (the exit angle color has only changed a shade). On the other hand, the

speckled regions show chaos; a small change in initial conditions (to a neighboring pixel)

results in a substantial change in the escape angle (color).

 For the most part, these figures appear very similar but with one difference: the

lower map (PPN2) has a few extra stripes in clusters of four or five—fourfold rivers.

These fourfold rivers are seen in a few places in the lower map but nowhere in the upper

map; they are unique to the PPN2 model of gravity, and appear in most PPN2 data maps.

The four sub-region maps (below) zoom in on these fourfold rivers. One slight

difference between each set of maps is that the PPN2 map seems to be shifted to the left:

corresponding points will have a lesser φ coordinate in the PPN2 map than the Newtonian

map.

 Because the x-axis represents an angle, the map actually wraps on itself; the 0 and

π radians match. Figure 4.4 shows the PPN2 map of the Whole Space copied three times.

 22

Figure 4.3 Escape Angle of Whole Space; Newtonian (top) [0, 2π] and PPN2 (bottom)
[0, 2 π]

 23

Figure 4.4 Thrice-repeated figure of Angular Momentum Error of Whole Space; black
structure identifies a feature which wraps across parameter space three times.

The black stripe in Figure 4.4 exemplifies a structure which spans three all three

copies. It is much easier to pick out this structure seeing the three copies aligned. It is,

however, recognizable by following along a single map and wrapping around it a few

times. There are other macroscopic features which can be seen more clearly. These

continuous patterns suggest a large structural pattern in this three-body setup. While

some of the data analysis in this Whole Space region will address macro-structures, the

analysis of the four sub-regions (below) is meant to explore smaller-scale structures.

Other escape values will give a more thorough look at these interactions.

4.2.2 Escape Time

The same chaotic and non-chaotic regions are reflected in Figure 4.5 of the interaction

time. The colors in this map reflect how much time had elapsed before the escaping body

was ejected from the system. The homogenous blue color indicates that most of the non

chaotic interactions took a similar amount of time. While the chaotic colors suggest that

the interaction times varied highly through the chaotic regions. The main reason for

drastic changes in interaction time is the complexity of the interaction. A simple

interaction in which the incoming star simply scatters around the binary pair will take the

least amount of time. Whereas an interaction where the incoming star becomes quasi-

 24

Figure 4.5 Time of Whole Space; Newtonian (top) [3.6x103, 9.7x104] and PPN2 (bottom)
[3.2x103, 2.8x107]

 25

bound to the other two and all three bodies orbit around each other may take a very long

time. Thus, in the chaotic regions, the amount of time which the planets spend orbiting

around one another varies highly.

 Notice that much of the boundary between the smooth and chaotic regions in

Figure 4.5 is outlined in red. The red represents a very long interaction time. While the

red speckles in the chaotic regions may be caused by planets orbiting each other many

times, the red outline is caused by one long orbit. Boyd [3] explains that on the boundary

between smooth and chaos, the third (incoming) body comes very close to one of the

binary bodies and there is a strong change in energy. The third body becomes very

weakly bound to the other two such that it executes a very long orbit. It is this long orbit

which separates the chaotic and non-chaotic regions.

4.2.3 Change in Angular Momentum

Figure 4.6 represents the change in angular momentum. Ideally, each of these values

should be zero. They are not. Because the integrator, LSODA, uses some specified

algorithm, it can be assumed that the degree of error is directly proportional to

characteristics of the interaction. Thus, maps of the change in angular momentum are

significant though it is not specifically known what about interaction causes the error.

The topological characteristics of these two maps are similar for the above two

maps featuring the Escape Angle. There are some regions where smooth transitions in

color testify of smooth behavior: a small change in initial conditions results in a small

change in angular momentum error. The regions which were chaotic for the Escape

Angle are also chaotic in these maps.

 26

Figure 4.6 Change in Angular Momentum of Whole Space; Newtonian (top) [-2.2x105,
2.3x105] and PPN2 (bottom) [-2.0x105, 2.4x105]

 27

4.2.4 Minimum Approach Distance

Maps of the minimum approach distance are important because the higher order terms of

PPN2 have multiples of
r

1
. The closer the bodies approach one another, the more of a

role those terms will play. Figure 4.7 reveals some underlying features. Compare Figure

4.7 with their Escape Angle counterparts (Figure 4.3). Notice that the regions which

behave smooth (according to the Escape Angle) appear here in red and yellow colors

while chaotic regions show up blue. Recall the color spectrum (Figure 4.1); blue

represents low values, while red represents high values. Why would chaotic interactions

always experience shorter approach distance? It makes sense that the longer the

interaction time, the more opportunities the bodies have to pass by one another and

statistically the higher the chance of a very close approach. Therefore the chaotic, more

complex, interactions have more opportunities for close approaches. On the other hand,

the smooth regions are often caused by the third incoming body simply passing around

the binary system and being ejected; this would allow only one opportunity for a short

approach distance.

The other major characteristic seen in these two maps is a pattern of concentric

ovals. In the very center of both these maps, there are red concentric ovals. The smaller

ovals in the center are a lighter shade of red representing a closer approach distance.

Along the bottom of the maps is a string of blue concentric ovals. The smaller ovals in

the center get darker and darker, which also represents a closer approach distance. Both

the red and blue ovals appear in regions which were classified as smooth by the Escape

Angle maps (Figure 4.3). The rivers of chaos seem to streak through the smooth regions,

but in the Minimum Approach Distance maps, they do not interrupt the concentric ovals.

 28

Figure 4.7 Minimum Approach Distance of Whole Space; Newtonian (top) [9.9x10-8,
7.3x10-3] and PPN2 (bottom) [6.7x10-8, 7.3x10-3]

 29

The ovals seem to continue their patterns in the background of the chaos. These features

will be seen more clearly in the sub-region maps below.

4.2.5 Maximum Momentum Dot Product

The relativistic Hamiltonian depends of the momentae of the bodies, while the

Newtonian potential depends only on position. Only the relativistic Hamiltonian depends

on the dot products Pa·Pb. For this reason, the products P1·P2 + P1·P3 + P2·P3 are

computed and mapped to shed light on the difference between the two models of gravity.

These maps show the maximum total vector momentum achieved during a simulation.

 Figure 4.8 sheds some light on what appears to be a singularly appearing

phenomenon. Refer back to Figure 4.5 bottom. Near the coordinate (ρ, φ) = (1, 1.5)

there is a river of chaos, flowing from left to right, which abruptly ends. The many other

fourfold rivers, which appear in the PPN2 maps, flow from one place to another; they

spring out of one location and bury into another. The river at (1, 1.5) has no destination.

Why? The above map showing the PPN2 dot product offers some explanation. The

same river can be seen flowing left to right at (1, 1.5). This river features a speckled dot

product meaning its values are also chaotic. The region where the river dies seems to

have a “shore” of light blue color. This light blue shore fades into a smooth deep blue

color. The smooth deep blue area represents a local minimum. It is this minimum and

whatever mechanism of the three body interaction that causes it, which ends the (1, 1.5)

river and prevents it from reaching the light blue shore across the way.

Another key feature is the location of the highest dot products. They tend to pool

together in two main regions. The first is located at (-1�0, 2.5�3). The second is the

 30

Figure 4.8 Max Momentum Dot Product of Whole Space; Newtonian (top) [9.0x106,
3.1x1026] and PPN2 (bottom) [3.3x1018, 1.8x1026]

 31

same region colored in black in the third map of Section 4.2.1. That stripe which

spanned three spaces appears here to be comprised of the highest dot product values.

4.2.6 Escaping Body

Figure 4.9 illustrates which of the three bodies escaped: light green—1, orange—2, red—

3, and blue represents a simulation which terminated because of an error. Recall that

masses one and two form the binary, while mass three comes in from infinity. It makes

sense that the areas near ρ = -3 and ρ = 4 are marked by body 3 escaping. For a large

impact parameter body three passes far around the binary and simply scatters around

them on a hyperbolic path.

Notice also that both plots of Figure 4.9 wrap around on themselves (like all other

plots) but shift colors. An initial setup of φ = 0 and φ = π is exactly the same except that

bodies one and two have switched places. That is why, in Figure 4.9, the structure at φ =

0 and φ = π are the same except that orange (body 2) is swapped for green (body 1).

4.3 Error and Data

As with all experimental and computational physics, only an accurate experiment can

give accurate results. The error in these planetary simulations tells how accurate the

simulations were carried out. I tracked the linear momentum error, angular momentum

error, and energy error. The average errors were on the order of 10-7 for linear

momentum, 10-3� 10-1 for angular momentum and 1 for energy. In the case of angular

momentum and energy, only 5% of the simulations caused the error while 95% of the

simulations had less than 1% error. The simulations of highest error were consistently

 32

Figure 4.9 Escaping Body of Whole Space; Newtonian (top) [1, 3] and PPN2 (bottom)
[1, 3]

 33

within the chaotic regions where an accurate integration is improbable to begin with.

These error values reflect positively on the reliability of the simulations.

For the reader’s reference, Tables 4.1�4.5 give the ranges and averages of data

used to make the figures in this paper; thus the reader may know the approximate values

represented by the various colors.

