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Abstract

To date, single-beam laser traps have not been available for opaque or reflective
particles, which are high-intensity fleeing. Three potential laser traps for opaque and
reflective particles are Chaloupka’s trap, the Poisson trap, and the spherical aberration
trap. The latter two are being developed at Brigham Young University, and are presented
for the first time here. The Poisson trap is best characterized and clearly customizable for
experimental application. The spherical aberration trap is not well understood as yet, but
promises to be the simplest to set up and use once it is characterized.

The setup for the Poisson trap also provides an opportunity to examine the
behavior of the Schrédinger wave equation in two dimensions. The paraxial wave
equation, which describes laser propagation, has the same form as the Schrédinger wave

equation where the longitudinal dimension plays the role of time. Following this

analogy, negative centrifugal force is demonstrated.
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Chapter 1: Introduction

Laser traps use laser light to move, manipulate and contain small particles. Light
has momentum. Estimates of how much force light exerts on a particle can be
determined by classic Newtonian conservation of momentum [1]. Clearly, translucent
particles experience forces very different from those exerted on opaque or reflective
particles by the same light. It has been shown that translucent particles are high-intensity
seeking [2]; they stay in a laser focus.

Opaque or reflective particles are high-intensity fleeing, and cannot be trapped in
a simple laser focus. They must be surrounded by, but not in, high-intensity light to be
trapped. To date, no simple laser traps have been developed for opaque or translucent
particles. This thesis discusses and compares three potential laser traps for opaque or
reflective particles.. All profiles for these traps are investigated by numerical evaluation

of the Fresnel diffraction integral. [3]

1.1 Chaloupka’s Trap

Chaloupka et al. developed a ponderomotive-optical trap for free electrons [4].
This trap has a dark spot at the center of a laser focus. To the author’s knowledge, it has
never been used to trap either opaque or translucent macroscopic particles, but fits the
description of a trap for such particles.

The Chaloupka trap is generated by cutting the center out of a half-wave plate,

rotating it by 90°, and reinserting it. Light polarized parallel to the fast axis of the wave

plate propagates half a wavelength further than light polarized perpendicular to the fast




axis. Placing this modified half-wave plate in a collimated laser causes the center of the
laser beam to be phase-inverted relative to the outside as shown in figure 1.1. Focusing

the laser after the half-wave plate will causes destructive interference to occur at the

Figure 1.1 Half-Wave Plate //\ /‘.\ g N

} \ ) Ne K \
Rotating the center of the plate L e -
by 90° causes the center of the \ ?{ Y i
laser going through it to be \ J / \ / \1/
phase inverted relative to the \ f - =<
outer portion of the laser beam. i ./ 7\1/\// ‘

focus [2] (see figure 1.2). This destructive interference results in the intensity profile

depicted in figure 1.3. Cutting the half-wave plate at a radius of 0.825 w, where w is the
Gaussian beam radius at the wave plate, results in an optimized trap with the highest

possible intensity saddles [2], [3].

Figure 1.2 Making
Chaloupkas’s Trap
This trap is made by
running a collimated
laser through a half-
wave plate and a lens.

Zlz,

Figure 1.3 Chaloupka’s Trap
Numerically generated color-map
plot of laser intensity. This was
made using a half-wave plate cut
at a radius of 0.825 w.
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1.2 Poisson Trap

This past year, we developed a trap similar to Chaloupka’s by imaging a small
round obstacle in the laser focus. This trap also has not yet been used experimentally.
The concept is presented for the first time here. We call it the Poisson trap because it
resembles the famous experiment by Siméon D. Poisson [5]. When an obstacle is
inserted in a laser, light washes in behind the obstacle and diffracts to create Poisson’s
spot. After the obstacle, the laser no longer has the information about what was before
the obstacle. Therefore, when Poisson’s spot is imaged by a lens, the diffraction effect is
seen in both directions relative to the new focal plane. This leaves a dark focal center
surrounded by high-intensity light. Figure 1.4 shows the optical configuration used to

generate Poisson’s trap.

Figure 1.4 Optical Configuration for the Polsson Trap

This trap is discussed in more detail in Chapter 2. An analogy between quantum

mechanics in two dimensions and laser propagation is discussed in Chapter 3. This

analogy provides a way to perform “quantum mechanical experiments”.




1.3 Spherical Aberration Trap

The spherical aberration trap (SAT) is generated using a spherical lens. Most
laser applications using spherical lenses rely on the paraxial approximation, the
assumption that the laser is very close to the axis of the lens. When the laser radius is
small relative to the radius of curvature of the lens, a spherical lens is effectively identical
to a parabolic lens and the laser comes to a very distinct focus. If the radius of the laser
beam is large, then the outside edge of the beam will focus at an appreciably different
location than the center (see figure 1.5). In this situation, the laser beam develops several
dark pockets caused by interference near the focus. These dark pockets constitute the

SAT.

Figure 1.5 Paraxial Approximation The
line of a circle (thick blue) verses that of a
parabola (dotted) represents the surface of
a lens. The paraxial approximation is good
to the extent that these are the same. Rays
traveling through the edges of the spherical
lens focus at a different location than those
near the center.

This thesis represents the first public disclosure of the SAT; it is discussed in
more detail in chapter 4. This trap differs from the other two traps in that it has
successfully trapped charcoal particles (see figure 1.6). The particles are about 5
microns in diameter, and the laser is a continuous argon ion laser with 200 mW. This is

part of ongoing research at Brigham Young University. [6]




Figure 1.6

Charcoal particle in a SAT
In the bottom right corner is a
person’s finger holding a
sewing needle.

