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ABSTRACT 
 

Image Source Modeling of Time Reversal for Room Acoustics Applications 
 

Michael Hunter Denison 
Department of Physics and Astronomy, BYU 

Master of Science 
 

Time Reversal (TR) is a technique that may be used to focus an acoustic signal at a 
particular point in space. While many variables contribute to the quality of TR focusing of sound 
in a particular room, the most important have been shown to be the number of sound sources, 
signal bandwidth and absorption properties of the medium [Ribay et al., J. Acoust. Soc. Am. 
117(5), 2866-2872 (2005)]. However, the effect of room size on TR focusing has not been 
explored. Using the image source method algorithm proposed by Allen and Berkley [J. Allen and 
D. A. Berkley, J. Acoust. Soc. Am. 65(4), 943-950 (1979)], TR focusing was simulated in a variety 
of rooms with different absorption and volume properties. Experiments are also conducted in a 
couple rooms to verify the simulations. The maximum focal amplitude, the temporal focus quality, 
and the spatial focus clarity are defined and calculated for each simulation. The results are used to 
determine the effects of absorption and room volume on TR. Less absorption increases the 
amplitude of the focusing and spatial clarity while decreasing temporal quality. Dissimilarly, larger 
volumes decrease focal amplitude and spatial clarity while increasing temporal quality. This thesis 
also explores the placement of individual transducers within a room. It also compares the layout 
of several source transducers used for a reciprocal time reversal process. Maximum focal 
amplitude and spatial clarity are found to increase when the focus location is dual coplanar to the 
source location while temporal quality is found to decrease in comparison to the case when source 
and focal location share only one plane. Maximum focal amplitude is found to be at a minimum 
when the focus location is at the critical distance and increases closer and farther away from the 
source, while temporal quality steadily decreases and spatial clarity steadily increases farther from 
the source. The maximum focal amplitude and the temporal quality are not greatly affected by the 
type of array layout, but a circular array is ideal for maximizing spatial clarity. 
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Introduction 

Private communications, from whispers to encrypted messages, have always played a key 

role in the success of military operations, business endeavors, and social interactions. The key to 

the delivery of private communications is that only the sender and the receiver know the secret 

message. Whispering requires proximity between the sender and the receiver while encrypted 

messages require that both sender and receiver know a certain code. Neither technique works in a 

situation where one wants to send a private, audible message across a room to someone who is not 

prepared with a decrypting code (i.e., has no specialized equipment). Ideally, one could convey 

this message by focusing the acoustic message to one point in the room and have the message be 

unintelligible elsewhere. Beamforming techniques with a transducer array could be used to direct 

sound towards the intended target, but this would make it possible for the signal to be intercepted 

along its path and a direct line of sight would be needed. Time reversal (TR) achieves focusing of 

sound by exploiting reflections (reverberation) within the room from many directions, making the 

signal impossible to directly intercept between the source and the intended target. The signal 
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observed at locations other than the focusing location would contain multiple copies of the 

message staggered in time that incoherently sum together. This allows the private message to be 

intelligible at the intended receiver location and unintelligible elsewhere without specialized 

processing. 

Originally developed for reproducible acoustic signal transmissions in the ocean,1,2 TR is 

a process used for focusing sound energy at a particular point in space.3,4 TR can be used in a 

variety of applications. In addition to sending private messages, TR has been used to create a high-

energy focus for ultrasound medical operations (i.e., lithotripsy),5 reconstruct source events (e.g., 

earthquakes),6 optimize communications in reverberant environments,7,8,9 and perform 

nondestructive evaluation of materials.10,11  

1.1 Ripples in a Pond 
A common thought experiment used to illustrate TR involves imagining a pebble being 

dropped into a pond.4 As seen in Fig. 1.1, the pebble excites outward traveling ripples on the 

water’s surface. If a video was recorded of the traveling ripples, the video could be watched in 

reverse. The reversed ripples would converge towards the location where the pebble hit the water’s 

surface.  
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FIG. 1.1. A simulated ripple in water. 

 

The converging ripples could be practically realized by placing a number of transducers, 

designed to both detect and produce surface waves, on the pond surface. After the pebble is 

dropped, these transducers would synchronously record waveforms representing the height of the 

water as a function of time (i.e., the ripples). The recordings could then be time reversed and 

broadcast from each transducer. Since the recordings made by the transducers would be time-

aligned, the broadcasted signals would create converging wave fronts that coalesce at the location 

where the pebble was dropped. If sufficient transducers are used, these converging wave fronts 

would reconstruct the ripples observed when the pebble was dropped, only moving in the opposite 

direction. At the point where the pebble was dropped, the converging ripples would coherently 

add up their amplitudes and result in a high-amplitude focus location.  
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Figure 1.2 shows a simulation realizing the ripple thought experiment with six transducers. 

Figure 1.2(a) shows the ripple diverging from the excitation location at (0.6, 0.4) m, denoted by a 

filled square. The six transducers, denoted by filled circles, record the ripple response at their 

locations. The ripple responses are then time reversed and simultaneously broadcast from the 

respective transducers, as seen in Fig 1.2(b). Figure 1.2(c) shows the wave fronts from each 

transducer coalescing at the filled square, the original excitation location.   

 

 

FIG. 1.2. (a) Ripples created by an excitation at (0.6, 0.4) m, denoted by a filled square and 
transducer locations, denoted by filled circle. (b) Each transducer transmitting their time 
reversed ripple recorded response. (c) The transmitted signals coalescing to the original 

excitation location. 

 

In a free-field environment, TR is much like basic beamforming in that it simply time aligns 

the outputs of each transducer so that the direct sounds arrive at the focus location at the same 

point in time.3,12 In an enclosed, or reverberant environment, the TR process also time aligns 

reflected energy. In an enclosed field, TR is able to focus wave energy with a single source,13 

while beamforming requires multiple sources.  
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1.2 Time Reversal Fundamentals 

A depiction of how standard TR works is shown in Fig. 1.3. It begins with what is known 

as the forward step, which involves finding the impulse response, ℎ𝐴𝐴𝐴𝐴(𝑡𝑡), between the source at 

location 𝐴𝐴 and transducer at location 𝐵𝐵. Experimentally, this is often done by broadcasting a chirp 

signal from the source and recording the chirp response with the transducer. The cross correlation 

between the chirp and the chirp response can be used to approximate ℎ𝐴𝐴𝐴𝐴(𝑡𝑡).14 For simplicity, Fig. 

1.3 shows an impulse, 𝛿𝛿(𝑡𝑡), being broadcast from a loudspeaker and a microphone recording of 

ℎ𝐴𝐴𝐴𝐴(𝑡𝑡). The sound travels in every direction from the loudspeaker and follows a very large number 

of paths between the loudspeaker and microphone. Figure 1.3 shows three recorded paths: the 

direct sound, a ray of sound with one reflection and a ray of sound with two reflections. When 

𝛿𝛿(𝑡𝑡) is broadcast from the loudspeaker, the ray that travels the direct path arrives at the microphone 

first, creating the first arrival in ℎ𝐴𝐴𝐴𝐴(𝑡𝑡). Rays of sound that travel longer paths contribute to later 

arrivals in ℎ𝐴𝐴𝐴𝐴(𝑡𝑡). ℎ𝐴𝐴𝐴𝐴(𝑡𝑡) contains the amplitude and time of arrival of each ray of sound.  