 Newtonian PPN2

Variable Minimum Average Maximum Minimum Average Maximum

Esc Time 3.660E+03 9.764E+04 1.356E+07 3.200E+03 9.821E+04 2.861E+07

∆L -2.232E+05 -4.249E+02 2.318E+05 -2.058E+05 -3.583E+02 2.489E+05

Min Appr 9.912E-08 3.243E-03 7.302E-03 6.786E-08 2.876E-03 7.384E-03

Max P·P 9.000E+06 1.053E+24 3.116E+26 3.328E+18 1.346E+24 1.875E+26

Table 4.1 Statistical Data for Whole Space figures

 Newtonian PPN2

Variable Minimum Average Maximum Minimum Average Maximum

Esc Time 4.460E+03 1.236E+05 6.475E+06 3.200E+03 1.105E+05 8.606E+06

∆L -1.009E+05 -5.870E+02 9.845E+04 -9.676E+04 -6.990E+01 1.260E+05

Min Appr 2.745E-08 2.540E-03 6.117E-03 1.195E-07 1.172E-03 6.322E-03

Max P·P 9.000E+06 6.548E+23 3.819E+26 9.000E+06 7.510E+23 2.922E+26

Table 4.2 Statistical Data for Region 1 figures

 Newtonian PPN2

Variable Minimum Average Maximum Minimum Average Maximum

Esc Time 4.220E+03 9.912E+04 1.070E+07 3.200E+03 8.452E+04 1.424E+07

∆L -1.135E+05 -5.489E+02 2.525E+05 -1.103E+05 -3.192E+02 2.458E+05

Min Appr 3.705E-07 3.432E-03 6.715E-03 3.870E-07 3.253E-03 6.809E-03

Max P·P 9.000E+06 8.020E+23 5.305E+25 3.780E+20 1.226E+24 1.237E+26

Table 4.3 Statistical Data for Region 2 figures

 Newtonian PPN2

Variable Minimum Average Maximum Minimum Average Maximum

Esc Time 4.380E+03 7.199E+04 1.419E+07 3.160E+03 6.424E+04 7.835E+06

∆L -1.030E+05 7.152E+01 1.403E+05 -8.831E+04 6.373E+00 1.462E+05

Min Appr 1.614E-08 4.206E-03 7.172E-03 4.633E-09 4.364E-03 7.233E-03

Max P·P 9.000E+06 1.306E+24 1.944E+26 2.019E+19 2.107E+24 6.345E+28

Table 4.4 Statistical Data for Region 3 figures

 34

 Newtonian PPN2

Variable Minimum Average Maximum Minimum Average Maximum

Esc Time 7.840E+03 9.912E+04 1.507E+07 3.180E+03 1.250E+05 1.000E+08

∆L -1.361E+05 -6.232E+02 2.524E+05 -1.698E+05 -5.524E+02 2.509E+05

Min Appr 1.395E-07 3.866E-03 7.340E-03 2.379E-07 2.603E-03 7.390E-03

Max P·P 9.000E+06 1.438E+24 2.692E+26 3.851E+20 1.574E+24 2.047E+26

Table 4.5 Statistical Data for Region 4 figures

4.4 Four Sub-Regions

There are similarities and differences between the Newtonian figures and the PPN2

figures. Since regions featuring the differences are of greatest interest, they are zoomed

in on and explored in greater detail. Below are four regions which feature a fourfold

river—a region in the PPN2 figure which has four (or five) alternating bands of smooth

then chaos; a corresponding structure does not appear in the Newtonian figure.

4.4.1 Escape Angle

A close up view of the Escape Angle in these four sub-regions gives clear images of the

banded rivers of smooth and chaos. Each pair of maps (Figures 4.10 through 4.13) is of a

region where the system’s escape angle behaves smoothly in the Newtonian picture but

consists of four to five chaotic rivers in the PPN2 picture. The chaotic rivers all flow

parallel to one another. Both the Newtonian and PPN2 maps have a fine blue line.

Figure 4.14 is one example of this line so the reader may find it in each pair of maps.

The line is made thick and black in Figure 4.14 and runs horizontally across the middle of

both images.

Both of these Escape Angle maps of Region 2 show the line horizontal through the

middle bowing downward. It seems strange that a random line appears in both maps but

foretells where the chaotic rivers will appear in the PPN2 maps. What causes this line?

 35

Figure 4.10 Escape Angle of Region 1; Newtonian (top) [0, 2π] and PPN2 (bottom) [0, 2π]

 36

Figure 4.11 Escape Angle of Region 2; Newtonian (top) [0, 2π] and PPN2 (bottom) [0, 2π]

 37

Figure 4.12 Escape Angle of Region 3; Newtonian (top) [0, 2π] and PPN2 (bottom) [0, 2π]

 38

Figure 4.13 Escape Angle of Region 4; Newtonian (top) [0, 2π] and PPN2 (bottom) [0, 2π]

 39

Figure 4.14 Escape Angle showing fine line of error; Newtonian (left) and PPN2 (right)

 The black lines in Figure 4.14 represent unsuccessful LSODA integrations.

Recall that the LSODA integrator is used to step the simulation along in time. If

LSODA, while trying to calculate a time step, decides it can’t perform enough time sub-

steps to complete the time step, it returns an error. So the fine blue line (and all other

random blue lines present) is a string of simulations that LSODA was not able to

complete.

 It is clear from these images that some of the fourfold chaotic rivers are broken—

meaning they do not completely bridge one region of chaos to another. It is not known

yet if any unbroken bridges exist. If in fact no unbroken bridges exist, then the overall

chaotic topological genus of the system could be preserved.

4.4.2 Escape Time

Each Newtonian map (Figures 4.15 through 4.18) of the simulation time shows the same

red outline, representing an extended orbit, between smooth and chaotic regions. The

features on the PPN2 map which are consistent with their Newtonian counterpart also

exhibit that red outline. In clear contrast, though, the fourfold chaotic rivers are not

outlined in red. This would suggest, contrary to a possibility discussed in Section 4.3,

 40

Figure 4.15 Escape Time of Region 1; Newtonian (top) [4.4x103, 6.4x106] and PPN2
(bottom) [3.2x103, 8.6x106]

 41

Figure 4.16 Escape Time of Region 2; Newtonian (top) [4.2x103, 1.0x107] and PPN2
(bottom) [3.2x103, 1.4x107]

 42

Figure 4.17 Escape Time of Region 3; Newtonian (top) [4.3x103, 1.4x107] and PPN2
(bottom) [3.1x103, 7.8x106]

 43

Figure 4.18 Escape Time of Region 4; Newtonian (top) [7.8x103, 1.5x107] and PPN2
(bottom) [3.1x103, 1.0x108]

 44

that the chaotic topology is entirely changed, meaning the PPN2 fourfold rivers are not

simply caused by a stretching of the smooth/chaotic boundaries already existing in the

Newtonian map.

4.4.3 Change in Angular Momentum

The maps of the Change in Angular Momentum (Figures 4.19 through 4.22) offer more

information regarding the fine structure of the three-body interaction. The smooth color

gradients follow different contours than those from the Escape Angle maps. The smooth

color gradients in these Angular Momentum maps run parallel to the smooth/chaotic

boundary line. The smooth color gradients intersect the boundaries from all directions as

though they do not influence one another. Thus, the Change in Angular Momentum

gives additional information that some part of the smooth interactions is in fact

influenced by the shape of the chaotic boundaries.

4.4.4 Minimum Approach Distance

The Minimum Approach Distance (Figures 4.23 through 4.26) exemplifies two more

features of the three body interactions. The first feature was already mentioned in

Section 4.3.4 and that is the ovals in the background. The ovals which permeate the

background of the Minimum Approach Distance maps show up very clear in these maps.

 The second feature is the fine structure within the chaotic regions in each of these

maps. A clear example of this is the upper right quadrant of Figure 4.26 (top). It just so

happens that the fine structure is comprised of concentric ovals (completely unrelated to

the ovals previously mentioned). The chaotic wavy lines run parallel to the

smooth/chaotic boundary.

 45

Figure 4.19 Change in Angular Momentum of Region 1; Newtonian (top) [-1.0x105,
9.8x104] and PPN2 (bottom) [-9.6x104, 1.2x105]

 46

Figure 4.20 Change in Angular Momentum of Region 2; Newtonian (top) [-1.1x105,
2.5x105] and PPN2 (bottom) [-1.1x105, 2.4x105]

 47

Figure 4.21 Change in Angular Momentum of Region 3; Newtonian (top) [-1.0x105,
1.4x105] and PPN2 (bottom) [-8.8x104, 1.4x105]

 48

Figure 4.22 Change in Angular Momentum of Region 4; Newtonian (top) [-1.3x105,
2.5x105] and PPN2 (bottom) [-1.6x105, 2.5x105]

 49

Figure 4.23 Minimum Approach Distance of Region 1; Newtonian (top) [2.7x10-8,
6.1x10-3] and PPN2 (bottom) [1.1x10-7, 6.3x10-3]

 50

Figure 4.24 Minimum Approach Distance of Region 2; Newtonian (top) [3.7x10-7,
6.7x10-3] and PPN2 (bottom) [3.8x10-7, 6.8x10-3]

 51

Figure 4.25 Minimum Approach Distance of Region 3; Newtonian (top) [1.6x10-8,
7.1x10-3] and PPN2 (bottom) [4.6x10-9, 7.2x10-3]

 52

Figure 4.26 Minimum Approach Distance of Region 4; Newtonian (top) [1.3x10-7,
7.3x10-3] and PPN2 (bottom) [2.3x10-7, 7.3x10-3]

 53

4.4.5 Maximum Momentum Dot Product

When viewed from up close, there appears in the Momentum Dot Product maps (Figures

4.27 through 4.30) a hybrid characteristic between smooth and chaotic. For example,

refer to the Newtonian (upper) map of Figure 4.30. There is a red colored region which

gradually blends into a yellow then blue as it disperses outward. But this gradual

blending of colors is accompanied with many speckled dots, each representing a

simulation with a drastically different maximum dot product. It seems dual-natured that

the Maximum Dot Product could be generally determined according to its map coordinate

and simultaneously be chaotic and unrelated to neighboring values. Perhaps its

coordinate can smoothly determine value but only within a percentage.