1.4 Diffraction Integrals

The propagation of Gaussian lasers through the center of a lens is well-known and
easily modeled with a bit of algebra within the paraxial approximation [7]. When dealing
with laser traps for opaque particles, the phase variations and discontinuities in intensity
means that the diffraction integrals cannot be handled without numeric integration. The
Fresnel-Kirchhoff diffraction integral treats light as point sources of spherical waves of
electric fields that propagate and interfere at some point of interest. The full Fresnel-

Kirchoff diffraction integral is

5 ikr - A
I [ - e | 1+cos(7,2) ,
E(r(-\'l,,\"‘.x'.,\’,i)) =77 J. Eklwwn y { 2( j]d(x >y ) s (]. 1)
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where r is the magnitude of the vector from the location in the source of light to the point
of interest. The cosine of the angle between r and the z-direction also plays a role, this is
not a simple integral. To simplify it, Fresnel made the approximation that the plane of
interest is significantly farther away from the known plane than any dimension in x or y.
Figure 1.7 shows the coordinate system used for the diffraction integral. In the Fresnel

approximation, the integral becomes

2 2 72 72 ’ 7
ik X +y +X +y XX +_)’_V
L

2z z

E(E-\’/,)”,x.y,z)) = _i j Eknown ¢ [l]d(x,’ y/) 5 (1.2)

KnownPlane

which is known as the Fresnel diffraction integral [3]. For many applications this is a
good approximation. Generally, if the laser beam waist is less than one tenth the distance

z, then the approximation is good.

Plane of Interest
X,y

Distance z

Figure 1.7 Variables for

Diffraction Integrals
Known Plane meton e

x), y’
To calculate the profile of the laser traps, it was necessary to find the light
intensities at small distances z (on the order of the laser waist). This is accomplished by

performing the Fresnel diffraction integral once with a large-negative value for z. The

results of this integration are then used for future integrations to find the light intensity
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near the known plane. The numerical accuracy of this method was tested by performing
the integration from the -z plane to the known plane for a simple Gaussian. All errors

were verified at less than 2% at the known plane. Appendices A and B are comprised of

Matlab code and discussion of the numerical methods used to characterize the laser traps.




Chapter 2: Poisson Trap

Characterizing the Poisson trap requires careful numerics. Taking out the center
of a laser beam creates a hard edge in the known electric field. To determine the light
intensity near the obstacle, or after a lens following the obstacle, requires exponentially
more time and data points. It is useful to have a formula for the approximate size of the
Poisson trap before performing the calculation. The features of interest in the Poisson
trap are the locations of local maxima and minima in laser intensity, the radial extent, rr,
the intensity of the light at the trap boundaries, and the axial extent, Zr. The variables Zr

and ry are shown if figure 2.1. All of these characteristics are functions of the obstacle

Figure 2.1 Poisson Trap This is a numerically generated color-scale plot of the laser intensity. The
laser is propagating from left to right. The region of the trap is outlined with the dotted white box. The

radial extent of the trap, 7'r, and axial extent, Zr, are labeled.
radius, rp, the beam waist, w,, the wavelength of light, A, and the focal length and
placement of the lens, f and Zgefore (see figure 2.2). For this investigation A will be

considered constant, and the obstacle will only be considered at the beam waist before the

lens. Regardless of parameters used to construct a Poisson trap, the resulting intenstiy




profile appears similar to figure 2.1. The following discussion of the individual
characteristics of the Poisson trap requires the definition of several variables. These

variables are defined graphically in figure 2.2.

Iy

Wor T

Figure 2.2 Variables for the Poisson Trap
For simplicity, Zr and Frare on figure 2.1.

2.1 Ring Location

The intensity profile, plotted as a function of r at various distances, Zage, ShOws
many small rings. Ring locations are a function of A and 7,. Figure 2.2 demonstrates that

it is independent of the beam waist. Studying the rings can be useful in determining r;

and the roundness of the obstacle. The ring locations are easily determined by the optical

path difference from the outer edges of the obstacle to various points some distance

away, just as is done in many introductory physics texts.




Figure 2.2 Poisson Trap with 1w, and 2 w,, numerically generated Left: both profiles are
depicted at the same distance from the same obstacle. The one profile is generated with a laser of
twice the waist radius as the other. Both are normalized to their own intensity at the unmodified
waist center. Right: the same profiles normalized to the same maximum height to show the
placement of rings.

2.2 Trap Radius
The radius of the trap is defined to be the distance from the center of the trap to
the inner edge of the intense region. Any particle to be trapped in Poisson’s trap must

have a diameter that is larger than 7y but less than 27. The trap radius, 7+, is dependent

on rg, Wog, and the waist of the laser focus if there were no trap, wr. As stated by Eq 2.1,
it is a simple ratio of proportionality:

w
Z. Yor @.1)
g Wop

All of the variables in Eq 2.1 are easily measured experimentally except for wor,

which requires its own formulas,




= g2, = f. 37 2
’ ZA/-,C,,, _l.ZT _ f( Before f ticfo/e . B) i f Zb’? - (23)
- (ZBefore_f)-_'-Zl; (ZBL’fore—f)H—f_Zt;
; In Eq 2.2, the variables Z and Zr are, by definition, the Rayleigh ranges before and after
b the lens. Eq 2.3 is obtained from the ABCD law [7].
4
,‘ 2.3 Wall Intensity
k The intensity of the laser at the trap boundaries, I, is directly proportional to the

amount of force with which the trap can can hold onto a particle. I is also directly

proportional to the intensity of the laser at the edge of the obstacle, Iop. Iop is easily
determined by assuming a Gaussian profile and placing 7 in a standard formula for a

Gaussian beam, where /, is the intensity of the laser at the center of the beam:

[, =1e" . (2.4)

The constant of proportionality, ks, between Iop and /; is determined by

. L . o
conservation of energy. The power (energy/time) in a Gaussian laser is T" w2. The

energy at the focus before the lens must be equal to the energy at the focus after the lens,

so that
] 2
k=L =20, 2.5)
I, wr

We can write the ratio of the waists in terms of the quantities in Eq 2.2 and Eq 2.3 so that

T 5
(ZBefore _f)z +z Wt_v
k, = = and I, =k,I,,. (2.6)

11

—




2.4 Trap Length

Let Zr be defined specifically as the distance between points where the central
spike is the same intensity as the primary outer ring. There is generally some discrepancy
between ideal and experimentally measured distances Zr, as in fi gure 2.3. Deriving an
equation for Zy analytically is difficult, but comparing numerical calculations from

several configurations yields a very simple and consistent function,

z, =2 win, 2.7)

Variations between the experimental and ideal distances Zr can be accounted for with

variations between the ideal and experimental beam waists.

