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ABSTRACT 

 

CHAOTIC SCATTERING IN THE 

2ND POST-NEWTONIAN ORDER GRAVITATIONAL 

THREE-BODY PROBLEM 

 

 

David E. Tanner 

Department of Physics and Astronomy 

Bachelor of Science 

 

The three-body problem is explored in general relativity using the second order post-

Newtonian approximation.  The results are compared to Newtonian gravity.  The three 

bodies are set up as a binary system with an incoming body.  The system is evolved 

through time for a large two dimensional space of initial values.  Several properties for 

both the Newtonian and relativistic systems are mapped onto the initial-value space and 

analyzed.  The two sets of maps show regions of similarity and contrast.  The relativistic 

system's chaotic behavior diverges most significantly from the Newtonian system when 

the three bodies undergo relativistic interactions.
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Chapter 1 

Introduction 

1.1 Motivation 

N-body problems have been widely studied and are a versatile window into physical 

chaos.  More specifically, the gravitational three-body problem has received much 

attention because of its simple setup and its application to astrophysical systems such as 

the solar system.  It has been studied using different numbers of dimensions, different 

equations for gravity and different constraints on the system.  Most work on the three-

body problem has been done in the context of Newtonian gravity.  The present work 

studies chaos in general relativity, Einstein’s theory of gravitation, using the second order 

post-Newtonian approximation (hereafter abbreviated PPN2).  This study sets up 

congruent experiments—the same except for the equations of gravity.  Newton’s 

equations of gravity are compared with Einstein’s PPN2.  This experiment brings to light 

differences and similarities between the equations especially with regard to their chaotic 

behavior. 



 

 2 

1.2 Chaos 

In physics, chaos denotes a dynamic system for which the outcome is highly sensitive to 

the initial conditions.  This sensitivity makes long-term prediction impossible, as small 

uncertainties in the initial state lead to very large effects later on.  The exponential 

sensitivity to initial conditions can be quantified using the Liapunov exponent.  Let φ1(t) 

and φ2(t) represent two possible evolutions of a physical system (i.e. two solutions to the 

system’s equations of motion).  Let ∆φ(t) represent the difference between the two 

solutions (φ2(t) - φ1(t)).  As time goes on, if the solutions grow closer together (behave the 

same) ∆φ(t) will approach zero.  On the other hand, if the solutions consistently follow 

different paths, ∆φ(t) approaches infinity (differing systems behave more and more 

differently).  In the following expression 

tKet λφ ~)(∆  

∆φ(t) approaches zero or infinity depending on whether λ is positive or negative; K is a 

constant.  The variable λ is the Liapunov exponent; if it is negative then long-term 

motion is non-chaotic (in fact it converges to a common solution) but if it is positive then 

the long-term motion is chaotic.  Thus, systems are chaotic if different solutions diverge 

at an exponential rate. 

To illustrate the impossibility of long-term predictions for chaotic systems, consider 

two states specified by 0.999999999999999 and 1.  These states differ by only 1x10-15, 

but to a computer these are the same floating-point number.  But to a chaotic system, 

these may represent initial conditions, or intermediate values, varied enough to produce 

exponentially differing outcomes.  It does not take much time for a numerical inaccuracy 

to blow up into noticeable error.  For example, transforming the above equation into 
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tet λφφ )0()( ∆=∆  and solving for how long it takes (t) for a numerical error (∆φ(t) = 

1x10-15) to grow to order one (∆φ(t) = 1) using λ = ½. 

tex 2151011 −=  

It only takes t = 17.27 units of time for the “negligible” error to grow to order one.  For 

this reason, running the same chaotic computer simulation twice can produce different 

results even if the initial conditions are meant to be the same. 

Although chaos denotes unpredictability, it should not connote random.  Buried 

inside the mysteries of chaos, there can be seen beautiful patterns.  One example of a 

pattern born of chaos is a fractal.  A fractal is a pattern which repeats itself on finer and 

finer magnifications.  Figure 1.1 shows three images of the Mandelbrot [1] at different 

magnifications; note the pattern is ever-complex on finer and finer scales and has some 

repeating features.  The Mandelbrot Set is defined as the set of all complex numbers such 

that ∞<)0(n
cf , where )(zf n

c is the nth iteration of czzf c += 2)( ; i.e. 

( )( ) ccf c ++=
223 0)0( .  The black areas in Figure 1.1 belong to the Mandelbrot set while 

the colored regions are color coated according to how fast they diverge to infinity. 

 

Figure1.1 Mandelbrot Set (zoom=1; zoom=2x105; zoom=6x1010) 

 
Notice the chaotic border shown in the left-most figure.  By zooming in almost a million 

times on the border, the center image is found.  And zooming in almost a million times 
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more produces the far right image.  These beautiful patterns seem to exist on ever finer 

and finer scales.  Similar features can also be found in the chaotic gravitational three-

body problem, discussed in Section 1.3.  Though they are both chaotic and therefore 

extremely sensitive to initial conditions, they are not random—they feature beautiful 

patterns. 

1.3 Three-body Problem 

Gravitating bodies has been a very popular system for exploring chaos.  The gravitational 

three-body problem is a very simple chaotic system; three masses orbit each other under 

their mutual gravitational attraction.  They are in a vacuum (no drag) and the only forces 

they feel are gravitational forces.  Figure 1.2, taken from [2], illustrates how three bodies 

may evolve in each other’s gravitational field.  The two body gravitational problem, on  

 

Figure 1.2 Three-body chaos in center-of-mass reference frame 

the other hand, is quite simple to solve analytically.  Newton was the first person to do so, 

which provided a new understanding of Kepler’s laws.  The gravitational two-body 

problem has a closed-form solution—a solution which can be written as a function.  The 

solutions are conic sections: an elliptical orbit if their energies are negative, a parabola if 

their energies are zero or a hyperbola if their energies are positive.  The solution is 
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deterministic and cannot behave chaotically. 

The three-body problem, however, is much more complicated.  It does not have a 

general analytic solution.  Interestingly, over 100 years ago Poincaré discovered that the 

three-body problem is chaotic [3].  Because the n≥3-body problems are chaotic, orbits in 

our solar system can only be predicted accurately on the order of millions of years [4].  

For general three-body problems, the equations of motion must be solved numerically. 

 Much research has already been done on the three-body problem.  Chicone et al 

[5] setup a binary system which was driven by obliquely incident gravitational radiation 

and was dampened by radiating its own gravitational energy—it behaved similar to a 

driven dampened harmonic oscillator.  Their driven dampened stellar system was made to 

behave both smoothly and chaotically.  Hock [6] studied the Eüler problem (two fixed 

bodies and one orbiting body), sometimes called the restricted three-body problem, and 

showed that for Newtonian gravity, the solution was non-chaotic, whereas implementing 

equation of general relativity produced a chaotic system.  Others have allowed three 

bodies to move freely in one dimension.  Hietarinta et al [7] showed that a Newtonian 

three-body system, in one dimension, still behaves chaotically.  Burnell et al [8] studied 

the chaotic behavior of the one-dimensional problem using general relativity.  The 

Newtonian and general relativity gravity comparison is furthered in this study by looking 

at the three-dimensional three-body problem. 

1.4 Post-Newtonian Gravity 

When most think of gravity, they think of Sir Isaac Newton.  Newton’s Universal Law of 

Gravitation says that the force of gravitational attraction (F) between any two bodies is 
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r
r

mm
GF

vv

3
21=  

where G is the universal gravitational constant, m1 and m2 are the masses of bodies 1 and 

2, and r is the distance vector between the masses.  According to Newton, the force 

between two masses is related only to the distance between them.  For the most part, he 

was right… 

About one hundred years ago Albert Einstein formulated a new—more complex—

model of gravity called general relativity.  To contrast their complexity, the average 

student will learn about Newton’s Law of Universal Gravitation in middle school, 

whereas a typical astrophysicist does not learn Einstein’s theory of general relativity until 

graduate school.  This difference is due to the mathematical complexity of general 

relativity, which uses tensor equations on curved manifolds.  Einstein showed that 

Newton’s Law of Gravity it a simple approximation of general relativity.  Since that time, 

mathematicians and physicists have extracted correctional terms to study, in a 

perturbative manner, Newtonian-like systems in general relativity. 

Einstein models space and time as a curved manifold.  Energy and mass curve 

space-time and this curvature is manifest as a “gravitational force.”  In the case of the 

three-body problem, the gravitational fields of the three bodies would determine the 

curvature.  The bodies then move along the natural curves (known as geodesics) of space-

time.  Solving the full equations of general relativity for three-bodies in three dimensions 

would be far too complex.  To avoid an exact analytical solution of such complex 

equations, this paper explores the three-body problem using PPN2.  A second-order 

perturbative approximation is acceptable for weak fields such as a modeled solar system.  

This approximation generates only ordinary differential equations, whereas the full 
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equations of general relativity are partial differential equations (which are harder to 

numerically integrate). 

1.5 Significance of Comparison 

The general three-body problem has previously been explored using Newtonian gravity.  

I explore the same system using PPN2 and compare the results.  An elegant study of he 

Newtonian three-body problem was conducted by Boyd and McMillan in 1993 [9].  I 

reproduce some of their results using Newtonian gravity then perform the same 

experiments using Einstein’s PPN2 gravity.  It is proposed that the two systems will 

differ the most when the bodies undergo relativistic interactions (high velocities and close 

approaches) as this is what PPN2 takes into account.  This experiment will give insight 

into the chaotic behavior of general relativity.
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Chapter 2 

Problem Setup 

2.1 Equations of Motion 

The first step in simulating planetary motion is establishing the equations of motion 

which will govern the behavior of the planetary bodies.  Two sets of equations are 

implemented in this study: one for Newtonian gravity and one for PPN2.  The equations 

are presented as a system of ordinary differential equations derived from their respective 

Hamiltonians.  The Hamiltonian for Newtonian gravity is 

∑∑∑ ∑
≠

−+=
a ab ab

ba

a a a

a
a r

mm
G

m

p
mH 2

1
2

2
1 . 

The first term sums the rest energy of the masses, the second term sums the kinetic 

energy of all the masses, and the third term sums the gravitational potential energy 

between each pair of masses.  The Hamiltonian for Einstein’s PPN2 was derived by 

Schäfer [10]: 
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where G is a gravitational constant, ma is the mass of body a, pa is the momentum vector 

of body a, rab is the position vector between bodies a and b ( )ba rr
vv − , and abn

v
 is the 

normalized position vector between bodies a and b 













−
−

=
ba

ba
ab rr

rr
n vv

vv

.  The reader will 

notice that later terms are higher orders of 
r

1
 and are therefore supposed to play a lesser 
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role than prior terms.  Because the bodies are represented as point masses, this 

perturbative assumption is violated when the bodies approach infinitely close to one 

another and the later terms grow larger then the prior terms.  Also of note is the presence 

of vector dot products in the PPN2.  The behavior of the three bodies will change 

depending on their relative momentum vectors, not just their relative positions as with 

Newtonian gravity.  It is clear that the Hamiltonian PPN2 is much longer and more 

complex than that of Newtonian gravity. 

The equations of motion for the three bodies are derived from the above 

Hamiltonian using Hamilton’s Equations: 

i
i

i
i q

H
p

p

H
q

∂
∂−=

∂
∂= && , , 

where H is the Hamiltonian; q is a generalized coordinate vector, i ranges over all 3 

masses as well as all 3 vector components (creating 18 equations in all), and p is the 

conjugate momentum, defined as 
j

j q

L
p

&∂
∂= , where L is the Legrangian.  The 18 

equations for both models of gravity are generated using Maple which also converts them 

to Fortran code for computational use.  To exemplify the complexity of PPN2, it took six 

thousand lines of code to implement.  This high level of complexity renders improbable 

the idea of writing a customized ODE solver; it is explained later that an ODE solver with 

an adaptive time step was needed to integrate such difficult equations. 

2.2 Initial Conditions 

As explained previously, the three-body problem has 18 equations and 18 unknown 

variables: each of the three bodies has three positional variables and three momentum 
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variables.  The same problem setup as [9] is followed; imposing the laws of conservation 

of energy and conservation of momentum (both linear and angular) reduces the number 

of unknowns to 14.   Restricting motion to a plane further reduces the number of 

unknowns to 8.  Writing the equations in the center of mass frame imposes two more 

constraints.  I use an initial configuration, shown in Figure 2.1, which is specified by only 

two free parameters: ρ and φ, which will be addressed below.  Though the number of 

initial parameters has been pared down to two, the full 18 equations must be solved. 