4.4.6 Escaping Body

Another chaotic feature manifests itself in the Escaping Body maps (Figures 4.31 through

4.34)—a different body is escaping within the fourfold rivers than outside the rivers.

First, to understand the coloring, green represents body one, orange represents body two,

and red represents body three. In Region 1, body two escapes within the rivers whereas

body one was escape in the Newtonian regime. In Region 2, body one escaped in the

rivers and body three otherwise. In Region 3, bodies one and three escape within their

respective rivers and body two escapes around them. In Region 4, body three escapes in

the rivers whereas body two escapes outside the rivers.

 The consistent change in escaping body within the new PPN2 rivers suggests that

the change taking place in these four regions, for the PPN2 regime, is also consistent.

 54

Figure 4.27 Max Momentum Dot Product of Region 1; Newtonian (top) [9.0x106,
3.8x1026] and PPN2 (bottom) [9.0x106, 2.9x1026]

 55

Figure 4.28 Max Momentum Dot Product of Region 2; Newtonian (top) [9.0x106,
5.3x1025] and PPN2 (bottom) [3.7x1020, 1.2x1026]

 56

Figure 4.29 Max Momentum Dot Product of Region 3; Newtonian (top) [9.0x106,
1.9x1026] and PPN2 (bottom) [2.0x1019, 6.3x1028]

 57

Figure 4.30 Max Momentum Dot Product of Region 4; Newtonian (top) [9.0x106,
2.6x1026] and PPN2 (bottom) [3.8x1020, 2.0x1026]

 58

Figure 4.31 Escaping Body of Region 1; Newtonian (top) [1, 3] and PPN2 (bottom) [1, 3]

 59

Figure 4.32 Escaping Body of Region 2; Newtonian (top) [1, 3] and PPN2 (bottom) [1, 3]

 60

Figure 4.33 Escaping Body of Region 3; Newtonian (top) [1, 3] and PPN2 (bottom) [1, 3]

 61

Figure 4.34 Escaping Body of Region 4; Newtonian (top) [1, 3] and PPN2 (bottom) [1, 3]

 62

The way in which the interactions are changing between the Newtonian and PPN2 maps

is constant enough that each manifests not only four to five chaotic rivers but a change in

the escaping body between those chaotic rivers.

 63

Chapter 5

Conclusion

5.1 Significance

The gravitational many-body problem has been very influential in the study of chaos.

Chaos in the Newtonian problem has been studied extensively since the time of Poincaré;

today, studies explore solar systems, extra solar planetary systems, and stellar clusters.

Much less is known, however, about the many-body problem in general relativity. This

paper explores similarities and differences between Newtonian and general relativity

gravity as applied to the three body problem.

 The complexity of solving the Einstein equations, for which even the Kepler

problem must be solved numerically, is certainly the most significant obstacle in these

studies. To make the problem tractable for current computational capabilities, I study a

perturbative expansion of the Einstein equations, the post-Newtonian equations to second

order. This is the first fully dynamic investigation of chaos in the three-body problem of

general relativity that I am aware of.

 64

5.2 Findings

The numerical experiments were conducted on a single family of initial conditions. I

explored the existence of chaos for this system by observing qualitatively large

differences in the outcome of different experiments of slightly varying initial data. The

system consists of a binary pair in a circular orbit which interacts with an incoming third

body. All bodies have equal mass and their motion is confined to a plane. The total

energy of the system is negative to ensure that all three bodies can be simultaneously

bound.

Several quantities were monitored during the evolution to characterize the system,

including some conserved quantities for diagnostic purposes. The escape angle and

identity of the escaping object are two coordinate independent measures of the system’s

final state. When making small changes in initial data, qualitatively large changes in the

final outcome were sometimes observed. This sensitivity to initial conditions, present in

both the Newtonian model and general relativity, is highly suggestive of chaos in the

relativistic three-body problem as well as for Newtonian gravity (already known to be

chaotic). However, I do not attempt to directly evaluate Lyaponuv exponents for the

second order post-Newtonian approximation in this work.

 The numerical experiments compare results using both Newtonian gravity and the

second order post-Newtonian equations. The overall results are very similar suggesting

that most of the interactions are non-relativistic. This is expected when velocities are

small, compared to the speed of light, and separations are relatively large, compared to

the event horizon. There are some marked differences in certain regions of the initial

data space; these were discussed extensively in Chapter Four. Thus, the three-body

 65

problem in general relativity apparently shares the same chaotic behavior known in

Newtonian gravity, at least in the post-Newtonian limit.

5.3 Future Research

While this study has found evidence of chaos in general relativity for three bodies,

several interesting questions remain which will be the focus of future research. As one

direction for future research, different regions of the parameter space can be explored.

For example, the bodies can be given different masses, the motion can be expanded into

three dimensions, or very different families of initial data can be investigated. A second

direction of research would be to analyze the effect of the expansion order for the post-

Newtonian equations. The work in this study, for example, did not include the first order

post-Newtonian equations. Initial work suggested some interesting divergences from the

second order equations. Furthermore, additional physics could be added to the system by

including higher order radiation terms, such as the emission of gravitational waves in the

second and a half post-Newtonian order. A third area for additional research might focus

on numerical algorithms and their effect on the calculated solutions. For efficiency I

used an adaptive Adams-Bashforth-Moulton integrator to solve the differential equations

in this work. Improvements in the numerical algorithms, including some suggested

benefits of symplectic integrators, have not been examined in this thesis. Each avenue

holds great promise of adding to the cumulative understanding of Einstein’s equations of

general relativity and the role chaos plays therein.

 66

Bibliography

[1] Wikipedia contributors, “Mandelbrot set,”

http://en.wikipedia.org/wiki/Mandelbrot_set (Accessed January 11, 2007).

[2] P. Hut, “Three-Body Problem: Encounters, ”

http://www.ids.ias.edu/~piet/act/astro/three/ (Accessed July 05, 2007).

[3] J. Barrow-Green, Poincare and the Three Body Problem, (American Mathematical

Society, London, 1997).

[4] J. J. Lissauer, “Chaotic motion in the Solar System,” Reviews of Modern Physics 71

(3), 835—845 (1999).

[5] C. Chicone, B. Mashhoon, D. G. Retzloff, “Chaos in the Kepler System,” Classical

and Quantum Gravity 16, 507—527 (1999).

[6] K. M. Hock, “Chaos in the relativistic Euler problem,” Chaos 6 (4), 564—567 (1996).

[7] J. Hietarinta, S. Mikkola, “Chaos in the one-dimensional gravitational three-body

problem,” Chaos 3 (2), 183—203 (1993).

[8] F. Burnell, J. J. Malecki, R. B. Mann, “Chaos in an exact relativistic three-body self-

gravitating system,” Physical Review E 69, 016214-1—30 (2004).

[9] P. T. Boyd, S. L. W. McMillan, “Chaotic scattering in the gravitational three-body

problem,” Chaos 3 (4), 507—523 (1993).

[10] G. Schäfer, “Three-body Hamiltonian in General Relativity,” Phys. Lett. A 123 (7),

336—339 (1987).

