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ABSTRACT

CHAOTIC SCATTERING IN THE
2P POST-NEWTONIAN ORDER GRAVITATIONAL

THREE-BODY PROBLEM

David E. Tanner
Department of Physics and Astronomy

Bachelor of Science

The three-body problem is explored in general ngtgtusing the second order post-
Newtonian approximation. The results are comp&rddewtonian gravity. The three
bodies are set up as a binary system with an inepimody. The system is evolved
through time for a large two dimensional spacenafal values. Several properties for
both the Newtonian and relativistic systems areprdponto the initial-value space and
analyzed. The two sets of maps show regions afasity and contrast. The relativistic
system's chaotic behavior diverges most signiflgdram the Newtonian system when

the three bodies undergo relativistic interactions.
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Chapter 1

Introduction

1.1 Motivation

N-body problems have been widely studied and asrsatile window into physical
chaos. More specifically, the gravitational thiesdy problem has received much
attention because of its simple setup and its egipdin to astrophysical systems such as
the solar system. It has been studied using diftenumbers of dimensions, different
equations for gravity and different constraintstios system. Most work on the three-
body problem has been done in the context of Neatogravity. The present work
studies chaos in general relativity, Einstein’ttyeof gravitation, using the second order
post-Newtonian approximation (hereafter abbrevi&Pi2). This study sets up
congruent experiments—the same except for the easadf gravity. Newton’s
equations of gravity are compared with EinsteirPNR. This experiment brings to light
differences and similarities between the equatesmsecially with regard to their chaotic

behavior.



1.2 Chaos

In physics, chaos denotes a dynamic system forhwthie outcome is highly sensitive to
the initial conditions. This sensitivity makes ¢pterm prediction impossible, as small
uncertainties in the initial state lead to verygkeffects later on. The exponential
sensitivity to initial conditions can be quantifiading the Liapunov exponent. L@(t)
and@(t) represent two possible evolutions of a physsyaktem (i.e. two solutions to the
system’s equations of motion). L&g(t) represent the difference between the two
solutions ((t) - @i(t)). As time goes on, if the solutions grow closmether (behave the
same)A@(t) will approach zero. On the other hand, if slodutions consistently follow
different pathsAq@(t) approaches infinity (differing systems behavarenand more
differently). In the following expression
Ag(t) ~ Ke™

A@(t) approaches zero or infinity depending on whieihis positive or negative; K is a
constant. The variableis the Liapunov exponent; if it is negative thend-term
motion is hon-chaotic (in fact it converges to anoaon solution) but if it is positive then
the long-term motion is chaotic. Thus, systemschemtic if different solutions diverge
at an exponential rate.

To illustrate the impossibility of long-term pretians for chaotic systems, consider
two states specified by 0.999999999999999 andhksd states differ by only 1x10)
but to a computer these are the same floating-pminmtber. But to a chaotic system,
these may represent initial conditions, or interiagdvalues, varied enough to produce
exponentially differing outcomes. It does not takech time for a numerical inaccuracy

to blow up into noticeable error. For examplensfarming the above equation into



Ag(t) = Ap(0)e™ and solving for how long it takes (t) for a nuneatierror Ag(t) =
1x10™) to grow to order one\p(t) = 1) usingh = %.

1=1x10"e*
It only takes t = 17.27 units of time for the “niggble” error to grow to order one. For
this reason, running the same chaotic computerlation twice can produce different
results even if the initial conditions are meanbéothe same.

Although chaos denotes unpredictability, it shaudd connote random. Buried
inside the mysteries of chaos, there can be semitihé patterns. One example of a
pattern born of chaos is a fractal. A fractal [ga#tern which repeats itself on finer and
finer magnifications. Figure 1.1 shows three insagkthe Mandelbrot [1] at different
magnifications; note the pattern is ever-complexioar and finer scales and has some

repeating features. The Mandelbrot Set is defasethe set of all complex numbers such

thatf " (0) <o, where f"(z )is the ' iteration off_(z) = 2> +c; i.e.

f2(0) = ((O)2 + 0)2 +c. The black areas in Figure 1.1 belong to tkendielbrot set while

the colored regions are color coated accordingte fast they diverge to infinity.

ks, *.fq

g . ’
b O i«

Figurel.1 Mandelbrot Set (zoom=1; zoom=2x10> zoom=6x10")

Notice the chaotic border shown in the left-mogtife. By zooming in almost a million

times on the border, the center image is foundd Zsoming in almost a million times



more produces the far right image. These beauytdtterns seem to exist on ever finer
and finer scales. Similar features can also bedan the chaotic gravitational three-
body problem, discussed in Section 1.3. Though #ne both chaotic and therefore
extremely sensitive to initial conditions, they am random—they feature beautiful

patterns.

1.3 Three-body Problem

Gravitating bodies has been a very popular systeraxXploring chaos. The gravitational
three-body problem is a very simple chaotic systdnee masses orbit each other under
their mutual gravitational attraction. They areaimacuum (no drag) and the only forces
they feel are gravitational forces. Figure 1.Retafrom [2], illustrates how three bodies

may evolve in each other’s gravitational field. eTtwo body gravitational problem, on

Figure 1.2 Three-body chaos in center-of-mass reference frame

the other hand, is quite simple to solve analyigcaNewton was the first person to do so,
which provided a new understanding of Kepler's lawse gravitational two-body
problem has a closed-form solution—a solution wiagah be written as a function. The
solutions are conic sections: an elliptical orbtheir energies are negative, a parabola if

their energies are zero or a hyperbola if theirgies are positive. The solution is



deterministic and cannot behave chaotically.

The three-body problem, however, is much more caraigd. It does not have a
general analytic solution. Interestingly, over }@@rs ago Poincaré discovered that the
three-body problem is chaotic [3]. Because th@-hody problems are chaotic, orbits in
our solar system can only be predicted accurateihe order of millions of years [4].
For general three-body problems, the equationsatfom must be solved numerically.

Much research has already been done on the tlomehegdvoblem. Chicone et al
[5] setup a binary system which was driven by alsig incident gravitational radiation
and was dampened by radiating its own gravitatienakrgy—it behaved similar to a
driven dampened harmonic oscillator. Their dridampened stellar system was made to
behave both smoothly and chaotically. Hock [6p&td the Eller problem (two fixed
bodies and one orbiting body), sometimes calledekticted three-body problem, and
showed that for Newtonian gravity, the solution was-chaotic, whereas implementing
equation of general relativity produced a chaoggtam. Others have allowed three
bodies to move freely in one dimension. Hietargttal [7] showed that a Newtonian
three-body system, in one dimension, still behabhemtically. Burnell et al [8] studied
the chaotic behavior of the one-dimensional problsimg general relativity. The
Newtonian and general relativity gravity comparisefurthered in this study by looking

at the three-dimensional three-body problem.

1.4 Post-Newtonian Gravity

When most think of gravity, they think of Sir Isddewton. Newton’s Universal Law of

Gravitation says that the force of gravitationalaation ) between any two bodies is



whereG is the universal gravitational constami, andn, are the masses of bodies 1 and
2, andr is the distance vector between the masses. Aiocgptd Newton, the force
between two masses is related only to the disthatteeen them. For the most part, he
was right...

About one hundred years ago Albert Einstein formaa new—more complex—
model of gravity called general relativity. To ¢@st their complexity, the average
student will learn about Newton’s Law of Univer§aiavitation in middle school,
whereas a typical astrophysicist does not learstBin’'s theory of general relativity until
graduate school. This difference is due to thensratatical complexity of general
relativity, which uses tensor equations on curveahifolds. Einstein showed that
Newton’s Law of Gravity it a simple approximatiohgeneral relativity. Since that time,
mathematicians and physicists have extracted daned terms to study, in a
perturbative manner, Newtonian-like systems in gaelativity.

Einstein models space and time as a curved manitoiergy and mass curve
space-time and this curvature is manifest as avigitgonal force.” In the case of the
three-body problem, the gravitational fields of theee bodies would determine the
curvature. The bodies then move along the natumrales (known as geodesics) of space-
time. Solving the full equations of general reldayi for three-bodies in three dimensions
would be far too complex. To avoid an exact amedytsolution of such complex
equations, this paper explores the three-body prohising PPN2. A second-order
perturbative approximation is acceptable for waekl$ such as a modeled solar system.

This approximation generates only ordinary diffél@requations, whereas the full



equations of general relativity are partial diffeiral equations (which are harder to

numerically integrate).

1.5 Significance of Comparison

The general three-body problem has previously leepiored using Newtonian gravity.

| explore the same system using PPN2 and companmesults. An elegant study of he
Newtonian three-body problem was conducted by BandMcMillan in 1993 [9]. |
reproduce some of their results using Newtonianigrghen perform the same
experiments using Einstein’s PPN2 gravity. Itiggosed that the two systems will

differ the most when the bodies undergo relatiwigtieractions (high velocities and close
approaches) as this is what PPN2 takes into accauns experiment will give insight

into the chaotic behavior of general relativity.



Chapter 2

Problem Setup

2.1 Equations of Motion

The first step in simulating planetary motion isaédishing the equations of motion
which will govern the behavior of the planetary lesd Two sets of equations are
implemented in this study: one for Newtonian gnaaihd one for PPN2. The equations
are presented as a system of ordinary differeatjahtions derived from their respective

Hamiltonians. The Hamiltonian for Newtonian grgng

2
H=Ym +13 P _%Gzzim?mb .
a a ab

m, e
The first term sums the rest energy of the massesecond term sums the kinetic
energy of all the masses, and the third term shegtavitational potential energy
between each pair of masses. The Hamiltonianiftst&n’s PPN2 was derived by

Schafer [10]:
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whereG is a gravitational constanty, is the mass of body, p, is the momentum vector

of bodya, ra, is the position vector between boda’aeandbﬂfa - rb|), andn, is the

-
oW

a

)
)

normalized position vector between boditmmb(nab = | |
a b

J The reader will

=
=

: . 1
notice that later terms are higher orders-oénd are therefore supposed to play a lesser
r



role than prior terms. Because the bodies ar@septed as point masses, this
perturbative assumption is violated when the bodmsoach infinitely close to one
another and the later terms grow larger then tloe pgrms. Also of note is the presence
of vector dot products in the PPN2. The behavighe three bodies will change
depending on their relative momentum vectors, ast their relative positions as with
Newtonian gravity. It is clear that the HamiltomiBPN2 is much longer and more
complex than that of Newtonian gravity.

The equations of motion for the three bodies aravelé from the above
Hamiltonian using Hamilton’s Equations:

g =0H oo 0H
' op,’ ' dq
whereH is the Hamiltoniang is a generalized coordinate vectoranges over all 3

masses as well as all 3 vector components (crea8regjuations in all), arglis the

conjugate momentum, defined as ::—ql', wherel is the Legrangian. The 18
i

equations for both models of gravity are generat#dg Maple which also converts them
to Fortran code for computational use. To exemplie complexity of PPN2, it took six
thousand lines of code to implement. This higlelef complexity renders improbable
the idea of writing a customized ODE solver; iexplained later that an ODE solver with

an adaptive time step was needed to integrateditfadult equations.

2.2 Initial Conditions

As explained previously, the three-body problem Iagquations and 18 unknown

variables: each of the three bodies has threeipoaitvariables and three momentum

1C



variables. The same problem setup as [9] is fathwmposing the laws of conservation
of energy and conservation of momentum (both lirear angular) reduces the number
of unknowns to 14. Restricting motion to a pléumher reduces the number of
unknowns to 8. Writing the equations in the ceonfenass frame imposes two more
constraints. | use an initial configuration, showrrigure 2.1, which is specified by only
two free parameterg: andg, which will be addressed below. Though the numlber o

initial parameters has been pared down to twofuhé8 equations must be solved.