T T T T r

Figure 2.3 Experimental vs. Theoretical Profiles Near the
Axial Boundary of a Poisson Trap, z=0.5 Z1 The experimental
profiles (solid lines) indicate that the location 0.5 Z has not yet
been reached. The theoretical profile (dotted line) indicates that
the same place has been passed. The profiles were normalized
by conservation of energy with no correction for the dark-level.

12




2.5 Implementing a Poisson Trap

With these relations for Zr, 71, and I+, it becomes possible to design a Poisson trap

for a specific application without doing numeric integration or further experimental
guess-work. It should be a direct matter to make a Poisson trap and use it to trap an

opaque or reflective particle. It is necessary, that the particle be between one and two

times 7 so that the central spike will keeps it from rolling out.

13




Chapter 3: Laser Propagation and Quantum Mechanics

An analogy between the Schrédinger wave equation and laser propagation allows
one to visualize the evolution of quantum mechanical wave packets. After drawing the
analogy, the propagation of a wave after an obstacle will be considered in terms of a

centrifugal force in wave mechanics.

3.1 Making the Correlation

The quantum mechanical wave equation constrained to two dimensions is

. a\Ij _hz 72
==V, G.1)

where m is the particle mass, V' is the wave probability function, 7 is time, and 7 is
Planck’s constant divided by 27 . Here, V3 refers to the 2-dimensional laplacian in the x

and y dimensions. The scalar electromagnetic wave equation is

2
we- L2
c” Ot

(3.2)

where c is the speed of light and £ is the magnitude of the electric field. [8] If we assume

a planewave-like solution such that

E=E(x,y,z)e" (3.3)

2 2 2 2
then 6_1:5 =-w’E and V’E :( o .2 jE +2F e second partial derivative with
iz

ot” o oy’ 2

respect to z becomes

0’E

2l~kei(/\’2~(ut) aE(XD y)Z) ok ef(kz-(ul) a“E(.x:‘y,Z) _ kZE(x,y, Z)ei(k:—(dl) (34)

oz 0z 0z~




Assuming that the function E(x,y,z) changes much faster in x and y than it does in z, we
can neglect the second partial of E(x,y,z) with respect to z. This is effectively the paraxial

approximation. Plugging these results into Eq. 3.2 and canceling the exponential terms

gives
2 ')2 E N _ 2
¢ 2 E(x,y,2)+ 20k LD o 2 © E(xyz). (35
ox~  oy° oz &
But, since k* = 0); , this simplifies even further to
e
2 2
@ a, E(x,y,2)+ 2k L&D _ ¢ (3.6)
ox~ 0Oy~ 0z

This can be rearranged to look more like the quantum mechanical wave equation in two
dimensions as follows

.OE(x,y,z) 1 5
—— 2 =—-—VIE(x,,2). 3.7
: 0z 2k * (x7.2) 3

Here, the electric field takes the place of the probability wave so that the probability
density is replaced by light intensity. Similarly, time is replaced by distance of laser
propagation, z. With these connections, we see that a laser propagates effectively the

same way as a two dimensional quantum mechanical wave changes in time.

3.2 Negative Centrifugal Force

The laser as it passes an obstacle at its focus resembles a doughnut probability
wave; see figure 3.1, As Poisson’s spot forms, some of the light diffracts in towards the
middle. The average radial distance of light intensity decreases before eventually
increasing. This corresponds to negative centrifugal force, which is the proposition of a

quantum mechanics paper pending publication [9]. Matter, confined to two dimensions,

15




starting in a doughnut shape rushes in before eventually spreading out, as seen in figure

3.2

0.4

i, r
0-2 I~

-2 -1 “ 1 z

w/iw,
Figure 3.1 Light Doughnut (top) Picture taken of a 1.33 mm
waist HeNe laser at 3.2 cm aftera 0.79 mm obstacle. Poisson’s
spot has not had time to fill in yet. (bottom) Numerically generated
plot of the laser intensity normalized to the central intensity and
scaled to the beam waist. The two pictures are aligned to show the
fit of the internal radius.

0.8945 . y - . . - .

Radial Mass-center of Energy (mm)

A4 i L} L

10 30 §0 70
Distance from Obstacle (mm)

Figure 3.2 Radial, Mass-center of Energy

When starting with a doughnut shaped laser profile (see figure 3.1),

the laser goes in before it goes out. This corresponds to negative

centrifugal force in quantum mechanics.