The backward step starts by time reversing ℎ𝐴𝐴𝐴𝐴(𝑡𝑡) to create the time reversed impulse 

response, ℎ𝐴𝐴𝐴𝐴(−𝑡𝑡) and is broadcast from location B, where the original receiver was located. The 

sound that traveled the longest path is broadcast first and the sound that traveled the direct path is 

broadcast last. Each ray of sound retraces its original path and arrives simultaneously at location 

A, the original broadcast location.  
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FIG. 1.3. A depiction of standard time reversal with the forward step (top) and the 
backward step (bottom). ∗ denotes convolution. 

  

Reciprocal TR is much like standard TR except that the locations of the source and receiver 

are held constant between the forward and backwards steps, as seen in Fig. 1.4. This is possible 

due to spatial reciprocity. Spatial reciprocity implies that switching the location of the source and 

receiver does not change the impulse response. The timing of the reflected and direct sound is still 

maintained, and they coherently combine at the receiver location, B. Reciprocal TR is used 

throughout this thesis.   
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FIG. 1.4. A depiction of reciprocal time reversal with the forward step (top) and the 
backward step (bottom). ∗ denotes convolution. 

 

As seen in the focal signals in Fig. 1.3 and Fig. 1.4, noise is present before and after the 

maximum amplitude in the focal signal. Mathematically, this noise is a result of the convolution, 

ℎ𝐴𝐴𝐴𝐴(−𝑡𝑡) ∗ ℎ𝐴𝐴𝐴𝐴(𝑡𝑡). This convolution is equivalent to the autocorrelation of ℎ𝐴𝐴𝐴𝐴(𝑡𝑡) (see Chapter 

2).15 Physically, this noise is caused by the transducer’s inability to record the direction of each 

incident ray and subsequently control the direction that each ray of sound is emitted. Ideally, when 

ℎ𝐴𝐴𝐴𝐴(−𝑡𝑡) is broadcast from the source, the part of ℎ𝐴𝐴𝐴𝐴(−𝑡𝑡) containing the direct sound information 

is only emitted back in the direction in which the direct path between 𝐴𝐴 and 𝐵𝐵 was received. In 

reality, the direct sound information is allowed to follow every path between 𝐴𝐴 and 𝐵𝐵, leading to 

some of this sound energy arriving after the intended focal time. Likewise, the arrival in ℎ𝐴𝐴𝐴𝐴(−𝑡𝑡) 

containing the information from a ray of sound with multiple reflections follows every path, during 
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the backward step, including much shorter paths and some energy thus arrives at 𝐵𝐵 before the 

intended focal time. The combined effect of part of the energy of each ray of sound arriving before 

and after the intended focal time results in noise that has been termed side lobes.  

The use of multiple transducers improves TR focusing.16 For reciprocal TR and 𝑁𝑁 

transducers, the impulse responses (ℎ𝐴𝐴𝑖𝑖𝐴𝐴(𝑡𝑡)) must be found between each source transducer 

location (𝐴𝐴𝑖𝑖) and the receiver at the focus location (𝐵𝐵). Each impulse response is time reversed and 

broadcast from the respective source transducer simultaneously. The signals that arrive at 𝐵𝐵 at the 

expected time of focusing from each appropriately timed reflection and directly from each source 

transducer, superpose in the field to create the TR focus. At the focus location, 𝐵𝐵, the TR focusing 

is created by each signal adding coherently, thus the maximum focal amplitude increases linearly 

with 𝑁𝑁. The side lobe amplitudes add incoherently, thus their amplitudes only increase as √𝑁𝑁, 

leading to a relative reduction in side lobe level in comparison to the focal amplitude with larger 

𝑁𝑁.  

The quality of TR focusing depends on the amount of reflected energy in a room. Rays of 

sound that reflect off surfaces can be thought of as coming from image sources outside of the room. 

More images sources can be included by increasing the recording time of ℎ𝐴𝐴𝐴𝐴(𝑡𝑡), and the strength 

of each image source can be increased by decreasing the absorption at the surfaces. Increasing the 

amount of and the strength of each image source leads to a greater maximum focal amplitude but 

also leads to an increased amount of energy in the slide lobes.  

The spatial progress of TR focusing in a room using a single source transducer is shown in 

Fig. 1.5. Each image in the figure depicts the same spatial region with the focus location at its 

center. The TR source is located far below and to the left of the region shown. Well before the 

focal time, the region consists of a random sound field. Just before focal time, converging wave 



1.2  Time Reversal Fundamentals 9 

 

fronts create a nearly-circular, converging ripple surrounding the focus location. The bottom left 

section of this ripple is higher amplitude than the rest. This is due to the direct sound coming from 

the source being the strongest contribution to the focusing. The direct sound wave front results in 

a curved feature whose ends are denoted by ⋇. At the focal time, the converging wave fronts 

coalesce and result in the maximum focal amplitude. Once again, the direct sound wave front can 

be seen. Just after the focal time, the previously converging wave fronts begin diverging away 

from the focus location. Now the direct sound increases the amplitude of the top right section of 

the nearly-circular, diverging ripple. Well after the focal time, the region once again consists of a 

random sound field.  

 

 

FIG. 1.5. The spatial response showing the progress of TR focusing. The color scale 
represents the relative pressure amplitude. Arrows denote the direction of wave 

propagation. ⋇ shows the edges of the direct sound wave front. 

 

TR commonly employs a so-called time reversal mirror (TRM). A TRM is a closely spaced 

array of transducers often designed to both capture and broadcast wave energy in a standard TR 

type of experiment. Fink designed an experiment using a TRM that showed how TR benefits from 

reflected or scattered energy.3 The experiment consisted of a single underwater source transducer 

at location 𝐴𝐴 and an underwater TRM at location 𝐵𝐵. The source transducer broadcasted an impulse, 
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and the TRM array recorded the response. The recording was only long enough for each TRM 

element to record the first arrival of sound; reverberant sound from the water tank boundaries was 

not included. Individual ℎ𝐴𝐴𝐴𝐴(−𝑡𝑡) signals were then broadcast from each respective TRM element. 

The resulting signal at the original source location was simply the result of time alignment of each 

element in the TRM (beamforming). The transducer at 𝐴𝐴 was moved along a line parallel to the 

TRM to record the spatial extent of the focus. Fink then placed a forest of thin and closely spaced 

rods between 𝐴𝐴 and the TRM. This provided scattering and created reverberation between the 

focus location and the TRM. The resulting focus with the forest of rods in place was 6 times 

narrower spatially than without the rods. Unlike beamforming, where complexities between the 

array and the focus location could lead to deteriorated focusing, TR benefits from a more complex 

and scattering-filled environment. However, the system must be linear and time invariant to 

perform TR focusing.  