 67

Appendix

run.pl -drives nbodyPN for many different initial conditions

#!/usr/bin/perl
$pi = 3.1415926535897;
$a = 1.7;
#===================================
nbody driver for 3 chaotic bodies
#===================================

#-----------------------------------
Initialize variables
#-----------------------------------

$whichorder = 1;
$runnumber = 206;

$phiMin = 0.5333*$pi;
$phiMax = 1*$pi;
$phiNum = 150;

$rhoMin = 0.7*$a;
$rhoMax = 3*$a;
$rhoNum = 150;

#initialize time variables
$tFinal = 100000000;
$tStep = 20;
$which = 3;

#initialize file variables
$stdFileBase = "stdout";
$ICFile = "ICFile.$runnumber";
$errFileBase = "errout";

#initialize constants
$m1 = 1e7;
$m2 = 1e7;
$m3 = 1e7;
$mT = $m1+$m2+$m3;
$G = 6.673e-11;
$vc = sqrt($G*$m1*($m1+$m2+$m3)/(2*$a*$m3));
$v = sqrt($G*$m1/2/$a);

 68

#initialize phi range
if($phiNum < 2)
{
 $dphi = 0;
}
else
{
 $dphi = ($phiMax-$phiMin)/($phiNum-1);
}

#initialize rho range
if($rhoNum < 2)
{
 $drho = 0;
}
else
{
 $drho = ($rhoMax-$rhoMin)/($rhoNum-1);
}
$totalNum = $rhoNum*$phiNum;

#-----------------------------------
Drive nbody with ICs
#-----------------------------------

for($r=0; $r<$rhoNum ; $r=$r+1)#iterate over rho
{
 for($p=0; $p<$phiNum ; $p=$p+1)#iterate over phi
 {
 #initialize parameters
 $rho=$rhoMin+$r*$drho;
 $phi=$phiMin+$p*$dphi;

 #print "Evolving: ($r, $p)\n";

 #initialize positions
 $x1=($a/2)*cos($phi);
 $y1=($a/2)*sin($phi);
 $z1=0;
 $x2=-($a/2)*cos($phi);
 $y2=-($a/2)*sin($phi);;
 $z2=0;
 $x3=30*$a;
 $y3=$rho;
 $z3=0;

 #initialize velocities
 $vx1=-$v*sin($phi);
 $vy1= $v*cos($phi);
 $vz1=0;
 $vx2= $v*sin($phi);
 $vy2=-$v*cos($phi);
 $vz2=0;
 $vx3=-0.5*$vc;
 $vy3=0;
 $vz3=0;

 69

 #make transformations to center-o-mass,momentum
 $CX=($m1*$x1+$m2*$x2+$m3*$x3)/$mT;
 $CY=($m1*$y1+$m2*$y2+$m3*$y3)/$mT;
 $CZ=($m1*$z1+$m2*$z2+$m3*$z3)/$mT;

 $CVX=($m1*$vx1+$m2*$vx2+$m3*$vx3)/$mT;
 $CVY=($m1*$vy1+$m2*$vy2+$m3*$vy3)/$mT;
 $CVZ=($m1*$vz1+$m2*$vz2+$m3*$vz3)/$mT;

 #impliment position transformations
 $x1=$x1-$CX;
 $y1=$y1-$CY;
 $z1=$z1-$CZ;
 $x2=$x2-$CX;
 $y2=$y2-$CY;
 $z2=$z2-$CZ;
 $x3=$x3-$CX;
 $y3=$y3-$CY;
 $z3=$z3-$CZ;

 #impliment velocity transormations
 $vx1=$vx1-$CVX;
 $vy1=$vy1-$CVY;
 $vz1=$vz1-$CVZ;
 $vx2=$vx2-$CVX;
 $vy2=$vy2-$CVY;
 $vz2=$vz2-$CVZ;
 $vx3=$vx3-$CVX;
 $vy3=$vy3-$CVY;
 $vz3=$vz3-$CVZ;

 #make IC file
 open(IC, ">$ICFile");
 printf IC "$m1 $x1 $y1 $z1 $vx1 $vy1 $v z1\n";
 printf IC "$m2 $x2 $y2 $z2 $vx2 $vy2 $v z2\n";
 printf IC "$m3 $x3 $y3 $z3 $vx3 $vy3 $v z3\n";
 close (IC);

 #drive nbody
 system("./nbodyPN $tFinal $tStep $G 0 $runnumber < $ICFile >
$stdFileBase ");
 system("./nbodyPN $tFinal $tStep $G 2 $runnumber < $ICFile >
$stdFileBase ");

}

}

 70

Grapher.m -generates the colored figures using data from nbodyPN

clc; clear; close all;
%-------------------------------------
% load file
%-------------------------------------
fileName = 'results.2.9992.txt';
resolution = 0;%0-ignore; 1-close coupled values; 2 -looser coupled
values
fineTuner = 1;%0 < fT >= 1
findErrors = 1;%1=true, 0=false
rhoNum = 0;
phiNum = 0;
fprintf('Loading File...\n');
data = load(fileName);
lines = max(size(data));
numVars = min(size(data))-2;
averages = 1:numVars;
averages(:) = averages(:)*0;
upperBound = averages;
oldUpperBound = averages;
lowerBound = averages;
oldLowerBound = averages;
a = 1.7;
m = 1e7;
G = 6.73e-11;
initialTotalEnergy = -G*(3/8)*m^2/a;
fprintf('Initial Total Energy: %g\n', initialTotalE nergy);

%-------------------------------------
% determine dimensions
%-------------------------------------
fprintf('Analyzing Dimensions...\n');
tempPhiNum=1;
rhoNum=1;
for l=2:lines
 if abs(data(l,1)-data(l-1,1))>1e-8
 rhoNum = rhoNum+1;
 if tempPhiNum>phiNum
 phiNum=tempPhiNum;
 end
 tempPhiNum=0;
 else
 tempPhiNum=tempPhiNum+1;
 end
end

%-------------------------------------
% Establish variable ranges (for normalization)
%-------------------------------------
fprintf('Finding Statistical Values...\n')
maxVals=1:numVars;
maxVals(:) = -10000*maxVals(:);
minVals=1:numVars;
minVals(:) = 10000*minVals(:);
line = 0;

 71

for r = 1:rhoNum
 for p = 1:phiNum
 line = line + 1;
 for v = 1:numVars
 if (data(line,v+2) == 0 && findErrors)
 data(line,v+2) = 900000;
 end
 if (data(line,v+2) > maxVals(v) && data (line,v+2) ~= -99 &&
data(line,v+2) ~= 0)
 maxVals(v) = data(line,v+2);
 end
 if (data(line,v+2) < minVals(v) && data (line,v+2) ~= -99 &&
data(line,v+2) ~= 0)
 minVals(v) = data(line,v+2);
 end
 averages(v) = averages(v) + data(line, v+2);
 end
 end
end
%set the extreem values---------------
averages(:) = averages(:)/(rhoNum*phiNum);
oldUpperBound(:) = averages(:);
oldLowerBound(:) = averages(:);
numAbove = 1:numVars;
numBelow = 1:numVars;
for resolutionIteration = 1:resolution
 upperBound(:) = 0;
 lowerBound(:) = 0;
 numAbove(:) = 0;
 numBelow(:) = 0;
 line = 0;
 for r = 1:rhoNum
 for p = 1:phiNum
 line = line + 1;
 for v = 1:numVars
 if (data(line,v+2) > oldUpperBound(v))
 upperBound(v) = upperBound(v) + data(line,v+2);
 numAbove(v) = numAbove(v)+1;
 %fprintf('%g: %g >
%g\n',numAbove,data(line,v+2),oldUpperBound(v));
 end
 if (data(line,v+2) < oldLowerBound(v))
 lowerBound(v) = lowerBound(v) + data(line,v+2);
 numBelow(v) = numBelow(v)+1;
 end
 end
 end
 end
 oldUpperBound(:) = upperBound(:)./(numAbove(:)+ 1);
 oldLowerBound(:) = lowerBound(:)./(numBelow(:)+ 1);
end
upperBound(:) = oldUpperBound(:);
lowerBound(:) = oldLowerBound(:);
%variable names-----------------------
if numVars == 7 vars = ['Escape Angle '; 'Total Energy ';
'Kinetic Energy '; 'Potential Energy'; 'Linear Mom entum '; 'Angular
Momentum'; 'Escape Time '];

 72

elseif numVars == 6 vars = ['Which Escaped'; 'Escap e Angle '; 'Escape
Time '; 'Escape KE '; 'Escape PE '; 'Num Bou nds '];
elseif numVars == 11 vars = ['Escape Angle ';'To tal Energy
';'Escape KE ';'Escape PE ';'Momentum ';'Angular
Momentum';'Escape Time ';'Max KE ';'Ma x P.P ';'Min
Distance ';'Min Total Dist '];
elseif numVars == 13 vars = ['Escape Angle ';'To tal Energy
';'Escape KE ';'Escape PE ';'Momentum ';'Angular
Momentum';'Escape Time ';'Max KE ';'Ma x P.P ';'Min
Distance ';'Min Total Dist ';'Fourth Term ' ;'Which Escaped
'];
else vars = null; fprintf('UNRECOGNIZED VARIABLE CO NFIGURATION');
end
variables = cellstr(vars);
%print variable ranges----------------
for n = 1:numVars
 fprintf([variables{n},': %g -(%g)-<%g>-(%g)->
%g\n'],minVals(n),lowerBound(n),averages(n),upperBo und(n),maxVals(n));
end

%-------------------------------------
%initialize rho
%-------------------------------------
fprintf('Initializing Variables...\n')
rhoMax = max(data(:,1))/a;
rhoMin = min(data(:,1))/a;
drho = (rhoMax - rhoMin)/(rhoNum-1);
rho = rhoMin:drho:rhoMax;

%-------------------------------------
%initialize phi
%-------------------------------------
phiMax = max(data(:,2));
phiMin = min(data(:,2));
dphi = (phiMax - phiMin)/(phiNum-1);
phi = phiMin:dphi:phiMax;

%-------------------------------------
%initialize vars
%-------------------------------------
var = 1:numVars;
errorRange = 1:100;
errorArray = zeros(100);

%-------------------------------------
%generate grid
%-------------------------------------
fprintf('Generating Grid...\n')
[Var,Rho,Phi] = ndgrid(var,rho,phi);
[RHO,PHI] = ndgrid(rho,phi);
matrixArray = 0.*Var.*Rho.*Phi;
dispMatrix = 0.*RHO.*PHI;
errorMatrix = 0.*RHO.*PHI;