16




3.3 Experimental and Numerical Data from Poisson’s Spot

All of the figures in this section are experimentally or numerically from a HeNe
laser (A = 633nm) with a waist of 1.33 mm. A 0.79 mm radius obstacle was placed at the
waist, and pictures were taken with a CCD camera down stream from the obstacle. Each
figure is labeled with the physical distance from the obstacle; no adjustments were made
for the optical path difference caused by filters. The black and red lines are perpendicular
profiles from the experimental data. The dotted line is the numerical profile. The
numerical data is normalized to the maximum intensity at the focus. The experimental
data is scaled to fit the numeric data according to the areas under the curves, this follows
conservation of energy. No adjustment was made for the dark-level. The pseudo-color

plots are from the CCD and correspond to the adjacent profiles.
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Figure 3.3 Experimental and Numeric Profiles of Poisson’s Spot. Images are pseudo-color pictures of
Poisson’s spot at various distances Z from the obstacle. To their left are line profiles at the same
distance. The solid red and black lines are from the experimental data, while the dotted line is the
numeric profile. The numeric profiles are normalized, while the experimental ones a scaled using
conservation of energy. No adjustments were made for the dark level of the CCD camera used to take
the images.
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Chapter 4: Spherical Aberration Trap

The spherical aberration trap (SAT) is new and not yet well understood. By
comparing experimental results with numerical calculations, it seems apparent that it is
spherical aberration that creates the trap; an infinity—corrected lens does not trap
particles. So far, only one configuration has been experimentally successful in creating
an SAT. Modifications on that configuration appear to weaken the trap. The
configuration used for numerical calculations, only slightly different than the

experimental configuration, is depicted in figure 4.1.

focal plane

Figure 4.1 Optical Configuration for SAT

4.1 Numerical Method for Modeling the SAT

The numerical method for modeling the SAT is as follows. First, a perfect

Gaussian laser is propagated to the plane of the lens following [7]

1k . 4.1)
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Then the electric field is modified by the equation for a spherical lens, derived in the next
section, which makes a radius-dependant phase modification on the existing electric field.
Finally, the diffraction integral is performed on the modified electric field for each point

near the focus (section 1.4 and appendix A). Using this method with the configuration

depicted in figure 4.1 yields the intensity profile shown in figure 4.2. It has a very
regular pattern of interference peaks approaching a primary focus in rows. The location
of peaks alternates between rows so that a particle can be trapped between peaks, on

each rows. The primary focus occurs axially sooner and is larger axially while smaller

radially for a spherical lens than for a parabolic one. Figure 4.3 shows the intensity along

the laser axis normalized to the maximum intensity a parabolic lens would have
produced.

Figure 4.2 Spherical Aberration Trap
This is a numerically generated color-scale
plot of laser intensity. It is scaled relative
to the rayleigh range, Zr and waist, Wor,
that would result from a parabolic lens.
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Figure 4.3 On-axis Intensity. The intensity

is normalized to the maximum intensity that a
parabolic lens would have produced. It is
plotted according to distance from the focus
using the same scale as figure 4.2.
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4.2 Derivation of the Spherical Lens

The formula for a spherical lens is derived in the same manner as for a parabolic
lens [7]. Ignoring the light’s angle of incidence on the lens surface, a thin lens can be

treated as a phase shift, A¢, at a plane. Thus, the mathematical effect of the lens is

E =e™E This phase shift is approximated as the optical path

afterLens beforeLens *
difference between rays parallel to the z-axis as they pass through the lens at various

radii; see figure 4.4. This is essentially the paraxial-approximation, but the light is not

necessarily treated as being close to the z-axis, just parallel.

Azg
Azq r
-
[ | l
Z-axis eed
| o
. Figure 4.4 Axis-Parallel Rays.
Each ray travels a different optical path length.
The relative difference is determined by how
o much of the lens it does not go through.

The relative phase shift of each ray is determined by how much lens material it
does not go through when compared with the middle, Az. The relative phase shift is,
Ap =—k(n—-1)(Az, + Az,) (4.2)

where k is the wave number. The term (n-1) is the difference in index of refraction

22




between the lens, 7, and the surrounding 1f each side of the lens is a portion of a sphere

with radius of curvature, R, then the distance Az is defined by
R* =1’ +(Rt Az) (4.3)

where 7 is the radial distance from the z-axis. This is depicted in Figure 4.5.

RQ r
e .
) Re :
\ Figure 4.5 Distances used to
determine a function for dz, the path
\ difference through the lens.
W/

The sign on Az depends on which side of the lens the equation is being written for. By
convention, R, is negative which forces Az, to be positive. On the other side, the radius
of curvature, R), is defined to be positive which makes Az, negative. Solving Eq 4.3 for
Az yields

2

Az, =R, —+/R} —7*
Az, =R, ++/R} 1’

The square root is somewhat troubling. To simplify things, we divide out R and make a

(4.4)

taylor series expansion of the square root to get

Az, =R, (R, —'—7———...). (4.5)
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Doing the same process for Az,, truncating both series to include only the terms shown,

and substituting them into Eq 4.2 yields
S O U U I O B
Ap=-k(n-1)| —| ——|+—| =5—-——=1]| .
d ( )|i 2 [Rl R2] 8 [Rﬁ R; j} (4.6}

The perfect parabolic lens ignores the R® terms and substitutes in the lens maker’s

formula 1 =(n-1) RN to get Ag = _kr_‘. The R’ terms represent the
f R, R 2f

1 2
spherical aberration and need to be kept in this case, which means that there is not a
simple substitution with £ that will make the expression “look pretty.” Eq 4.6 can be
simplified for specific kinds of lenses. In the case of a plano-convex lens R; is infinity.
In the case of a convex-convex symmetric lens, R is -R,. For these cases Eq 3.5

simplifies to

2 4
A= b F - (plano-convex)
2 2
2731 -
Agp=——— (convex-convex)
2f 8f°

with the added assumption that the index of refraction of the lens, 7, is 1.5. Itis
worthwhile to note that there is approximately four times the spherical aberration in a

plano-convex lens than in a convex-convex symmetric lens.

4.3 Conclusion on SAT

This is a unique and interesting new trap. Experimentally, there are several
distinct locations where a particle can be trapped, which matches the modeling.