 

Figure 2.1 Three-body problem setup 

The initial three-body configuration is shown in Figure 2.1.  Two of the masses 

form a stable Newtonian binary star system; they initially orbit each other in a circle, 

separated a distance a apart.  The third body is separated a distance 30a from the binary's 

center of mass.   The two free parameters are the initial phase angle (φ) of the binary and 

the impact parameter (ρ) of the incoming field star.  For φ=0, both masses one and two lie 

on the x-axis.  ρ measures the perpendicular distance of mass three from the x-axis.  The 
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arrows in Figure 2.1 show the initial trajectory of the three masses.  The initial conditions 

are calculated as follows: 

7101xm =  

mmmm === 321  

1110673.6 −= xG  

7.1=a  

( ) ( )






= 0,sin

2
,cos

21 φφ aa
x
v

 

( ) ( )






 −−= 0,sin

2
,cos

22 φφ aa
x
v

 

{ }0,,303 ρax =v
 

a

m
Gv

2
=  

a

Gm
vc 2

3=  

( ) ( ){ }0,cos,sin1 φφ vvv −=v
 

( ) ( ){ }0,cos,sin2 φφ vvv −=v
 

{ }0,0,2
1

3 cvv −=v
 

Because this system is chaotic, a minute change in the initial ρ or φ can drastically 

change the system’s behavior.  To fully explore the system’s behavior, many 

combinations of (ρ, φ) initial conditions are explored.  The initial conditions have a ρ 

range of -4.5a ≤ ρ ≤ 7.5a (no chaotic scattering is observed outside this range; verified by 

[9] and this study).  The φ range used is 0 ≤ φ ≤ π; because the two binary bodies have 

equal masses, the range of π ≤ φ ≤ 2π is identical to 0 ≤ φ ≤ π. 

The kinetic and potential energies of the binary system are determined by their 

masses and separation distance a.  The potential energy of the third mass is set by the 
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masses of the three bodies and by its separation distance (30a) from the binary system.  

The third mass is given a velocity of half the critical velocity (velocity for the third body 

which makes the system’s total energy exactly zero) which ensures that the system’s total 

energy is negative.  This negative energy guarantees the incoming field star can become 

bound to the binary such that all three bodies can be simultaneously bound. 

In the computational simulations below, the three-body interaction ends when one 

of the three masses is ejected from the system—it is far from the remaining two bodies 

and its kinetic energy (escape velocity) is enough to break free of the gravitational pull of 

the remaining two masses.  When the simulation ends, several system characteristics or 

escape values are recorded and their values are assigned to the initial condition 

coordinate (ρ, φ).  The escape values are: 

1. Escape Angle: angle at which the escaping body is traveling 

2. Escape Time: how long the simulation ran before a body escaped 

3. Change in Angular Momentum: initialfinal LL −  

4. Minimum Approach Distance: minimum separation of all three bodies 

(r12+r13+r23) attained during simulation 

5. Maximum Momentum Dot Product: maximum P1·P2 + P1·P3 + P2·P3 

6. Escaping Body: which of the three bodies escaped 

To monitor the accuracy of the simulation, I also record the following conserved 

quantities (discussed in Section 4.3): 

7. Linear Momentum Error: initialfinal PP −  

8. Angular Momentum Error: 
initial

initialfinal

L

LL −
 

9. Total Energy Error: 
initial

initialfinal

E

EE −
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The energy and momentum quantities are calculated according to Newtonian definitions.  

Calculating PPN2 energy in the Newtonian way may be a contributor to the energy error 

discussed in Section 4.3.  It is also of note that some of these escape values and 

conserved quantities are physically meaningful (coordinate independent) and some are 

not (coordinate dependant).  Regardless, it is still helpful to track quantities which have 

no strict physical value, since they do give insight into the behavior of the equations. 

The most sensible way to compare all these extracted values is to graph them by 

initial conditions (ρ, φ) coordinates.  The images in Chapter 4 contain these graphs.  The 

x, y axes represent ρ, φ and the escape variable’s value is represented by a color (ranging 

from blue to red).  Generating colored maps of the escape values is an effective method 

of analyzing the overall behavior of the three-body system.   
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Chapter 3 

Problem Solution 

3.1 Solving the Equations 

In order to explore the behavior of the three-body problem, computational tools are 

needed to numerically solve the differential equations analyze the solution.  Hamilton’s 

equations of motion are first order equations of the form  

),( ytf
dt

dy =  

where y is a state vector of the unknowns (x, y, z, vx, vy, vz) for each body and f is a 

vector function.  These equations are solved numerically using the Adams-Bashforth 

method 

( )∑
=

−−+ +=
s

j
jnjnjnn ytfbhyy

0
1 , , 0 ≤ r ≤ n, 

( )
( ) ( )∫ ∏

≠=

+
−

−=
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0
,0!!

1 s

jii

j

j duiu
jsj

b , j=0,…,s. 

This scheme can support different orders of approximation, and therefore different orders 
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of dependency in y.  I use LSODA: the Livermore Solver for Ordinary Differential 

equations with Automatic method switching for stiff and non-stiff problems; it is publicly 

available at http://netlib.org. This integrator adaptively adjusts the time steps and 

automatically switches to implicit methods for stiff problems.  A stiff differential 

equation is one in which two drastically different time scales are present in the solution.  

The result is that the integration must use a very small time step to achieve a reasonably 

accurate solution.  It is proposed that the system of bodies used in this study does become 

stiff since two differing time scales do exist—when a tightly bound binary revolves very 

fast while the third body executes a large slow orbit around the binary.  In this instance 

LSODA must use a very small time step and an implicit solver; if the needed time step is 

smaller than the minimum threshold, the integration will terminate with an error.  

LSODA was in fact encountering stiff situations while solving the equations in this paper. 

Because Hamilton’s equations are symplectic, a symplectic integrator would be 

preferred as it guarantees strict conservation of the Hamiltonian.  However, such 

integrators require fixed time steps.  A more robust integrator with an adaptive time step 

is required to handle the overwhelming complexity of the three-body equations.  Because 

a non-ideal integrator is used, energy conservation is monitored to ensure an accurate 

integration.  

3.2 run 

Because the three-body problem in both Newtonian and PPN2 gravity allows only 

numerical solutions, many different programs were needed to step from the initial setup 

to the color maps.  The first program needed is a Perl script called run.  Run converts the 

initial conditions (ρ, φ) into the numerical setup of the three body system and begins its 



 

 17

evolution.  The user may specify the value of G, the universal gravitational constant, and 

the masses of the three bodies.  The user also specifies the range of the initial conditions 

as well as how many simulations to run in that interval.  For example, one may select a φ 

range of ¼π ≤ φ ≤ ½π and to perform one hundred simulations in that interval.  In this 

case run will execute a three-body simulation with an initial φ of π
400

100
, π

400

101
, 

π
400

102
,…, π

400

200
, and a similar group of values for ρ.  After calculating the system setup 

from the ρ, φ initial value pair as well as gravity and mass values, the information is 

given to nbodyPN which evolves the system. 

3.3 nbodyPN 

NbodyPN is a FORTRAN program which evolves n gravitating bodies in either 

Newtonian or PPN2 gravity.  NbodyPN stores in two of its subroutines the ordinary 

differential equations of motion for both models of gravity.  It reads the initial conditions 

from run. 

 At its core, nbodyPN uses LSODA to perform the differential equation 

integration.  NbodyPN uses this integrator to step the three bodies along their paths of 

motion until one of the three bodies meets the escape requirements.  A body has escaped 

when its distance from the center of mass is almost one hundred times the original 

separation of the field body from the binary’s center and its energy is positive.  At this 

point, all escape values are printed to a data file. 

3.4 DaFilt 

The data file needs to be processed before its information can be extracted.  DaFilt (“Data 
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Filter”), a Java program, filters the data, to ensure that all the correct information has 

been recorded and all erroneous data has been corrected.  The raw data file has numbers 

scattered across many lines which belong in a group.  DaFilt reads all the information, 

analyzes it, and rewrites it cleanly to a new file.  DaFilt records the ranges of ρ and φ, dρ, 

dφ, the number of runs in each dimension, and how many errors were present in the file.  

Errors are substituted with dummy numbers (such as -99) so that the data file can still be 

processed but that errors are not misunderstood as actual data. 

3.5 Grapher 

Grapher, a MatLab program, is used to analyze all the data and display it visually as the 

colored maps shown in Chapter 4.  This program uses an array of matrices to store all the 

data which it reads from the file generated by DaFilt.  Each matrix has the same 

dimensions as ρ and φ.  Each escape variable gets its own matrix.  The value for that 

escape variable for every run within the ρ, φ range is loaded into the matrix. 

 Because the escape values can have a wide range of values, they are normalized 

for visualization purposes.  The time duration of a simulation, for example, can range 

from a few seconds to several million seconds.  First, the most extreme values are 

brought within the average range.  For example, if most of the simulation times were 

between one and two thousand seconds, any values below one thousand seconds were set 

equal to one thousand seconds and all values above two thousand seconds were set equal 

to two thousand seconds.  Second, that average range is scaled between 0�60 which 

MatLab interprets as a color ranging from blue (0) to red (60) (Figure 4.1). 
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Chapter 4 

Results 

4.1 Introduction 

This chapter presents the results of the three-body simulations.  The figures in this 

chapter compare the chaotic features between the Newtonian and PPN2 models of gravity 

by plotting the data against the initial data parameters ρ and φ.  Each physical 

characteristic listed in Section 2.2 is plotted in five different figures below.  The first 

shows the entire parameter space (titled whole space), and the remaining four show 

detailed regions that highlight the distinctions between Newtonian and PPN2 gravity.  

Figure 4.1 is a reference showing the color spectrum for all plots. 

 

Figure 4.1 Color scale for figures 

The two maps in Figure 4.2 of the whole space’s Escape Angle identify sub-

regions 1 through 4.  The map on the top represents Newtonian gravity, while the map on 
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the bottom represents Einstein’s gravity.  Region 1 is outlined by the lower left box; 

region 2 is the upper left box; region 3 is the lower right box; region 4 is the upper right 

box.  The colors in each graph represent the value of the variable being mapped.  In the 

case of these two maps, the colors represent the Escape Angle. 

 

Figure 4.2 Boxes outlining Regions 1-4 of Whole Space; Newtonian (top) and PPN2 
(bottom).   Region 1 is outlined by the lower left box; region 2 is the upper left box; 
region 3 is the lower right box; region 4 is the upper right box. 

Each region is discussed individually in the next sections, contrasting the features of the 

Newtonian and PPN2 plots. 
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4.2 Whole Space 

4.2.1 Escape Angle 

Figure 4.3 features both regions of smooth flowing color and chaotic speckled colors.  

The colors in these two maps (and all others labeled Escape Angle) represent the angle at 

which the escaping body was ejected from the system.  Smooth colors, where the red 

transitions into orange, yellow, green and finally to blue, represent regions of non-chaotic 

interactions.  This means that changing the initial conditions slightly, either in the ρ or φ 

dimensions (moving vertically or horizontally on the map by a pixel), results in a slightly 

different outcome (the exit angle color has only changed a shade).  On the other hand, the 

speckled regions show chaos; a small change in initial conditions (to a neighboring pixel) 

results in a substantial change in the escape angle (color). 

 For the most part, these figures appear very similar but with one difference: the 

lower map (PPN2) has a few extra stripes in clusters of four or five—fourfold rivers.  

These fourfold rivers are seen in a few places in the lower map but nowhere in the upper 

map; they are unique to the PPN2 model of gravity, and appear in most PPN2 data maps.  

The four sub-region maps (below) zoom in on these fourfold rivers.  One slight 

difference between each set of maps is that the PPN2 map seems to be shifted to the left: 

corresponding points will have a lesser φ coordinate in the PPN2 map than the Newtonian 

map. 

 Because the x-axis represents an angle, the map actually wraps on itself; the 0 and 

π radians match.  Figure 4.4 shows the PPN2 map of the Whole Space copied three times. 
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Figure 4.3 Escape Angle of Whole Space; Newtonian (top) [0, 2π] and PPN2 (bottom) 
[0, 2 π] 
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Figure 4.4 Thrice-repeated figure of Angular Momentum Error of Whole Space; black 
structure identifies a feature which wraps across parameter space three times. 

The black stripe in Figure 4.4 exemplifies a structure which spans three all three 

copies.  It is much easier to pick out this structure seeing the three copies aligned.  It is, 

however, recognizable by following along a single map and wrapping around it a few 

times.  There are other macroscopic features which can be seen more clearly.  These 

continuous patterns suggest a large structural pattern in this three-body setup.  While 

some of the data analysis in this Whole Space region will address macro-structures, the 

analysis of the four sub-regions (below) is meant to explore smaller-scale structures.  

Other escape values will give a more thorough look at these interactions. 

4.2.2 Escape Time 

The same chaotic and non-chaotic regions are reflected in Figure 4.5 of the interaction 

time.  The colors in this map reflect how much time had elapsed before the escaping body 

was ejected from the system.  The homogenous blue color indicates that most of the non 

chaotic interactions took a similar amount of time.  While the chaotic colors suggest that 

the interaction times varied highly through the chaotic regions.  The main reason for 

drastic changes in interaction time is the complexity of the interaction.  A simple 

interaction in which the incoming star simply scatters around the binary pair will take the 

least amount of time.  Whereas an interaction where the incoming star becomes quasi- 
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Figure 4.5 Time of Whole Space; Newtonian (top) [3.6x103, 9.7x104] and PPN2 (bottom) 
[3.2x103, 2.8x107] 
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bound to the other two and all three bodies orbit around each other may take a very long 

time.  Thus, in the chaotic regions, the amount of time which the planets spend orbiting 

around one another varies highly. 