1.3 Thesis Objective 

This thesis aims to understand and improve TR focusing in rooms by performing computer 

simulations. The results from this thesis will help future researchers understand optimal room and 

source/focus locations for different applications of TR. Temporal quality (how well TR focuses 

sound in time) and spatial clarity (how well TR focuses sound in space) are defined and explored 

for each computer simulation. 

Chapter 2 considers the effects that the acoustic absorption and volume of a room enclosure 

have on TR focusing. It describes how decreasing absorption and/or decreasing volume lead to 

higher maximum focal response and improved spatial clarity while also leading to lower temporal 

quality.  
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Chapter 3 considers the effects that source and focus locations within a room have on TR 

focusing. For a single source, maximum focal amplitude is increased either by focusing very close 

to the source or far away from the source. Temporal quality decreases with source/focus location 

distance while spatial clarity increases. Dual coplanar source and focus locations lead to improving 

maximum focal amplitude and spatial clarity while lowering temporal quality. For multiple 

sources, a few different array configurations are considered. The type of array configuration does 

not have a significant impact on maximum focal amplitude and temporal quality, while a circular 

array with sources completely surrounding the focus location leads to significantly improved 

spatial clarity compared to commonly used TRM line arrays.  

Chapter 4 provides a conclusion and suggestions for future work. Appendix A contains 

MATLAB code used for this work. Appendix B contains a description of the software used for the 

experiments conducted in this work. 
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Time Reversal Acoustics Applied to 
Rooms of Various Reverberation Times 

2.1 Introduction 
Originally developed for acoustic signal transmissions in the ocean,1,2 Time reversal (TR) 

is a process used for focusing wave energy at a particular point in space.3,4 TR has been used in a 

variety of acoustics applications, including: high-energy focusing for ultrasound medical 

operations (i.e. lithotripsy),5 the reconstruction of source events (i.e., earthquakes),6 

communications in reverberant environments,7,8,9 and performing nondestructive evaluations of 

materials.10,11  

There are two steps to the TR process, the forward propagation and the backward 

propagation. First, an impulse response (or transfer function in the frequency domain) is obtained 

between a source and a receiver. Second, the impulse response, ℎ(𝑡𝑡), is reversed in time to create 

the time reversed impulse response, ℎ(−𝑡𝑡), which is then broadcast from the source. The response 

at the receiver is the convolution of ℎ(𝑡𝑡) and ℎ(−𝑡𝑡) (which is equivalent to the autocorrelation of 

ℎ(𝑡𝑡)15) and is known as the focal signal. The maximum amplitude of the focal signal is the result 

of coherent addition of the direct sound between the source and receiver and the reverberant sound 

arrivals caused by the enclosure. Optimizing the TR process for sound focusing in rooms has been 

a recent area of research. Some applications require a high amplitude focus, while others require a 

very narrow and impulsive-like focus. TR in rooms is a fairly new field with a limited amount of 
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published studies. A brief literature review containing key studies of TR in rooms is included 

below.  

Candy et al. studied the feasibility of using TR for an acoustic point-to-point 

communication experiment in a highly reverberant room.7,17,18 They found that TR can be used to 

recover a transmitted information sequence with zero-symbol error. They improved 

communication quality through the reverberant medium by applying a linear equalization filter, an 

array of multiple sources, and other signal processing. They did not address how different room 

conditions might affect TR.  

Yon et al. performed an experimental study in a reverberation chamber and found that TR 

provides better temporal and spatial focusing than classical time-delay beamforming because it 

utilizes the multiple sound paths between the sound sources and focus location.16 They also found 

that increasing the number of sound sources and increasing the bandwidth of the impulse response 

decreases the spatial side lobe level, which results in improved TR focusing. They concluded that 

side lobe levels are lower in a reverberant room than a free field, but did not define any relationship 

between reverberation time and TR focusing performance. In their study, a 20-loudspeaker linear 

array was used to transmit the TR signal, and a single microphone on a one-dimensional scanning 

system was used to measure the temporal and spatial focus response. They defined a side lobe 

level as the difference in level between the focal point and the closest measureable side lobe in 

space. 

Ribay et al. used a time-domain, finite-difference numerical simulation that was used in 

previous TR studies in solids19,20 and related them to room acoustics. They determined that the 

maximum focal amplitude is 𝑁𝑁𝑁𝑁/𝑁𝑁0, where 𝑁𝑁 is the number of TR transceivers, 𝑁𝑁 is the 

reverberation time of the room, and 𝑁𝑁0 is the width of the peak of the focused signal.21 Thus, any 
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change to the reverberation time should lead to a linear change in peak amplitude of the focused 

signal. This relationship is stated but not explicitly shown, numerically or experimentally, in their 

paper nor in the papers cited. 

Anderson et al. explored the effect that source directivity has on TR in a room.14 They 

found that pointing the loudspeaker source away from the focus location increased the amount of 

energy in the reverberant field and led to a stronger focal signal amplitude in a highly reverberant 

room (reverberation time of 6.89 s). However, pointing the source towards the focus location led 

to a more impulsive like focus (higher temporal focus quality) and a more locally isolated focus 

(higher spatial focus clarity). In a less reverberant room, with 𝑅𝑅𝑅𝑅60 = 0.65 𝑠𝑠, the direction of the 

source did not greatly affect the peak focal amplitude. Thus, the reverberation time of the room, 

the directivity of the source and direction the source is facing has a dramatic effect of the TR 

process.  

Willardson et al. explored the application of TR to produce high amplitude focusing in a 

reverberant environment.22 They investigated how TR focusing changed depending on different 

signal processing strategies applied to ℎ(−𝑡𝑡) prior to the backward step of the TR process. When 

comparing deconvolution, one-bit, clipping, and decay compensation signal processing strategies, 

they found that clipping produced the highest amplitude focal signal. The experiments were done 

in a reverberation chamber and did not explore the effects of these processing techniques in 

different rooms.  

The purpose of this paper is to closely study the effects of wall absorption and room volume 

on the TR process, which is not fully shown in the literature. Numerical simulations and 

experimental results are used to show that the relationship between maximum focal amplitude and 

reverberation time given by Ribay et al. is true only when reverberation time is changed by 
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modifying the absorption of the walls in the room.21 A new relationship between maximum focal 

amplitude and reverberation time is shown when the reverberation time changes due to changing 

volume and the absorption is unchanged. Additionally, a temporal quality metric (how well TR 

focuses sound in time) and a new spatial clarity metric (a new metric that describes how well TR 

focuses sound in space) are defined and explored for multiple room enclosures. Testing the effects 

that absorption and room volume have on TR requires many room configurations. Simulations are 

used to determine the impacts of absorption and room volume on TR focusing due to the practical 

challenges of performing TR experimentally in many different rooms. However, experimental data 

are taken in a few rooms to validate the simulated results. Reciprocal TR is used throughout the 

simulations and experiments.4 

The image source method is used for the simulations in this study. The method assumes a 

rectangular parallelepiped room, uniform absorption on all of the walls, frequency-independent 

absorption (except in Section 2.3.3), omnidirectional and frequency-independent sources and 

receivers, specular reflections only, and no scattering from objects in the room. Although the 

inclusion of scattering surfaces has been shown to improve TR focusing,3 scattering is excluded 

from the simulations to improve computational efficiency.  