However, more detailed methods need to be used to obtain a more complete

24




understanding of the trap. The most tenacious simplification in this model is ignoring the
light’s angle of incidence on the lens surface. As spherical aberration becomes more
pronounced, the angle of incidence becomes more significant. In the case presented here,
the angle of the lens surface has changed by 8.279° between the center and the incident

beam waist; the radius of curvature of the beam arriving at the lens is 1 m.
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Chapter 5: Conclusion

Of the three traps discussed, the Poisson trap is best prepared for experimental

use. Chaluopka’s trap, while clever, requires the somewhat difficult modification of a

half-wave plate. The resulting trap does not have very sharp intensity feature (see figure
5.1). This is contrary to expectation since none of the laser is blocked in the process of
making Chaloupka’s trap. The SAT is not well characterized at this time, but further
development could prove it to be far more effective than the other two. The Poisson trap
is theoretically well developed and ready for use, and may prove advantageous for
particles larger than 20 microns. The wide opening between the center spike and the

primary maximum limits the size of particles that can be trapped for a given Poisson trap.

Figure 5.1 Contour Plots of Chaloupka and Poisson. Both plots are scaled to their
rayleigh range vertically and beam waist horizontally. The intensities are labeled at various
points, and normalized to the maximum intensity the focus would have if the beam were not
modified to create the trap. Left: Chaloupka’s trap is the optimized design. Right: Poisson
Trap uses one-to-one imaging with an obstacle radius that is 59% of the beam waist.
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Appendix A Programs for Numerical Profiling

All of the numeric data was generated using Matlab code for this thesis. At least
15 programs and functions were written to test numerical methods, profile the laser, and
evaluate the profiles generated. Not all of that code is included here. Some discussion of
numerical methods is included in appendix B, and none of the code designed to test the
numeric methods is included here. Each of the three traps has a unique optical
configuration and application of the numerical methods that minimizes the computation
time. However, each one also uses the same functions and was written by modifying a
copy of the program for the trap before it. Only the code written to find the radial mass-
center of energy for the Poisson trap is included here with all of its functions. The radial
mass-center of energy of Poisson’s trap is the most difficult to work with because of the
sharp edge in the laser profile that needs to be propagated very small distances. This
pushed the numerical limits of the techniques and computer used. Table A.1 shows all of

the programs with their functions that are listed below.

Shuffle
intFresnel

intPoly4

PoissonTrap2 | poly10
mirror
mirrorN

Table A.1 Programs
Listed with their sub-functions to the right

A.1 PoissonTrap2.m

YoPoissonTrap2.m

%By Benjamin Bellville, BYU 2002

l)o

7oThis is designed to do the fresnel integral for the experimental situation we did for the
YoRussians. It is similar to PoissonTrap.m, but it steps behind the focus first so that
Yithe fresnel approximation doesn't get us in trouble. It takes about 60 times longer.

0,
0

ZThere was a 1.56mm diameter ballbearing placed near the focus of a 1.31mm radius HeNe laser.
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%

%olt uses the Fresnel diffraction integral in cylindrical coordinates.

%See chapters 10 and 11 of "Physics of Light and Optics” by Dr. Justin Peatross 2002.
%It is available on the web at "www.optics.byu.edu”

0,
0

%lt uses two simultaneous iterations of Simpson's 1/3 integration

%And does simultaneous error estimate for the first stage of integration, AKA Boole's rule
%

%See Also intPoly4.m mirror.m mirrorN.m simpsons.m polyl0.m

%

clear

tic

%Set variables in terms of the wavelength
%All measurements are done in microns

1=.633; %wavelength

k=2*pi/L; %wave number

w = 1330%k; %beam waist

727=w"2/2; %rayleigh-range.

z=-22/12; %distance before the lens that we want to step.
Eo=1; %normalized amplitude

a = 790%*k; %obstacle diameter, Limit of integration
b= 3e4%*k;

%Since integration is additive, we will subtract the integral for what the ball-bearing takes
Yoout from the analytical solution.

rhosteps=1000;

rthomin=0; %limits of integration

rhomax=a;

rhostep=(rhomax-rhomin)/rhosteps;

rho=rhomin:rhostep:rhomax;

%or represents the variable of radial location at the early plane.

rmin=0;

rmax=b;

Yohere begins the process of breaking up the vector of the variable of integration
%so that we can have different step sizes where the function is more oscillatory.

rslices=5;
rslice=rmin:(rmax-rmin)/(rslices):rmax;
rsteps=[4000,8000,12000,16000,20000]; %these must be divisible by 4 for this to work.
r=1;
y(1)=0;
~ for x=1:rslices
rrmin=rslice(x);
‘ rrmax=rslice(x+1);
rstep(x)=(rrmax-rrmin)/rsteps(x); %oset step size
rtemp=rrmin:rstep(x):rrmax; %The radius at the plane of integration
r=cat(2,r,rtemp); %compile it as one vector
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y(x+1)=length(r)-1; %carries the information on how to break up the r-vector again.
end
r=r(2:length(r));
Yodone dividing it all up
clear rtemp rstep X rrmax rrmin

Yocreate the array for the E-field that goes into integration

Ein=exp(-rho."2/w"2);

Emid=intPoly4(rho,Ein,z,r);

errorMid=Emid(1,:);

Ein=-1/z/2*exp(i*z)/(1/w"2-1/z/2)*exp(i*1.°2/2/2).*...
exp(-(1/z).~2/4/(1/w"2-1/z/2));

Emid=Ein-Emid(2,:);

figure(1)

subplot(2,1,1)
plot(r,real(Emid))
subplot(2,1,2)
plot(r/k,real(errorMid))
pause(1)

time(1)=toc

Ysave hopeful

%oSet variables where the Efield is desired.
Rsteps=1800;