 Notice that much of the boundary between the smooth and chaotic regions in 

Figure 4.5 is outlined in red.  The red represents a very long interaction time.  While the 

red speckles in the chaotic regions may be caused by planets orbiting each other many 

times, the red outline is caused by one long orbit.  Boyd [3] explains that on the boundary 

between smooth and chaos, the third (incoming) body comes very close to one of the 

binary bodies and there is a strong change in energy.  The third body becomes very 

weakly bound to the other two such that it executes a very long orbit.  It is this long orbit 

which separates the chaotic and non-chaotic regions. 

4.2.3 Change in Angular Momentum 

Figure 4.6 represents the change in angular momentum.  Ideally, each of these values 

should be zero.  They are not.  Because the integrator, LSODA, uses some specified 

algorithm, it can be assumed that the degree of error is directly proportional to 

characteristics of the interaction.  Thus, maps of the change in angular momentum are 

significant though it is not specifically known what about interaction causes the error. 

The topological characteristics of these two maps are similar for the above two 

maps featuring the Escape Angle.  There are some regions where smooth transitions in 

color testify of smooth behavior: a small change in initial conditions results in a small 

change in angular momentum error.  The regions which were chaotic for the Escape 

Angle are also chaotic in these maps. 
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Figure 4.6 Change in Angular Momentum of Whole Space; Newtonian (top) [-2.2x105, 
2.3x105] and PPN2 (bottom) [-2.0x105, 2.4x105] 
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4.2.4 Minimum Approach Distance 

Maps of the minimum approach distance are important because the higher order terms of 

PPN2 have multiples of
r

1
.  The closer the bodies approach one another, the more of a 

role those terms will play.  Figure 4.7 reveals some underlying features.  Compare Figure 

4.7 with their Escape Angle counterparts (Figure 4.3).  Notice that the regions which 

behave smooth (according to the Escape Angle) appear here in red and yellow colors 

while chaotic regions show up blue.  Recall the color spectrum (Figure 4.1); blue 

represents low values, while red represents high values.  Why would chaotic interactions 

always experience shorter approach distance?  It makes sense that the longer the 

interaction time, the more opportunities the bodies have to pass by one another and 

statistically the higher the chance of a very close approach.  Therefore the chaotic, more 

complex, interactions have more opportunities for close approaches.  On the other hand, 

the smooth regions are often caused by the third incoming body simply passing around 

the binary system and being ejected; this would allow only one opportunity for a short 

approach distance. 

The other major characteristic seen in these two maps is a pattern of concentric 

ovals.  In the very center of both these maps, there are red concentric ovals.  The smaller 

ovals in the center are a lighter shade of red representing a closer approach distance.  

Along the bottom of the maps is a string of blue concentric ovals.  The smaller ovals in 

the center get darker and darker, which also represents a closer approach distance.  Both 

the red and blue ovals appear in regions which were classified as smooth by the Escape 

Angle maps (Figure 4.3).  The rivers of chaos seem to streak through the smooth regions, 

but in the Minimum Approach Distance maps, they do not interrupt the concentric ovals. 
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Figure 4.7 Minimum Approach Distance of Whole Space; Newtonian (top) [9.9x10-8, 
7.3x10-3] and PPN2 (bottom) [6.7x10-8, 7.3x10-3] 
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The ovals seem to continue their patterns in the background of the chaos.  These features 

will be seen more clearly in the sub-region maps below. 

4.2.5 Maximum Momentum Dot Product 

The relativistic Hamiltonian depends of the momentae of the bodies, while the 

Newtonian potential depends only on position.  Only the relativistic Hamiltonian depends 

on the dot products Pa·Pb.  For this reason, the products P1·P2 + P1·P3 + P2·P3 are 

computed and mapped to shed light on the difference between the two models of gravity.  

These maps show the maximum total vector momentum achieved during a simulation. 

 Figure 4.8 sheds some light on what appears to be a singularly appearing 

phenomenon.  Refer back to Figure 4.5 bottom.  Near the coordinate (ρ, φ) = (1, 1.5) 

there is a river of chaos, flowing from left to right, which abruptly ends.  The many other 

fourfold rivers, which appear in the PPN2 maps, flow from one place to another; they 

spring out of one location and bury into another.  The river at (1, 1.5) has no destination.  

Why?  The above map showing the PPN2 dot product offers some explanation.  The 

same river can be seen flowing left to right at (1, 1.5).  This river features a speckled dot 

product meaning its values are also chaotic.  The region where the river dies seems to 

have a “shore” of light blue color.  This light blue shore fades into a smooth deep blue 

color.  The smooth deep blue area represents a local minimum.  It is this minimum and 

whatever mechanism of the three body interaction that causes it, which ends the (1, 1.5) 

river and prevents it from reaching the light blue shore across the way. 

Another key feature is the location of the highest dot products.  They tend to pool 

together in two main regions.  The first is located at (-1�0, 2.5�3).  The second is the 
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Figure 4.8 Max Momentum Dot Product of Whole Space; Newtonian (top) [9.0x106, 
3.1x1026] and PPN2 (bottom) [3.3x1018, 1.8x1026] 
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same region colored in black in the third map of Section 4.2.1.  That stripe which 

spanned three spaces appears here to be comprised of the highest dot product values. 

4.2.6 Escaping Body 

Figure 4.9 illustrates which of the three bodies escaped: light green—1, orange—2, red—

3, and blue represents a simulation which terminated because of an error.  Recall that 

masses one and two form the binary, while mass three comes in from infinity.  It makes 

sense that the areas near ρ = -3 and ρ = 4 are marked by body 3 escaping.  For a large 

impact parameter body three passes far around the binary and simply scatters around 

them on a hyperbolic path. 

Notice also that both plots of Figure 4.9 wrap around on themselves (like all other 

plots) but shift colors.  An initial setup of φ = 0 and φ = π is exactly the same except that 

bodies one and two have switched places.  That is why, in Figure 4.9, the structure at φ = 

0 and φ = π are the same except that orange (body 2) is swapped for green (body 1). 

4.3 Error and Data 

As with all experimental and computational physics, only an accurate experiment can 

give accurate results.  The error in these planetary simulations tells how accurate the 

simulations were carried out.  I tracked the linear momentum error, angular momentum 

error, and energy error.  The average errors were on the order of 10-7 for linear 

momentum, 10-3� 10-1 for angular momentum and 1 for energy.  In the case of angular 

momentum and energy, only 5% of the simulations caused the error while 95% of the 

simulations had less than 1% error.  The simulations of highest error were consistently  
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Figure 4.9 Escaping Body of Whole Space; Newtonian (top) [1, 3] and PPN2 (bottom) 
[1, 3] 
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within the chaotic regions where an accurate integration is improbable to begin with.  

These error values reflect positively on the reliability of the simulations.   

For the reader’s reference, Tables 4.1�4.5 give the ranges and averages of data 

used to make the figures in this paper; thus the reader may know the approximate values 

represented by the various colors. 

 Newtonian   PPN2  

Variable Minimum Average Maximum Minimum Average Maximum 

Esc Time 3.660E+03 9.764E+04 1.356E+07 3.200E+03 9.821E+04 2.861E+07 

∆L -2.232E+05 -4.249E+02 2.318E+05 -2.058E+05 -3.583E+02 2.489E+05 

Min Appr 9.912E-08 3.243E-03 7.302E-03 6.786E-08 2.876E-03 7.384E-03 

Max P·P 9.000E+06 1.053E+24 3.116E+26 3.328E+18 1.346E+24 1.875E+26 

Table 4.1 Statistical Data for Whole Space figures 

 Newtonian   PPN2  

Variable Minimum Average Maximum Minimum Average Maximum 

Esc Time 4.460E+03 1.236E+05 6.475E+06 3.200E+03 1.105E+05 8.606E+06 

∆L -1.009E+05 -5.870E+02 9.845E+04 -9.676E+04 -6.990E+01 1.260E+05 

Min Appr 2.745E-08 2.540E-03 6.117E-03 1.195E-07 1.172E-03 6.322E-03 

Max P·P 9.000E+06 6.548E+23 3.819E+26 9.000E+06 7.510E+23 2.922E+26 

Table 4.2 Statistical Data for Region 1 figures 

 Newtonian   PPN2  

Variable Minimum Average Maximum Minimum Average Maximum 

Esc Time 4.220E+03 9.912E+04 1.070E+07 3.200E+03 8.452E+04 1.424E+07 

∆L -1.135E+05 -5.489E+02 2.525E+05 -1.103E+05 -3.192E+02 2.458E+05 

Min Appr 3.705E-07 3.432E-03 6.715E-03 3.870E-07 3.253E-03 6.809E-03 

Max P·P 9.000E+06 8.020E+23 5.305E+25 3.780E+20 1.226E+24 1.237E+26 

Table 4.3 Statistical Data for Region 2 figures 

 Newtonian   PPN2  

Variable Minimum Average Maximum Minimum Average Maximum 

Esc Time 4.380E+03 7.199E+04 1.419E+07 3.160E+03 6.424E+04 7.835E+06 

∆L -1.030E+05 7.152E+01 1.403E+05 -8.831E+04 6.373E+00 1.462E+05 

Min Appr 1.614E-08 4.206E-03 7.172E-03 4.633E-09 4.364E-03 7.233E-03 

Max P·P 9.000E+06 1.306E+24 1.944E+26 2.019E+19 2.107E+24 6.345E+28 

Table 4.4 Statistical Data for Region 3 figures 
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 Newtonian   PPN2  

Variable Minimum Average Maximum Minimum Average Maximum 

Esc Time 7.840E+03 9.912E+04 1.507E+07 3.180E+03 1.250E+05 1.000E+08 

∆L -1.361E+05 -6.232E+02 2.524E+05 -1.698E+05 -5.524E+02 2.509E+05 

Min Appr 1.395E-07 3.866E-03 7.340E-03 2.379E-07 2.603E-03 7.390E-03 

Max P·P 9.000E+06 1.438E+24 2.692E+26 3.851E+20 1.574E+24 2.047E+26 

Table 4.5 Statistical Data for Region 4 figures 

4.4 Four Sub-Regions 

There are similarities and differences between the Newtonian figures and the PPN2 

figures.  Since regions featuring the differences are of greatest interest, they are zoomed 

in on and explored in greater detail.  Below are four regions which feature a fourfold 

river—a region in the PPN2 figure which has four (or five) alternating bands of smooth 

then chaos; a corresponding structure does not appear in the Newtonian figure. 

4.4.1 Escape Angle 

A close up view of the Escape Angle in these four sub-regions gives clear images of the 

banded rivers of smooth and chaos.  Each pair of maps (Figures 4.10 through 4.13) is of a 

region where the system’s escape angle behaves smoothly in the Newtonian picture but 

consists of four to five chaotic rivers in the PPN2 picture.  The chaotic rivers all flow 

parallel to one another.  Both the Newtonian and PPN2 maps have a fine blue line.  

Figure 4.14 is one example of this line so the reader may find it in each pair of maps.  

The line is made thick and black in Figure 4.14 and runs horizontally across the middle of 

both images. 

Both of these Escape Angle maps of Region 2 show the line horizontal through the 

middle bowing downward.  It seems strange that a random line appears in both maps but 

foretells where the chaotic rivers will appear in the PPN2 maps.  What causes this line? 
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Figure 4.10 Escape Angle of Region 1; Newtonian (top) [0, 2π] and PPN2 (bottom) [0, 2π] 
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Figure 4.11 Escape Angle of Region 2; Newtonian (top) [0, 2π] and PPN2 (bottom) [0, 2π] 
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Figure 4.12 Escape Angle of Region 3; Newtonian (top) [0, 2π] and PPN2 (bottom) [0, 2π] 
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Figure 4.13 Escape Angle of Region 4; Newtonian (top) [0, 2π] and PPN2 (bottom) [0, 2π] 
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Figure 4.14 Escape Angle showing fine line of error; Newtonian (left) and PPN2 (right) 

 The black lines in Figure 4.14 represent unsuccessful LSODA integrations.  

Recall that the LSODA integrator is used to step the simulation along in time.  If 

LSODA, while trying to calculate a time step, decides it can’t perform enough time sub-

steps to complete the time step, it returns an error.  So the fine blue line (and all other 

random blue lines present) is a string of simulations that LSODA was not able to 

complete. 

 It is clear from these images that some of the fourfold chaotic rivers are broken—

meaning they do not completely bridge one region of chaos to another.  It is not known 

yet if any unbroken bridges exist.  If in fact no unbroken bridges exist, then the overall 

chaotic topological genus of the system could be preserved. 