 

2.2 Numeric Acoustic Simulation and TR Metrics 
An adequate numerical acoustic simulation for this study must be able to compute an 

impulse response, ℎ𝐴𝐴𝐴𝐴(𝑡𝑡), between a source at location 𝐴𝐴 and a receiver at location 𝐵𝐵 within a 

room enclosure (see Fig. 2.1). In the TR process, assuming a frequency-independent source, 

ℎ𝐴𝐴𝐴𝐴(−𝑡𝑡) is then convolved with ℎ𝐴𝐴𝐴𝐴(𝑡𝑡) to form the focal signal, 𝑓𝑓(𝑡𝑡): 
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𝑓𝑓(𝑡𝑡) = ℎ𝐴𝐴𝐴𝐴(−𝑡𝑡) ∗ ℎ𝐴𝐴𝐴𝐴(𝑡𝑡) = � ℎ𝐴𝐴𝐴𝐴(−𝑁𝑁)ℎ𝐴𝐴𝐴𝐴(𝑡𝑡 − 𝑁𝑁)𝑑𝑑𝑁𝑁

∞

−∞
, 

= 𝑅𝑅ℎ𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝐴𝐴(−𝑡𝑡) = 𝑅𝑅ℎ𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝐴𝐴(𝑡𝑡). 

(2.1) 

In Eq. 2.1, the ∗ denotes a convolution, 𝑁𝑁 is an integration dummy variable, and 𝑅𝑅ℎℎ(𝑡𝑡) is the 

autocorrelation of ℎ(𝑡𝑡), defined as23 

 
𝑅𝑅ℎℎ(𝑡𝑡) = � ℎ(𝑁𝑁)ℎ(𝑡𝑡 + 𝑁𝑁)𝑑𝑑𝑁𝑁

∞

−∞
. 

(2.2) 

Because the autocorrelation function is a real and even function, 𝑅𝑅ℎ𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝐴𝐴(𝑡𝑡)= 𝑅𝑅ℎ𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝐴𝐴(−𝑡𝑡). Thus, 

the focal signal is simply the autocorrelation of ℎ𝐴𝐴𝐴𝐴(𝑡𝑡).7,15  

 

 

FIG. 2.1. A drawing of a room with a source located at A and microphones located at the 
focus location B and at the away location C.  

 

To simulate the response at an away location, 𝐶𝐶, during the backward propagation due to 

TR focusing at the focus location, 𝐵𝐵, an away location impulse response, ℎ𝐴𝐴𝐴𝐴(𝑡𝑡), is computed. The 

response at the away location, 𝑎𝑎(𝑡𝑡), is the convolution between ℎ𝐴𝐴𝐴𝐴(−𝑡𝑡) and ℎ𝐴𝐴𝐴𝐴(𝑡𝑡): 

 
𝑎𝑎(𝑡𝑡) = ℎ𝐴𝐴𝐴𝐴(−𝑡𝑡) ∗ ℎ𝐴𝐴𝐴𝐴(𝑡𝑡) = � ℎ𝐴𝐴𝐴𝐴(−𝑁𝑁)ℎ𝐴𝐴𝐴𝐴(𝑡𝑡 − 𝑁𝑁)𝑑𝑑𝑁𝑁

∞

−∞
= 𝑅𝑅ℎ𝐴𝐴𝐴𝐴ℎ𝐴𝐴𝐴𝐴(−𝑡𝑡). 

(2.3) 
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Thus the response at an away location, 𝐶𝐶, is the time-reversed, cross correlation of ℎ𝐴𝐴𝐴𝐴(𝑡𝑡) and 

ℎ𝐴𝐴𝐴𝐴(𝑡𝑡). Because cross correlations and autocorrelations are much more computationally efficient 

than convolutions, this paper simulates 𝑓𝑓(𝑡𝑡) by computing the autocorrelation of ℎ𝐴𝐴𝐴𝐴(𝑡𝑡) and 𝑎𝑎(𝑡𝑡) 

by computing the time-reversed, cross correlation of ℎ𝐴𝐴𝐴𝐴 and ℎ𝐴𝐴𝐴𝐴 . 

When experimentally performing TR, it is common practice to normalize ℎ𝐴𝐴𝐴𝐴(−𝑡𝑡) to the 

maximum input voltage of the amplifier before broadcasting it from the sound source in order to 

maximize the focal amplitude. Similarly, each simulated ℎ𝐴𝐴𝐴𝐴(−𝑡𝑡) is normalized to have a 

maximum amplitude of one before convolving it with ℎ𝐴𝐴𝐴𝐴(𝑡𝑡). Thus the autocorrelation and cross 

correlation results are scaled by the appropriate normalization factor to set the maximum amplitude 

of ℎ𝐴𝐴𝐴𝐴(−𝑡𝑡) to one.  

 

 Image Source Method 

The image source method models specular reflections off room surfaces as sound coming 

from image sources outside of the room. In a closed room, every surface acts as a mirror that 

creates an image source.24 For a rectangular parallelepiped room, the parallel surfaces create image 

rooms that expand out in three dimensions (including diagonal directions) with each having its 

own image source. Each image source contributes to a specific part of the simulated ℎ(𝑡𝑡). During 

a simulation, all real and image sources simultaneously produce a ray of sound that travels in a 

straight line between itself and the receiver. The ray loses amplitude according to spherical 

spreading as it travels. Additionally, every time a ray passes through a wall surface, the ray loses 

energy according to the wall surface’s absorption coefficient. The time at which a ray reaches the 

receiver is determined by the speed of sound in traveling the distance between the receiver and a 
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given image source. ℎ(𝑡𝑡) is created by linearly superposing the contributions from each ray with 

the appropriate time delay. Figure 2.2 shows a two-dimensional representation of the image source 

method with only a few image sources. 

 

 

FIG. 2.2. A two-dimensional representation of the image source method. The solid lines 
represent the original room, while dotted lines represent image rooms. The figure is limited 
to only a few image sources for simplicity. The actual image space is three-dimensional and 

includes many more image sources.   

 

The ray tracing method was also considered for this study. This method models sound as 

following multiple rays that expand in different directions from a source. The rays interact with 

the room by reflecting off surfaces, with some models including scattering instead of just specular 

reflections, and some of the sound energy being absorbed according to the absorption 

characteristics of each surface. Every ray that passes through the defined receiver region is 

recorded along with the relative amplitude and time of arrival of the sound waves associated with 

each ray. Finally the signals are added together to form an impulse response. Ray tracing methods 

can model the inclusion of irregular room geometries and scattering objects (e.g., tables and 
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chairs). Ray tracing normally requires millions of rays, or more, for accuracy. Depending on the 

room size, amount of rays used, and the available computational power, a single impulse response 

may take several hours to calculate. The results presented in this paper required simulations 

conducted in many different rooms, corresponding to thousands of impulse responses; thus the 

inefficiencies associated with ray tracing made it an impractical approach. Additionally, the 

defined receiver region would limit spatial precision and may affect the exact time of arrival of 

each ray, which timing is of critical importance in the TR process. The image source method only 

uses the exact number of rays that reach the microphone within a desired time interval and, thus, 

it is more computationally efficient.  