Rmin=0%k;

%Rmax is chosen so that the graph's scale will

Yomatch the spiricon screen at maximum display size.
%4665, 23325, 1166.2 microns are the display sizes available

Rmax=5e3*k; %this is 5mm
Rstep=(Rmax-Rmin)/Rsteps;
R=Rmin:Rstep:Rmax;

Yothe Z-vector matches places where we took the pictures of the data.
7=0:3:75; %milimeters
Z1=(Z)*k*1e3-z; %This is the distance from the ballbearing

for n=1:length(Z)
Traptemp=0;
for m=1:rslices

Traptemp=Traptemp+intPoly4(r(1+y(m):y(m+1)),Emid(1+y(m):y(m+1)),Z1(n),R);
end
Trap(n,:)=Traptemp(2,:);
errorT(n,:)=Traptemp(1,:);

end

clear Traptemp m n Rsteps




%~Find the mass center of energy
Trapl=Trap.*conj(Trap);%We need to use the intensity
simp=polyl0(R); %array of coeffients for simpsons 1/3 integration, or polyl0 integration
temp1=0;
temp2=0;
for k1=1:length(Z)
intvar=simp.*R*Rstep;
templ=sum(intvar.*Trapl(kl,:).*R);
temp2=sum(intvar.*Trapl(k1,:));
masscenter(k1)=temp1/temp2;
end
masscenter=masscenter/w;

Yomirror vectors so that they look like the line profile from the Spiricon
TrapIl=mirror(Trapl);
errorT=abs(errorT);
errorT=mirror(errorT);
R1=mirrorN(R)/w; %this is in mm
7=7/7z;
for nn=1:length(R)
if R(nn)<a
TrapCompare(nn)=0;
else
TrapCompare(nn)=exp(-R(nn)"2/w"2);
TrapCompare(nn)=TrapCompare(nn).*conj(TrapCompare(nn));
end
end
TrapCompare=mirror(TrapCompare);
figure(2)
subplot(2,1,1)
title('"Numeric vs Ideal')
plot(R1,TrapCompare,R1,Trapl(1,:))
subplot(2,1,2)
plot(R1,TrapCompare-Trapl(1,:));
xlabel(‘error in the model')

figure(3)

imagesc(R1,Z,Trapl);

title("The Wash-in After an Obstacle')
xlabel('Radius in mm")
ylabel('Distance from obstacle in mm')

figure(4)

plot(Z,masscenter)

title('Radial Mass Center of Energy in mm')
xlabel('Distance from focus in mm')




Y%clean up extra variables and save the calculations
clear rhostep intvar k1 simp templ temp2 name Z1 Z2 Rstep rho Ein

time(2)=toc
save poissontrap2
break

A.2 intPoly4d.m

ZointPoly4.m

%By Benjamin Bellville, BYU 2002

%

%This function is designed to work as a parent to intFresnel.m, or another integration technique
%The child function must be a left side rectangular integration technique excluding the

Yfactor of the step size.

%

%It uses a fourth order polynomial fit to do the integration just like simpson's 1/3 rule uses

%a second order polynomial fit. It has the advantage of making an error estimate at the same
Yotime it does the integration with virtually no cost in computation time. The integration
Yotechnique is sixth order. The error estimate is for a fourth order error. The fourth order
Yoerror estimate is used partly because real error tends to be much larger than sixth order
Yoerror estimate.

% |
Yocall: intPoly4(rho,Ein,z,r) |
I)”

Yorho= vector containing the variable of integration

%Ein= vector containing the Efield at the plane of integration

%z= distance from the plane of integration to the plane where the Efield is desired

%r= radial locations for the desired Efield.

()0

% Vectors rho and Ein must be of (length-1) evenly divisible by 4. For example, the length could
Yobe 21: (21-1)/4=5 but not 22: (22-1)/4=5.2. If vectors rho and Ein do not meet this length
Yorequirement there is no return error. The integration will simply fail.

%

%This returns a 2 by n matrix. The first row contains the error estimates for integration

%at locations (z,r). The second row contains the results of integration for locations (z,r).

(I()

Yosee also shuffle.m intFresnel.m

%For more details on the numeric technique,

Yosee appendix B of Benjamin Bellville's senior thesis, BYU 2002

function[result] = intPoly4(rho,Ein,z.r)

%This integration technique creates 4 vectors of values. Each vector is integrated individually
Yusing a left side rectangular integration technique. The results are then combined to find the
Yoerror estimate and the sixth order integration results. The function shuffle.m reorganizes the
Yinput vectors for this function. To change the child integration technique used by intPoly4.m,
Yoput the new child's integration call on lines 59 through 62 of this function. Also be sure to
Ychange the names of functions or variables passed into intPoly4.m as appropriate.

%Set vectors rho

rhostep=rho(2)-rho(1);%find step size, delta-rho
dims=(length(rho)-1)/4;

rho=shuffle(rho);




Ein=shuffle(Ein);

%Deriving the formula gives four logical rho vectors plus the ends,
%but vectors 1 and 3 behave identically, they are combined.
rhoab=rho(1:2);

Eab=Ein(1:2);

rhol=rho(3:2*dims+2);
E1=Ein(3:2*dims+2);

rho2=rho(2*dims+3:3*dims+2);
E2=Ein(2*dims+3:3*dims+2);

rho4=rho((3*dims+3):(4*dims+1));
E4=Ein(3*dims+3:4*dims+1);

%Call out the integration function
intab=intFresnelKirchhoff(rhoab,Eab,z,r);
intl=intFresnelKirchhoff(rho1,E1,z,r);
int2=intFresnelKirchhoff(rho2,E2,z,r);
int4=intFresnelKirchhoff(rho4,E4,z.1r);