4.4.2 Escape Time 

Each Newtonian map (Figures 4.15 through 4.18) of the simulation time shows the same 

red outline, representing an extended orbit, between smooth and chaotic regions.  The 

features on the PPN2 map which are consistent with their Newtonian counterpart also 

exhibit that red outline.  In clear contrast, though, the fourfold chaotic rivers are not 

outlined in red.  This would suggest, contrary to a possibility discussed in Section 4.3, 
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Figure 4.15 Escape Time of Region 1; Newtonian (top) [4.4x103, 6.4x106] and PPN2 
(bottom) [3.2x103, 8.6x106] 
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Figure 4.16 Escape Time of Region 2; Newtonian (top) [4.2x103, 1.0x107] and PPN2 
(bottom) [3.2x103, 1.4x107] 
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Figure 4.17 Escape Time of Region 3; Newtonian (top) [4.3x103, 1.4x107] and PPN2 
(bottom) [3.1x103, 7.8x106] 
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Figure 4.18 Escape Time of Region 4; Newtonian (top) [7.8x103, 1.5x107] and PPN2 
(bottom) [3.1x103, 1.0x108] 
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that the chaotic topology is  entirely changed, meaning the PPN2 fourfold rivers are not 

simply caused by a stretching of the smooth/chaotic boundaries already existing in the 

Newtonian map. 

4.4.3 Change in Angular Momentum 

The maps of the Change in Angular Momentum (Figures 4.19 through 4.22) offer more 

information regarding the fine structure of the three-body interaction.  The smooth color 

gradients follow different contours than those from the Escape Angle maps.  The smooth 

color gradients in these Angular Momentum maps run parallel to the smooth/chaotic 

boundary line.  The smooth color gradients intersect the boundaries from all directions as 

though they do not influence one another.  Thus, the Change in Angular Momentum 

gives additional information that some part of the smooth interactions is in fact 

influenced by the shape of the chaotic boundaries. 

4.4.4 Minimum Approach Distance 

The Minimum Approach Distance (Figures 4.23 through 4.26) exemplifies two more 

features of the three body interactions.  The first feature was already mentioned in 

Section 4.3.4 and that is the ovals in the background.  The ovals which permeate the 

background of the Minimum Approach Distance maps show up very clear in these maps. 

 The second feature is the fine structure within the chaotic regions in each of these 

maps.  A clear example of this is the upper right quadrant of Figure 4.26 (top).  It just so 

happens that the fine structure is comprised of concentric ovals (completely unrelated to 

the ovals previously mentioned).  The chaotic wavy lines run parallel to the 

smooth/chaotic boundary. 
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Figure 4.19 Change in Angular Momentum of Region 1; Newtonian (top) [-1.0x105, 
9.8x104] and PPN2 (bottom) [-9.6x104, 1.2x105] 
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Figure 4.20 Change in Angular Momentum of Region 2; Newtonian (top) [-1.1x105, 
2.5x105] and PPN2 (bottom) [-1.1x105, 2.4x105] 
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Figure 4.21 Change in Angular Momentum of Region 3; Newtonian (top) [-1.0x105, 
1.4x105] and PPN2 (bottom) [-8.8x104, 1.4x105] 
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Figure 4.22 Change in Angular Momentum of Region 4; Newtonian (top) [-1.3x105, 
2.5x105] and PPN2 (bottom) [-1.6x105, 2.5x105] 
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Figure 4.23 Minimum Approach Distance of Region 1; Newtonian (top) [2.7x10-8, 
6.1x10-3] and PPN2 (bottom) [1.1x10-7, 6.3x10-3] 
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Figure 4.24 Minimum Approach Distance of Region 2; Newtonian (top) [3.7x10-7, 
6.7x10-3] and PPN2 (bottom) [3.8x10-7, 6.8x10-3] 
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Figure 4.25 Minimum Approach Distance of Region 3; Newtonian (top) [1.6x10-8, 
7.1x10-3] and PPN2 (bottom) [4.6x10-9, 7.2x10-3] 
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Figure 4.26 Minimum Approach Distance of Region 4; Newtonian (top) [1.3x10-7, 
7.3x10-3] and PPN2 (bottom) [2.3x10-7, 7.3x10-3] 
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4.4.5 Maximum Momentum Dot Product 

When viewed from up close, there appears in the Momentum Dot Product maps (Figures 

4.27 through 4.30) a hybrid characteristic between smooth and chaotic.  For example, 

refer to the Newtonian (upper) map of Figure 4.30.  There is a red colored region which 

gradually blends into a yellow then blue as it disperses outward.  But this gradual 

blending of colors is accompanied with many speckled dots, each representing a 

simulation with a drastically different maximum dot product.  It seems dual-natured that 

the Maximum Dot Product could be generally determined according to its map coordinate 

and simultaneously be chaotic and unrelated to neighboring values.  Perhaps its 

coordinate can smoothly determine value but only within a percentage. 

4.4.6 Escaping Body 

Another chaotic feature manifests itself in the Escaping Body maps (Figures 4.31 through 

4.34)—a different body is escaping within the fourfold rivers than outside the rivers.  

First, to understand the coloring, green represents body one, orange represents body two, 

and red represents body three.  In Region 1, body two escapes within the rivers whereas 

body one was escape in the Newtonian regime.  In Region 2, body one escaped in the 

rivers and body three otherwise.  In Region 3, bodies one and three escape within their 

respective rivers and body two escapes around them.  In Region 4, body three escapes in 

the rivers whereas body two escapes outside the rivers. 

 The consistent change in escaping body within the new PPN2 rivers suggests that 

the change taking place in these four regions, for the PPN2 regime, is also consistent. 
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Figure 4.27 Max Momentum Dot Product of Region 1; Newtonian (top) [9.0x106, 
3.8x1026] and PPN2 (bottom) [9.0x106, 2.9x1026] 
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Figure 4.28 Max Momentum Dot Product of Region 2; Newtonian (top) [9.0x106, 
5.3x1025] and PPN2 (bottom) [3.7x1020, 1.2x1026] 
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Figure 4.29 Max Momentum Dot Product of Region 3; Newtonian (top) [9.0x106, 
1.9x1026] and PPN2 (bottom) [2.0x1019, 6.3x1028] 
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Figure 4.30 Max Momentum Dot Product of Region 4; Newtonian (top) [9.0x106, 
2.6x1026] and PPN2 (bottom) [3.8x1020, 2.0x1026] 



 

 58

 

Figure 4.31 Escaping Body of Region 1; Newtonian (top) [1, 3] and PPN2 (bottom) [1, 3] 
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Figure 4.32 Escaping Body of Region 2; Newtonian (top) [1, 3] and PPN2 (bottom) [1, 3] 
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Figure 4.33 Escaping Body of Region 3; Newtonian (top) [1, 3] and PPN2 (bottom) [1, 3] 
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Figure 4.34 Escaping Body of Region 4; Newtonian (top) [1, 3] and PPN2 (bottom) [1, 3] 
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The way in which the interactions are changing between the Newtonian and PPN2 maps 

is constant enough that each manifests not only four to five chaotic rivers but a change in 

the escaping body between those chaotic rivers. 
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Chapter 5 

Conclusion 

5.1 Significance 

The gravitational many-body problem has been very influential in the study of chaos.  

Chaos in the Newtonian problem has been studied extensively since the time of Poincaré; 

today, studies explore solar systems, extra solar planetary systems, and stellar clusters.  

Much less is known, however, about the many-body problem in general relativity.  This 

paper explores similarities and differences between Newtonian and general relativity 

gravity as applied to the three body problem. 

 The complexity of solving the Einstein equations, for which even the Kepler 

problem must be solved numerically, is certainly the most significant obstacle in these 

studies.  To make the problem tractable for current computational capabilities, I study a 

perturbative expansion of the Einstein equations, the post-Newtonian equations to second 

order.  This is the first fully dynamic investigation of chaos in the three-body problem of 

general relativity that I am aware of. 
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5.2 Findings 

The numerical experiments were conducted on a single family of initial conditions.  I 

explored the existence of chaos for this system by observing qualitatively large 

differences in the outcome of different experiments of slightly varying initial data.  The 

system consists of a binary pair in a circular orbit which interacts with an incoming third 

body.  All bodies have equal mass and their motion is confined to a plane.  The total 

energy of the system is negative to ensure that all three bodies can be simultaneously 

bound. 

Several quantities were monitored during the evolution to characterize the system, 

including some conserved quantities for diagnostic purposes.  The escape angle and 

identity of the escaping object are two coordinate independent measures of the system’s 

final state.  When making small changes in initial data, qualitatively large changes in the 

final outcome were sometimes observed.  This sensitivity to initial conditions, present in 

both the Newtonian model and general relativity, is highly suggestive of chaos in the 

relativistic three-body problem as well as for Newtonian gravity (already known to be 

chaotic).  However, I do not attempt to directly evaluate Lyaponuv exponents for the 

second order post-Newtonian approximation in this work. 

 The numerical experiments compare results using both Newtonian gravity and the 

second order post-Newtonian equations.  The overall results are very similar suggesting 

that most of the interactions are non-relativistic.  This is expected when velocities are 

small, compared to the speed of light, and separations are relatively large, compared to 

the event horizon.  There are some marked differences in certain regions of the initial 

data space; these were discussed extensively in Chapter Four.  Thus, the three-body 
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problem in general relativity apparently shares the same chaotic behavior known in 

Newtonian gravity, at least in the post-Newtonian limit. 

5.3 Future Research 

While this study has found evidence of chaos in general relativity for three bodies, 

several interesting questions remain which will be the focus of future research.  As one 

direction for future research, different regions of the parameter space can be explored. 

For example, the bodies can be given different masses, the motion can be expanded into 

three dimensions, or very different families of initial data can be investigated.  A second 

direction of research would be to analyze the effect of the expansion order for the post-

Newtonian equations.  The work in this study, for example, did not include the first order 

post-Newtonian equations.  Initial work suggested some interesting divergences from the 

second order equations.  Furthermore, additional physics could be added to the system by 

including higher order radiation terms, such as the emission of gravitational waves in the 

second and a half post-Newtonian order.  A third area for additional research might focus 

on numerical algorithms and their effect on the calculated solutions.  For efficiency I 

used an adaptive Adams-Bashforth-Moulton integrator to solve the differential equations 

in this work.  Improvements in the numerical algorithms, including some suggested 

benefits of symplectic integrators, have not been examined in this thesis.  Each avenue 

holds great promise of adding to the cumulative understanding of Einstein’s equations of 

general relativity and the role chaos plays therein.
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Appendix 

run.pl   -drives nbodyPN for many different initial conditions 
 
#!/usr/bin/perl 
$pi = 3.1415926535897; 
$a  = 1.7; 
#=================================== 
# nbody driver for 3 chaotic bodies 
#=================================== 
 
#----------------------------------- 
# Initialize variables 
#----------------------------------- 
 
$whichorder = 1; 
$runnumber = 206; 
 
$phiMin = 0.5333*$pi; 
$phiMax = 1*$pi; 
$phiNum = 150; 
 
$rhoMin = 0.7*$a; 
$rhoMax = 3*$a; 
$rhoNum = 150; 
 
#initialize time variables 
$tFinal = 100000000; 
$tStep = 20; 
$which = 3; 
 
#initialize file variables 
$stdFileBase = "stdout"; 
$ICFile = "ICFile.$runnumber"; 
$errFileBase = "errout"; 
 
#initialize constants 
$m1 = 1e7; 
$m2 = 1e7; 
$m3 = 1e7; 
$mT = $m1+$m2+$m3; 
$G = 6.673e-11; 
$vc = sqrt($G*$m1*($m1+$m2+$m3)/(2*$a*$m3)); 
$v = sqrt($G*$m1/2/$a); 
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#initialize phi range 
if($phiNum < 2) 
{ 
 $dphi = 0; 
} 
else 
{ 
 $dphi = ($phiMax-$phiMin)/($phiNum-1); 
} 
 
#initialize rho range 
if($rhoNum < 2) 
{ 
 $drho = 0; 
} 
else 
{ 
 $drho = ($rhoMax-$rhoMin)/($rhoNum-1); 
} 
$totalNum = $rhoNum*$phiNum; 
 
#----------------------------------- 
# Drive nbody with ICs 
#----------------------------------- 
 
for($r=0; $r<$rhoNum ; $r=$r+1 )#iterate over rho 
{ 
 for($p=0; $p<$phiNum ; $p=$p+1)#iterate over phi 
 { 
  #initialize parameters 
  $rho=$rhoMin+$r*$drho; 
  $phi=$phiMin+$p*$dphi; 
 
  #print "Evolving: ($r, $p)\n"; 
 
  #initialize positions 
  $x1=($a/2)*cos($phi); 
  $y1=($a/2)*sin($phi); 
  $z1=0; 
  $x2=-($a/2)*cos($phi); 
  $y2=-($a/2)*sin($phi);; 
  $z2=0; 
  $x3=30*$a; 
  $y3=$rho; 
  $z3=0; 
 