The Allen and Berkley Image Source Method is an efficient and simple algorithm that can 

be easily implemented in many computational programs.25 It is a relatively simple approach to 

modeling room acoustics and thus possesses certain limitations. The model assumes a rectangular 

parallelepiped room and, therefore, cannot be used for rooms with complicated geometries. The 

model also assumes that the room is empty, meaning that it does not account for scattering and 

absorption of sound from objects in the room. The model assumes an omnidirectional source and 

receiver, each possessing an idealized flat frequency response. Finally, each of the six surfaces in 

the room must have uniform, frequency-independent absorption coefficients, meaning that it 

cannot account for irregular absorption regions on a given wall (like an open window or absorptive 

panel), and the model is restricted to specular wall reflections (i.e., scattering coefficients of walls 

are not included). A high pass filter at 500 Hz is used to eliminate nonphysical effects near zero 

frequency and to stay above a typical Schroeder frequency value for the rooms. Although this 

approach limits a TR study to simple rooms, it is advantageous over other modeling methods 

because of its computational efficiency and because there is no need to export data from 
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commercial software packages to simulate TR focusing. Figure 2.3 shows an example of a one-

second impulse response created with this method, ℎ𝐴𝐴𝐴𝐴(𝑡𝑡), and the corresponding focal signal, 

𝑓𝑓(𝑡𝑡), and a response away from the focus location, 𝑎𝑎(𝑡𝑡).  

 

 

FIG. 2.3. (a) An example of a normalized impulse response generated by the Allen and 
Berkley Image Source Method. (b) The corresponding normalized focal signal, 𝒇𝒇(𝒕𝒕). (c) A 

response away from the focus location normalized by the same value as the focal signal, 𝒂𝒂(𝒕𝒕). 

 

The peak energy of the focal signal is located at the center of the focal signal, as seen in 

Fig. 2.3(b). The side lobes or “noise” appearing before and after the peak energy of the focal signal 

are a consequence of the autocorrelation and are physically caused by transducers being unable to 

retrace only the original direct and reverberant sound paths.  
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Additional work has been done to further improve the original Allen and Berkley Image 

Source Method. Peterson found that applying a low-pass filter to the impulse response improves 

arrival time accuracy.26 A similar approach is followed in this paper by band limiting impulse 

responses between 500 to 7,500 Hz. The upper frequency limit of 7,500 Hz was chosen based on 

the results from Willardson et al. who found that including frequencies above 7,500 Hz did not 

greatly impact TR focusing.22 Additionally, incorporating phase shifts at each sound reflection 

leads to a better approximation of an impulse response.27 Unfortunately, incorporating these phase 

shifts lead to much higher computation time, thus this modification was not incorporated in this 

study.  

 

 Temporal Focus Quality 

Many applications of TR require that the focal signals have a narrow temporal envelope. 

In communications applications, the focal signal is the carrier signal for the intended message. The 

resulting signal at the focus location is the convolution of the focal signal and the intended 

message. The ideal, but practically impossible focal signal would be a delta function. This would 

result in a perfect transmission of the message. The side lobes before and after the maximum 

amplitude of the focal signal (Fig. 2.3(b)) and the band limited nature of transducers result in 

asynchronous repetitions of the intended message at the focus location.  

Temporal focus quality is a metric that describes how well a focal signal approximates a 

delta function. It compares the maximum focal amplitude, 𝐴𝐴𝑃𝑃, with the total energy of the focal 

signal. While different definitions of temporal quality have been used in the past,19,22,28,29 this paper 

uses a modified version of the metric defined by Heaton et al.: 
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𝜉𝜉𝑇𝑇 = �

[𝐴𝐴𝑃𝑃]2
1
𝑀𝑀∑ [𝐴𝐴(𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0,𝑚𝑚)]2𝑀𝑀

𝑚𝑚=1

, 
(2.4) 

where 𝐴𝐴(𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0,𝑚𝑚) is the amplitude of the 𝑚𝑚th sample of the focal signal, 𝑓𝑓(𝑡𝑡), at position 

(𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0) and 𝑀𝑀 is the number of discrete samples in the signal 𝐴𝐴. 𝜉𝜉𝑇𝑇 is a unitless metric that, in 

the case of room acoustics, is effectively the ratio of peak pressure amplitude to the average 

pressure amplitude of the entire signal. 𝜉𝜉𝑇𝑇 is also equivalent to what Derode et al. called the signal-

to-noise ratio, 𝑆𝑆𝑁𝑁𝑅𝑅, which is defined as the peak amplitude divided by the standard deviation of 

the surrounding noise, 𝜎𝜎, or 𝑆𝑆𝑁𝑁𝑅𝑅 =  𝐴𝐴𝑃𝑃
𝜎𝜎

.19  

As an example, the maximum temporal quality possible occurs when the signal is a delta 

function, which results in 𝜉𝜉𝑇𝑇 =  √𝑀𝑀. As seen in Fig. 2.3(b), most focal signals approach zero 

amplitude at the start and end of the time window. Consequently, 𝜉𝜉𝑇𝑇 can be arbitrarily increased 

or decreased by measuring more or less samples in the recording. Therefore 𝜉𝜉𝑇𝑇 is best used as a 

relative measure of temporal quality of various signals of the same length rather than as an absolute 

measure of temporal quality. 

Equation 2.4 is typically used to calculate 𝜉𝜉𝑇𝑇 for the focal signal, 𝑓𝑓(𝑡𝑡), but it can be used 

to calculate 𝜉𝜉𝑇𝑇 for the response at an away location, 𝑎𝑎(𝑡𝑡). This is done by replacing 𝐴𝐴(𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0,𝑚𝑚) 

with 𝐴𝐴(𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑚𝑚), the discrete-time version of the away signal, 𝑎𝑎(𝑡𝑡) at position (𝑥𝑥,𝑦𝑦, 𝑧𝑧). 𝐴𝐴𝑃𝑃 is set 

to the peak amplitude of 𝑎𝑎(𝑡𝑡). 𝜉𝜉𝑇𝑇 for the focal signal shown in Fig. 2.3(b) is 94.2 while the away 

signal shown in Fig. 2.3(c) has a value of 17.1. The higher value of 𝜉𝜉𝑇𝑇 for the focused signal is due 

to a much larger 𝐴𝐴𝑃𝑃. 
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 Spatial Focus Clarity 