%-------------------------------------
%load matrices
%-------------------------------------

 73

fprintf('Loading Matrices...\n')
line = 0;
for r = 1:rhoNum
 for p = 1:phiNum
 line = line + 1;
 for v = 1:numVars
 if (abs(maxVals(v)-minVals(v)) < 1e-10)
 matrixArray(v,r,p) = 0;
 else
 if (resolution > 0)
 if (data(line,v+2) > (fineTuner*u pperBound(v)+(1-
fineTuner)*(averages(v))))
 data(line,v+2) = fineTuner*up perBound(v)+(1-
fineTuner)*(averages(v));
 end
 if (data(line,v+2) < (fineTuner*l owerBound(v)+(1-
fineTuner)*(averages(v))))
 data(line,v+2) = fineTuner*lo werBound(v)+(1-
fineTuner)*(averages(v));
 end
 if(0 == abs((fineTuner*upperBound (v)+(1-
fineTuner)*(averages(v)))-(fineTuner*lowerBound(v)+ (1-
fineTuner)*(averages(v)))))
 matrixArray(v,r,p) = 0;
 else
 matrixArray(v,r,p) = 65*(data (line,v+2)-
(fineTuner*lowerBound(v)+(1-
fineTuner)*(averages(v))))/((fineTuner*upperBound(v)+(1-
fineTuner)*(averages(v)))-(fineTuner*lowerBound(v)+ (1-
fineTuner)*(averages(v))));
 end
 else
 matrixArray(v,r,p) = 65*(data(lin e,v+2)-
minVals(v))/(maxVals(v)-minVals(v));
 end

 end
 if (data(line,v+2) == -99)%a quick fix
 matrixArray(v,r,p)=0;
 end
 end
 errorMatrix(r,p)= abs((data(line,4)-
initialTotalEnergy)/initialTotalEnergy);
 %errorMatrix(r,p) = min(100,errorMatrix(r,p)) ;
 currentError = double(errorMatrix(r,p));
 currentError = int16(cast(currentError,'int16 '));
 if (currentError > 99)
 currentError = 99;
 end
 errorArray(currentError+1) = 1 + errorArray(c urrentError+1);
 end
end

%-------------------------------------
%display matrices
%-------------------------------------
fprintf('Displaying Matrices...\n')

 74

for v = numVars:-1:1
 for r = 1:rhoNum
 for p = 1:phiNum
 dispMatrix(r,p) = matrixArray(v,r,phiNu m+1-p);
 end
 end

 figure
 image([phiMax phiMin], [rhoMax/a rhoMin/a], dis pMatrix);
 set(gca, 'YDir', 'normal');
 ylabel({'Impact Parameter (units of a)',''});
 xlabel({'','Phase Angle (radians)'});
 title({variables{v}, fileName,''});
end
figure
surf(errorMatrix);
title({'Momentum-ness', fileName,''});

figure
errorArray(:) = errorArray(:)/(r*p);
bar(errorArray(1:100));
ylabel({'This percent of simulations...', ''});
xlabel({'...had this percent error.', ''});
title({'Error Spread', fileName, ''});

 75

HamiltEqs.map -generates the Hamiltonian and subsequent equations

M := array(1..3);
M[1] := Ma;
M[2] := Mb;
M[3] := Mc;

P := array(1..3,1..3);
P[1,1] := pax;
P[1,2] := pay;
P[1,3] := paz;
P[2,1] := pbx;
P[2,2] := pby;
P[2,3] := pbz;
P[3,1] := pcx;
P[3,2] := pcy;
P[3,3] := pcz;

Q := array(1..3,1..3);
Q[1,1] := qax;
Q[1,2] := qay;
Q[1,3] := qaz;
Q[2,1] := qbx;
Q[2,2] := qby;
Q[2,3] := qbz;
Q[3,1] := qcx;
Q[3,2] := qcy;
Q[3,3] := qcz;

#-- --------------------
r[i,j] is the distance between mass i and mass j.
#-- --------------------
r := array(1..3,1..3);
for i from 1 to 3 do
for j from 1 to 3 do
 r[i,j] := sqrt(sum('(Q[i,ss]-Q[j,ss])^2','ss'=1.. 3));
od;od;

#-- --------------------
n is the normal vector: n_{ab} = x_a - x_b.
first two indicies label masses; third index is t he component.
#-- --------------------
n := array(1..3,1..3,1..3);
for i from 1 to 3 do
for j from 1 to 3 do
for k from 1 to 3 do
 if (j <> i) then
 n[i,j,k] := (Q[i,k] - Q[j,k])/r[i,j];
 else
 n[i,j,k] := 0;
 end if;
od;
od;
od;

 76

#-- --------------------
Define P^2
#-- --------------------
P2 := array(1..3);
for i from 1 to 3 do
 P2[i] := sum('P[i,ss]^2','ss'=1..3);
od;

Define the terms of the sum

T := array(1..18);

#-- --------------------
Term 1
#-- --------------------
T[1] := sum(M['ss'],ss='1..3');

#-- --------------------
Term 2
#-- --------------------
T[2] := 1/2*sum('P2[ss]/M[ss]','ss'=1..3);

#-- --------------------
Term 3
#-- --------------------
T[3] := 0;
for i from 1 to 3 do
for j from 1 to 3 do
 if (j <> i) then
 T[3] := T[3] + M[i]*M[j]/r[i,j];
 end if;
od;
od;
T[3] := -T[3]/2;

#-- --------------------
Term 4
#-- --------------------
T[4] := -1/8*sum('M[ss]*(P2[ss]/M[ss]^2)^2','ss'=1. .3);

#-- --------------------
Term 5
#-- --------------------
T[5] := 0;
for i from 1 to 3 do
for j from 1 to 3 do
 if (j <> i) then
 T[5] := T[5] + M[i]*M[j]/r[i,j]*(6*P2[i]/M[i]^2 \
 - 7/(M[i]*M[j])*sum('P[i,ss]*P[j,ss]',' ss'=1..3) \
 - sum('n[i,j,aa]*P[i,aa]','aa'=1..3) \
 *sum('n[i,j,bb]*P[j,bb]','bb'=1..3)/(M[i]*M[j]));
 end if;
od;
od;

 77

T[5] := -G/4*T[5];

#-- --------------------
Term 6
#-- --------------------
T[6] := 0;
for i from 1 to 3 do
for j from 1 to 3 do
for k from 1 to 3 do
 if (j <> i) then
 if (k <> i) then
 T[6] := T[6] + M[i]*M[j]*M[k]/(r[i,j]*r[i,k]) ;
 end if;
 end if;
od;
od;
od;
T[6] := 1/2*G^2*T[6];

#-- --------------------
Term 7
#-- --------------------
T[7] := 1/16*sum('M[ss]*(P2[ss]/M[ss]^2)^3','ss'=1. .3);

#-- --------------------
Term 8
#-- --------------------
T[8] := 0;
for i from 1 to 3 do
for j from 1 to 3 do
 if (j <> i) then
 T[8] := T[8] + M[i]*M[j]/r[i,j] * (\
 10*(P2[i]/M[i]^2)^2 - 11*P2[i]*P2[j]/(M [i]*M[j])^2 \
 - 2/(M[i]*M[j])^2*(sum('P[i,ss]*P[j,ss]', 'ss'=1..3))^2 \
 +
10/(M[i]*M[j])^2*P2[i]*(sum('n[i,j,ss]*P[j,ss]','ss '=1..3))^2 \
 -12/(M[i]*M[j])^2*sum('P[i,ss]*P[j,ss]',' ss'=1..3)\
 *sum('n[i,j,ss]*P[i,ss]','ss'=1..3)\
 *sum('n[i,j,ss]*P[j,ss]','ss'=1..3)\
 - 3/(M[i]*M[j])^2*(sum('n[i,j,ss]*P[i,ss] ','ss'=1..3))^2\
 *(sum('n[i,j,ss]*P[j,ss]','ss'=1..3))^2
);
 end if;
od;
od;
T[8] := G/16*T[8];

#-- --------------------
Term 9
#-- --------------------
T[9] := 0;
for i from 1 to 3 do
for j from 1 to 3 do
for k from 1 to 3 do
 if (j <> i) then
 if (k <> i) then
 nij_pi := sum('n[i,j,ss]*P[i,ss]','ss'=1..3);

 78

 nij_pj := sum('n[i,j,ss]*P[j,ss]','ss'=1..3);
 nij_pk := sum('n[i,j,ss]*P[k,ss]','ss'=1..3);
 nik_pk := sum('n[i,j,ss]*P[k,ss]','ss'=1..3);
 nij_nik := sum('n[i,j,ss]*n[i,k,ss]','ss'=1.. 3);
 pi_pj := sum('P[i,ss]*P[j,ss]','ss'=1..3);
 pj_pk := sum('P[j,ss]*P[k,ss]','ss'=1..3);