  #initialize velocities 
  $vx1=-$v*sin($phi); 
  $vy1= $v*cos($phi); 
  $vz1=0; 
  $vx2= $v*sin($phi); 
  $vy2=-$v*cos($phi); 
  $vz2=0; 
  $vx3=-0.5*$vc; 
  $vy3=0; 
  $vz3=0; 
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  #make transformations to center-o-mass,momentum 
  $CX=($m1*$x1+$m2*$x2+$m3*$x3)/$mT; 
  $CY=($m1*$y1+$m2*$y2+$m3*$y3)/$mT; 
  $CZ=($m1*$z1+$m2*$z2+$m3*$z3)/$mT; 
 
  $CVX=($m1*$vx1+$m2*$vx2+$m3*$vx3)/$mT; 
  $CVY=($m1*$vy1+$m2*$vy2+$m3*$vy3)/$mT; 
  $CVZ=($m1*$vz1+$m2*$vz2+$m3*$vz3)/$mT; 
 
  #impliment position transformations 
  $x1=$x1-$CX; 
            $y1=$y1-$CY; 
            $z1=$z1-$CZ; 
            $x2=$x2-$CX; 
            $y2=$y2-$CY; 
            $z2=$z2-$CZ; 
            $x3=$x3-$CX; 
            $y3=$y3-$CY; 
            $z3=$z3-$CZ; 
                 
  #impliment velocity transormations 
            $vx1=$vx1-$CVX; 
            $vy1=$vy1-$CVY; 
            $vz1=$vz1-$CVZ; 
            $vx2=$vx2-$CVX; 
            $vy2=$vy2-$CVY; 
            $vz2=$vz2-$CVZ; 
            $vx3=$vx3-$CVX; 
            $vy3=$vy3-$CVY; 
            $vz3=$vz3-$CVZ; 
 
  #make IC file 
  open(IC, ">$ICFile"); 
            printf IC "$m1 $x1 $y1 $z1 $vx1 $vy1 $v z1\n"; 
            printf IC "$m2 $x2 $y2 $z2 $vx2 $vy2 $v z2\n"; 
            printf IC "$m3 $x3 $y3 $z3 $vx3 $vy3 $v z3\n"; 
            close (IC); 
 
  #drive nbody   
  system("./nbodyPN $tFinal $tStep $G 0 $runnumber < $ICFile > 
$stdFileBase "); 
  system("./nbodyPN $tFinal $tStep $G 2 $runnumber < $ICFile > 
$stdFileBase "); 

} 
  
} 
 



 

 70

Grapher.m   -generates the colored figures using data from nbodyPN 
 
clc; clear; close all; 
%------------------------------------- 
%   load file 
%------------------------------------- 
fileName = 'results.2.9992.txt'; 
resolution = 0;%0-ignore; 1-close coupled values; 2 -looser coupled 
values 
fineTuner = 1;%0 < fT >= 1 
findErrors = 1;%1=true, 0=false 
rhoNum = 0; 
phiNum = 0; 
fprintf('Loading File...\n'); 
data = load(fileName); 
lines = max(size(data)); 
numVars = min(size(data))-2; 
averages = 1:numVars; 
averages(:) = averages(:)*0; 
upperBound = averages; 
oldUpperBound = averages; 
lowerBound = averages; 
oldLowerBound = averages; 
a = 1.7; 
m = 1e7; 
G = 6.73e-11; 
initialTotalEnergy = -G*(3/8)*m^2/a; 
fprintf('Initial Total Energy: %g\n', initialTotalE nergy); 
 
%------------------------------------- 
%   determine dimensions 
%------------------------------------- 
fprintf('Analyzing Dimensions...\n'); 
tempPhiNum=1; 
rhoNum=1; 
for l=2:lines 
    if abs(data(l,1)-data(l-1,1))>1e-8 
        rhoNum = rhoNum+1; 
        if tempPhiNum>phiNum 
            phiNum=tempPhiNum; 
        end 
        tempPhiNum=0; 
    else 
        tempPhiNum=tempPhiNum+1; 
    end 
end 
 
%------------------------------------- 
%   Establish variable ranges (for normalization) 
%------------------------------------- 
fprintf('Finding Statistical Values...\n') 
maxVals=1:numVars; 
maxVals(:) = -10000*maxVals(:); 
minVals=1:numVars; 
minVals(:) = 10000*minVals(:); 
line = 0; 
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for r = 1:rhoNum 
    for p = 1:phiNum 
        line = line + 1; 
        for v = 1:numVars 
            if (data(line,v+2) == 0 && findErrors) 
                data(line,v+2) = 900000; 
            end 
            if (data(line,v+2) > maxVals(v) && data (line,v+2) ~= -99 && 
data(line,v+2) ~= 0) 
                maxVals(v) = data(line,v+2); 
            end 
            if (data(line,v+2) < minVals(v) && data (line,v+2) ~= -99 && 
data(line,v+2) ~= 0) 
                minVals(v) = data(line,v+2); 
            end 
            averages(v) = averages(v) + data(line, v+2); 
        end 
    end 
end 
%set the extreem values--------------- 
averages(:) = averages(:)/(rhoNum*phiNum); 
oldUpperBound(:) = averages(:); 
oldLowerBound(:) = averages(:); 
numAbove = 1:numVars; 
numBelow = 1:numVars; 
for resolutionIteration = 1:resolution 
    upperBound(:) = 0; 
    lowerBound(:) = 0; 
    numAbove(:) = 0; 
    numBelow(:) = 0; 
    line = 0; 
    for r = 1:rhoNum 
        for p = 1:phiNum 
            line = line + 1; 
            for v = 1:numVars 
                if (data(line,v+2) > oldUpperBound( v)) 
                    upperBound(v) = upperBound(v) +  data(line,v+2); 
                    numAbove(v) = numAbove(v)+1; 
                    %fprintf('%g: %g > 
%g\n',numAbove,data(line,v+2),oldUpperBound(v)); 
                end 
                if (data(line,v+2) < oldLowerBound( v)) 
                    lowerBound(v) = lowerBound(v) +  data(line,v+2); 
                    numBelow(v) = numBelow(v)+1; 
                end 
            end 
        end 
    end 
    oldUpperBound(:) = upperBound(:)./(numAbove(:)+ 1); 
    oldLowerBound(:) = lowerBound(:)./(numBelow(:)+ 1); 
end 
upperBound(:) = oldUpperBound(:); 
lowerBound(:) = oldLowerBound(:); 
%variable names----------------------- 
if numVars == 7 vars = ['Escape Angle    '; 'Total Energy    '; 
'Kinetic Energy  '; 'Potential Energy'; 'Linear Mom entum '; 'Angular 
Momentum'; 'Escape Time     ']; 
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elseif numVars == 6 vars = ['Which Escaped'; 'Escap e Angle '; 'Escape 
Time  '; 'Escape KE    '; 'Escape PE    '; 'Num Bou nds   ']; 
elseif numVars == 11 vars = ['Escape Angle    ';'To tal Energy    
';'Escape KE       ';'Escape PE       ';'Momentum        ';'Angular 
Momentum';'Escape Time     ';'Max KE          ';'Ma x P.P         ';'Min 
Distance    ';'Min Total Dist  ']; 
elseif numVars == 13 vars = ['Escape Angle    ';'To tal Energy    
';'Escape KE       ';'Escape PE       ';'Momentum        ';'Angular 
Momentum';'Escape Time     ';'Max KE          ';'Ma x P.P         ';'Min 
Distance    ';'Min Total Dist  ';'Fourth Term     ' ;'Which Escaped   
']; 
else vars = null; fprintf('UNRECOGNIZED VARIABLE CO NFIGURATION'); 
end 
variables = cellstr(vars); 
%print variable ranges---------------- 
for n = 1:numVars 
    fprintf([variables{n},': %g -(%g)-<%g>-(%g)-> 
%g\n'],minVals(n),lowerBound(n),averages(n),upperBo und(n),maxVals(n)); 
end 
 
%------------------------------------- 
%initialize rho 
%------------------------------------- 
fprintf('Initializing Variables...\n') 
rhoMax = max(data(:,1))/a; 
rhoMin = min(data(:,1))/a; 
drho = (rhoMax - rhoMin)/(rhoNum-1); 
rho = rhoMin:drho:rhoMax; 
 
%------------------------------------- 
%initialize phi 
%------------------------------------- 
phiMax = max(data(:,2)); 
phiMin = min(data(:,2)); 
dphi = (phiMax - phiMin)/(phiNum-1); 
phi = phiMin:dphi:phiMax; 
 
%------------------------------------- 
%initialize vars 
%------------------------------------- 
var = 1:numVars; 
errorRange = 1:100; 
errorArray = zeros(100); 
 
%------------------------------------- 
%generate grid 
%------------------------------------- 
fprintf('Generating Grid...\n') 
[Var,Rho,Phi] = ndgrid(var,rho,phi); 
[RHO,PHI] = ndgrid(rho,phi); 
matrixArray = 0.*Var.*Rho.*Phi; 
dispMatrix = 0.*RHO.*PHI; 
errorMatrix = 0.*RHO.*PHI; 
 
%------------------------------------- 
%load matrices 
%------------------------------------- 



 

 73

fprintf('Loading Matrices...\n') 
line = 0; 
for r = 1:rhoNum 
   for p = 1:phiNum 
      line = line + 1; 
      for v = 1:numVars 
          if (abs(maxVals(v)-minVals(v)) < 1e-10) 
              matrixArray(v,r,p) = 0; 
          else 
              if (resolution > 0) 
                  if (data(line,v+2) > (fineTuner*u pperBound(v)+(1-
fineTuner)*(averages(v)))) 
                      data(line,v+2) = fineTuner*up perBound(v)+(1-
fineTuner)*(averages(v)); 
                  end 
                  if (data(line,v+2) < (fineTuner*l owerBound(v)+(1-
fineTuner)*(averages(v)))) 
                      data(line,v+2) = fineTuner*lo werBound(v)+(1-
fineTuner)*(averages(v)); 
                  end 
                  if(0 == abs((fineTuner*upperBound (v)+(1-
fineTuner)*(averages(v)))-(fineTuner*lowerBound(v)+ (1-
fineTuner)*(averages(v))))) 
                      matrixArray(v,r,p) = 0; 
                  else 
                      matrixArray(v,r,p) = 65*(data (line,v+2)-
(fineTuner*lowerBound(v)+(1-
fineTuner)*(averages(v))))/((fineTuner*upperBound(v )+(1-
fineTuner)*(averages(v)))-(fineTuner*lowerBound(v)+ (1-
fineTuner)*(averages(v)))); 
                  end 
              else 
                  matrixArray(v,r,p) = 65*(data(lin e,v+2)-
minVals(v))/(maxVals(v)-minVals(v)); 
              end 
               
          end 
          if (data(line,v+2) == -99)%a quick fix 
              matrixArray(v,r,p)=0; 
          end 
      end 
      errorMatrix(r,p)= abs((data(line,4)-
initialTotalEnergy)/initialTotalEnergy); 
      %errorMatrix(r,p) = min(100,errorMatrix(r,p)) ; 
      currentError = double(errorMatrix(r,p)); 
      currentError = int16(cast(currentError,'int16 ')); 
      if (currentError > 99) 
          currentError = 99; 
      end 
      errorArray(currentError+1) = 1 + errorArray(c urrentError+1); 
   end 
end 
 
%------------------------------------- 
%display matrices 
%------------------------------------- 
fprintf('Displaying Matrices...\n') 
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for v = numVars:-1:1 
    for r = 1:rhoNum 
        for p = 1:phiNum 
            dispMatrix(r,p) = matrixArray(v,r,phiNu m+1-p); 
        end 
    end 
 
    figure 
    image([phiMax phiMin], [rhoMax/a rhoMin/a], dis pMatrix); 
    set(gca, 'YDir', 'normal'); 
    ylabel({'Impact Parameter (units of a)',''}); 
    xlabel({'','Phase Angle (radians)'}); 
    title({variables{v}, fileName,''}); 
end 
figure 
surf(errorMatrix); 
title({'Momentum-ness', fileName,''}); 
 
figure 
errorArray(:) = errorArray(:)/(r*p); 
bar(errorArray(1:100)); 
ylabel({'This percent of simulations...', ''}); 
xlabel({'...had this percent error.', ''}); 
title({'Error Spread', fileName, ''}); 
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HamiltEqs.map   -generates the Hamiltonian and subsequent equations 
 
M := array(1..3); 
M[1] := Ma;  
M[2] := Mb;  
M[3] := Mc;  
 
P := array(1..3,1..3); 
P[1,1] := pax; 
P[1,2] := pay; 
P[1,3] := paz; 
P[2,1] := pbx; 
P[2,2] := pby; 
P[2,3] := pbz; 
P[3,1] := pcx; 
P[3,2] := pcy; 
P[3,3] := pcz; 
 
Q := array(1..3,1..3); 
Q[1,1] := qax; 
Q[1,2] := qay; 
Q[1,3] := qaz; 
Q[2,1] := qbx; 
Q[2,2] := qby; 
Q[2,3] := qbz; 
Q[3,1] := qcx; 
Q[3,2] := qcy; 
Q[3,3] := qcz; 
 