Many applications of TR also require that strong temporal focusing only occurs at a single 

location. For example, in communications applications, it is important that the delivered message 

is only focused at the intended location and not able to be intercepted at other locations. Spatial 

focusing metrics have been developed by others to describe the ratio of 𝐴𝐴𝑃𝑃 at the focus location to 

the amplitudes at other spatial locations.14,28 Heaton et al. also provided a metric for the TR spatial 

focus quality, 𝜉𝜉S, that relates the maximum amplitude at the focus location to the amplitude of 

other locations at the time of maximum focusing.29 Similarly, Yon et al. quantifies spatial focusing 

using side lobe level, which is the difference between 𝐴𝐴𝑃𝑃 and the largest spatial side lobe amplitude 

at the focal time.16 

The spatial focus clarity, 𝛬𝛬𝑆𝑆, is a new metric and is the ratio of temporal quality at the focus 

point to the average temporal quality over all spatial positions in a two-dimensional region of 

interest (ROI), and is thus a spatial measure of 𝜉𝜉𝑇𝑇. This metric gives greater insight into the 

impulsive nature of the temporal signal at the focus location compared to the resulting signals 

elsewhere. For communication applications of TR, 𝛬𝛬𝑆𝑆 can be used to determine the likelihood that 

the communication might be interpretable elsewhere in the ROI. This paper only considers two-

dimensional ROIs along the x-y plane. TR spatial focus clarity is defined as 

 
𝛬𝛬𝑆𝑆 = �

[𝜉𝜉𝑇𝑇(𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0)]2
1

𝑁𝑁𝑥𝑥 𝑁𝑁𝑦𝑦
∑ ∑ �𝜉𝜉𝑇𝑇�𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦, 𝑧𝑧0��

2𝑁𝑁𝑦𝑦
𝑛𝑛𝑦𝑦=1

𝑁𝑁𝑥𝑥
𝑛𝑛𝑥𝑥=1

, 
(2.5) 

where (𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0) are the Cartesian coordinates for the focus location, 𝑁𝑁𝑥𝑥 and 𝑁𝑁𝑦𝑦 are the number 

of measurement locations in the 𝑥𝑥 and 𝑦𝑦 directions respectively in the ROI, and 𝜉𝜉𝑇𝑇�𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦, 𝑧𝑧0� is 

the temporal quality at the �𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦, 𝑧𝑧0� location within the ROI. 𝛬𝛬𝑆𝑆 can be made to represent three 



24 Chapter 2  

  

dimensions by replacing 𝜉𝜉𝑇𝑇�𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦, 𝑧𝑧0� with 𝜉𝜉𝑇𝑇�𝑛𝑛𝑥𝑥, 𝑛𝑛𝑦𝑦,𝑛𝑛𝑧𝑧�, multiplying by 1
𝑁𝑁𝑧𝑧

 in the denominator 

and including a third summation over 𝑛𝑛𝑧𝑧 up to 𝑁𝑁𝑧𝑧. Additionally, 𝛬𝛬𝑆𝑆 can be evaluated for two-

dimensional ROIs along planes other than the x-y plane by substituting 𝑁𝑁𝑥𝑥, 𝑁𝑁𝑦𝑦, 𝑛𝑛𝑥𝑥 and 𝑛𝑛𝑦𝑦 with 

the appropriate plane variables. Similar to 𝜉𝜉𝑇𝑇, the value of 𝛬𝛬𝑆𝑆 can change greatly depending on the 

values of 𝑁𝑁𝑥𝑥 and 𝑁𝑁𝑦𝑦 and is thus a relative measure of the quality of spatial focusing. Therefore, 

when comparing multiple TR experiments with different ROIs, each should have the same values 

for 𝑁𝑁𝑥𝑥 and 𝑁𝑁𝑦𝑦 and grid spacing. 𝛬𝛬𝑆𝑆 equals one for anechoic and direct sound exclusive fields 

because values of 𝜉𝜉𝑇𝑇 will be equal at all points in the ROI.  

Calculating 𝛬𝛬𝑆𝑆 requires the response at every grid location in a ROI due to the source 

broadcasting ℎ𝐴𝐴𝐴𝐴(−𝑡𝑡). To do this, impulse responses are simulated between the source location 

and each location, ℎ𝐴𝐴𝐴𝐴(𝑡𝑡), within a ROI and the response is then calculated by computing the time 

reversed cross correlation between ℎ𝐴𝐴𝐴𝐴(𝑡𝑡) and ℎ𝐴𝐴𝐴𝐴(𝑡𝑡). Figure 2.4 shows the room dimensions 

along with source, focus, and ROI locations for an example simulation. The room shown is an 8.8 

x 11.1 x 7 m rectangular room and the average absorption coefficient of the room is 0.04.  The 

source is located at (7,6,3) m and the focus is at (4,6,3) m with a one-meter ROI around the focus 

with 2 mm grid spacing for a total of 251,001 ROI grid points, each requiring a unique impulse 

response. Figure 2.5(a) shows a spatial focus map in dB, which represents the instantaneous sound 

pressure level (SPL) response at locations within the ROI at the time of maximum focus ranging 

from -60 to 0 dB (normalized with respect to the SPL value for 𝐴𝐴𝑃𝑃). The focus location, (0.5,0.5) 

m, is shown to have the expected maximum response. A feature in Fig. 2.5 that spans along the y 

direction and near 4 meters in the x direction is shown to have higher than average response. This 

feature is a result of direct sound coming from the sound source located three meters away, (to the 
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right as pictured) along the x direction, as seen in Fig 2.4. The high amplitude feature at the focus 

location is caused by the coherent addition inherent in the TR process.  

Figure 2.5(b) shows a map of  𝜉𝜉𝑇𝑇�𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦� in dB ranging from -30 to 0 dB. The figure shows 

how 𝜉𝜉𝑇𝑇 is maximized at the focus location (4,6) m and how it relates to other locations on the 

surface, 𝜉𝜉𝑇𝑇�𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦�.  

 

 

FIG. 2.4. Example room dimensions along with source, focus, and ROI scanning grid 
locations that were used to simulate the results of Fig. 2.5. 
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FIG. 2.5. (a) Typical spatial distribution of simulated time reversal focusing in dB re peak. 
(b) Typical spatial distribution of the temporal focus quality, 𝝃𝝃𝑻𝑻, in dB re peak from 

simulation results. Note that the sound source is located 3 meters along x to the right from 
the center of each map. 

 

2.3 Simulated Results 
TR simulations were created to more easily determine the effects of wall sound absorption 

in a room and room volume on 𝐴𝐴𝑃𝑃, 𝜉𝜉𝑇𝑇, and 𝛬𝛬𝑆𝑆. The Allen and Berkley Image Source Method was 

implemented in MATLAB in order to simulate impulse responses. Additional filtering was 

included to limit the frequency range of the impulse responses from 500 to 7,500 Hz which closely 

resembles the experimental procedures outlined in Section 2.4. Each impulse response was 0.8 s 

in length and sampled at 50 kHz. Impulse responses recorded longer than 0.8 s did not greatly 

affect the response across the ROI. The autocorrelation of ℎ(𝑡𝑡)𝐴𝐴𝐴𝐴 was used to determine the focal 

signal. The focal signal was used to calculate 𝐴𝐴𝑃𝑃 and 𝜉𝜉𝑇𝑇 according to Eq. (2.4). As seen in Eq. 