 T[9] := T[9] + M[i]*M[j]*M[k]/(r[i,j]*r[i,k]) *(\
 18*P2[i]/M[i]^2 + 14*P2[j]/M[j]^2 -2 *nij_pj^2/M[j]^2 \
 - 50*pi_pj/(M[i]*M[j]) + 17*pj_pk/(M[j]*M[k]) \
 - 14*nij_pi*nij_pj/(M[i]*M[j]) \
 + 14*nij_pj*nij_pk/(M[j]*M[k]) \
 + nij_nik*nij_pj*nik_pk/(M[j]*M[k])
);
 end if;
 end if;
od;
od;
od;
T[9] := G^2/8*T[9];

#-- --------------------
Term 10
#-- --------------------
T[10] := 0;
for i from 1 to 3 do
for j from 1 to 3 do
for k from 1 to 3 do
 if (j <> i) then
 if (k <> i) then
 nij_pi := sum('n[i,j,ss]*P[i,ss]','ss'=1..3);
 nij_pj := sum('n[i,j,ss]*P[j,ss]','ss'=1..3);
 nij_pk := sum('n[i,j,ss]*P[k,ss]','ss'=1..3);
 nik_pk := sum('n[i,j,ss]*P[k,ss]','ss'=1..3);
 nij_nik := sum('n[i,j,ss]*n[i,k,ss]','ss'=1.. 3);
 T[10] := T[10] + M[i]*M[j]*M[k]/(r[i,j]^2)*(\
 2*nij_pi*nik_pk/(M[i]*M[k]) \
 + 2*nij_pj*nik_pk/(M[j]*M[k]) \
 + 5*nij_nik*P2[k]/M[k]^2 \
 - nij_nik*nik_pk^2/M[k]^2 \
 - 14*nij_pk*nik_pk/M[k]^2
);
 end if;
 end if;
od;
od;
od;
T[10] := G^2/8*T[10];

#-- --------------------
Term 11
#-- --------------------
T[11] := 0;
for i from 1 to 3 do
for j from 1 to 3 do
 if (j <> i) then
 T[11] := T[11] + M[i]^2*M[j]/r[i,j]^2* (\

 79

 P2[i]/M[i]^2 + P2[j]/M[j]^2 \
 - 2/(M[i]*M[j])*sum('P[i,ss]*P[j,ss]','s s'=1..3)\
);
 end if;
od;
od;
T[11] := G^2/4*T[11];

#-- --------------------
Term 12
#-- --------------------
T[12] := 0;
for a from 1 to 3 do
for b from 1 to 3 do
for c from 1 to 3 do
 if (b <> a) then
 if (c <> a) then
 if (c <> b) then
 for i from 1 to 3 do
 for j from 1 to 3 do

 T[12] := T[12] + M[a]*M[b]*M[c]/((r[a,b] + r[b,c] +
r[c,a])^2) \
 * (n[a,b,i] + n[a,c,i])*(n[a,b,j] + n[c,b,j]) \
 * (8*P[a,i]*P[c,j]/M[a]/M[c] \
 - 16*P[a,j]*P[c,i]/M[a]/M[c] \
 + 3*P[a,i]*P[b,j]/M[a]/M[b] \
 + 4*P[c,i]*P[c,j]/M[c]^2 \
 + P[a,i]*P[a,j]/M[a]^2 \
);
 od;
 od;
 end if;
 end if;
 end if;
od;
od;
od;
T[12] := G^2/2*T[12];

#-- --------------------
Term 13
#-- --------------------
T[13] := 0;
for a from 1 to 3 do
for b from 1 to 3 do
for c from 1 to 3 do
 if (b <> a) then
 if (c <> a) then
 if (c <> b) then
 pa_pb := sum('P[a,ss]*P[b,ss]','ss'=1..3);
 pa_pc := sum('P[a,ss]*P[c,ss]','ss'=1..3);
 nab_pa := sum('n[a,b,ss]*P[a,ss]','ss'=1..3);
 nab_pb := sum('n[a,b,ss]*P[b,ss]','ss'=1..3);
 nab_pc := sum('n[a,b,ss]*P[c,ss]','ss'=1..3);
 T[13] := T[13] + M[a]*M[b]*M[c]/(r[a,b]*(r[a,b] + r[b,c] +
r[c,a]))\

 80

 * (8*(pa_pc - nab_pa*nab_pc)/(M[a]* M[b]) \
 - 3*(pa_pb - nab_pa*nab_pb)/M[a]/M [b] \
 - 4*(P2[c] - nab_pc^2)/M[c]^2 \
 - (P2[a] - nab_pa^2)/M[a]^2);

 end if;
 end if;
 end if;
od;
od;
od;
T[13] := 1/2*G^2*T[13];

#-- --------------------
Term 14
#-- --------------------
T[14] := 0;
for a from 1 to 3 do
for b from 1 to 3 do
for c from 1 to 3 do
 if (b <> a) then
 if (c <> b) then
 T[14] := T[14] + M[a]^2*M[b]*M[c]/(r[a,b]^2*r [b,c])
 end if;
 end if;
od;
od;
od;
T[14] := -1/2*G^3*T[14];

#-- --------------------
Term 15
#-- --------------------
T[15] := 0;
for a from 1 to 3 do
for b from 1 to 3 do
for c from 1 to 3 do
 if (b <> a) then
 if (c <> a) then
 T[15] := T[15] + M[a]^2*M[b]*M[c]/(r[a,b]^2*r [a,c])
 end if;
 end if;
od;
od;
od;
T[15] := -3/8*G^3*T[15];

#-- --------------------
Term 16
#-- --------------------
T[16] := 0;
for a from 1 to 3 do
for b from 1 to 3 do
for c from 1 to 3 do
 if (b <> a) then
 if (c <> a) then
 if (c <> b) then

 81

 T[16] := T[16] + M[a]^2*M[b]*M[c]/(r[a,b]*r [a,c]*r[b,c])
 end if;
 end if;
 end if;
od;
od;
od;
T[16] := -3/8*G^3*T[16];

#-- --------------------
Term 17
#-- --------------------
T[17] := 0;
for a from 1 to 3 do
for b from 1 to 3 do
for c from 1 to 3 do
 if (b <> a) then
 if (c <> a) then
 if (c <> b) then
 T[17] := T[17] + M[a]^2*M[b]*M[c]/(r[a,b]^3 *r[a,c]^3*r[b,c]) \
 *(18*r[a,b]^2*r[a,c]^2 - 60*r[a,b]^ 2*r[b,c]^2 \
 - 24*r[a,b]^2*r[a,c]*(r[a,b]+r[b,c]) \
 + 60*r[a,b]*r[a,c]*r[b,c]^2 \
 + 56*r[a,b]^3*r[b,c] \
 - 72*r[a,b]*r[b,c]^3 \
 + 35*r[b,c]^4 \
 + 6*r[a,b]^4);
 end if;
 end if;
 end if;
od;
od;
od;
T[17] := -1/64*G^3*T[17];

#-- --------------------
Term 18
#-- --------------------
T[18] := 0;
for a from 1 to 3 do
for b from 1 to 3 do
 if (b <> a) then
 T[18] := T[18] + M[a]^2*M[b]^2/r[a,b]^3
 end if;
od;
od;
T[18] := -G^3/4*T[18];

Construct the Hamiltonian

H := sum('T[ss]','ss'=1..18);

 82

Generate Hamilton's Equations

RHS := array(1..18);
RHS[1] := diff(H,P[1,1]):
RHS[2] := diff(H,P[1,2]):
RHS[3] := diff(H,P[1,3]):
RHS[4] := diff(H,P[2,1]):
RHS[5] := diff(H,P[2,2]):
RHS[6] := diff(H,P[2,3]):
RHS[7] := diff(H,P[3,1]):
RHS[8] := diff(H,P[3,2]):
RHS[9] := diff(H,P[3,3]):
RHS[10] := - diff(H,Q[1,1]):
RHS[11] := - diff(H,Q[1,2]):
RHS[12] := - diff(H,Q[1,3]):
RHS[13] := - diff(H,Q[2,1]):
RHS[14] := - diff(H,Q[2,2]):
RHS[15] := - diff(H,Q[2,3]):
RHS[16] := - diff(H,Q[3,1]):
RHS[17] := - diff(H,Q[3,2]):
RHS[18] := - diff(H,Q[3,3]):

#-- --------------------
Write equations to Fortran
#-- --------------------
with(codegen):
fortran(RHS,optimized,precision=double,filename=`ha meqs.h`);

 83

nbodyPN.f -runs (integrates) the three-body interaction until ejection

 program nbodyPN
 implicit none

C-- ---------
C whichescaped: which body left unbound
C escapeangle: trajectory of escaped body
C numcloseapp: number of close approaches
C binaryenergy: change in binary system energy
C escapetime: when the body escaped
C escaperadius: distance that a body has escape d
C t0: approx time when 3 bodies first meet
C-- ---------
 real*8 escapeangle, binaryenergy, esc apetime
 real*8 escaperadius, binaryecc, rho, phi, t0
 real*8 escapeke,escapepe
 integer whichescaped, numcloseapp
 integer numBoundChanges, bounded
 logical escaped
 real*8 maxke, maxpdotp, minr, minrtot
 real*8 fourthterm