#-------------------------------------------------- -------------------- 
# r[i,j] is the distance between mass i and mass j.  
#-------------------------------------------------- -------------------- 
r := array(1..3,1..3); 
for i from 1 to 3 do 
for j from 1 to 3 do 
  r[i,j] := sqrt(sum('(Q[i,ss]-Q[j,ss])^2','ss'=1.. 3)); 
od;od; 
 
#-------------------------------------------------- -------------------- 
# n is the normal vector:  n_{ab} = x_a - x_b. 
# first two indicies label masses; third index is t he component. 
#-------------------------------------------------- -------------------- 
n := array(1..3,1..3,1..3); 
for i from 1 to 3 do 
for j from 1 to 3 do 
for k from 1 to 3 do 
  if (j <> i) then 
    n[i,j,k] := (Q[i,k] - Q[j,k])/r[i,j]; 
  else 
    n[i,j,k] := 0; 
  end if; 
od; 
od; 
od; 
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#-------------------------------------------------- -------------------- 
# Define P^2 
#-------------------------------------------------- -------------------- 
P2 := array(1..3); 
for i from 1 to 3 do 
  P2[i] := sum('P[i,ss]^2','ss'=1..3); 
od; 
 
################################################### #################### 
# 
# Define the terms of the sum 
# 
################################################### #################### 
T := array(1..18); 
 
#-------------------------------------------------- -------------------- 
# Term 1 
#-------------------------------------------------- -------------------- 
T[1] := sum(M['ss'],ss='1..3'); 
 
#-------------------------------------------------- -------------------- 
#  Term 2 
#-------------------------------------------------- -------------------- 
T[2] := 1/2*sum('P2[ss]/M[ss]','ss'=1..3); 
 
#-------------------------------------------------- -------------------- 
# Term 3 
#-------------------------------------------------- -------------------- 
T[3] := 0; 
for i from 1 to 3 do 
for j from 1 to 3 do 
  if (j <> i) then 
    T[3] := T[3] + M[i]*M[j]/r[i,j]; 
  end if; 
od; 
od; 
T[3] := -T[3]/2; 
 
#-------------------------------------------------- -------------------- 
# Term 4 
#-------------------------------------------------- -------------------- 
T[4] := -1/8*sum('M[ss]*(P2[ss]/M[ss]^2)^2','ss'=1. .3); 
 
#-------------------------------------------------- -------------------- 
# Term 5 
#-------------------------------------------------- -------------------- 
T[5] := 0; 
for i from 1 to 3 do 
for j from 1 to 3 do 
  if (j <> i) then 
    T[5] := T[5] + M[i]*M[j]/r[i,j]*(6*P2[i]/M[i]^2  \ 
            - 7/(M[i]*M[j])*sum('P[i,ss]*P[j,ss]',' ss'=1..3) \ 
            - sum('n[i,j,aa]*P[i,aa]','aa'=1..3) \ 
                 *sum('n[i,j,bb]*P[j,bb]','bb'=1..3 )/(M[i]*M[j])); 
  end if; 
od; 
od; 
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T[5] := -G/4*T[5]; 
 
#-------------------------------------------------- -------------------- 
# Term 6 
#-------------------------------------------------- -------------------- 
T[6] := 0; 
for i from 1 to 3 do 
for j from 1 to 3 do 
for k from 1 to 3 do 
  if (j <> i) then 
    if (k <> i) then 
      T[6] := T[6] + M[i]*M[j]*M[k]/(r[i,j]*r[i,k]) ; 
    end if; 
  end if; 
od; 
od; 
od; 
T[6] := 1/2*G^2*T[6]; 
 
#-------------------------------------------------- -------------------- 
# Term 7 
#-------------------------------------------------- -------------------- 
T[7] := 1/16*sum('M[ss]*(P2[ss]/M[ss]^2)^3','ss'=1. .3); 
 
#-------------------------------------------------- -------------------- 
# Term 8 
#-------------------------------------------------- -------------------- 
T[8] := 0; 
for i from 1 to 3 do 
for j from 1 to 3 do 
  if (j <> i) then 
    T[8] := T[8] + M[i]*M[j]/r[i,j] * (\ 
            10*(P2[i]/M[i]^2)^2 - 11*P2[i]*P2[j]/(M [i]*M[j])^2 \ 
          - 2/(M[i]*M[j])^2*(sum('P[i,ss]*P[j,ss]', 'ss'=1..3))^2 \ 
          + 
10/(M[i]*M[j])^2*P2[i]*(sum('n[i,j,ss]*P[j,ss]','ss '=1..3))^2 \ 
          -12/(M[i]*M[j])^2*sum('P[i,ss]*P[j,ss]',' ss'=1..3)\ 
               *sum('n[i,j,ss]*P[i,ss]','ss'=1..3)\  
               *sum('n[i,j,ss]*P[j,ss]','ss'=1..3)\  
          - 3/(M[i]*M[j])^2*(sum('n[i,j,ss]*P[i,ss] ','ss'=1..3))^2\ 
               *(sum('n[i,j,ss]*P[j,ss]','ss'=1..3) )^2 
         );  
  end if; 
od; 
od; 
T[8] := G/16*T[8]; 
 
#-------------------------------------------------- -------------------- 
# Term 9 
#-------------------------------------------------- -------------------- 
T[9] := 0; 
for i from 1 to 3 do 
for j from 1 to 3 do 
for k from 1 to 3 do 
  if (j <> i) then 
    if (k <> i) then 
      nij_pi := sum('n[i,j,ss]*P[i,ss]','ss'=1..3);  
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      nij_pj := sum('n[i,j,ss]*P[j,ss]','ss'=1..3);  
      nij_pk := sum('n[i,j,ss]*P[k,ss]','ss'=1..3);  
      nik_pk := sum('n[i,j,ss]*P[k,ss]','ss'=1..3);  
      nij_nik := sum('n[i,j,ss]*n[i,k,ss]','ss'=1.. 3); 
      pi_pj  := sum('P[i,ss]*P[j,ss]','ss'=1..3); 
      pj_pk  := sum('P[j,ss]*P[k,ss]','ss'=1..3); 
 
      T[9] := T[9] + M[i]*M[j]*M[k]/(r[i,j]*r[i,k]) *(\ 
               18*P2[i]/M[i]^2 + 14*P2[j]/M[j]^2 -2 *nij_pj^2/M[j]^2 \ 
             - 50*pi_pj/(M[i]*M[j]) + 17*pj_pk/(M[j ]*M[k]) \ 
             - 14*nij_pi*nij_pj/(M[i]*M[j]) \ 
             + 14*nij_pj*nij_pk/(M[j]*M[k]) \ 
             + nij_nik*nij_pj*nik_pk/(M[j]*M[k]) 
            ); 
    end if; 
  end if; 
od; 
od; 
od; 
T[9] := G^2/8*T[9]; 
 
#-------------------------------------------------- -------------------- 
# Term 10 
#-------------------------------------------------- -------------------- 
T[10] := 0; 
for i from 1 to 3 do 
for j from 1 to 3 do 
for k from 1 to 3 do 
  if (j <> i) then 
    if (k <> i) then 
      nij_pi := sum('n[i,j,ss]*P[i,ss]','ss'=1..3);  
      nij_pj := sum('n[i,j,ss]*P[j,ss]','ss'=1..3);  
      nij_pk := sum('n[i,j,ss]*P[k,ss]','ss'=1..3);  
      nik_pk := sum('n[i,j,ss]*P[k,ss]','ss'=1..3);  
      nij_nik := sum('n[i,j,ss]*n[i,k,ss]','ss'=1.. 3); 
      T[10] := T[10] + M[i]*M[j]*M[k]/(r[i,j]^2)*(\  
                2*nij_pi*nik_pk/(M[i]*M[k]) \ 
              + 2*nij_pj*nik_pk/(M[j]*M[k]) \ 
              + 5*nij_nik*P2[k]/M[k]^2 \ 
              - nij_nik*nik_pk^2/M[k]^2 \ 
              - 14*nij_pk*nik_pk/M[k]^2 
            ); 
    end if; 
  end if; 
od; 
od; 
od; 
T[10] := G^2/8*T[10]; 
 
#-------------------------------------------------- -------------------- 
# Term 11 
#-------------------------------------------------- -------------------- 
T[11] := 0; 
for i from 1 to 3 do 
for j from 1 to 3 do 
  if (j <> i) then 
    T[11] := T[11] + M[i]^2*M[j]/r[i,j]^2*  (\ 
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             P2[i]/M[i]^2 + P2[j]/M[j]^2 \ 
           - 2/(M[i]*M[j])*sum('P[i,ss]*P[j,ss]','s s'=1..3)\ 
                                            ); 
  end if; 
od; 
od; 
T[11] := G^2/4*T[11]; 
 
#-------------------------------------------------- -------------------- 
# Term 12 
#-------------------------------------------------- -------------------- 
T[12] := 0; 
for a from 1 to 3 do 
for b from 1 to 3 do 
for c from 1 to 3 do 
  if (b <> a) then 
    if (c <> a) then 
      if (c <> b) then 
        for i from 1 to 3 do 
        for j from 1 to 3 do 
         
          T[12] := T[12] + M[a]*M[b]*M[c]/((r[a,b] + r[b,c] + 
r[c,a])^2) \ 
                   * (n[a,b,i] + n[a,c,i])*(n[a,b,j ] + n[c,b,j]) \ 
                   * (  8*P[a,i]*P[c,j]/M[a]/M[c] \  
                      - 16*P[a,j]*P[c,i]/M[a]/M[c] \ 
                      + 3*P[a,i]*P[b,j]/M[a]/M[b] \  
                      + 4*P[c,i]*P[c,j]/M[c]^2 \ 
                      + P[a,i]*P[a,j]/M[a]^2 \ 
                     ); 
        od; 
        od; 
      end if;  
    end if;  
  end if; 
od; 
od; 
od; 
T[12] := G^2/2*T[12]; 
 
#-------------------------------------------------- -------------------- 
# Term 13 
#-------------------------------------------------- -------------------- 
T[13] := 0; 
for a from 1 to 3 do 
for b from 1 to 3 do 
for c from 1 to 3 do 
  if (b <> a) then 
    if (c <> a) then 
      if (c <> b) then 
        pa_pb := sum('P[a,ss]*P[b,ss]','ss'=1..3); 
        pa_pc := sum('P[a,ss]*P[c,ss]','ss'=1..3); 
        nab_pa := sum('n[a,b,ss]*P[a,ss]','ss'=1..3 ); 
        nab_pb := sum('n[a,b,ss]*P[b,ss]','ss'=1..3 ); 
        nab_pc := sum('n[a,b,ss]*P[c,ss]','ss'=1..3 ); 
        T[13] := T[13] + M[a]*M[b]*M[c]/(r[a,b]*(r[ a,b] + r[b,c] + 
r[c,a]))\ 
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              * (  8*(pa_pc - nab_pa*nab_pc)/(M[a]* M[b]) \ 
                 - 3*(pa_pb - nab_pa*nab_pb)/M[a]/M [b] \ 
                 - 4*(P2[c] - nab_pc^2)/M[c]^2 \  
                 - (P2[a] - nab_pa^2)/M[a]^2); 
        
      end if;  
    end if;  
  end if; 
od; 
od; 
od; 
T[13] := 1/2*G^2*T[13]; 
 
#-------------------------------------------------- -------------------- 
# Term 14 
#-------------------------------------------------- -------------------- 
T[14] := 0; 
for a from 1 to 3 do 
for b from 1 to 3 do 
for c from 1 to 3 do 
  if (b <> a) then 
    if (c <> b) then 
      T[14] := T[14] + M[a]^2*M[b]*M[c]/(r[a,b]^2*r [b,c]) 
    end if; 
  end if; 
od; 
od; 
od; 
T[14] := -1/2*G^3*T[14]; 
 
#-------------------------------------------------- -------------------- 
# Term 15 
#-------------------------------------------------- -------------------- 
T[15] := 0; 
for a from 1 to 3 do 
for b from 1 to 3 do 
for c from 1 to 3 do 
  if (b <> a) then 
    if (c <> a) then 
      T[15] := T[15] + M[a]^2*M[b]*M[c]/(r[a,b]^2*r [a,c]) 
    end if; 
  end if; 
od; 
od; 
od; 
T[15] := -3/8*G^3*T[15]; 
 
#-------------------------------------------------- -------------------- 
# Term 16 
#-------------------------------------------------- -------------------- 
T[16] := 0; 
for a from 1 to 3 do 
for b from 1 to 3 do 
for c from 1 to 3 do 
  if (b <> a) then 
    if (c <> a) then 
      if (c <> b) then 
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        T[16] := T[16] + M[a]^2*M[b]*M[c]/(r[a,b]*r [a,c]*r[b,c]) 
      end if; 
    end if; 
  end if; 
od; 
od; 
od; 
T[16] := -3/8*G^3*T[16]; 
 