(2.5), 𝛬𝛬𝑆𝑆 requires individual values of  𝜉𝜉𝑇𝑇 for each location on the ROI. The response at each 

location was simulated at each grid point in the 1 x 1 m ROI with 10 cm spacing resulting in 121 
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scanning points. 10 cm spacing was determined to be sufficient to accurately calculate 𝛬𝛬𝑆𝑆 for this 

study, meaning that the trends (shown later on) for 𝛬𝛬𝑆𝑆 did not change significantly for finer 

spacing. Finer spacing would be necessary to study other features of TR focusing, such as the 

spatial focal spot width. 𝛬𝛬𝑆𝑆 is computed for each ROI and then the 𝑅𝑅𝑅𝑅60 is changed (either by 

changing the absorption characteristics of the room or the volume of the room) and the simulation 

is conducted. Source, focus and measurement grid locations were placed at least 1 m away from 

any surface to minimize boundary effects and ensure a diffuse field.30  

 

 Changing Absorption 

In order to minimize the likelihood of degenerate modes, a room with an ideal aspect ratio30 

21 3� : 41 3� : 1 with dimensions 3.78 x 4.76 x 3.00 meters and with a uniform absorption coefficient 

of 0.18 on all six surfaces was used to create the initial simulated room. This room had a predicted 

𝑅𝑅𝑅𝑅60 of 0.5 s using the Norris-Eyring reverberation formula31  

 𝑅𝑅𝑅𝑅60 =
0.161𝑉𝑉

− ln(1 − 〈𝛼𝛼〉𝑆𝑆) 𝑆𝑆
, (2.6) 

where 𝑉𝑉 is the volume of the room, 〈𝛼𝛼〉𝑆𝑆 is the absorption coefficient averaged over the room 

surface area, and 𝑆𝑆 is the surface area of the room, and the factor of 0.161 assumes MKS units and 

a speed of sound of 343 m/s. To isolate the effect that absorption has on TR, 〈𝛼𝛼〉𝑆𝑆 was 

systematically lowered (from 0.18 to 0.03) to create 26 simulated rooms such that 𝑅𝑅𝑅𝑅60 spans from 

0.5 to 3.0 s with 0.1 s increments. The source lactation is (2.34, 2.01, 1.01) m and the focus location 

is (1.50, 2.85, 1.01) m. For each of the room conditions, 𝐴𝐴𝑃𝑃, 𝜉𝜉𝑇𝑇, and 𝛬𝛬𝑆𝑆 were calculated using the 

method described previously. Relationships between the Norris-Eyring 𝑅𝑅𝑅𝑅60 and 𝐴𝐴𝑃𝑃, 𝜉𝜉𝑇𝑇, and 𝛬𝛬𝑆𝑆 

for the 26 rooms are shown by the solid lines of Fig 2.6. For 𝐴𝐴𝑃𝑃, increasing 𝑅𝑅𝑅𝑅60 by decreasing 
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〈𝛼𝛼〉𝑆𝑆 leads to a linear relationship between 𝐴𝐴𝑃𝑃 and 𝑅𝑅𝑅𝑅60 (coefficient of determination, R2 = 0.9997). 

This follows the linear relation prediction from Ribay et al.21 Decreasing 〈𝛼𝛼〉𝑆𝑆 also results in a 

slight lowering of 𝜉𝜉𝑇𝑇 and a drastic increase in 𝛬𝛬𝑆𝑆. As 𝑅𝑅𝑅𝑅60 changes from 0.5 s to 3 s, 𝐴𝐴𝑃𝑃 increases 

by 515%, 𝜉𝜉𝑇𝑇 decreases by only 2.4% and 𝛬𝛬𝑆𝑆 increases by 264%, thus the increases in 𝐴𝐴𝑃𝑃 and 𝛬𝛬𝑆𝑆 

are much more significant than the decrease in 𝜉𝜉𝑇𝑇. These trends are due to the increased amount 

of reverberant energy at the focus location as 〈𝛼𝛼〉𝑆𝑆 decreases. For 𝛬𝛬𝑆𝑆, increasing reverberant energy 

creates a less coherent sound field across the ROI which decreases 𝜉𝜉𝑇𝑇 at locations other than the 

focus. Though not presented here, the same trends were observed when simulating rooms with 

different volumes. 

 

 

FIG. 2.6. Simulation results for time reversal focusing metrics for various rooms of different 
frequency-independent absorption coefficients and room volumes. (a) Maximum focal 

amplitude, 𝑨𝑨𝑷𝑷, versus 𝑹𝑹𝑻𝑻𝟔𝟔𝟔𝟔. (b) Temporal quality, 𝝃𝝃𝑻𝑻, versus 𝑹𝑹𝑻𝑻𝟔𝟔𝟔𝟔. (c) Spatial clarity, 𝜦𝜦𝑺𝑺, 
versus 𝑹𝑹𝑻𝑻𝟔𝟔𝟔𝟔. 
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 Changing Volume 

The same initial room, as used in Section 2.3.1, with dimensions 3.78 x 4.76 x 3.00 m and 

with an average absorption coefficient of 0.18 was used to test the effect that changing volume has 

on TR. Using Eq. (2.6), 〈𝛼𝛼〉𝑆𝑆 was held constant and 𝑉𝑉 was systematically increased to create 26 

simulated rooms such that 𝑅𝑅𝑅𝑅60 spans from 0.5 to 3 s with 0.1 s spacing. The aspect ratio 

21 3� : 41 3� : 1 was maintained for every simulated room in order to have a constant relationship 

between 𝑉𝑉 and 𝑆𝑆. This resulted in 𝑉𝑉 ranging in values from 54 m3 for a 𝑅𝑅𝑅𝑅60 = 0.5 s to 11,664 m3 

for a 𝑅𝑅𝑅𝑅60 = 3 s. While the simulated rooms increased in size, the source and receiver/focus 

locations where held at a constant 1.18 m separation but were moved to be located near the 

geometric center of each room, which effectively resulted in the room expanding out in every 

direction around the source and focus locations. Figure 2.7 compares a plan view of the room 

configuration of the initial room with a volume of 54 m3 and a room with a volume of 2,963 m3. 

For each of the room conditions, 𝐴𝐴𝑃𝑃, 𝜉𝜉𝑇𝑇, and 𝛬𝛬𝑆𝑆 where calculated using the method described 

above. The dashed lines of Fig 2.6 show the relationships between 𝑅𝑅𝑅𝑅60 and 𝐴𝐴𝑃𝑃, 𝜉𝜉𝑇𝑇, and 𝛬𝛬𝑆𝑆.  
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FIG. 2.7. Drawings of two simulated room configurations (a) with a volume of 54 m3 and (b) 
with a volume of 2,963 m3. 

 

Interestingly, increasing 𝑅𝑅𝑅𝑅60 by increasing 𝑉𝑉 leads to opposite trends compared to the 

changing absorption case. Increasing volume leads to lower 𝐴𝐴𝑃𝑃 and 𝛬𝛬𝑆𝑆 values and higher 𝜉𝜉𝑇𝑇 values. 