;\iw | —e

Oa

® ,,

m,
Lx

Figure 2.1 Three-body problem setup

The initial three-body configuration is shown irgéie 2.1. Two of the masses
form a stable Newtonian binary star system; théially orbit each other in a circle,
separated a distanaeapart. The third body is separated a distanegr®dn the binary's
center of mass. The two free parameters arantti@l iphase angleg] of the binary and
the impact parametep) of the incoming field star. Fap=0, both masses one and two lie

on the x-axis.p measures the perpendicular distance of mass fitaethe x-axis. The

11



arrows in Figure 2.1 show the initial trajectorytioé three masses. The initial conditions
are calculated as follows:

m=1x10’

m=m,=m,=m

G=6.67310™"

a=17

% = { codg). > sinlg) 0}
X, = {—%cos(go),—%sin(go),o}

%, ={30a, 0,0}
m

V= —
2a
3Gm

V, =, |—
2a

, ={-vsin(g) vcodg) 0}
, ={vsin()-vcode) 0}
s ={-

1v, 00}

Because this system is chaotic, a minute changesimitial p or ¢ can drastically
change the system’s behavior. To fully exploredixgtem’s behavior, many
combinations ofg, @ initial conditions are explored. The initial cotions have @
range of -4.8 < p < 7.5a (no chaotic scattering is observed outside tmgeaverified by
[9] and this study). Therange used is 8 < x; because the two binary bodies have
equal masses, the rangenaf @< 2z is identical to X <.

The kinetic and potential energies of the binasten are determined by their

masses and separation distaacd he potential energy of the third mass is sethiey



masses of the three bodies and by its separatsbandie (38) from the binary system.
The third mass is given a velocity of half theicat velocity (velocity for the third body
which makes the system’s total energy exactly zeftogh ensures that the system’s total
energy is negative. This negative energy guarariteeincoming field star can become
bound to the binary such that all three bodieskmasimultaneously bound.

In the computational simulations below, the threehbinteraction ends when one
of the three masses is ejected from the systens-fdirifrom the remaining two bodies
and its kinetic energy (escape velocity) is enotagbreak free of the gravitational pull of
the remaining two masses. When the simulation,eseleral system characteristics or
escape values are recorded and their values aga@dgo the initial condition
coordinate , ). The escape values are:

Escape Angle: angle at which the escaping bodwieling
Escape Time: how long the simulation ran beforedylescaped

Change in Angular Momentunt:;, , — L,

A w0 N PRF

Minimum Approach Distance: minimum separation éttalee bodies

(riztriztryg) attained during simulation

o

Maximum Momentum Dot Product: maximut-P, + P1'Ps + P>'P3
6. Escaping Body: which of the three bodies escaped

To monitor the accuracy of the simulation, | alsoard the following conserved
guantities (discussed in Section 4.3):
7. Linear Momentum ErrorP;, , — P,

L. -L_.
8. Angular Momentum Error—22nte

initial
E. , —E .
9. Total Energy Error—e e

initial



The energy and momentum quantities are calculatearding to Newtonian definitions.
Calculating PPN2 energy in the Newtonian way maw lsentributor to the energy error
discussed in Section 4.3. Itis also of note foame of these escape values and
conserved quantities are physically meaningful (dmate independent) and some are
not (coordinate dependant). Regardless, it ish&ipful to track quantities which have
no strict physical value, since they do give insigho the behavior of the equations.
The most sensible way to compare all these exttacikies is to graph them by
initial conditions p, @) coordinates. The images in Chapter 4 contaisetlyggaphs. The
X, y axes represept @ and the escape variable’s value is representeddmjor (ranging
from blue to red). Generating colored maps ofebeape values is an effective method

of analyzing the overall behavior of the three-bsgigtem.
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Chapter 3

Problem Solution

3.1 Solving the Equations
In order to explore the behavior of the three-bpryblem, computational tools are
needed to numerically solve the differential equagianalyze the solution. Hamilton’s

equations of motion are first order equations efftirm

dy
=L =,
ot (t,y)

where y is a state vector of the unknowns (X, yx2vy, V;) for each body and f is a
vector function. These equations are solved nwalyiusing the Adams-Bashforth

method

yn+1 = yn +hibj f(tn—j!yn—j)' OS rf n,

j=0

b, = j!(("sl_)]j )! on(u +i)du, j=O0,...,s.

This scheme can support different orders of appnakon, and therefore different orders



of dependency ig. | use LSODA: the Livermore Solver for Ordinaryfrential
equations with Automatic method switching for séffd non-stiff problems; it is publicly
available at http://netlib.org. This integrator ptieely adjusts the time steps and
automatically switches to implicit methods for Spfoblems. A stiff differential
equation is one in which two drastically differ¢ime scales are present in the solution.
The result is that the integration must use a gengll time step to achieve a reasonably
accurate solution. It is proposed that the sysiebodies used in this study does become
stiff since two differing time scales do exist—wheetightly bound binary revolves very
fast while the third body executes a large slowt@iound the binary. In this instance
LSODA must use a very small time step and an int@aver; if the needed time step is
smaller than the minimum threshold, the integratidlhterminate with an error.
LSODA was in fact encountering stiff situations {ersolving the equations in this paper.
Because Hamilton’s equations are symplectic, a $getip integrator would be
preferred as it guarantees strict conservatioh@Hamiltonian. However, such
integrators require fixed time steps. A more ralwotegrator with an adaptive time step
is required to handle the overwhelming complexityhe three-body equations. Because
a non-ideal integrator is used, energy conservasiomonitored to ensure an accurate

integration.

3.2 run

Because the three-body problem in both Newtoni@ahREN2 gravity allows only
numerical solutions, many different programs wegeded to step from the initial setup
to the color maps. The first program needed isrd$eript calledun. Run converts the

initial conditions p, @) into the numerical setup of the three body systeh begins its
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evolution. The user may specify the value of @, dhiversal gravitational constant, and
the masses of the three bodies. The user alsdispehe range of the initial conditions
as well as how many simulations to run in thatrwvdé For example, one may seleap a

range of ¥4 < @ < %mx and to perform one hundred simulations in tharivdl. In this

caserun will execute a three-body simulation with an ialitp of £077, 1—0177,
40C  40C
102 200 . .
4_0(‘.”""’4_0C”’ and a similar group of values fpr After calculating the system setup

from thep, @initial value pair as well as gravity and masaueal the information is

given tonbodyPN which evolves the system.

3.3 nbodyPN

NbodyPN is a FORTRAN program which evolves n gravitatirglies in either
Newtonian or PPN2 gravityNbodyPN stores in two of its subroutines the ordinary
differential equations of motion for both modelsgodvity. It reads the initial conditions
from run.

At its core, nbodyPN uses LSODA to perform thdedéntial equation
integration. NbodyPN uses this integrator to skepthree bodies along their paths of
motion until one of the three bodies meets themscaquirements. A body has escaped
when its distance from the center of mass is almosthundred times the original
separation of the field body from the binary’s @rdnd its energy is positive. At this

point, all escape values are printed to a data file

3.4 DaFilt

The data file needs to be processed before itsnrEtion can be extracted. DaFilt (“Data
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Filter”), a Java program, filters the data, to eadhat all the correct information has
been recorded and all erroneous data has beercmatrelhe raw data file has numbers
scattered across many lines which belong in a gr&gfFilt reads all the information,
analyzes it, and rewrites it cleanly to a new fil@aFilt records the ranges pfande, dp,
dg, the number of runs in each dimension, and howynearors were present in the file.
Errors are substituted with dummy numbers (suct®@psso that the data file can still be

processed but that errors are not misunderstoadtaal data.

3.5 Grapher

Grapher, a MatLab program, is used to analyzénaltiata and display it visually as the
colored maps shown in Chapter 4. This program asesray of matrices to store all the
data which it reads from the file generated by Daftach matrix has the same
dimensions ap andg. Each escape variable gets its own matrix. Theevfor that
escape variable for every run within hep range is loaded into the matrix.

Because the escape values can have a wide ranghies, they are normalized
for visualization purposes. The time duration sfraulation, for example, can range
from a few seconds to several million secondsstfFihe most extreme values are
brought within the average range. For examplmast of the simulation times were
between one and two thousand seconds, any vallees bee thousand seconds were set
equal to one thousand seconds and all values abovihousand seconds were set equal
to two thousand seconds. Second, that average rarsgaled betweern2860 which

MatLab interprets as a color ranging from bluet{Ojed (60) (Figure 4.1).
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Chapter 4

Results

4.1 Introduction

This chapter presents the results of the three-Bodylations. The figures in this
chapter compare the chaotic features between theddean and PPN2 models of gravity
by plotting the data against the initial data pagtarsp and@. Each physical
characteristic listed in Section 2.2 is plottedivwe different figures below. The first
shows the entire parameter space (titled wholeegpand the remaining four show
detailed regions that highlight the distinction$vween Newtonian and PPN2 gravity.

Figure 4.1 is a reference showing the color spetfir all plots.

min max

Figure 4.1 Color scale for figures

The two maps in Figure 4.2 of the whole space’saps@ngle identify sub-

regions 1 through 4. The map on the top repreéemgonian gravity, while the map on
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the bottom represents Einstein’s gravity. Regios dutlined by the lower left box;
region 2 is the upper left box; region 3 is thedowight box; region 4 is the upper right
box. The colors in each graph represent the w@tiee variable being mapped. In the

case of these two maps, the colors represent wepEANgle.

Escape Angle
Whole Space

15
Phase Angle (radians)

Escape Angle
Whole Space

2 25 3

15
Phase Angle (radians)

Figure 4.2 Boxes outlining Regions 1-4 of Whole Space; Newtonian (top) and PPN2
(bottom). Region 1 isoutlined by the lower left box; region 2 isthe upper left box;
region 3 isthe lower right box; region 4 is the upper right box.

Each region is discussed individually in the needt®ns, contrasting the features of the

Newtonian and PPN2 plots.
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4.2 Whole Space

4.2.1 Escape Angle
Figure 4.3 features both regions of smooth flowdéntpr and chaotic speckled colors.
The colors in these two maps (and all others labEkcape Angle) represent the angle at
which the escaping body was ejected from the syst®8mooth colors, where the red
transitions into orange, yellow, green and finatlyblue, represent regions of non-chaotic
interactions. This means that changing the indtadditions slightly, either in the or @
dimensions (moving vertically or horizontally oretmap by a pixel), results in a slightly
different outcome (the exit angle color has onlgrudped a shade). On the other hand, the
speckled regions show chaos; a small change ialicinditions (to a neighboring pixel)
results in a substantial change in the escape écgjiar).

For the most part, these figures appear very aimilit with one difference: the
lower map (PPN2) has a few extra stripes in clgstéfour or five—fourfold rivers.
These fourfold rivers are seen in a few placeséldwer map but nowhere in the upper
map; they are unique to the PPN2 model of graaityl appear in most PPN2 data maps.
The four sub-region maps (below) zoom in on thesefbld rivers. One slight
difference between each set of maps is that the2RRP&p seems to be shifted to the left:
corresponding points will have a lesgeroordinate in the PPN2 map than the Newtonian
map.