#-------------------------------------------------- -------------------- 
# Term 17 
#-------------------------------------------------- -------------------- 
T[17] := 0; 
for a from 1 to 3 do 
for b from 1 to 3 do 
for c from 1 to 3 do 
  if (b <> a) then 
    if (c <> a) then 
      if (c <> b) then 
        T[17] := T[17] + M[a]^2*M[b]*M[c]/(r[a,b]^3 *r[a,c]^3*r[b,c]) \ 
              *(  18*r[a,b]^2*r[a,c]^2 - 60*r[a,b]^ 2*r[b,c]^2 \ 
               - 24*r[a,b]^2*r[a,c]*(r[a,b]+r[b,c])  \ 
               + 60*r[a,b]*r[a,c]*r[b,c]^2 \ 
               + 56*r[a,b]^3*r[b,c] \ 
               - 72*r[a,b]*r[b,c]^3 \ 
               + 35*r[b,c]^4 \ 
               + 6*r[a,b]^4 ); 
      end if; 
    end if; 
  end if; 
od; 
od; 
od; 
T[17] := -1/64*G^3*T[17]; 
 
#-------------------------------------------------- -------------------- 
# Term 18 
#-------------------------------------------------- -------------------- 
T[18] := 0; 
for a from 1 to 3 do 
for b from 1 to 3 do 
  if (b <> a) then 
    T[18] := T[18] + M[a]^2*M[b]^2/r[a,b]^3 
  end if; 
od; 
od; 
T[18] := -G^3/4*T[18]; 
 
################################################### #################### 
# 
# Construct the Hamiltonian 
# 
################################################### #################### 
H := sum('T[ss]','ss'=1..18); 
 
################################################### #################### 
# 
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# Generate Hamilton's Equations 
# 
################################################### #################### 
RHS := array(1..18); 
RHS[1]  := diff(H,P[1,1]): 
RHS[2]  := diff(H,P[1,2]): 
RHS[3]  := diff(H,P[1,3]): 
RHS[4]  := diff(H,P[2,1]): 
RHS[5]  := diff(H,P[2,2]): 
RHS[6]  := diff(H,P[2,3]): 
RHS[7]  := diff(H,P[3,1]): 
RHS[8]  := diff(H,P[3,2]): 
RHS[9]  := diff(H,P[3,3]): 
RHS[10] := - diff(H,Q[1,1]): 
RHS[11] := - diff(H,Q[1,2]): 
RHS[12] := - diff(H,Q[1,3]): 
RHS[13] := - diff(H,Q[2,1]): 
RHS[14] := - diff(H,Q[2,2]): 
RHS[15] := - diff(H,Q[2,3]): 
RHS[16] := - diff(H,Q[3,1]): 
RHS[17] := - diff(H,Q[3,2]): 
RHS[18] := - diff(H,Q[3,3]): 
 
#-------------------------------------------------- -------------------- 
# Write equations to Fortran 
#-------------------------------------------------- -------------------- 
with(codegen): 
fortran(RHS,optimized,precision=double,filename=`ha meqs.h`); 
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nbodyPN.f   -runs (integrates) the three-body interaction until ejection 
 
      program        nbodyPN 
      implicit       none 
 
C-------------------------------------------------- --------- 
C     whichescaped: which body left unbound 
C     escapeangle: trajectory of escaped body   
C     numcloseapp: number of close approaches 
C     binaryenergy: change in binary system energy 
C     escapetime: when the body escaped 
C     escaperadius: distance that a body has escape d 
C     t0: approx time when 3 bodies first meet 
C-------------------------------------------------- --------- 
      real*8         escapeangle, binaryenergy, esc apetime 
      real*8         escaperadius, binaryecc, rho, phi, t0 
      real*8         escapeke,escapepe 
      integer        whichescaped, numcloseapp 
      integer        numBoundChanges, bounded 
      logical        escaped 
      real*8         maxke, maxpdotp, minr, minrtot  
      real*8         fourthterm 
 
C-------------------------------------------------- -------- 
C       Original variables 
C-------------------------------------------------- -------- 
      real*8         dvvdot 
 
      character*5    cdnm 
      parameter    ( cdnm = 'nbodyPN' ) 
 
      integer        iargc,         indlnb,         i4arg 
      real*8         r8arg 
 
      real*8         r8_never 
      parameter    ( r8_never = -1.0d-60 ) 
 
c-------------------------------------------------- --------- 
c     tfinal:        Final integration time   
c     dtout:         Output interval 
c     ntout:         # of output times (computed) 
c     trace:         Enables tracing of "conserved quantities" 
c-------------------------------------------------- --------- 
      real*8         tfinal,         dtout 
      integer        ntout 
      logical        trace 
 
c-------------------------------------------------- --------- 
c     Common communication with routine 'fcn' in 'f cn.f' ... 
c 
c     Includes defn of maximum # of particles, stor age 
c     for particle masses, Newton's gravitational  
c     constant ... 
c-------------------------------------------------- --------- 
      include       'fcnPN.inc' 
      integer        maxneq,         neq 
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      parameter    ( maxneq = 6 * maxnp ) 
 
c-------------------------------------------------- --------- 
c     Storage for energy, momentum, center of mass ... 
c-------------------------------------------------- --------- 
      real*8         ke(maxnp),     pe(maxnp) 
      real*8         etot,          ketot,         petot 
      real*8         pmom(d,maxnp), jmom(d,maxnp), 
     &               ptot(d),       jtot(d) 
      real*8         com(d) 
      character*100  fileName 
      character*11  defaultFileName 
      parameter    ( defaultFileName = 'results.dat ') 
 
c-------------------------------------------------- --------- 
c     LSODA Variables. 
c-------------------------------------------------- --------- 
      external       fcn0, fcn1, fcn2, jac 
 
      real*8         y(d,2,maxnp) 
      real*8         tbgn,       tend 
      integer        itol 
      real*8         rtol,       atol 
      integer        itask,      istate,     iopt 
      integer        lrw 
      parameter    ( lrw = 22 + 9 * maxneq + maxneq **2 ) 
      real*8         rwork(lrw) 
      integer        liw 
      parameter    ( liw = 20 + maxneq ) 
      integer        iwork(liw) 
      integer        jt 
      real*8         tol  
      real*8         default_tol, default_G 
      parameter    ( default_tol = 1.0d-8 ) 
      parameter    ( default_G   = 1.0d-2 ) 
 
c-------------------------------------------------- --------- 
c     Other locals 
c-------------------------------------------------- --------- 
      integer        a, i, j, runnumber, whichorder , 
     &               itout 
      logical        ltrace 
      parameter(     ltrace = .true.     ) 
 
c-------------------------------------------------- --------- 
c     vars for glbpp 
c-------------------------------------------------- --------- 
      real*8         min_radius,    mass_to_radius 
      real*8         max_radius 
 
c-------------------------------------------------- --------- 
c     Fix gravitational constant 
c-------------------------------------------------- --------- 
      G = 5.0d-2 
      tol=default_tol 
 
c-------------------------------------------------- --------- 
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c     Parse command line arguments (initial values)  ... 
c-------------------------------------------------- --------- 
      if( iargc() .lt. 3 ) then 
      write(0,*) 'Error 1' 
      go to 900 
      end if 
 
 
      tfinal = r8arg(1,r8_never) 
      dtout  = r8arg(2,r8_never) 
      G      = r8arg(3,default_G) 
      whichorder = r8arg(4,r8_never) + 0.1 
      runnumber = r8arg(5, r8_never) + 0.1 
      trace  = .false. 
c      if( tfinal .eq. r8_never  .or.  dtout .eq. r 8_never  
c     &    .or. dtout .le. 0.0d0 .or. whichorder .l t. 0  
c     &    .or. whichorder .gt. 3 .or. runnumber .l t. 0) then 
c      write(0,*) 'Error 2' 
c      go to 900 
c      end if 
  
c-------------------------------------------------- --------- 
c     Compute number of uniform time steps requeste d. 
c-------------------------------------------------- --------- 
      ntout = tfinal / dtout + 1.5d0 
 
c-------------------------------------------------- --------- 
c     Get particle masses, initial positions and  
c     velocities.  
c-------------------------------------------------- --------- 
      call getivs('-',m,y,d,maxnp,np) 
      neq = 6 * np 
      escaperadius=1.01*(y(1,1,3)-0.5*(y(1,1,1)+y(1 ,1,2)))**2 
      rho=y(2,1,3)-0.5*(y(2,1,1)+y(2,1,2)) 
      phi=atan2(y(2,1,1)-y(2,1,2),y(1,1,1)-y(1,1,2) ) 
      t0=-y(1,1,3)/y(1,2,3) 
      numBoundChanges=0 
      bounded=4 
      maxke = 0 
      maxpdotp = 0 
      minr = 10000 
      minrtot = 100000 
 
c-------------------------------------------------- --------- 
c     Dump # of particles, particle masses, initial   
c     time and initial particle positions to standa rd  
c     output. 
c-------------------------------------------------- --------- 
      min_radius = 0.2d0 
      max_radius = 0.4d0 
      mass_to_radius = 0.1d0 
      tbgn = 0.0d0 
 
c-------------------------------------------------- --------- 
c     Compute initial energy, center of mass, linea r mom 
c     and ang mom about center of mass and output i f  
c     standard error tracing is enabled. 
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c-------------------------------------------------- --------- 
         call clce(y,m,ke,pe,ketot,petot,etot,G,d,n p) 
         call clccom(y,m,com,d,np) 
         call clcmom(y,m,pmom,jmom,ptot,jtot,com,d, np) 
 
c-------------------------------------------------- --------- 
c     Set LSODA parameters ... 
c-------------------------------------------------- --------- 
      itol   = 1 
      rtol   = tol 
      atol   = tol 
      itask  = 1  
      iopt   = 1 
C user defined jacobian=1, internally generated=2 
      jt     = 2 
 
c================================================== ======== 
c     ********************************************* **** 
c     *************** Begin Integration *********** *** 
c     ********************************************* **** 
c================================================== ======== 
      do itout = 2 , ntout 
         tend = tbgn + dtout 
 
c-------------------------------------------------- -------- 
c Check for escaping body 
c-------------------------------------------------- -------- 
        call extreema(y,m,maxke,maxpdotp,minr,minrt ot,fourthterm) 
        call hasescaped(y,escaperadius,escaped,whic hescaped, 
     &                  pe,ke,m,d,np,t0,tend) 
        
        if (escaped) then 
           go to 500 
        end if 
 
c-------------------------------------------------- --------- 
c        Call LSODA Integrator 
c-------------------------------------------------- --------- 
        istate = 1 
c iword(6) = max number of steps per run 
        iwork(6) = 100000 
 
        if (whichorder .eq. 0) then 
         call lsoda(fcn0,neq,y,tbgn,tend, 
     &              itol,rtol,atol,itask,     
     &              istate,iopt,rwork,lrw,iwork,liw ,jac,jt) 
        end if 
 
        if (whichorder .eq. 1) then 
         call lsoda(fcn1,neq,y,tbgn,tend, 
     &              itol,rtol,atol,itask,     
     &              istate,iopt,rwork,lrw,iwork,liw ,jac,jt) 
        end if 
        if (whichorder .eq. 2) then 
         call lsoda(fcn2,neq,y,tbgn,tend, 
     &              itol,rtol,atol,itask,     
     &              istate,iopt,rwork,lrw,iwork,liw ,jac,jt) 
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        end if 
 
c-------------------------------------------------- -------- 
c       Check accuracy error istate = -2, -3; Recal l LSODA 
c-------------------------------------------------- -------- 
234     if ( istate .eq. -2 .or. istate .eq. -3) th en 
            rtol = rtol * iwork(14)*2 
            atol = atol * iwork(14)*2 
            if (rtol .ge. 1e10 .or. atol .ge. 1e10 ) then 
               istate = 1 
               go to 235 
            end if 
            istate = 3 
            iwork(11) = 0 
            iwork(6) = 50000 
c-----------0 Order-------------------------------- -------- 
            if (whichorder .eq. 0) then 
            call lsoda(fcn0,neq,y,tbgn,tend, 
     &              itol,rtol,atol,itask,     
     &              istate,iopt,rwork,lrw,iwork,liw ,jac,jt) 
            end if 
c-----------2 Order-------------------------------- -------- 
            if (whichorder .eq. 2) then 
            call lsoda(fcn2,neq,y,tbgn,tend, 
     &              itol,rtol,atol,itask,     
     &              istate,iopt,rwork,lrw,iwork,liw ,jac,jt) 
            end if 
c-----------Loop accuracy error to top------------- --------- 
            go to 234 
        end if 
 
c-------------------------------------------------- --------- 
c        Check for unhandled LSODA error 
c-------------------------------------------------- --------- 
235     if( istate .lt. 0 ) then 
            go to 950 
        end if 
 
c-------------------------------------------------- --------- 
c        Compute energy, COM, linear momentum and a ngular 
c        momentum about the COM and output if traci ng  
c        is enabled. 
c-------------------------------------------------- --------- 
            call clce(y,m,ke,pe,ketot,petot,etot,G, d,np) 
            call clccom(y,m,com,d,np) 
            call clcmom(y,m,pmom,jmom,ptot,jtot,com ,d,np) 
            if ( trace ) then 
            write(0,5000) tend, 
     &                    com(1),  com(2),  com(3),  
     &                    etot,  ketot,  petot, 
     &                    sqrt(dvvdot(ptot,ptot,d)) , 
     &                    sqrt(dvvdot(jtot,jtot,d))  
5000        format(1p,10E25.16) 
         end if 
c-------------------------------------------------- --------- 
c    **************  End of integration loop.****** ******* 
c-------------------------------------------------- --------- 