C-- --------
C Original variables
C-- --------
 real*8 dvvdot

 character*5 cdnm
 parameter (cdnm = 'nbodyPN')

 integer iargc, indlnb, i4arg
 real*8 r8arg

 real*8 r8_never
 parameter (r8_never = -1.0d-60)

c-- ---------
c tfinal: Final integration time
c dtout: Output interval
c ntout: # of output times (computed)
c trace: Enables tracing of "conserved quantities"
c-- ---------
 real*8 tfinal, dtout
 integer ntout
 logical trace

c-- ---------
c Common communication with routine 'fcn' in 'f cn.f' ...
c
c Includes defn of maximum # of particles, stor age
c for particle masses, Newton's gravitational
c constant ...
c-- ---------
 include 'fcnPN.inc'
 integer maxneq, neq

 84

 parameter (maxneq = 6 * maxnp)

c-- ---------
c Storage for energy, momentum, center of mass ...
c-- ---------
 real*8 ke(maxnp), pe(maxnp)
 real*8 etot, ketot, petot
 real*8 pmom(d,maxnp), jmom(d,maxnp),
 & ptot(d), jtot(d)
 real*8 com(d)
 character*100 fileName
 character*11 defaultFileName
 parameter (defaultFileName = 'results.dat ')

c-- ---------
c LSODA Variables.
c-- ---------
 external fcn0, fcn1, fcn2, jac

 real*8 y(d,2,maxnp)
 real*8 tbgn, tend
 integer itol
 real*8 rtol, atol
 integer itask, istate, iopt
 integer lrw
 parameter (lrw = 22 + 9 * maxneq + maxneq **2)
 real*8 rwork(lrw)
 integer liw
 parameter (liw = 20 + maxneq)
 integer iwork(liw)
 integer jt
 real*8 tol
 real*8 default_tol, default_G
 parameter (default_tol = 1.0d-8)
 parameter (default_G = 1.0d-2)

c-- ---------
c Other locals
c-- ---------
 integer a, i, j, runnumber, whichorder ,
 & itout
 logical ltrace
 parameter(ltrace = .true.)

c-- ---------
c vars for glbpp
c-- ---------
 real*8 min_radius, mass_to_radius
 real*8 max_radius

c-- ---------
c Fix gravitational constant
c-- ---------
 G = 5.0d-2
 tol=default_tol

c-- ---------

 85

c Parse command line arguments (initial values) ...
c-- ---------
 if(iargc() .lt. 3) then
 write(0,*) 'Error 1'
 go to 900
 end if

 tfinal = r8arg(1,r8_never)
 dtout = r8arg(2,r8_never)
 G = r8arg(3,default_G)
 whichorder = r8arg(4,r8_never) + 0.1
 runnumber = r8arg(5, r8_never) + 0.1
 trace = .false.
c if(tfinal .eq. r8_never .or. dtout .eq. r 8_never
c & .or. dtout .le. 0.0d0 .or. whichorder .l t. 0
c & .or. whichorder .gt. 3 .or. runnumber .l t. 0) then
c write(0,*) 'Error 2'
c go to 900
c end if

c-- ---------
c Compute number of uniform time steps requeste d.
c-- ---------
 ntout = tfinal / dtout + 1.5d0

c-- ---------
c Get particle masses, initial positions and
c velocities.
c-- ---------
 call getivs('-',m,y,d,maxnp,np)
 neq = 6 * np
 escaperadius=1.01*(y(1,1,3)-0.5*(y(1,1,1)+y(1 ,1,2)))**2
 rho=y(2,1,3)-0.5*(y(2,1,1)+y(2,1,2))
 phi=atan2(y(2,1,1)-y(2,1,2),y(1,1,1)-y(1,1,2))
 t0=-y(1,1,3)/y(1,2,3)
 numBoundChanges=0
 bounded=4
 maxke = 0
 maxpdotp = 0
 minr = 10000
 minrtot = 100000

c-- ---------
c Dump # of particles, particle masses, initial
c time and initial particle positions to standa rd
c output.
c-- ---------
 min_radius = 0.2d0
 max_radius = 0.4d0
 mass_to_radius = 0.1d0
 tbgn = 0.0d0

c-- ---------
c Compute initial energy, center of mass, linea r mom
c and ang mom about center of mass and output i f
c standard error tracing is enabled.

 86

c-- ---------
 call clce(y,m,ke,pe,ketot,petot,etot,G,d,n p)
 call clccom(y,m,com,d,np)
 call clcmom(y,m,pmom,jmom,ptot,jtot,com,d, np)

c-- ---------
c Set LSODA parameters ...
c-- ---------
 itol = 1
 rtol = tol
 atol = tol
 itask = 1
 iopt = 1
C user defined jacobian=1, internally generated=2
 jt = 2

c== ========
c *** ****
c *************** Begin Integration *********** ***
c *** ****
c== ========
 do itout = 2 , ntout
 tend = tbgn + dtout

c-- --------
c Check for escaping body
c-- --------
 call extreema(y,m,maxke,maxpdotp,minr,minrt ot,fourthterm)
 call hasescaped(y,escaperadius,escaped,whic hescaped,
 & pe,ke,m,d,np,t0,tend)

 if (escaped) then
 go to 500
 end if

c-- ---------
c Call LSODA Integrator
c-- ---------
 istate = 1
c iword(6) = max number of steps per run
 iwork(6) = 100000

 if (whichorder .eq. 0) then
 call lsoda(fcn0,neq,y,tbgn,tend,
 & itol,rtol,atol,itask,
 & istate,iopt,rwork,lrw,iwork,liw ,jac,jt)
 end if

 if (whichorder .eq. 1) then
 call lsoda(fcn1,neq,y,tbgn,tend,
 & itol,rtol,atol,itask,
 & istate,iopt,rwork,lrw,iwork,liw ,jac,jt)
 end if
 if (whichorder .eq. 2) then
 call lsoda(fcn2,neq,y,tbgn,tend,
 & itol,rtol,atol,itask,
 & istate,iopt,rwork,lrw,iwork,liw ,jac,jt)

 87

 end if

c-- --------
c Check accuracy error istate = -2, -3; Recal l LSODA
c-- --------
234 if (istate .eq. -2 .or. istate .eq. -3) th en
 rtol = rtol * iwork(14)*2
 atol = atol * iwork(14)*2
 if (rtol .ge. 1e10 .or. atol .ge. 1e10) then
 istate = 1
 go to 235
 end if
 istate = 3
 iwork(11) = 0
 iwork(6) = 50000
c-----------0 Order-------------------------------- --------
 if (whichorder .eq. 0) then
 call lsoda(fcn0,neq,y,tbgn,tend,
 & itol,rtol,atol,itask,
 & istate,iopt,rwork,lrw,iwork,liw ,jac,jt)
 end if
c-----------2 Order-------------------------------- --------
 if (whichorder .eq. 2) then
 call lsoda(fcn2,neq,y,tbgn,tend,
 & itol,rtol,atol,itask,
 & istate,iopt,rwork,lrw,iwork,liw ,jac,jt)
 end if
c-----------Loop accuracy error to top------------- ---------
 go to 234
 end if

c-- ---------
c Check for unhandled LSODA error
c-- ---------
235 if(istate .lt. 0) then
 go to 950
 end if

c-- ---------
c Compute energy, COM, linear momentum and a ngular
c momentum about the COM and output if traci ng
c is enabled.
c-- ---------
 call clce(y,m,ke,pe,ketot,petot,etot,G, d,np)
 call clccom(y,m,com,d,np)
 call clcmom(y,m,pmom,jmom,ptot,jtot,com ,d,np)
 if (trace) then
 write(0,5000) tend,
 & com(1), com(2), com(3),
 & etot, ketot, petot,
 & sqrt(dvvdot(ptot,ptot,d)) ,
 & sqrt(dvvdot(jtot,jtot,d))
5000 format(1p,10E25.16)
 end if
c-- ---------
c ************** End of integration loop.****** *******
c-- ---------

 88

 end do

c----------
c Exits -
c Exits -
c Exits -
c Exits -
c----------

c-- ---------
c EXIT: Successful Integration
c-- ---------
500 continue
 call clce(y,m,ke,pe,ketot,petot,etot,G,d,np)
 call clccom(y,m,com,d,np)
 call clcmom(y,m,pmom,jmom,ptot,jtot,com,d,np)

 call clcexit(tend,whichescaped,y,m,ke,pe,d,np ,
 & numcloseapp,binaryenergy,escapea ngle,
 & escapetime,binaryecc,escapeke,e scapepe)

 call fileout(rho,phi,escapeangle,etot,ketot,p etot, ptot, jtot,
 & whichescaped,escapetime,binaryecc,es capeke,escapepe,
 & whichorder,runnumber,maxke,maxpdotp, minr,minrtot,
 & fourthterm)
 stop

c-- ---------
c EXIT: Wrong User Parameters
c-- ---------
900 continue
 write(0,*) 'usage: '//cdnm//
 & ' <t final> <dt out> [<tol> <tr ace>]'
 write(0,*) ' '
 write(0,*) ' Masses, initial positio ns and'
 write(0,*) ' velocities of particles read from'
 write(0,*) ' standard input'
 stop

c-- ---------
c EXIT: LSODA Error
c-- ---------
950 continue
 binaryecc=-1
 whichescaped=-1
 binaryenergy=-1
 numcloseApp=-1
 write(0,*) 'nbody: Error return from LSODA '
 write(0,*)' rho = ',rho
 write(0,*)' phi = ',phi
 write(0,*)' cdnm = ',cdnm
 write(0,*)' istate = ',istate
 write(0,*)' itout = ',itout
 write(0,*)' ntout = ',ntout
 write(0,*)' tbgn = ',tbgn
 write(0,*)' tend = ',tend
 call fileout(rho,phi,escapeangle,etot,keto t,petot, ptot, jtot,