Because the x-axis represents an angle, the ntagllsgavraps on itself; the 0 and

miradians match. Figure 4.4 shows the PPN2 malpeof\thole Space copied three times.
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Figure 4.3 Escape Angle of Whole Space; Newtonian (top) [0, 2z] and PPN2 (bottom)
[0, 2 7]



Figure 4.4 Thrice-repeated figure of Angular Momentum Error of Whole Space; black
structure identifies a feature which wraps across parameter space three times.

The black stripe in Figure 4.4 exemplifies a stuoetwhich spans three all three
copies. Itis much easier to pick out this struetseeing the three copies aligned. ltis,
however, recognizable by following along a singlamnand wrapping around it a few
times. There are other macroscopic features wéachbe seen more clearly. These
continuous patterns suggest a large structuradnpaith this three-body setup. While
some of the data analysis in this Whole Space negith address macro-structures, the
analysis of the four sub-regions (below) is meargxplore smaller-scale structures.

Other escape values will give a more thorough laiothese interactions.

4.2.2 Escape Time

The same chaotic and non-chaotic regions are teflén Figure 4.5 of the interaction
time. The colors in this map reflect how much tinael elapsed before the escaping body
was ejected from the system. The homogenous blloe indicates that most of the non
chaotic interactions took a similar amount of tinWghile the chaotic colors suggest that
the interaction times varied highly through theatimregions. The main reason for
drastic changes in interaction time is the compyexd the interaction. A simple
interaction in which the incoming star simply seattaround the binary pair will take the

least amount of time. Whereas an interaction wtieeéncoming star becomes quasi-
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Figure 4.5 Time of Whole Space; Newtonian (top) [3.6x10°, 9.7x10%] and PPN2 (bottom)
[3.2x10°% 2.8x10]
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bound to the other two and all three bodies ongitiad each other may take a very long
time. Thus, in the chaotic regions, the amouriiroé which the planets spend orbiting

around one another varies highly.

Notice that much of the boundary between the simantl chaotic regions in
Figure 4.5 is outlined in red. The red represantsry long interaction time. While the
red speckles in the chaotic regions may be caug@thbets orbiting each other many
times, the red outline is caused by one long oBiyd [3] explains that on the boundary
between smooth and chaos, the third (incoming) lwoayes very close to one of the
binary bodies and there is a strong change in gnerge third body becomes very
weakly bound to the other two such that it execatesry long orbit. It is this long orbit

which separates the chaotic and non-chaotic regions

4.2.3 Change in Angular Momentum
Figure 4.6 represents the change in angular momentdeally, each of these values
should be zero. They are not. Because the intmaglaSODA, uses some specified
algorithm, it can be assumed that the degree of eydirectly proportional to
characteristics of the interaction. Thus, mapthefchange in angular momentum are
significant though it is not specifically known witebout interaction causes the error.
The topological characteristics of these two mapssanilar for the above two
maps featuring the Escape Angle. There are sogien®where smooth transitions in
color testify of smooth behavior: a small changeihal conditions results in a small
change in angular momentum error. The regionslmwere chaotic for the Escape

Angle are also chaotic in these maps.
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Figure 4.6 Change in Angular Momentum of Whole Space; Newtonian (top) [-2.2x10°,
2.3x10° and PPN2 (bottom) [-2.0x10°, 2.4x107]
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4.2.4 Minimum Approach Distance

Maps of the minimum approach distance are impotianause the higher order terms of
PPN2 have multiples 31 The closer the bodies approach one anothemtre of a
r

role those terms will play. Figure 4.7 reveals samderlying features. Compare Figure
4.7 with their Escape Angle counterparts (FiguB).4Notice that the regions which
behave smooth (according to the Escape Angle) ayaea in red and yellow colors
while chaotic regions show up blue. Recall thecspectrum (Figure 4.1); blue
represents low values, while red represents higrega Why would chaotic interactions
always experience shorter approach distance? Kesnsense that the longer the
interaction time, the more opportunities the bodiage to pass by one another and
statistically the higher the chance of a very clagproach. Therefore the chaotic, more
complex, interactions have more opportunities fose approaches. On the other hand,
the smooth regions are often caused by the thaohving body simply passing around
the binary system and being ejected; this woulohathinly one opportunity for a short
approach distance.

The other major characteristic seen in these twpsnga pattern of concentric
ovals. In the very center of both these mapsgthee red concentric ovals. The smaller
ovals in the center are a lighter shade of redessting a closer approach distance.
Along the bottom of the maps is a string of bluaamtric ovals. The smaller ovals in
the center get darker and darker, which also reptesa closer approach distance. Both
the red and blue ovals appear in regions which wiassified as smooth by the Escape
Angle maps (Figure 4.3). The rivers of chaos saestreak through the smooth regions,

but in the Minimum Approach Distance maps, theyndbinterrupt the concentric ovals.
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Figure 4.7 Minimum Approach Distance of Whole Space; Newtonian (top) [9.9x107,
7.3x10] and PPN2 (bottom) [6.7x10°8, 7.3x107]
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The ovals seem to continue their patterns in tledp@und of the chaos. These features

will be seen more clearly in the sub-region magewe

4.2.5 Maximum Momentum Dot Product
The relativistic Hamiltonian depends of the momerdathe bodies, while the
Newtonian potential depends only on position. Qhbyrelativistic Hamiltonian depends
on the dot productBy Py,. For this reason, the produ&sP, + P;'P; + P>'P3 are
computed and mapped to shed light on the differ&eteeen the two models of gravity.
These maps show the maximum total vector momentimewed during a simulation.

Figure 4.8 sheds some light on what appears toddegularly appearing
phenomenon. Refer back to Figure 4.5 bottom. MNeacoordinateg @) = (1, 1.5)
there is a river of chaos, flowing from left toligwhich abruptly ends. The many other
fourfold rivers, which appear in the PPN2 mapswffoom one place to another; they
spring out of one location and bury into anoth€&he river at (1, 1.5) has no destination.
Why? The above map showing the PPN2 dot proddetso$ome explanation. The
same river can be seen flowing left to right atl(5). This river features a speckled dot
product meaning its values are also chaotic. €gen where the river dies seems to
have a “shore” of light blue color. This light blshore fades into a smooth deep blue
color. The smooth deep blue area represents brionanum. It is this minimum and
whatever mechanism of the three body interactiah ¢huses it, which ends the (1, 1.5)
river and prevents it from reaching the light bélmre across the way.

Another key feature is the location of the highastproducts. They tend to pool

together in two main regions. The first is locad¢d-1>0, 2.5>3). The second is the
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Figure 4.8 Max Momentum Dot Product of Whole Space; Newtonian (top) [9.0x10°,
3.1x10%°] and PPN2 (bottom) [3.3x10"®, 1.8x10%]
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same region colored in black in the third map aft®a 4.2.1. That stripe which

spanned three spaces appears here to be compribedhaghest dot product values.

4.2.6 Escaping Body
Figure 4.9 illustrates which of the three bodiesaped: light green—1, orange—2, red—
3, and blue represents a simulation which termthbeeause of an error. Recall that
masses one and two form the binary, while mase ttoenes in from infinity. It makes
sense that the areas near -3 andp = 4 are marked by body 3 escaping. For a large
impact parameter body three passes far aroundrleytand simply scatters around
them on a hyperbolic path.

Notice also that both plots of Figure 4.9 wrap aidon themselves (like all other
plots) but shift colors. An initial setup @f= 0 andg =x is exactly the same except that
bodies one and two have switched places. Thahys in Figure 4.9, the structure @t

0 andg = are the same except that orange (body 2) is swidippgreen (body 1).

4.3 Error and Data

As with all experimental and computational physasly an accurate experiment can
give accurate results. The error in these plapetanulations tells how accurate the
simulations were carried out. |tracked the line@mentum error, angular momentum
error, and energy error. The average errors wet@@order of 10 for linear
momentum, 18- 10* for angular momentum and 1 for energy. In theadsangular
momentum and energy, only 5% of the simulationseduhe error while 95% of the

simulations had less than 1% error. The simulatmirhighest error were consistently
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Figure 4.9 Escaping Body of Whole Space; Newtonian (top) [1, 3] and PPN2 (bottom)
[1 3]



within the chaotic regions where an accurate iratgn is improbable to begin with.

These error values reflect positively on the religbof the simulations.

For the reader’s reference, Tables=#4L5 give the ranges and averages of data

used to make the figures in this paper; thus tadeemay know the approximate values

represented by the various colors.

Newtonian PPN2
Variable Minimum Average Maximum Minimum Average Maximum
Esc Time 3.660E+03 9.764E+04 1.356E+07 3.200E+03 9.821E+04 2.861E+07
AL -2.232E+05  -4.249E+02 2.318E+05 -2.058E+05  -3.583E+02 2.489E+05
Min Appr 9.912E-08 3.243E-03 7.302E-03 6.786E-08 2.876E-03 7.384E-03
Max P-P 9.000E+06 1.053E+24 3.116E+26 3.328E+18 1.346E+24 1.875E+26
Table 4.1 Satistical Data for Whole Space figures
Newtonian PPN2
Variable Minimum Average Maximum Minimum Average Maximum
Esc Time 4.460E+03 1.236E+05 6.475E+06 3.200E+03 1.105E+05 8.606E+06
AL -1.009E+05  -5.870E+02 9.845E+04  -9.676E+04  -6.990E+01 1.260E+05
Min Appr 2.745E-08 2.540E-03 6.117E-03 1.195E-07 1.172E-03 6.322E-03
Max P-P 9.000E+06 6.548E+23 3.819E+26 9.000E+06 7.510E+23 2.922E+26
Table 4.2 Satistical Data for Region 1 figures
Newtonian PPN2
Variable Minimum Average Maximum Minimum Average Maximum
Esc Time 4.220E+03 9.912E+04 1.070E+07 3.200E+03 8.452E+04 1.424E+07
AL -1.135E+05  -5.489E+02 2.525E+05 -1.103E+05  -3.192E+02 2.458E+05
Min Appr 3.705E-07 3.432E-03 6.715E-03 3.870E-07 3.253E-03 6.809E-03
Max P-P 9.000E+06 8.020E+23 5.305E+25 3.780E+20 1.226E+24 1.237E+26
Table 4.3 Satistical Data for Region 2 figures
Newtonian PPN2
Variable Minimum Average Maximum Minimum Average Maximum
Esc Time 4.380E+03 7.199E+04 1.419E+07 3.160E+03 6.424E+04 7.835E+06
AL -1.030E+05 7.152E+01 1.403E+05 -8.831E+04 6.373E+00 1.462E+05
Min Appr 1.614E-08 4.206E-03 7.172E-03 4.633E-09 4.364E-03 7.233E-03
Max P-P 9.000E+06 1.306E+24 1.944E+26 2.019E+19 2.107E+24 6.345E+28

Table 4.4 Satistical Data for Region 3 figures




Newtonian PPN2
Variable Minimum Average Maximum Minimum Average Maximum
Esc Time 7.840E+03 9.912E+04 1.507E+07 3.180E+03 1.250E+05 1.000E+08
AL -1.361E+05  -6.232E+02 2.524E+05 -1.698E+05 -5.524E+02 2.509E+05
Min Appr 1.395E-07 3.866E-03 7.340E-03 2.379E-07 2.603E-03 7.390E-03
Max P-P 9.000E+06 1.438E+24 2.692E+26 3.851E+20 1.574E+24 2.047E+26

Table 4.5 Satistical Data for Region 4 figures

4.4 Four Sub-Regions

There are similarities and differences betweerNi&etonian figures and the PPN2
figures. Since regions featuring the differenaesa greatest interest, they are zoomed
in on and explored in greater detail. Below angr fi@gions which feature a fourfold
river—a region in the PPN2 figure which has fourf(ee) alternating bands of smooth

then chaos; a corresponding structure does noeappée Newtonian figure.