 

 88

      end do 
 
c---------- 
c  Exits  - 
c  Exits  - 
c  Exits  - 
c  Exits  - 
c---------- 
 
c-------------------------------------------------- --------- 
c     EXIT: Successful Integration 
c-------------------------------------------------- --------- 
500   continue 
      call clce(y,m,ke,pe,ketot,petot,etot,G,d,np) 
      call clccom(y,m,com,d,np) 
      call clcmom(y,m,pmom,jmom,ptot,jtot,com,d,np)  
 
      call clcexit(tend,whichescaped,y,m,ke,pe,d,np , 
     &             numcloseapp,binaryenergy,escapea ngle, 
     &              escapetime,binaryecc,escapeke,e scapepe) 
     
      call fileout(rho,phi,escapeangle,etot,ketot,p etot, ptot, jtot, 
     &         whichescaped,escapetime,binaryecc,es capeke,escapepe, 
     &         whichorder,runnumber,maxke,maxpdotp, minr,minrtot, 
     &         fourthterm) 
      stop 
 
c-------------------------------------------------- --------- 
c     EXIT: Wrong User Parameters 
c-------------------------------------------------- --------- 
900   continue 
         write(0,*) 'usage: '//cdnm// 
     &              ' <t final> <dt out> [<tol> <tr ace>]' 
         write(0,*) ' ' 
         write(0,*) '       Masses, initial positio ns and' 
         write(0,*) '       velocities of particles  read from' 
         write(0,*) '       standard input' 
      stop 
 
c-------------------------------------------------- --------- 
c     EXIT: LSODA Error 
c-------------------------------------------------- --------- 
950   continue 
         binaryecc=-1 
         whichescaped=-1 
         binaryenergy=-1 
         numcloseApp=-1 
         write(0,*) 'nbody: Error return from LSODA ' 
            write(0,*)'  rho = ',rho 
            write(0,*)'  phi = ',phi 
            write(0,*)'  cdnm = ',cdnm 
            write(0,*)'  istate = ',istate 
            write(0,*)'  itout = ',itout 
            write(0,*)'  ntout = ',ntout 
            write(0,*)'  tbgn = ',tbgn 
            write(0,*)'  tend = ',tend 
         call fileout(rho,phi,escapeangle,etot,keto t,petot, ptot, jtot, 
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     &         whichescaped,escapetime,binaryecc,es capeke,escapepe, 
     &         whichorder,runnumber,maxke,maxpdotp, minr,minrtot, 
     &         fourthterm) 
         write(0,*) ' ' 
         stop 
      stop 
      end 
 
 
c-------------------------------------------------- -------- 
c  Subroutines  ----------------------------------- -------- 
c-------------------------------------------------- -------- 
 
c================================================== ========= 
c     Computes energy quantities: individual kineti c  
c     and gravitational potential energies, and tot al KE 
c     and PE and total mechanical energy.   
c================================================== ========= 
      subroutine clce(y,m,ke,pe,ketot,petot,etot,G, d,np) 
         implicit     none 
         real*8       dvsum 
         integer      d,          np 
         real*8       y(d,2,np),  m(np),    ke(np),    pe(np), 
     &                ketot,      petot,    etot,     G 
         real*8       vsq,        rsq,      c1 
         integer      a,          i,        j 
 
         do i =1 , np 
            vsq = 0.0d0 
            do a = 1 , d 
               vsq = vsq + y(a,2,i)**2 
            end do 
            ke(i) = 0.5d0 * m(i) * vsq 
       
            pe(i) = 0.0d0 
            c1 = -G * m(i) 
            do j = 1 , np 
               if( j .ne. i ) then 
                  rsq = 0.0d0 
                  do a = 1 , d 
                     rsq = rsq + (y(a,1,j) - y(a,1, i))**2 
                  end do 
c-------------------------------------------------- --------- 
c                 Associate 1/2 the potential energ y of an 
c                 interaction with each particle. 
c-------------------------------------------------- --------- 
                  pe(i) = pe(i) + 0.5d0 * c1 * m(j)  / sqrt(rsq) 
               end if 
            end do 
         end do 
         ketot = dvsum(ke,np) 
         petot = dvsum(pe,np) 
         etot = ketot + petot 
         return 
      end 
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c================================================== ========= 
c     Computes individual linear and angular moment um about  
c     specified origin and total linear and angular  momentum 
c     about said origin.  Currently implemented onl y for  
c     d = 3. 
c================================================== ========= 
      subroutine clcmom(y,m,pmom,jmom,ptot,jtot,o,d ,np) 
         implicit     none 
         integer      d,          np 
         real*8       y(d,2,np),  pmom(d,np),  jmom (d,np), 
     &                m(np),      ptot(d),     jtot (d), 
     &                o(d) 
         integer      a,          i 
 
         call dvls(ptot,0.0d0,d) 
         call dvls(jtot,0.0d0,d) 
         if( d .ne. 3 ) then 
            write(0,*) 'clcmom: Not implemented for  d .ne. 3 ' 
            write(0,*) 'clcmom: Invoked with d = ',  d 
            return 
         end if 
 
c-------------------------------------------------- --------- 
c        Linear momentum 
c-------------------------------------------------- --------- 
         do i = 1 , np 
            do a = 1 , d 
               pmom(a,i) = m(i) * y(a,2,i) 
               ptot(a)   = ptot(a) + pmom(a,i) 
            end do 
         end do 
 
c-------------------------------------------------- --------- 
c        Angular momentum 
c-------------------------------------------------- --------- 
         do i = 1 , np 
            jmom(1,i) = (y(2,1,i) - o(2)) * pmom(3, i) - 
     &                  (y(3,1,i) - o(3)) * pmom(2, i)  
            jmom(2,i) = (y(3,1,i) - o(3)) * pmom(1, i) - 
     &                  (y(1,1,i) - o(1)) * pmom(3, i)  
            jmom(3,i) = (y(1,1,i) - o(1)) * pmom(2, i) - 
     &                  (y(2,1,i) - o(2)) * pmom(1, i)  
            do a = 1 , d 
               jtot(a) = jtot(a) + jmom(a,i) 
            end do 
         end do 
         return 
      end 
 
c================================================== ========= 
c     Computes center-of-mass of distribution of pa rticles. 
c================================================== ========= 
      subroutine clccom(y,m,com,d,np) 
         implicit     none 
         real*8       dvsum 
         integer      d,          np 
         real*8       y(d,2,np),  m(np),   com(d) 



 

 91

         real*8       mtotm1 
         integer      a,          i 
 
         call dvls(com,0.0d0,d) 
         do i = 1 , np 
            do a = 1 , d 
               com(a) = com(a) + m(i) * y(a,1,i) 
            end do 
         end do 
         call dvsm(com,1.0d0/dvsum(m,np),com,np) 
 
         return 
      end 
 
c================================================== ========= 
c     Vector dot product. 
c================================================== ========= 
      double precision function dvvdot(v1,v2,n) 
         implicit    none 
         real*8      v1(*),    v2(*) 
         integer     i,        n 
  
         dvvdot = 0.0d0 
         do i = 1 , n 
            dvvdot = dvvdot + v1(i) * v2(i) 
         end do 
  
         return 
  
      end 
  
c================================================== ========= 
c     Vector sum. 
c================================================== ========= 
      double precision function dvsum(v,n) 
         implicit    none 
         real*8      v(*) 
         integer     i,         n 
  
         if( n .gt. 0 ) then 
            dvsum = v(1) 
            do i = 2 , n 
               dvsum = dvsum + v(i) 
            end do 
         end if 
         return 
      end 
  
c================================================== ========= 
c     Load vector with scalar. 
c================================================== ========= 
      subroutine dvls(v1,s1,n) 
         implicit    none 
         real*8      v1(*) 
         real*8      s1 
         integer     i, n 
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         do i = 1 , n 
            v1(i) = s1 
         end do 
         return 
      end 
  
c================================================== ========= 
c     Vector-scalar multiply 
c================================================== ========= 
      subroutine dvsm(v1,s1,v2,n) 
         implicit    none 
         real*8      v1(*),     v2(*) 
         real*8      s1 
         integer     i,         n 
  
         do i = 1 , n 
            v2(i) = s1 * v1(i) 
         end do 
         return 
      end 
 
C================================================== ========== 
C     Has a body escaped and is the simulation over ? 
C================================================== ========== 
      subroutine hasescaped(y,escaperadius,escaped, whichescaped, 
     &                  pe,ke,m,d,np,t0,tend) 
         implicit     none 
          integer     d, np, whichescaped 
          real*8      y(d,2,np), m(np), escaperadiu s 
          real*8      pe(np),ke(np),t0,tend 
          logical     escaped 
          integer i 
          whichescaped=1  
          escaped=.false. 
          do i=1,3 
              if ((y(1,1,i)**2+y(2,1,i)**2+y(3,1,i) **2) 
     &               .ge.escaperadius*40.0.and. 
     &                (pe(i)+ke(i)).ge.0) then 
                  whichescaped=i 
                  escaped=.true. 
                  return               
              end if 
          end do 
 
      end 
 
C================================================== ========== 
C     Calculate exit conditions 
C================================================== ========== 
      subroutine clcexit(tend,whichescaped,y,m,ke,p e,d,np, 
     &             numcloseapp,binaryenergy,escapea ngle, 
     &              escapetime,binaryecc,escapeke,e scapepe) 
          implicit     none 
           
          integer numcloseapp 
          real*8  escapeke, escapepe 
          real*8  binaryenergy, escapeangle, escape time, binaryecc 
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          integer d, np, whichescaped 
          real*8  tend, y(d,2,np), m(np), ke(np), p e(np) 
          escapeke=ke(whichescaped) 
          escapepe=pe(whichescaped) 
          escapetime=tend 
          numcloseapp=0 
          binaryecc=0 
          binaryenergy=ke(1)+ke(2)+ke(3) 
          escapeangle=atan2(y(2,2,whichescaped),y(1 ,2,whichescaped)) 
          if(escapeangle.lt.0) then 
                escapeangle=escapeangle+2*3.1415926 5 
          end if 
      end 
 
c================================================== ================ 
c Calculate max and min values to explain 2nd order  divergence 
c================================================== ================ 
        subroutine extreema(y,m,maxke,maxpdotp,minr ,minrtot, 
     &                      fourthterm) 
        implicit none 
        real*8       y(3,3,2), m(3), maxke, maxpdot p 
        real*8       minr, minrtot 
        real*8       tempr, tempke, tempdot, fourth term 
        integer      a, b, d 
c-------minimum distance between planets----------- ---------------- 
        do a = 1,3 
        do b = 1,3 
             if (a.ne.b) then 
                  tempr = sqrt((y(1, 1, a)-y(1, 1, b))**2+ 
     &                         (y(2, 1, a)-y(2, 1, b))**2+ 
     &                         (y(3, 1, a)-y(3, 1, b))**2) 
                  if (tempr.lt.minr) then 
                       minr=tempr 
                  end if 
             end if 
        end do 
        end do 
c-------maximum kinetic energy--------------------- ------------------ 
        tempke = 0 
        do a = 1,3 
             do b = 1,3 
                  tempke = tempke + y(b, 2, a)**2/2 /m(a) 
             end do 
        end do 
        if (tempke.gt.maxke) then 
             maxke = tempke 
        end if 
c-------minimum total distance of all bodies from e achother---------- 
        tempr = 0 
        do a = 1,3 
        do b = 1,3 
             if (a.ne.b) then 
                  tempr = tempr+m(a)*m(b)/ 
     &                    sqrt((y(1, 1, a)-y(1, 1, b))**2+ 
     &                         (y(2, 1, a)-y(2, 1, b))**2+ 
     &                         (y(3, 1, a)-y(3, 1, b))**2) 
             end if 



 

 94

        end do 
        end do 
        if (tempr.lt.minrtot) then 
             minrtot = tempr 
        end if 
c-------maximum dot product of 2 body momentums---- ------------------ 
        tempdot = 0 
        do a = 1,3 
        do b = 1,3 
             if (a.ne.b) then 
                  do d = 1,3 
                       tempdot=tempdot+m(a)*m(b)*y( d,2,a)*y(d,2,b) 
                  end do 
             end if 
        end do 
        end do 
        if (tempdot.gt.maxpdotp) then 
             maxpdotp = tempdot 
        end if 
 
c-------fourth term-------------------------------- ------------------ 
        tempdot = 0 
        do a = 1,3 
             tempdot = tempdot + m(a)*(y(1,2,a)**2+ y(2,2,a)**2+ 
     &                 y(3,2,a)**2)**2 
        end do 
        if (fourthterm.gt.tempdot) then 
             fourthterm = tempdot 
        end if 
        end 
 