Yuget error

result=rhostep*(-intab+4*int1-6*int2-2*int4)/45;

%Get actual integral
result2=(14*intab+64*int1+24*int2+28*int4)*rhostep/45;

Ycompile the integral and the error estimate to send back as the result.
result=cat(1,result,result2);

A.3 shuffle.m

%oshuffle.m
%
%This function shuffles the input vector much like you would shuffle a deck of cards. However,
%it places the new vector in a very specific order as can be interpreted from the call-return.
(1’)
Ycall: shuffle(1:17)
| Yoreturn: [1,17,2,6,10,14,4,8,12,16,3,7,11,15,5,9,13]
UI}
%This function is written specifically for intPoly4.m. This order is chosen because it groups
! Yoentries from the old vector together in the new vector that behave identically in Poly4
Yointegration. The above return is really the concatination of the sub-vectors:
’ %[1.17],[2,6,10,14], [4,8,12,16], [3,7,11,15], [5,9,13]
%

function [y]= shuffle(x)




chunk=(length(x)-1)/4; %determine the base length for each sub vector
y=zeros(size(x)); Yocreate a vector frame to place the new order for the values.
y(1)=x(1);
for m=1:chunk-1 %set in all of the values that fit the repeatable pattern
y(2+m)=x(4*m-2);
y(2+2*chunk+m)=x(4*m-1);
y(2-+chunk+m)=x(4*m);
y(2+3*chunk+m)=x(4*m+1);,
end

y(chunk+2)=x(chunk*4-2); %set in the remaining values
y(chunk*3+2)=x(chunk*4-1);
y(chunk*2+2)=x(chunk*4);,

y(2)=x(chunk*4+1);

A.4 intFresnel.m

Y%intFresnel.m

%by Benjamin Bellville, BYU 2002

()()

%This program performs the integration for the Fresnel diffraction formula
%in cylindrical coordinates. This includes the Fresnel approximation of the
%obiquity factor. (1+cos(a,b))/2=1 |
%

%For questions on the Fresnel diffraction formula see section 10.2 of

%"Physics of Light and Optics" by Dr Peatross, 2001. Available at "www.optics.byu"

%

“There is no higher order numerical method inherent to this function. It will do a straight

Yleft-side rectangular integration using the points given. The factor delta-rho has been

Zoomitted so that this can be used as a child program for higher-order integration techniques.

%To change this into a higher order method, then multiply the points on the Efield by the

Yocoefficients for that method. See simpsons.m and polyl0.m

%

%ocall: intFresnel(rho,Ein,z,r)

%

%rho= vector containing values for the variable of integration

%Ein= vector containing values for Efield at the plane of integration

%z= distance from the plane of inegration to the plane where you desire to know the Efield.

%or= vector containing values for the radial locations where you desire to know the Efield.

%

%All variables with dimensions of length must be given in terms of the wave number, k.

Yok=2*pi/wavelength If Z is | meter, then pass Z=1*k into this function.

%

%This returns a vector containing the values of the Efield at points (z,1).

function[Eout]=intFresnel(rho,Ein,z,r)

% This integration technique temporarily creates a matrix the size of (rho x r').

%This matrix can easily surpass the memory limits of the computer and more commonly
Yocause an exponential decay in the processing speed by over taxing the hard drive.
%(The hard drive slows down as it fills up.) Therefore, it is expedient to break up
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Yothe integration before it fills up the hard drive.

()()

%lt assumes that the computer can handle 96 megabytes comfortably.

%Each entry in the (Erhor x Erho) array is complex, it takes 16 bytes.

7%16*3e6*2 = 96 megabytes. The factor of 2 is in there because the processing speed
Yodecays exponentially just after the available memory is half used.

%These section can be adapted for each computer. The line to change is flagged** below.
ZoNotice that it is the factor of 3e6 that is put into the program.

Y%Determine how to beak up the integration. The vector r gets divided.

m=length(r);

rslices=ceil(m*length(rho)/3e6); %This is the line to adapt. ***** ¥ sksssssiiins
rslice=floor(m/rslices);

rrem=rem(m,rslices);

Y%Prepare two vectors and constants for integration
Erho=exp(1/2/z*rho.”2).*Ein.*rho;
constants=-1*exp(i*z)/z;

%Do the integration
rstart=1;
rend=rslice;
for n=1:rslices; %his integrates for one segment of r at a time.
r2=r(1,rstart:rend);
%%%%%
Emain(n,:)=Erhor(r2,rho,z,Erho); %Erhor is a function below, it is the heart of integration
%%%%%
rstart=rend+1;
rend=rstart+rslice-1;
end

%Compute Eout for the remainder of r (if any)
%and compile Eout from Emain.
‘ if rrem~=0
r2=r(1,(m-rrem)+1:m);
Eout=Erhor(r2,rho,z,Erho);

%Compile the Emain onto Eout
for k=1:rslices;
Eout=cat(2,Emain(rslices+1-k,:),Eout);
} end
i else %compile Eout from Emain
! Eout=Emain(1,:);
‘ for k=2:rslices;
Eout=cat(2,Eout,Emain(k,:));
end
end

Eout=Eout*constants;
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return

%This function does the bulk of the integration.