4.4.1 Escape Angle
A close up view of the Escape Angle in these fal-segions gives clear images of the
banded rivers of smooth and chaos. Each pair psr(faigures 4.10 through 4.13) is of a
region where the system’s escape angle behavedismoothe Newtonian picture but
consists of four to five chaotic rivers in the PPpi@ure. The chaotic rivers all flow
parallel to one another. Both the Newtonian anNPmaps have a fine blue line.
Figure 4.14 is one example of this line so the eeaday find it in each pair of maps.
The line is made thick and black in Figure 4.14 amts horizontally across the middle of
both images.

Both of these Escape Angle maps of Region 2 shewirk horizontal through the
middle bowing downward. It seems strange thandaem line appears in both maps but

foretells where the chaotic rivers will appearhe PPN2 maps. What causes this line?
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Figure 4.10 Escape Angle of Region 1; Newtonian (top) [0, 2z] and PPN2 (bottom) [0, 2x]
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Figure 4.11 Escape Angle of Region 2; Newtonian (top) [0, 2z] and PPN2 (bottom) [0, 2x]
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Figure 4.12 Escape Angle of Region 3; Newtonian (top) [0, 2z] and PPN2 (bottom) [0, 2x]
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Figure 4.13 Escape Angle of Region 4; Newtonian (top) [0, 2z] and PPN2 (bottom) [0, 2x]
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Figure 4.14 Escape Angle showing fine line of error; Newtonian (left) and PPN2 (right)

The black lines in Figure 4.14 represent unsuéosEsSODA integrations.
Recall that the LSODA integrator is used to stepdimulation along in time. If
LSODA, while trying to calculate a time step, dexgdt can’t perform enough time sub-
steps to complete the time step, it returns arr.eiBo the fine blue line (and all other
random blue lines present) is a string of simutagithat LSODA was not able to
complete.

It is clear from these images that some of thefédd chaotic rivers are broken—
meaning they do not completely bridge one regioohafos to another. It is not known
yet if any unbroken bridges exist. If in fact nobuoken bridges exist, then the overall

chaotic topological genus of the system could lesgnved.

4.4.2 Escape Time

Each Newtonian map (Figures 4.15 through 4.18hefsimulation time shows the same
red outline, representing an extended orbit, betveeeooth and chaotic regions. The
features on the PPN2 map which are consistenttiwitin Newtonian counterpart also
exhibit that red outline. In clear contrast, thbuthe fourfold chaotic rivers are not

outlined in red. This would suggest, contrary fmoasibility discussed in Section 4.3,
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Figure 4.15 Escape Time of Region 1; Newtonian (top) [4.4x10° 6.4x10°) and PPN2
(bottom) [3.2x10°, 8.6x10
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Figure 4.16 Escape Time of Region 2; Newtonian (top) [4.2x10° 1.0x10"] and PPN2
(bottom) [3.2x10°, 1.4x107]
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Figure 4.17 Escape Time of Region 3; Newtonian (top) [4.3x10° 1.4x10] and PPN2
(bottom) [3.1x10°, 7.8x10°]
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Figure 4.18 Escape Time of Region 4; Newtonian (top) [ 7.8x10°, 1.5x10°] and PPN2
(bottom) [3.1x10°, 1.0x10



that the chaotic topology is entirely changed, nmegthe PPN2 fourfold rivers are not
simply caused by a stretching of the smooth/chdmiindaries already existing in the

Newtonian map.

4.4.3 Change in Angular Momentum

The maps of the Change in Angular Momentum (Figdr&8 through 4.22) offer more
information regarding the fine structure of thestubody interaction. The smooth color
gradients follow different contours than those fribra Escape Angle maps. The smooth
color gradients in these Angular Momentum mapspanallel to the smooth/chaotic
boundary line. The smooth color gradients interdez boundaries from all directions as
though they do not influence one another. ThusGhange in Angular Momentum
gives additional information that some part of ¢heooth interactions is in fact

influenced by the shape of the chaotic boundaries.

4.4.4 Minimum Approach Distance
The Minimum Approach Distance (Figures 4.23 throd(?6) exemplifies two more
features of the three body interactions. The feature was already mentioned in
Section 4.3.4 and that is the ovals in the backggiour he ovals which permeate the
background of the Minimum Approach Distance magmsishp very clear in these maps.
The second feature is the fine structure withandhaotic regions in each of these
maps. A clear example of this is the upper righadyant of Figure 4.26 (top). It just so
happens that the fine structure is comprised o€entric ovals (completely unrelated to
the ovals previously mentioned). The chaotic wiawgs run parallel to the

smooth/chaotic boundary.
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Figure 4.19 Change in Angular Momentum of Region 1; Newtonian (top) [-1.0x10°,
9.8x10% and PPN2 (bottom) [-9.6x10%, 1.2x107]
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Figure 4.20 Change in Angular Momentum of Region 2; Newtonian (top) [-1.1x10°,
2.5x10°] and PPN2 (bottom) [-1.1x10°, 2.4x10°]
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Figure 4.21 Change in Angular Momentum of Region 3; Newtonian (top) [-1.0x10°,
1.4x10°] and PPN2 (bottom) [-8.8x10%, 1.4x10]
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Figure 4.22 Changein Angular Momentum of Region 4; Newtonian (top) [-1.3x10°,
2.5x10°] and PPN2 (bottom) [-1.6x10°, 2.5x107]
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Figure 4.23 Minimum Approach Distance of Region 1; Newtonian (top) [2.7x10°®,
6.1x10] and PPN2 (bottom) [1.1x10°’, 6.3x107]
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Figure 4.24 Minimum Approach Distance of Region 2; Newtonian (top) [3.7x107,
6.7x10] and PPN2 (bottom) [3.8x10°’, 6.8x107]
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Figure 4.25 Minimum Approach Distance of Region 3; Newtonian (top) [1.6x107,
7.1x10] and PPN2 (bottom) [4.6x10°°, 7.2x1077]
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Figure 4.26 Minimum Approach Distance of Region 4; Newtonian (top) [ 1.3x10-7,
7.3x10-3] and PPN2 (bottom) [ 2.3x10-7, 7.3x10-3]



4.4.5 Maximum Momentum Dot Product

When viewed from up close, there appears in the dtdaom Dot Product maps (Figures
4.27 through 4.30) a hybrid characteristic betws®ooth and chaotic. For example,
refer to the Newtonian (upper) map of Figure 4.30ere is a red colored region which
gradually blends into a yellow then blue as it disgs outward. But this gradual
blending of colors is accompanied with many spetklets, each representing a
simulation with a drastically different maximum gwbduct. It seems dual-natured that
the Maximum Dot Product could be generally deteadiaccording to its map coordinate
and simultaneously be chaotic and unrelated tchbeigng values. Perhaps its

coordinate can smoothly determine value but ontyiwia percentage.

4.4.6 Escaping Body
Another chaotic feature manifests itself in thedpsog Body maps (Figures 4.31 through
4.34)—a different body is escaping within the faldifrivers than outside the rivers.
First, to understand the coloring, green repredemtly one, orange represents body two,
and red represents body three. In Redipbody two escapes within the rivers whereas
body one was escape in the Newtonian regime. gidR&, body one escaped in the
rivers and body three otherwise. In Reg&ibodies one and three escape within their
respective rivers and body two escapes around therRegiond, body three escapes in
the rivers whereas body two escapes outside tkestiv

The consistent change in escaping body withimtwe PPN2 rivers suggests that

the change taking place in these four regionsthifiePPN2 regime, is also consistent.
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Figure 4.27 Max Momentum Dot Product of Region 1; Newtonian (top) [9.0x10°,
3.8x10%°] and PPN2 (bottom) [9.0x10°, 2.9x10%]
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Figure 4.28 Max Momentum Dot Product of Region 2; Newtonian (top) [9.0x10°,
5.3x10%°] and PPN2 (bottom) [3.7x10%, 1.2x10%]
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Figure 4.29 Max Momentum Dot Product of Region 3; Newtonian (top) [9.0x10°,
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Figure 4.30 Max Momentum Dot Product of Region 4; Newtonian (top) [9.0x10°,
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Figure 4.31 Escaping Body of Region 1; Newtonian (top) [1, 3] and PPN2 (bottom) [1, 3]
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Figure 4.32 Escaping Body of Region 2; Newtonian (top) [1, 3] and PPN2 (bottom) [1, 3]
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Figure 4.33 Escaping Body of Region 3; Newtonian (top) [1, 3] and PPN2 (bottom) [1, 3]
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The way in which the interactions are changing leetwthe Newtonian and PPN2 maps
is constant enough that each manifests not onlyttofive chaotic rivers but a change in

the escaping body between those chaotic rivers.



Chapter 5

Conclusion

5.1 Significance

The gravitational many-body problem has been wedtyéntial in the study of chaos.
Chaos in the Newtonian problem has been studiezhsixtely since the time of Poincaré;
today, studies explore solar systems, extra stdawepary systems, and stellar clusters.
Much less is known, however, about the many-bodplem in general relativity. This
paper explores similarities and differences betwéewtonian and general relativity
gravity as applied to the three body problem.

The complexity of solving the Einstein equatidias,which even the Kepler
problem must be solved numerically, is certainky thost significant obstacle in these
studies. To make the problem tractable for curcemiputational capabilities, | study a
perturbative expansion of the Einstein equatidms post-Newtonian equations to second
order. This is the first fully dynamic investigai of chaos in the three-body problem of

general relativity that | am aware of.



5.2 Findings

The numerical experiments were conducted on aesiiaghily of initial conditions. |
explored the existence of chaos for this systeraldserving qualitatively large
differences in the outcome of different experimeoftslightly varying initial data. The
system consists of a binary pair in a circular oowhich interacts with an incoming third
body. All bodies have equal mass and their masaonfined to a plane. The total
energy of the system is negative to ensure thahi@e bodies can be simultaneously
bound.

Several quantities were monitored during the evafuto characterize the system,
including some conserved quantities for diagngatiposes. The escape angle and
identity of the escaping object are two coordinatlependent measures of the system’s
final state. When making small changes in intiaila, qualitatively large changes in the
final outcome were sometimes observed. This geitgito initial conditions, present in
both the Newtonian model and general relativityhighly suggestive of chaos in the
relativistic three-body problem as well as for Nemiain gravity (already known to be
chaotic). However, | do not attempt to directlyakate Lyaponuv exponents for the
second order post-Newtonian approximation in thaskw

The numerical experiments compare results usitig Hewtonian gravity and the
second order post-Newtonian equations. The ovessililts are very similar suggesting
that most of the interactions are non-relativisfltis is expected when velocities are
small, compared to the speed of light, and semaratre relatively large, compared to
the event horizon. There are some marked diffe®ntcertain regions of the initial

data space; these were discussed extensively ipt€ifeour. Thus, the three-body

64



problem in general relativity apparently sharesdhme chaotic behavior known in

Newtonian gravity, at least in the post-Newtoniamtl

5.3 Future Research

While this study has found evidence of chaos inegalirelativity for three bodies,
several interesting questions remain which wilthee focus of future research. As one
direction for future research, different regiondlad parameter space can be explored.
For example, the bodies can be given different sggskhe motion can be expanded into
three dimensions, or very different families otiali data can be investigated. A second
direction of research would be to analyze the ¢fb¢the expansion order for the post-
Newtonian equations. The work in this study, feample, did not include the first order
post-Newtonian equations. Initial work suggestesha interesting divergences from the
second order equations. Furthermore, additiongsipk could be added to the system by
including higher order radiation terms, such asaiméssion of gravitational waves in the
second and a half post-Newtonian order. A thimhdor additional research might focus
on numerical algorithms and their effect on thegkited solutions. For efficiency |
used an adaptive Adams-Bashforth-Moulton integret@olve the differential equations
in this work. Improvements in the numerical aljums, including some suggested
benefits of symplectic integrators, have not beanened in this thesis. Each avenue
holds great promise of adding to the cumulativeaustnding of Einstein’s equations of

general relativity and the role chaos plays therein



Bibliography

[1] Wikipedia contributors, “Mandelbrot set,”
http://en.wikipedia.org/wiki/Mandelbrot_set (AccedsJanuary 11, 2007).