 89

 & whichescaped,escapetime,binaryecc,es capeke,escapepe,
 & whichorder,runnumber,maxke,maxpdotp, minr,minrtot,
 & fourthterm)
 write(0,*) ' '
 stop
 stop
 end

c-- --------
c Subroutines ----------------------------------- --------
c-- --------

c== =========
c Computes energy quantities: individual kineti c
c and gravitational potential energies, and tot al KE
c and PE and total mechanical energy.
c== =========
 subroutine clce(y,m,ke,pe,ketot,petot,etot,G, d,np)
 implicit none
 real*8 dvsum
 integer d, np
 real*8 y(d,2,np), m(np), ke(np), pe(np),
 & ketot, petot, etot, G
 real*8 vsq, rsq, c1
 integer a, i, j

 do i =1 , np
 vsq = 0.0d0
 do a = 1 , d
 vsq = vsq + y(a,2,i)**2
 end do
 ke(i) = 0.5d0 * m(i) * vsq

 pe(i) = 0.0d0
 c1 = -G * m(i)
 do j = 1 , np
 if(j .ne. i) then
 rsq = 0.0d0
 do a = 1 , d
 rsq = rsq + (y(a,1,j) - y(a,1, i))**2
 end do
c-- ---------
c Associate 1/2 the potential energ y of an
c interaction with each particle.
c-- ---------
 pe(i) = pe(i) + 0.5d0 * c1 * m(j) / sqrt(rsq)
 end if
 end do
 end do
 ketot = dvsum(ke,np)
 petot = dvsum(pe,np)
 etot = ketot + petot
 return
 end

 90

c== =========
c Computes individual linear and angular moment um about
c specified origin and total linear and angular momentum
c about said origin. Currently implemented onl y for
c d = 3.
c== =========
 subroutine clcmom(y,m,pmom,jmom,ptot,jtot,o,d ,np)
 implicit none
 integer d, np
 real*8 y(d,2,np), pmom(d,np), jmom (d,np),
 & m(np), ptot(d), jtot (d),
 & o(d)
 integer a, i

 call dvls(ptot,0.0d0,d)
 call dvls(jtot,0.0d0,d)
 if(d .ne. 3) then
 write(0,*) 'clcmom: Not implemented for d .ne. 3 '
 write(0,*) 'clcmom: Invoked with d = ', d
 return
 end if

c-- ---------
c Linear momentum
c-- ---------
 do i = 1 , np
 do a = 1 , d
 pmom(a,i) = m(i) * y(a,2,i)
 ptot(a) = ptot(a) + pmom(a,i)
 end do
 end do

c-- ---------
c Angular momentum
c-- ---------
 do i = 1 , np
 jmom(1,i) = (y(2,1,i) - o(2)) * pmom(3, i) -
 & (y(3,1,i) - o(3)) * pmom(2, i)
 jmom(2,i) = (y(3,1,i) - o(3)) * pmom(1, i) -
 & (y(1,1,i) - o(1)) * pmom(3, i)
 jmom(3,i) = (y(1,1,i) - o(1)) * pmom(2, i) -
 & (y(2,1,i) - o(2)) * pmom(1, i)
 do a = 1 , d
 jtot(a) = jtot(a) + jmom(a,i)
 end do
 end do
 return
 end

c== =========
c Computes center-of-mass of distribution of pa rticles.
c== =========
 subroutine clccom(y,m,com,d,np)
 implicit none
 real*8 dvsum
 integer d, np
 real*8 y(d,2,np), m(np), com(d)

 91

 real*8 mtotm1
 integer a, i

 call dvls(com,0.0d0,d)
 do i = 1 , np
 do a = 1 , d
 com(a) = com(a) + m(i) * y(a,1,i)
 end do
 end do
 call dvsm(com,1.0d0/dvsum(m,np),com,np)

 return
 end

c== =========
c Vector dot product.
c== =========
 double precision function dvvdot(v1,v2,n)
 implicit none
 real*8 v1(*), v2(*)
 integer i, n

 dvvdot = 0.0d0
 do i = 1 , n
 dvvdot = dvvdot + v1(i) * v2(i)
 end do

 return

 end

c== =========
c Vector sum.
c== =========
 double precision function dvsum(v,n)
 implicit none
 real*8 v(*)
 integer i, n

 if(n .gt. 0) then
 dvsum = v(1)
 do i = 2 , n
 dvsum = dvsum + v(i)
 end do
 end if
 return
 end

c== =========
c Load vector with scalar.
c== =========
 subroutine dvls(v1,s1,n)
 implicit none
 real*8 v1(*)
 real*8 s1
 integer i, n

 92

 do i = 1 , n
 v1(i) = s1
 end do
 return
 end

c== =========
c Vector-scalar multiply
c== =========
 subroutine dvsm(v1,s1,v2,n)
 implicit none
 real*8 v1(*), v2(*)
 real*8 s1
 integer i, n

 do i = 1 , n
 v2(i) = s1 * v1(i)
 end do
 return
 end

C== ==========
C Has a body escaped and is the simulation over ?
C== ==========
 subroutine hasescaped(y,escaperadius,escaped, whichescaped,
 & pe,ke,m,d,np,t0,tend)
 implicit none
 integer d, np, whichescaped
 real*8 y(d,2,np), m(np), escaperadiu s
 real*8 pe(np),ke(np),t0,tend
 logical escaped
 integer i
 whichescaped=1
 escaped=.false.
 do i=1,3
 if ((y(1,1,i)**2+y(2,1,i)**2+y(3,1,i) **2)
 & .ge.escaperadius*40.0.and.
 & (pe(i)+ke(i)).ge.0) then
 whichescaped=i
 escaped=.true.
 return
 end if
 end do

 end

C== ==========
C Calculate exit conditions
C== ==========
 subroutine clcexit(tend,whichescaped,y,m,ke,p e,d,np,
 & numcloseapp,binaryenergy,escapea ngle,
 & escapetime,binaryecc,escapeke,e scapepe)
 implicit none

 integer numcloseapp
 real*8 escapeke, escapepe
 real*8 binaryenergy, escapeangle, escape time, binaryecc

 93

 integer d, np, whichescaped
 real*8 tend, y(d,2,np), m(np), ke(np), p e(np)
 escapeke=ke(whichescaped)
 escapepe=pe(whichescaped)
 escapetime=tend
 numcloseapp=0
 binaryecc=0
 binaryenergy=ke(1)+ke(2)+ke(3)
 escapeangle=atan2(y(2,2,whichescaped),y(1 ,2,whichescaped))
 if(escapeangle.lt.0) then
 escapeangle=escapeangle+2*3.1415926 5
 end if
 end

c== ================
c Calculate max and min values to explain 2nd order divergence
c== ================
 subroutine extreema(y,m,maxke,maxpdotp,minr ,minrtot,
 & fourthterm)
 implicit none
 real*8 y(3,3,2), m(3), maxke, maxpdot p
 real*8 minr, minrtot
 real*8 tempr, tempke, tempdot, fourth term
 integer a, b, d
c-------minimum distance between planets----------- ----------------
 do a = 1,3
 do b = 1,3
 if (a.ne.b) then
 tempr = sqrt((y(1, 1, a)-y(1, 1, b))**2+
 & (y(2, 1, a)-y(2, 1, b))**2+
 & (y(3, 1, a)-y(3, 1, b))**2)
 if (tempr.lt.minr) then
 minr=tempr
 end if
 end if
 end do
 end do
c-------maximum kinetic energy--------------------- ------------------
 tempke = 0
 do a = 1,3
 do b = 1,3
 tempke = tempke + y(b, 2, a)**2/2 /m(a)
 end do
 end do
 if (tempke.gt.maxke) then
 maxke = tempke
 end if
c-------minimum total distance of all bodies from e achother----------
 tempr = 0
 do a = 1,3
 do b = 1,3
 if (a.ne.b) then
 tempr = tempr+m(a)*m(b)/
 & sqrt((y(1, 1, a)-y(1, 1, b))**2+
 & (y(2, 1, a)-y(2, 1, b))**2+
 & (y(3, 1, a)-y(3, 1, b))**2)
 end if

 94

 end do
 end do
 if (tempr.lt.minrtot) then
 minrtot = tempr
 end if
c-------maximum dot product of 2 body momentums---- ------------------
 tempdot = 0
 do a = 1,3
 do b = 1,3
 if (a.ne.b) then
 do d = 1,3
 tempdot=tempdot+m(a)*m(b)*y(d,2,a)*y(d,2,b)
 end do
 end if
 end do
 end do
 if (tempdot.gt.maxpdotp) then
 maxpdotp = tempdot
 end if

c-------fourth term-------------------------------- ------------------
 tempdot = 0
 do a = 1,3
 tempdot = tempdot + m(a)*(y(1,2,a)**2+ y(2,2,a)**2+
 & y(3,2,a)**2)**2
 end do
 if (fourthterm.gt.tempdot) then
 fourthterm = tempdot
 end if
 end