Y%Excluding the time to clear the unnecessary variables,

%oit would be faster to do this in the body of the function.

function matrix = Erhor(r,rho,z,Erho)

Erhor=BESSELIJ(0,r'*rho/z);

Er=exp(1/2/z*r."2);
matrix=Er.*(Erhor*(Erho)')’;

return

A.5 poly10.m
Yopolyl10.m
%Benjamin Bellville, BYU 2002
%
%This program creates an array of multiplication values
%for tenth-order-polynomial-fit integration.
%
%lt is done using the same theory as simpson's 1/3 rule,
Yowhich fits a second order polynomial.
0,
0
%The output array is as follows:
%[x1,x2,x3,x4,x5,x6,x5,x4,x3,x2,2%x1,...
% ...,2%,x2,x3,x4,x5,x6,x5,x4,x3,x2,x1] *5/299376=poly10
%
%The input array length must be 10*n+1. (See function "factor10")
%This function will not return an error if the number is not of 10n+1 length.
%This program also assumes that length(input array)>=21
%
%See Also simpsons.m

function [s1]=poly10(b);

n=(length(b)-1)/10;

m=factor(n);

L=length(m);

s1=[16067*2,106300,-48525,272400,-260550,427368,-260550,272400,...
-48525,106300];

for y=1:L
s2=sl;
for x=1:m(y)-1
s2=cat(2,s2,s1);
! end
s1=s2;
end
s1(1)=s1(1)/2;
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sl=cat(2,s1,16067);
s1=s1%*5/299376;
break

A.6 mirror.m
Yomirror.m
()()
%This function mirrors the matrix about the first column. It does not repeat the first entry.
%This changes the vector from an even to an odd number of columns, or vise versa.
%
Yocall: mirror([1,2,3,4,5],1)
Yoreturn: [4,3,2,1,2,3,4,5]

0
)0

Ysee also mirrorN.m

function [x]=mirror(x)
x2=fliplr(x);

=size(X);
x2=x2(:,2:n(2)-1);
x=cat(2,x2,x);

A.7 mirrorN.m
YomirrorN.m
%
%This function mirrors the matrix about the first column. It does not repeat the first entry.
%This changes the vector from an even to an odd number of columns, or vise versa. It also canges
%the sign of the new portion of the vector.
%
%call: mirror([1,2,3,4,5],1) |
Yoreturn: [-4,-3,-2,1,2,3,4,5]
%
Yosee also mirror.m

function [x]=mirror(x)
x2=fliplr(x);
n=size(x);
x2=x2(:,2:n(2)-1),
x=cat(2,-x2,x);




Appendix B Numerical Integration Method
Choosing a numerical method for integration is very important for programming,

especially with oscillatory, ill-behaved, or difficult to evaluate functions and when many
iterations of integration are required. Such is the case with diffraction integrals. There
are a few questions that are important to ask when choosing the integration technique.

1. How fast will it converge? (number of data points necessary)

2. How long will it take?

3. Does it give you an error estimate? Do you need one?

4. Does it throw out any points or allow you to add more latter?

5. How hard is it to program?

Several integration techniques were tested for diffraction applications, Simpsons’
1/3 rule, a tenth-order polynomial fit, a fourth-order polynomial fit, and an adaptive
recursive fourth-order polynomial fit. One or two experiments quickly established that
adaptive-recursive routines take too much time unless they start with enough data points.
Of course, the higher order polynomial fits will converge faster, but they grow
exponentially more tedious to derive and then program. The fourth-order polynomial fit
seems to be the happiest balance between ease of derivation and programming and

convergence rate. It also can give the error if it is derived in the correct way.

Derivation of the Fourth-Order Polynomial Fit Integration, Boole’s rule.
There are two ways to derive the fourth-order polynomial fit integration

technique, sometimes called Boole’s rule, the first is more tedious and less informative.
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It involves symbolically solving for the coefficients of a fourth-order polynomial that will
fit any five evenly spaced data points, use analytic Lagrangian interpolation. With that

nightmarish conglomeration of equations, integration and simplification would yield

14 64 8 64 14 K
et —ft— it — f. A~
[45f0 45f1 15f3 45f4 45f5:| X_[f(x>dx.

Where f; is the value of the function at the n" value of x, and Ax is the step size. This

same formula results from an analytic error adjustment to Simpson’s 1/3 rule.

Simpson’s 1/3 rule has error proportional to Ax*. So, performing Simpon’s 1/3
integration twice, once with N points and once with (2N-1) points, should allow us to get
an error estimate for the integration. Dividing the proportional error estimates gives an
approximate error equality as follows,

E, «<Ax, N E, Axy

= 9
E,y, cAxyy E,vo  Axyy

where E is the error of the numeric integration. This can be combined with the statement

of numeric integration and the equality of step size,

Jf(x)dx =Iy+E, =1,,,+E,,
Axy =20x,y,,

to yield the following error estimate

Ax| (1 4 2 4 1 1 4 1
Kgfo +§f1 +§f2 +§f3 +§f4)_(§fo +§fz +§f4ﬂ
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where I is the result o numeric integration. Adding thisto I,,  and multiplying it out
gives exactly the fourth-order polynomial fit integration formula above, which has error

proportional to Ax®. It also has the benefit of providing an error estimate without

evaluating any extra data points! Although that error estimate is based on an error

proportional to Ax”, it tends to estimate an error slightly smaller than actual error, as can

be shown by comparing numeric and analytic integration. To sum up,

;%(—m TA4f,~6f, +4f, -1f,)

I=%(14f0+64f1 +24f, +64f, +14f1,).

Extension to a Recursive Technique

Changing Boole’s rule into a recursive technique is an easy change to make, if
desired. It is a matter of compiling the values of the function into different arrays that
correspond with each coefficient it will be multiplied by for the final integration. With
those values, an estimation of the error can be made, and you can determine if you want
to double the data points. If you want to double the data points, then make the values that
are currently associated with the coefficient 24 to be associated with 28 (a junction from
multiple iterations 28=14*2). The old 64s will be associated with 24 and the new points
will be associated with 64. With a while loop and all the other necessary additions to a
program, it shouldn’t add ten lines of code, but those ten lines can easily double or triple
the time it takes to complete the integration as compared to starting with enough data

points.
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