[2] P. Hut, “Three-Body Problem: Encounters, ”
http://www.ids.ias.edu/~piet/act/astro/three/ (Assed July 05, 2007).

[3] J. Barrow-GreenPoincare and the Three Body Problem, (American Mathematical
Society, London, 1997).

[4] J. J. Lissauer, “Chaotic motion in the Solasteyn,” Reviews of Modern Physics 71
(3), 835—845 (1999).

[5] C. Chicone, B. Mashhoon, D. G. Retzloff, “Changhe Kepler System,” Classical
and Quantum Gravity 16, 507—527 (1999).

[6] K. M. Hock, “Chaos in the relativistic Eulergdslem,” Chaos 6 (4), 564—567 (1996).

[7] J. Hietarinta, S. Mikkola, “Chaos in the onevgiinsional gravitational three-body
problem,” Chaos 3 (2), 183—203 (1993).

[8] F. Burnell, J. J. Malecki, R. B. Mann, “Chaaesan exact relativistic three-body self-
gravitating system,” Physical Review E 69, 01621343D (2004).

[9] P. T. Boyd, S. L. W. McMillan, “Chaotic scatteg in the gravitational three-body
problem,” Chaos 3 (4), 507—523 (1993).

[10] G. Schéfer, “Three-body Hamiltonian in GendRalativity,” Phys. Lett. A 123 (7),

336—339 (1987).

6¢€



Appendix

run pl -drives nbodyPN for many different initial conditions

#l/usr/bin/perl

$pi = 3.1415926535897;

$a =1.7;
#:::::::::::::::::::::::::::::::::::
# nbody driver for 3 chaotic bodies
#:::::::::::::::::::::::::::::::::::
#

# Initialize variables

H

11

$whichorder = 1;
$runnumber = 206;

$phiMin = 0.5333*$pi;
$phiMax = 1*$pi;
$phiNum = 150;

$rhoMin = 0.7*$a;
$rhoMax = 3*$a;
$rhoNum = 150;

#initialize time variables
$tFinal = 100000000;
$tStep = 20;

$which = 3;

#initialize file variables
$stdFileBase = "stdout";
$ICFile = "ICFile.$runnumber";
$errFileBase = "errout";

#initialize constants

$m1l = 1le7;

$m2 = le7;

$m3 = le7;

$MT = $M1+$M2+$m3;

$G = 6.673e-11;

$vc = sgri($G*$m1*($m1+$m2+$m3)/(2*$a*$m3));
$v = sqrt($G*$m1/2/$a);



#initialize phi range
if($phiNum < 2)
{

$dphi = 0;
else
$dphi = ($phiMax-$phiMin)/($phiNum-1);
#initialize rho range
if($rhoNum < 2)
$drho = 0;
else
$drho = ($rhoMax-$rhoMin)/($rhoNum-1);

}
$totalNum = $rhoNum*$phiNum;

#.
# Drive nbody with ICs
H

11

for($r=0; $r<$rhoNum ; $r=3r+1 )#iterate over rho
for($p=0; $p<$phiNum ; $p=$p+1)#iterate over phi

#initialize parameters
$rho=$rhoMin+$r*$drho;
$phi=$phiMin+$p*$dphi;

#print "Evolving: ($r, $p)\n";

#initialize positions
$x1=($a/2)*cos($phi);
Sy1=($a/2)*sin($phi);
$z1=0;
$x2=-($a/2)*cos($phi);
$y2=-($a/2)*sin($phi);;
$22=0;

$x3=30*%a;

$y3=%rho;

$23=0;

#initialize velocities
$vx1=-$v*sin($phi);
$vyl= $v*cos($phi);
$vz1=0;

$vx2= $v*sin($phi);
$vy2=-$v*cos($phi);
$vz2=0;
$vx3=-0.5*$vc;
$vy3=0;

$vz3=0;
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#make transformations to center-o-mass,momentum
SCX=($M1*$x1+$m2*$x2+$m3*$x3)/$mT;
SCY=($M1*$y1+$m2*$y2+$m3*$y3)/$mT;
$CZ=($M1*$z1+$m2*$z2+$m3*$z3)/$mT;

SCVX=($ML*Svx1+$m2*$vx2+$m3*$vx3)/$mT;
SCVY=($Mm1*Svyl+$m2*$vy2+$m3*$vy3)/$mT;
$CVZ=($M1*$vz1+$m2*$vz2+$m3*$vz3)/$mT;

#impliment position transformations
$x1=$x1-$CX;

$y1=$y1-$CY;

$z1=%$z1-$CZ;

$x2=$x2-$CX;

$y2=%y2-3CY;

$22=$22-$CZ;

$x3=$x3-$CX;

$y3=$y3-$CY;

$23=%$z3-$CZ;

#impliment velocity transormations
$vx1=$vx1-$CVX;
Svyl=$vyl-$CVY;
$vz1=$vz1-$CVZ,
$vx2=$vx2-$CVX;
$vy2=%vy2-$CVY;
$vz2=%vz2-$CVZ;
Pvx3=$vx3-$CVX;
$vy3=$vy3-3CVY;
$vz3=%vz3-$CVZ;

#make IC file

open(IC, ">$ICFile");
printf IC "$m1 $x1 $y1 $z1 $vx1 $vyl $v z1\n";
printf IC "$m2 $x2 $y2 $z2 $vx2 $vy2 $v z2\n";
printf IC "$m3 $x3 $y3 $z3 $vx3 $vy3 $v z3\n";
close (IC);

#drive nbody

system("./nbodyPN $tFinal $tStep $G 0 $runnumber < $ICFile >
$stdFileBase ");

system("./nbodyPN $tFinal $tStep $G 2 $runnumber < $ICFile >
$stdFileBase ");

}



Grapher .M -generates the colored figures using data from nbodyPN

clc; clear; close all;
%
% load file
%
fileName = 'results.2.9992.txt";

resolution = 0;%0-ignore; 1-close coupled values; 2 -looser coupled
values

fineTuner = 1;%0 < fT >=1

findErrors = 1,%1=true, O=false

rhoNum = 0;

phiNum = 0;

fprintf(‘'Loading File...\n");

data = load(fileName);

lines = max(size(data));

numVars = min(size(data))-2;

averages = 1l:numVvars;

averages(:) = averages(:)*0;

upperBound = averages;

oldUpperBound = averages;

lowerBound = averages;

oldLowerBound = averages;

a=1.7;

m = 1e7;

G = 6.73e-11;

initialTotalEnergy = -G*(3/8)*m"2/a;

fprintf('Initial Total Energy: %g\n’, initialTotalE nergy);

%
% determine dimensions
%
fprintf('Analyzing Dimensions...\n");
tempPhiNum=1,;
rhoNum=1;
for 1=2:lines
if abs(data(l,1)-data(l-1,1))>1e-8
rhoNum = rhoNum+1;
if tempPhiNum>phiNum
phiNum=tempPhiNum;
end
tempPhiNum=0;
else
tempPhiNum=tempPhiNum+1;
end
end

%
% Establish variable ranges (for normalization)
%
fprintf(Finding Statistical Values...\n")
maxVals=1:numVars;

maxVals(:) = -10000*maxVals(:);
minVals=1:numVars;

minVals(:) = 10000*minVals(:);

line = 0;
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for r = L:rhoNum
for p = 1:phiNum
line =line + 1;
for v = 1:numVars
if (data(line,v+2) == 0 && findErrors)
data(line,v+2) = 900000;
end
if (data(line,v+2) > maxVals(v) && data
data(line,v+2) ~= 0)
maxVals(v) = data(line,v+2);
end
if (data(line,v+2) < minVals(v) && data
data(line,v+2) ~= 0)
minVals(v) = data(line,v+2);
end
averages(v) = averages(v) + data(line,
end
end
end
%set the extreem values---------------
averages(:) = averages(:)/(rhoNum*phiNum);
oldUpperBound(:) = averages(:);
oldLowerBound(:) = averages(:);
numAbove = 1:numVars;
numBelow = 1:numVars;
for resolutionlteration = 1:resolution
upperBound(:) = 0;
lowerBound(:) = 0;
numAbove(:) = 0;
numBelow(;) = 0;
line =0;
for r = 1:rhoNum
for p = 1:phiNum
line =line + 1;
for v = 1l:numVars
if (data(line,v+2) > oldUpperBound(
upperBound(v) = upperBound(v) +
numAbove(v) = numAbove(v)+1;
%fprintf('%g: %g >
%g\n',numAbove,data(line,v+2),oldUpperBound(v));
end
if (data(line,v+2) < oldLowerBound(
lowerBound(v) = lowerBound(v) +
numBelow(v) = numBelow(v)+1;
end
end
end
end
oldUpperBound(:) = upperBound(:)./(numAbove(:)+
oldLowerBound(:) = lowerBound(:)./(numBelow(:)+
end
upperBound(:) = oldUpperBound(:);
lowerBound(:) = oldLowerBound(:);
%variable names
if numVars == 7 vars = ['Escape Angle '; 'Total
'Kinetic Energy '; 'Potential Energy’; 'Linear Mom
Momentum'; 'Escape Time T;

71

(line,v+2) ~=-99 &&

(line,v+2) ~=-99 &&

V+2);

V)

data(line,v+2);

V)

data(line,v+2);

1);
1);

Energy
entum '; '‘Angular



elseif numVars == 6 vars = ['Which Escaped'; 'Escap
Time '; 'Escape KE ';'Escape PE ';'Num Bou
elseif numVars == 11 vars = ['Escape Angle ';'To
";'Escape KE ''Escape PE ";'Momentum
Momentum';'Escape Time ';'Max KE "''Ma
Distance ';'Min Total Dist '];
elseif numVars == 13 vars = ['Escape Angle ';'To
";'Escape KE ''Escape PE ;'Momentum
Momentum';'Escape Time ';'Max KE ''Ma
Distance ';'Min Total Dist ‘;'Fourth Term '
T
else vars = null; fprintfC(UNRECOGNIZED VARIABLE CO
end
variables = cellstr(vars);
%print variable ranges----------------
for n = 1:numVars

fprintf([variables{n},": %g -(%g)-<%g>-(%g)->
%g\n'],minVals(n),lowerBound(n),averages(n),upperBo
end

%
%initialize rho
%
fprintf('Initializing Variables...\n")
rhoMax = max(data(;,1))/a;

rhoMin = min(data(;,1))/a;

drho = (rhoMax - rhoMin)/(rhoNum-1);
rho = rhoMin:drho:rhoMax;

%
%initialize phi
%
phiMax = max(data(:,2));

phiMin = min(data(:,2));

dphi = (phiMax - phiMin)/(phiNum-1);
phi = phiMin:dphi:phiMax;

%
%initialize vars
%
var = 1:numVars;
errorRange = 1:100;
errorArray = zeros(100);

%
%generate grid
%
fprintf(‘Generating Grid...\n")
[Var,Rho,Phi] = ndgrid(var,rho,phi);
[RHO,PHI] = ndgrid(rho,phi);
matrixArray = 0.*Var.*Rho.*Phi;
dispMatrix = 0.*RHO.*PHI;
errorMatrix = 0.*RHO.*PHI;

%
%load matrices
%

e Angle '; 'Escape
nds ;
tal Energy
"'Angular
xP.P "'Min
tal Energy
"'Angular
xP.P "'Min
;'Which Escaped

NFIGURATIONY);

und(n),maxVals(n));



fprintf('Loading Matrices...\n")
line = 0;
for r = 1:rhoNum
for p = 1:phiNum
line =line + 1;
for v = 1:numVars
if (abs(maxVals(v)-minVals(v)) < 1e-10)
matrixArray(v,r,p) = 0;
else
if (resolution > 0)
if (data(line,v+2) > (fineTuner*u
fineTuner)*(averages(v))))
data(line,v+2) = fineTuner*up
fineTuner)*(averages(v));
end
if (data(line,v+2) < (fineTuner*|
fineTuner)*(averages(v))))
data(line,v+2) = fineTuner*lo
fineTuner)*(averages(v));
end
if(0 == abs((fineTuner*upperBound
fineTuner)*(averages(v)))-(fineTuner*lowerBound(v)+
fineTuner)*(averages(v)))))
matrixArray(v,r,p) = 0;
else
matrixArray(v,r,p) = 65*(data
(fineTuner*lowerBound(v)+(1-
fineTuner)*(averages(v))))/((fineTuner*rupperBound(v
fineTuner)*(averages(v)))-(fineTuner*lowerBound(v)+
fineTuner)*(averages(v))));
end
else
matrixArray(v,r,p) = 65*(data(lin
minVals(v))/(maxVals(v)-minVals(v));
end

end
if (data(line,v+2) == -99)%a quick fix
matrixArray(v,r,p)=0;
end
end
errorMatrix(r,p)= abs((data(line,4)-
initialTotalEnergy)/initial TotalEnergy);
%errorMatrix(r,p) = min(100,errorMatrix(r,p))
currentError = double(errorMatrix(r,p));
currentError = intl16(cast(currentError,'int16
if (currentError > 99)
currentError = 99;
end
errorArray(currentError+1) = 1 + errorArray(c
end
end

%
%display matrices
%
fprintf('Displaying Matrices...\n")

pperBound(v)+(1-

perBound(v)+(1-

owerBound(v)+(1-
werBound(v)+(1-
(V)+(1-

(1-

(line,v+2)-

)*+(1-
(1-

e,v+2)-

)

urrentError+1);



for v = numVars:-1:1
for r = 1:rhoNum
for p = 1:phiNum
dispMatrix(r,p) = matrixArray(v,r,phiNu
end
end

figure
image([phiMax phiMin], [rhoMax/a rhoMin/a], dis
set(gca, 'YDir', 'normal’);
ylabel({'Impact Parameter (units of a)',"});
xlabel({",'Phase Angle (radians)?});
title({variables{v}, fileName,"});

end

figure

surf(errorMatrix);

titte({"Momentum-ness', fileName,"});

figure

errorArray(:) = errorArray(:)/(r*p);
bar(errorArray(1:100));

ylabel({'This percent of simulations...", "});
xlabel({'...had this percent error.', "});
titte({'Error Spread', fleName, "});
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m+1-p);

pMatrix);



Hami ItEqs.map -generates the Hamiltonian and subsequent equations

M := array(1..3);

M[1] := Ma;

M[2] := Mb;

M[3] := Mc;

P := array(1..3,1..3);
P[1,1] := pax;

P[1,2] := pay;

P[1,3] := paz;

P[2,1] := pbx;

P[2,2] := pby;

P[2,3] := pbz;

P[3,1] := pcx;

P[3,2] := pcy;

P[3,3] := pcz;

Q :=array(1..3,1..3);
Q[1,1] := qax;
Q[1,2] := qay;

Q[1,3] := gaz;

Q[2,1] := gbx;
Q[2,2] := gby;

Q[2,3] := gbz;
Q[3,1] := qcx;

Q[3,2] :=qcy;

Q[3,3] :=qcz;

# rfi,jl is the distance between mass i and mass j.
3N

r:=array(1..3,1..3);
forifrom 1to 3 do
for j from 1 to 3 do
r[i,jl := sqrt(sum((QJi,ss]-QJj,ss])"2','ss'=1.. 3));
od;od;

n is the normal vector: n_{ab} =x_a-x_b.
first two indicies label masses; third index is t he component.

HHH

n:=array(1..3,1..3,1..3);
forifrom 1to 3 do
for j from 1 to 3 do
for k from 1 to 3 do

if (j <>1i) then
n[i,j,K] := (Q[i.K] - QL. K]/r[i.jl;
else
nfi,j,k] := 0;
end if;
od;
od;
od;



Define P72

H* H

P2 := array(1..3);
forifrom 1 to 3 do
P2[i] := sum('P[i,ss]"2','ss'=1..3);

od;

HHH RS R R R R R R R R R R R HHAH TR R R
#

# Define the terms of the sum

#

HH A B R B R B B T B R A R R HHEAHH R R R R
T := array(1..18);

Term 1

H H

T[1] := sum(M['ss",ss="1..3");

H e emmmmmmmmmmmmmmmee e

T

# Term 2

H e mmmmmmmmmm————— e ——————

?[2] = 1/2*sum('P2[ss]/M[ss]','ss'=1..3);

Homm e
# Term 3

Hommmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmeee e
T[3]:=0;

forifrom1to 3do
for jfrom 1 to 3 do

if (j <> i) then
T[3] := T[3] + M[iI*M[}/r[i,j;

end if;
od;
od;
T[3] := -T[3])/2;
; Terma T
T[4] := -1/8*sum(M[ss]*(P2[ss//M[ss]*2)"2" 'ss'=1. 3
; Terms T
7'IT'[5] -0

forifrom1to 3 do
for j from 1 to 3 do

if (j <> i) then
T[5] := T[5] + M[II*M[j)/r[i,j]*(6*P2[i)/M[i]*2 \
- 7/(M[i*M[j])*sum('P[i,ss]*PJj,ss]',' ss'=1..3) \
- sum('n[i,j,aa]*P[i,aa]','aa'=1..3) \
*sum('n[i,j,bb]*P[j,bb]’,'bb'=1..3 Y(M[IT*M[D);
end if;
od;
od;

7€



T[5] := -G/4*T[5];

#

# Term 6
#

T[6] :=0;

forifrom1to 3 do
for j from 1 to 3 do
for k from 1 to 3 do
if (j <>i) then
if (k <> i) then
T[6] = T[6] + M[IP*M[*M[K]/(r[i,j]*r[i,k])
end if;

end if;
od;
od;
od;
T[6] := 1/2*G"2*T[6];
Ho e
# Term 7
Hm e e
T[7] := 1/16*sum('M[ss]*(P2[ss]/M[ss]"2)"3','ss'=1. .3);
Hm e e
# Term 8
Hm e e
T[8] :=0;

forifrom 1to 3 do
for jfrom 1 to 3 do
if (j <> i) then
T[8] := T[8] + MI*M[]/r[i,j] * (\
10*(P2[i)/M[I1"2)"2 - 11*P2[i]*P2[j}/(M
- 2[(M[I]*M[)"2*(sum('P[i,ss]*P[j,ss]',
+

10/(M[i*M[ID"2*P2[i1*(sum('n[i,j,ss]*P[j,ss]','ss
-12/(M[i[*M[)"2*sum('PJi,ss]*PJj,ss]','
*sum('nli,j,ss]*P[i,ss]','ss'=1..3)\
*sum('nli,j,ss]*P[j,ss]','ss'=1..3)\
- 3/(M[IT*M[D"2*(sum('n[i,j,sS]*PJi,ss]
*(sum('n[i,j,ss]*PJj,ss]','ss'=1..3)

end if’;
od;
od;
T[8] := G/16*T[8];
#
# Term 9
#
T[9] :=0;

forifrom 1to 3 do
for j from 1 to 3 do
for k from 1 to 3 do
if (j <> i) then
if (k <> i) then
nij_pi := sum('n[i,j,ss]*PJi,ss]’,'ss'=1..3);

[I*M[D)"2 \
'ss'=1..3))"2 \

'=1..3))"2\
ss'=1..3)\

''ss'=1..3))"2\
"2



nij_pj := sum('n[i,j,ss]*PJj,ss]’,'ss'=1..3);
nij_pk := sum('n[i,j,ss]*P[k,ss]’,'ss'=1..3);

nik_pk := sum('n[i,j,ss]*P[k,ss]','ss'=1..3);

nij_nik := sum('n[i,j,ss]*nl[i,k,ss]','ss'=1..
pi_pj :=sum('P[i,ss]*P[j,ss]’,'ss'=1..3);
pj_pk :=sum('P[j,ss]*P[k,ss],'ss'=1..3);

T[9] := T[] + MEPMEIMIKI/(Ti *r[i. k)
18*P2[i]/M[i]"2 + 14*P2[j/M[j]"2 -2
- 50*pi_pj/(M[II*M[i]) + 17*pj_pk/(M[j
- 14*nij_pi*nij_pj/(M[I*M[]]) \
+ 14*nij_pj*nij_pk/(M[[I*M[K]) \
+ nij_nik*nij_pj*nik_pk/(M[jI*M[K])
);
end if;
end if;
od;
od;
od;
T[9] := G"2/8*T[9];

Term 10

H

T[10]:=0;

forifrom 1to 3 do

for jfrom 1 to 3 do

for k from 1 to 3 do

if j <> i) then
if (k <> i) then

nij_pi := sum('n[i,j,ss]*PJi,ss]','ss'=1..3);
nij_pj := sum('n[i,j,ss]*PJj,ss]’,'ss'=1..3);
nij_pk := sum('n[i,j,ss]*P[k,ss]’,'ss'=1..3);

nik_pk := sum('n[i,j,ss]*P[k,ss]','ss'=1..3);

nij_nik := sum('n[i,j,ss]*nli,k,ss]','ss'=1..
T[10] := T[10] + M[iIP*M[I*M[K]J/(r[i,j]*2)*(\
2*nij_pi*nik_pk/(M[iI*M[K]) \
+ 2*nij_pj*nik_pk/(M[I*M[K]) \
+ 5*nij_nik*P2[K]/M[k]*2 \
- nij_nik*nik_pk~2/M[K]"*2 \
- 14*nij_pk*nik_pk/M[K]"2

end if;

end if;
od;
od;
od;
T[10] := G"2/8*T[10];
#
# Term 11
#
T[11]:=0;

forifrom1to 3 do
for jfrom 1 to 3 do
if (j <>1i) then
T[11] := T[11] + M[i]*2*M[j)/r[i,j]~2* (\

7€

3);

*(\
*ij_pir2/M[j]°2 \
I*MK]) \

3);



P2[i)/M[i]*2 + P2[jIIM[j]*2 \
- 2[(M[i]*M[j])*sum('P[i,ss]*PJ[j,ss]’,'s
);

end if;
od;
od;
T[11] := G"2/4*T[11];
#
# Term 12
#
T[12]:=0;

for a from 1 to 3 do
for b from 1 to 3 do
for ¢ from 1 to 3 do
if (b <> a) then
if (c <> a) then

if (c <> b) then

for i from 1 to 3 do

for jfrom 1 to 3 do

T[12] := T[12] + M[a]*M[b]*M[c]/((r[a,b]
r[c,a])"2) \

* (n[a,b,i] + n[a,c,i])*(n[a,b,j

* ( 8*P[a,i]*P[c,jl/M[a]/M[c] \
- 16*P[a,j]*P[c,i)/M[a)/M[c]
+ 3*P[a,i]*P[b,j}/M[a]/M[b] \
+ 4*P[c,i]*P[c,j/M[c]*2 \
+ P[a,i]*P[a,j/M[a]*2 \

od;
T[12] := G*2/2*T[12];

Term 13

H

T[13]:=0;
forafrom 1to 3 do
for b from 1 to 3 do
for ¢c from 1 to 3 do
if (b <> a) then
if (c <> a) then
if (c <> b) then
pa_pb := sum('P[a,ss]*P[b,ss]','ss'=1..3);
pa_pc := sum('P[a,ss]*P[c,ss]','ss'=1..3);

nab_pa := sum('n[a,b,ss]*P[a,ss]’,'ss'=1..3
nab_pb := sum('n[a,b,ss]*P[b,ss]’,'ss'=1..3
nab_pc := sum('n[a,b,ss]*P[c,ss]','ss'=1..3

T[13] := T[13] + M[a]*M[b]*M][c]/(r[a,b]*(r]
r[c,a])\

s'=1..3)\

+r[b,c] +
1+n[c,b,j)\

\

);
);
).
a,b] +r[b,c] +



* ( 8*(pa_pc - nab_pa*nab_pc)/(M[a]*
- 3*(pa_pb - nab_pa*nab_pb)/M[a]/M
- 4*(P2[c] - nab_pc”*2)/M[c]*2 \
- (P2[a] - nab_pa”2)/M[a]*2);

end if;
end if;
end if;

od;
od;
od;
T[13] := 1/2*G"2*T[13];
#
# Term 14
#
T[14]:=0;

for a from 1 to 3 do
for b from 1 to 3 do
for ¢ from 1 to 3 do
if (b <> a) then
if (c <> b) then
T[14] := T[14] + M[a]*2*M[b]*M[c]/(r[a,b]"2*r
end if;

end if;
od;
od;
od;
T[14] := -1/2*G"3*T[14];
#
# Term 15
#
T[15] :=0;

for a from 1 to 3 do
for b from 1 to 3 do
for ¢ from 1 to 3 do
if (b <> a) then
if (c <> a) then
T[15] := T[15] + M[a]*2*M[b]*M[c]/(r[a,b]"2*r
end if;

end if;
od;
od;
od;
T[15] := -3/8*G"3*T[15];
#
# Term 16
#
T[16] :=0;

for a from 1 to 3 do
for b from 1 to 3 do
for c from 1 to 3 do
if (b <> a) then
if (c <> a) then
if (c <> b) then

M[b]) \
[b]\

[b.c])

[a.c])

8C



T[16] := T[16] + M[a]*2*M[b]*M[c]/(r[a,b]*r [a,c]*r[b,c])
end if;
end if;
end if;
od;
od;
od;
T[16] := -3/8*G"3*T[16];

#
# Term 17
+.

for a from 1 to 3 do
for b from 1 to 3 do
for ¢ from 1 to 3 do
if (b <> a) then
if (c <> a) then
if (c <> b) then

T[17] := T[17] + M[a]*2*M[b]*M[c]/(r[a,b]*3 *r[a,c]*3*r[b,c]) \
*( 18*r[a,b]*2*r[a,c]"2 - 60*r[a,b]* 2*r[b,c]"2\
- 24*r[a,b]*2*r[a,c]*(r[a,b]+r[b,c]) \

+ 60*r[a,b]*r[a,c]*r[b,c]*2 \
+ 56*r[a,b]*3*r[b,c] \

- 72*r[a,b]*r[b,c]"3 \

+ 35*r[b,c]"4 \

+ 6*r[a,b]"4 );

end if;
end if;
end if;

od;
od;
od;
T[17] := -1/64*G"3*T[17];
# ____________________
# Term 18
# ....................
T[18] :=0;

for a from 1 to 3 do
for b from 1 to 3 do
if (b <> a) then
T[18] := T[18] + M[a]"2*M[b]*2/r[a,b]*3
end if;
od;
od;
T[18] := -G"3/4*T[18];

R R R R R R R R R R
#

# Construct the Hamiltonian

#

HHHH R R R R R R R T HHHHHH R
H := sum('T[ss]','ss'=1..18);

BHAHHHHH A R R BHAHHHHHHHH AR
#
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# Generate Hamilton's Equations

#

HHAHH R R R R R R R R R R HHAHHH AR H A
RHS := array(1..18);

RHS[1] := diff(H,P[1,1]):
RHS[2] := diff(H,P[1,2]):
RHSI[3] := diff(H,P[1,3]):

RHS[4] := diff(H,P[2,1]):
RHS[5] := diff(H,P[2,2]):
RHS[6] := diff(H,P[2,3]):
RHS[7] := diff(H,P[3,1]):
RHS[8] := diff(H,P[3,2]):
RHS[9] := diff(H,P[3,3]):

RHS[10] := - diff(H,Q[1,1]):

RHS[11] := - diff(H,Q[1,2]):

RHS[12] := - diff(H,Q[1,3]):

RHS[13] := - diff(H,Q[2,1]):

RHS[14] := - diff(H,Q[2,2]):

RHS[15] := - diff(H,Q[2,3]):

RHS[16] := - diff(H,Q[3,1]):

RHS[17] := - diff(H,Q[3,2]):

RHS[18] := - diff(H,Q[3,3]):

# Write equations to Fortran
SN
with(codegen):

fortran(RHS,optimized,precision=double,filename="ha megs.h’);



nbodyPN f -runs (integrates) the three-body interaction until ejection

program nbodyPN
implicit none

C
C whichescaped: which body left unbound
C escapeangle: trajectory of escaped body
C numcloseapp: number of close approaches
C binaryenergy: change in binary system energy
C escapetime: when the body escaped
C escaperadius: distance that a body has escape
C tO: approx time when 3 bodies first meet
C
real*8 escapeangle, binaryenergy, esc
real*8 escaperadius, binaryecc, rho,
real*8 escapeke,escapepe
integer whichescaped, numcloseapp
integer numBoundChanges, bounded
logical escaped
real*8 maxke, maxpdotp, minr, minrtot
real*8 fourthterm
C
C Original variables
C
real*8 dvvdot
character*5 cdnm
parameter ( cdnm = 'nbodyPN")
integer iargc, indInb,
real*8 r8arg
real*8 r8_never
parameter (r8 never =-1.0d-60)
c
c ftfinal: Final integration time
c dtout: Output interval
C ntout: # of output times (computed)
c trace: Enables tracing of "conserved
c
real*8 tfinal, dtout
integer ntout
logical trace
c
¢ Common communication with routine ‘fcn' in 'f
c
¢ Includes defn of maximum # of particles, stor
c for particle masses, Newton's gravitational
c constant...
c

include ‘fcnPN.inc'
integer maxneq, neq

apetime
phi, tO

idarg



C
C
C

(¢

(@]

(¢

parameter ( maxneq =6 * maxnp )

Storage for energy, momentum, center of mass

real*8 ke(maxnp), pe(maxnp)

real*8 etot, ketot,

real*8 pmom(d,maxnp), jmom(d,maxnp),
& ptot(d), jtot(d)

real*8 com(d)

character*100 fileName
character*11 defaultFileName
parameter ( defaultFileName = 'results.dat

LSODA Variables.

external fcno, fenl, fen2, jac

real*8 y(d,2,maxnp)
real*8 tbgn, tend

integer itol

real*8 rtol, atol

integer itask, istate, iopt
integer [rw

parameter (Irw =22 + 9 * maxneq + maxneq
real*8 rwork(lrw)

integer liw

parameter ( liw =20 + maxneq)
integer iwork(liw)

integer jt

real*8 tol

real*8 default_tol, default G

parameter ( default_tol = 1.0d-8)
parameter (default G =1.0d-2)

Other locals

integer a, i, j, runnumber, whichorder
& itout

logical Itrace

parameter( Itrace = .true. )

vars for glbpp
real*8 min_radius, mass_to_radius
real*8 max_radius

Fix gravitational constant

G =5.0d-2
tol=default_tol
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c

Parse command line arguments (initial values)

o

OO0 000

o

if(iargce() .It. 3) then
write(0,*) 'Error 1'
go to 900

end if

tfinal = r8arg(1,r8_never)
dtout = r8arg(2,r8_never)
G =r8arg(3,default_G)
whichorder = r8arg(4,r8_never) + 0.1
runnumber = r8arg(5, r8 never) + 0.1
trace = .false.
if( tfinal .eq. r8_never .or. dtout.eq.r
& .or. dtout .le. 0.0dO .or. whichorder .|
& .or. whichorder .gt. 3 .or. runnumber .|
write(0,*) 'Error 2'
go to 900
end if

(@]

Compute number of uniform time steps requeste

(@]

ntout = tfinal / dtout + 1.5d0

O000

Get particle masses, initial positions and
velocities.

O0O00O0

OO0 00

call getivs('-',m,y,d,maxnp,np)

neq=6*np
escaperadius=1.01*(y(1,1,3)-0.5*(y(1,1,1)+y(1
rho=y(2,1,3)-0.5*(y(2,1,1)+y(2,1,2))
phi=atan2(y(2,1,1)-y(2,1,2),y(1,1,1)-y(1,1,2)
t0=-y(1,1,3)/y(1,2,3)

numBoundChanges=0

bounded=4

maxke =0

maxpdotp =0

minr = 10000

minrtot = 100000

Dump # of particles, particle masses, initial
time and initial particle positions to standa
output.

min_radius = 0.2d0
max_radius = 0.4d0
mass_to_radius = 0.1d0
tbgn = 0.0d0

Compute initial energy, center of mass, linea
and ang mom about center of mass and output i
standard error tracing is enabled.

1,2)))**2

)



call clce(y,m,ke,pe,ketot,petot,etot,G,d,n
call clccom(y,m,com,d,np)
call clcmom(y,m,pmom,jmom,ptot,jtot,com,d,

c
c Set LSODA parameters ...
c

itol =1

rtol = tol

atol =tol

itask =1

iopt =1

C user defined jacobian=1, internally generated=2
to=2

*kkk

*kk

*kkk

C:::::::::::::::::::::::::::::::::::
Cc kkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkhkhkxkx
c kkkkkkkkhkkkkkkk Begln Integrat|0n *kkkkkkkhkhkk
C:::::::::::::::::::::::::::::::::::
do itout = 2, ntout
tend = tbgn + dtout
c
c Check for escaping body
c
call extreema(y,m,maxke,maxpdotp,minr,minrt
call hasescaped(y,escaperadius,escaped,whic
& pe,ke,m,d,np,t0,tend)
if (escaped) then
go to 500
end if
c
c Call LSODA Integrator
c
istate =1

¢ iword(6) = max number of steps per run
iwork(6) = 100000

if (whichorder .eq. 0) then

call Isoda(fcn0,neq,y,tbgn,tend,
& itol,rtol,atol,itask,
& istate,iopt,rwork,Irw,iwork, liw
end if

if (whichorder .eq. 1) then
call Isoda(fcnl,neq,y,tbgn,tend,
& itol,rtol,atol,itask,
& istate,iopt,rwork,Irw,iwork, liw
end if
if (whichorder .eq. 2) then
call Isoda(fcn2,neq,y,tbgn,tend,
& itol,rtol,atol,itask,
& istate,iopt,rwork,Irw,iwork, liw

8¢

ot,fourthterm)
hescaped,

Jjac,jt)

Jjac,jt)

Jjac,jt)



end if

c

c Check accuracy error istate = -2, -3; Recal

c

234  if (istate .eq. -2 .or. istate .eq. -3) th

rtol = rtol * iwork(14)*2

atol = atol * iwork(14)*2

if (rtol .ge. 1e10 .or. atol .ge. 1e10
istate = 1
go to 235

end if

istate = 3

iwork(11) =0

iwork(6) = 50000

if (whichorder .eq. 0) then
call Isoda(fcn0,neq,y,tbgn,tend,

& itol,rtol,atol,itask,
& istate,iopt,rwork,Irw,iwork, liw
end if
C----------- 2 Order

if (whichorder .eq. 2) then
call Isoda(fcn2,neq,y,tbgn,tend,

& itol,rtol,atol,itask,
& istate,iopt,rwork,Irw,iwork, liw
end if
(S Loop accuracy error to top-------------
go to 234
end if

c
c Check for unhandled LSODA error
c
235 if(istate .lt. 0) then
go to 950
end if

is enabled.

O0O00O0

call clce(y,m,ke,pe,ketot,petot,etot,G,

call clccom(y,m,com,d,np)

call clcmom(y,m,pmom,jmom,ptot,jtot,com

if (trace ) then

write(0,5000) tend,
com(1), com(2), com(3),
etot, ketot, petot,
sqrt(dvvdot(ptot,ptot,d))
sqrt(dvvdot(jtot,jtot,d))

0 format(1p,10E25.16)

end if

&
&
&
&

a
o
o

c *kkkkkkkkkkkkk End Of |ntegrat|on |00p.*~k**~k*

Compute energy, COM, linear momentum and a
momentum about the COM and output if traci

) then



o000
m
=
=
7
1

(@]

¢ EXIT: Successful Integration

500

continue

call clce(y,m,ke,pe,ketot,petot,etot,G,d,np)
call clccom(y,m,com,d,np)

call clcmom(y,m,pmom,jmom,ptot,jtot,com,d,np)

call clcexit(tend,whichescaped,y,m,ke,pe,d,np
numcloseapp,binaryenergy,escapea

&
&

escapetime,binaryecc,escapeke,e

call fileout(rho,phi,escapeangle,etot,ketot,p

&
&
&

whichescaped,escapetime,binaryecc,es
whichorder,runnumber,maxke,maxpdotp,

fourthterm)

stop

c

¢ EXIT: Wrong User Parameters

o

900

&

continue
write(0,*) 'usage: '//cdnm//

' <t final> <dt out> [<tol> <tr
write(0,*) "'
write(0,*) ' Masses, initial positio
write(0,*) ' velocities of particles
write(0,*) ' standard input'

stop

o

¢ EXIT: LSODA Error

C
950

continue
binaryecc=-1
whichescaped=-1
binaryenergy=-1
numcloseApp=-1
write(0,*) 'nbody: Error return from LSODA
write(0,*)' rho =',rho
write(0,*)' phi =",phi
write(0,*)' cdnm ="',cdnm
write(0,*)' istate = ',istate
write(0,*)" itout = "'itout
write(0,*)' ntout = ',ntout
write(0,*)' tbgn =",tbgn
write(0,*)' tend =",tend
call fileout(rho,phi,escapeangle,etot,keto

hgle,
scapepe)

etot, ptot, jtot,

capeke,escapepe,
minr,minrtot,

ace>]'

ns and’
read from'

t,petot, ptot, jtot,

8¢



(¢

O 00

& whichescaped,escapetime,binaryecc,es
& whichorder,runnumber,maxke,maxpdotp,

& fourthterm)
write(0,*) "'
stop

stop

end

Subroutines

Computes energy quantities: individual kineti
and gravitational potential energies, and tot

and PE and total mechanical energy.

subroutine clce(y,m,ke,pe, ketot,petot,etot,G,

implicit none
real*8 dvsum
integer  d, np

real*8 y(d,2,np), m(np), ke(np),

& ketot, petot, etot,
real*8 vsq, rsq, cl
integer  a, i, j

doi=1,np
vsg = 0.0d0
doa=1,d
vsqg = vsq + y(a,2,i)**2
end do
ke(i) = 0.5d0 * m(i) * vsq

pe(i) = 0.0d0
cl =-G *m(i)
doj=1,np
if(j .ne. i) then
rsq = 0.0d0
doa=1,d
rsq =rsq + (y(a,1,) - y(a,1,
end do

OO0 00

Associate 1/2 the potential energ

interaction with each particle.

pe(i) = pe(i) + 0.5d0 * c1 * m(j)
end if

end do
end do
ketot = dvsum(ke,np)
petot = dvsum(pe,np)
etot = ketot + petot
return

end

capeke,escapepe,
minr,minrtot,

/ sqrt(rsq)
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o
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(@]

Computes individual linear and angular moment um about
specified origin and total linear and angular momentum
about said origin. Currently implemented onl y for
d=3.
subroutine clcmom(y,m,pmom,jmom,ptot,jtot,o,d ,np)
implicit  none
integer  d, np
real*8 y(d,2,np), pmom(d,np), jmom (d,np),
& m(np), ptot(d), jtot (d),
& o(d)
integer  a, [

call dvis(ptot,0.0d0,d)
call dvls(jtot,0.0d0,d)
if(d .ne. 3) then

write(0,*) ‘clcmom: Not implemented for d.ne. 3"’
write(0,*) ‘clcmom: Invoked with d =", d
return

end if

Linear momentum

doi=1,np
doa=1,d
pmom(a,i) = m(i) * y(a,2,i)
ptot(a) = ptot(a) + pmom(a,i)
end do
end do

Angular momentum

doi=1,np
jmom(1,i) = (y(2,1,i) - 0(2)) * pmom(3, i) -
& (y(3,1,i) - 0o(3)) * pmom(2, i)
jmom(2,i) = (y(3,1,i) - o(3)) * pmom(1, i) -
& (y(2,1,i) - o(1)) * pmom(3, i)
jmom(3,i) = (y(1,1,i) - o(1)) * pmom(2, i) -
& (y(2,1,i) - o(2)) * pmom(1, i)
doa=1,d
jtot(a) = jtot(a) + jmom(a,i)
end do
end do
return
end
Computes center-of-mass of distribution of pa rticles.

subroutine clccom(y,m,com,d,np)
implicit  none
real*8 dvsum
integer  d, np
real*8 y(d,2,np), m(np), com(d)

9C



real*8 mtotm1
integer  a, [

call dvis(com,0.0d0,d)
doi=1,np
doa=1,d
com(a) = com(a) + m(i) * y(a,1,i)
end do
end do
call dvsm(com,1.0d0/dvsum(m,np),com,np)

return
end

double precision function dvvdot(v1,v2,n)
implicit none
real*8  v1(*), v2(*
integer i, n

dvvdot = 0.0d0
doi=1,n
dvvdot = dvvdot + v1(i) * v2(i)
end do
return

end

double precision function dvsum(v,n)
implicit none
real*8  v(*)
integer i, n

if(n.gt. 0) then
dvsum =v(1)
doi=2,n

dvsum = dvsum + v(i)

end do

end if

return

end

subroutine dvis(vl,s1,n)
implicit none
real*8  v1(*)
rea*8 sl
integer i, n
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doi=1,n

v1(i) =s1
end do
return
end
C:::::::::::::::::::::::::::::::::::
¢ Vector-scalar multiply
C:::::::::::::::::::::::::::::::::::

subroutine dvsm(vl,s1,v2,n)

implicit none
real*8  v1(*), v2(*

real*8 sl
integer i, n
doi=1,n
v2(i) = s1 * vi(i)
end do
return
end

C

C Has abody escaped and is the simulation over

C

subroutine hasescaped(y,escaperadius,escaped,

&

pe,ke,m,d,np,t0,tend)
implicit none
integer  d, np, whichescaped
real*8  y(d,2,np), m(np), escaperadiu
real*8  pe(np),ke(np),t0,tend
logical escaped
integer i
whichescaped=1
escaped=.false.
doi=1,3
if ((y(1,1,i)**2+y(2,1,i)**2+y(3,1,i)
.ge.escaperadius*40.0.and.
(pe(i)+ke(i)).ge.0) then
whichescaped=i
escaped=.true.
return
end if
end do

end

C

C Calculate exit conditions

C

subroutine clcexit(tend,whichescaped,y,m,ke,p

&
&

numcloseapp,binaryenergy,escapea
escapetime,binaryecc,escapeke,e
implicit none

integer numcloseapp
real*8 escapeke, escapepe
real*8 binaryenergy, escapeangle, escape

whichescaped,

*% 2)

scapepe)

time, binaryecc



integer d, np, whichescaped
real*8 tend, y(d,2,np), m(np), ke(np), p e(np)
escapeke=ke(whichescaped)
escapepe=pe(whichescaped)
escapetime=tend
numcloseapp=0
binaryecc=0
binaryenergy=ke(1)+ke(2)+ke(3)
escapeangle=atan2(y(2,2,whichescaped),y(1 ,2,whichescaped))
if(escapeangle.lt.0) then

escapeangle=escapeangle+2*3.1415926 5
end if

Calculate max and min values to explain 2nd order divergence

subroutine extreema(y,m,maxke,maxpdotp,minr ,minrtot,
& fourthterm)
implicit none
real*8 y(3,3,2), m(3), maxke, maxpdot p
real*8 minr, minrtot
real*8 tempr, tempke, tempdot, fourth term
integer a, b,d
——————— minimum distance between planets-----------

doa=1,3
dob=1,3
if (a.ne.b) then
tempr = sqgrt((y(1, 1, a)-y(1, 1, b))**2+
& (v(2, 1, a)-y(2, 1, b))**2+
& (y(3! 11 a)-y(3, 11 b))**z)
if (tempr.It.minr) then
minr=tempr
end if
end if
end do
end do
------- maximum kinetic energy--------------------- B
tempke =0
doa=1,3
dob=1,3
tempke = tempke + y(b, 2, a)**2/2 /m(a)
end do
end do

if (tempke.gt.maxke) then

maxke = tempke
end if

------- minimum total distance of all bodies from e achother----------

tempr=0
doa=1,3
dob=1,3

if (a.ne.b) then

tempr = tempr+m(a)*m(b)/

& sgrt((y(1, 1, a)-y(1, 1, b))**2+
& (y(2! 11 a)-y(2, 11 b))**2+
& (y(3! 11 a)-y(3, 11 b))**Z)

end if



end do
end do
if (tempr.It.minrtot) then
minrtot = tempr
end if
——————— maximum dot product of 2 body momentums----
tempdot =0
doa=1.3
dob=1;3
if (a.ne.b) then
dod=1,3
tempdot=tempdot+m(a)*m(b)*y( d,2,a)*y(d,2,b)
end do
end if
end do
end do
if (tempdot.gt.maxpdotp) then
maxpdotp = tempdot
end if

——————— fourth term
tempdot =0
doa=1.3
tempdot = tempdot + m(a)*(y(1,2,a)**2+ y(2,2,a)**2+
& y(3,2,a)**2)**2
end do
if (fourthterm.gt.tempdot) then
fourthterm = tempdot
end if
end
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