𝐴𝐴𝑃𝑃 steadily decreases and approaches a minimum value corresponding to the direct sound from 

the source. Smaller rooms have many early reflections of high amplitude. For larger rooms, the 

first few reflections arrive later in time and have undergone more spherical spreading loss and thus 

contribute less to TR focusing. Similarly, 𝛬𝛬𝑆𝑆 decreases and approaches a value of one for very 

large rooms. This is because for larger rooms, an ROI near the source becomes dominated more 

by the direct sound, which leads to a more uniform response across the ROI. Likewise, 𝜉𝜉𝑇𝑇 increases 

for larger rooms because direct-sound dominated fields lead to more impulsive-like ℎ(𝑡𝑡) and focal 
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signals. As 𝑅𝑅𝑅𝑅60 changes from 0.5 s to 3 s due to changing volume, 𝐴𝐴𝑃𝑃 decreases by 80%, 𝜉𝜉𝑇𝑇 

increases by 26% and 𝛬𝛬𝑆𝑆 decreases by 73%. 

Contrary to the results of Ribay et al., the two distinct trends in Fig. 2.6(a) show that 𝐴𝐴𝑃𝑃 is 

not always proportional to 𝑅𝑅𝑅𝑅60. For a given room of a fixed volume, changes in absorption follow 

the trend given by Ribay et al. but when the change in 𝑅𝑅𝑅𝑅60 is due to volume changes, the trend 

not only breaks down but there is an apparent opposite trend. This may be because the dependence 

given by Ribay et al. was derived from work in solid media where the losses, aside from spherical 

spreading, are principally due to propagation absorption losses. In rooms, the losses are principally 

derived from reflections off wall surfaces and propagation losses are typically negligible in 

comparison. 

 

 Frequency-Dependent Absorption 

The original Allen and Berkley Image Source Method creates impulse responses using 

frequency-independent absorption coefficients.25 In order to determine if frequency-dependent 

absorption characteristics of materials affect TR focusing, the image source method was modified 

to include frequency-dependent absorption coefficients specified at the octave-band center 

frequencies. This was done by performing the image source modeling with the absorption 

coefficient corresponding to a given octave band applied to every wall surface. A set of impulse 

responses for each location within the ROI is obtained. Octave band filtering, using an 8th–order, 

linear-phase, bandpass filter, is applied to the set of each impulse responses. This process is 

repeated for each octave-band absorption coefficient, and the impulse responses are filtered for 

that corresponding octave band of frequencies. After a set of impulse responses is obtained for 

each octave band, the band pass filtered signals are summed for each location to construct an 
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impulse response with frequency-dependent absorption properties. It is this constructed set of 

impulse responses that is then used in the post-modeling simulations of TR. The constructed 

impulse response is then band limited from 500 to 7,500 Hz to be consistent with the previous 

sections.  

The effects of changing absorption and volume on TR focusing were simulated using 

frequency-dependent absorption coefficients. Due to the difficulty of finding a wide variety of 

materials with different absorption characteristics that would lead to incremental changes in 𝑅𝑅𝑅𝑅60, 

a single material was chosen as a starting point and its frequency-dependent absorption coefficients 

were multiplicatively changed to produce a desired 𝑅𝑅𝑅𝑅60. Reverse Shroeder integration32 was used 

to predict 𝑅𝑅𝑅𝑅60 for each constructed impulse response with frequency-dependent absorption 

coefficients. In this study, gypsum board was chosen for its relatively low-frequency absorption 

coefficients. These low values permitted a wide range of absorption multipliers allowing for high 

and low values for frequency-dependent absorption coefficients. Twenty-six multipliers were 

used, ranging from 0.25 to 8 with logarithmic spacing. Table 2.1 shows seven of the multipliers 

and the resulting frequency-dependent absorption coefficients ranging from 500 to 8,000 Hz 

octave bands and the resulting 𝑅𝑅𝑅𝑅60 values. After including the frequency-dependent absorption, 

the constructed impulse response is band limited from 500 to 7,500 Hz to match the previous 

sections. A multiplier of one results in absorption coefficients equal to gypsum board.33 The 

absorption coefficients of materials at 8,000 Hz are not commonly measured, so the value of 0.110 

at 8,000 Hz was estimated.  
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Table 2.1. Octave band frequency dependent absorption coefficients resulting from 7 of the 
26 multipliers with the resulting 𝑹𝑹𝑻𝑻𝟔𝟔𝟔𝟔. 

 Absorption Coefficients 
Multiplier 500 Hz 1000 Hz 2000 Hz 4000 Hz 8000 Hz RT60 (sec) 

0.250 0.013 0.010 0.018 0.023 0.028 3.61 
0.287 0.014 0.011 0.020 0.026 0.032 3.39 

….  
0.871 0.044 0.035 0.061 0.078 0.096 1.83 
1.000 0.050 0.040 0.070 0.090 0.110 1.69 
1.149 0.057 0.046 0.080 0.103 0.126 1.58 

…  
6.964 0.348 0.279 0.488 0.627 0.766 0.25 
8.000 0.400 0.320 0.560 0.720 0.880 0.22 

 

In general, the results from simulations with frequency-dependent absorption shown in Fig. 

2.8 are similar to the results with uniform frequency absorption. As before, decreasing absorption 

leads to higher 𝐴𝐴𝑃𝑃 and 𝛬𝛬𝑆𝑆 values and lower 𝜉𝜉𝑇𝑇 values. 𝐴𝐴𝑃𝑃 still follows a nearly linear trend with 

changing absorption (coefficient of determination, R2 = 0.9506), although not as strictly linear as 

the frequency-independent absorption case. Like before, decreasing 〈𝛼𝛼〉𝑆𝑆 also results in a lowering 

of 𝜉𝜉𝑇𝑇 and a drastic increase in 𝛬𝛬𝑆𝑆. Unique to the frequency-dependent absorption case is a 

minimum in 𝜉𝜉𝑇𝑇 when 𝑅𝑅𝑅𝑅60 = 2 s. From  𝑅𝑅𝑅𝑅60 of 0.2 s to 3.6 s, 𝐴𝐴𝑃𝑃 increases by 3,500%, 𝜉𝜉𝑇𝑇 

decreases by 16.5% and 𝛬𝛬𝑆𝑆 increases by 533%, thus the increases in 𝐴𝐴𝑃𝑃 and 𝛬𝛬𝑆𝑆 are again much 

more significant than the decrease in 𝜉𝜉𝑇𝑇.  

For the changing volume case, 〈𝛼𝛼〉𝑆𝑆 is held constant and set equal to the frequency-

dependent absorption coefficients of gypsum board. Like before, increasing volume leads to lower 

𝐴𝐴𝑃𝑃 and 𝛬𝛬𝑆𝑆 values and higher 𝜉𝜉𝑇𝑇 values. From a 𝑅𝑅𝑅𝑅60 of 1.7 s to 4.7 s, 𝐴𝐴𝑃𝑃 decreases by 92%, 𝜉𝜉𝑇𝑇 

increases by 35% and 𝛬𝛬𝑆𝑆 decreases by 419%. 
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FIG. 2.8. Simulation results for time reversal focusing metrics for various rooms of different 
frequency-dependent absorption coefficients and room volumes. (a) Maximum focal 

amplitude, 𝑨𝑨𝑷𝑷, versus 𝑹𝑹𝑻𝑻𝟔𝟔𝟔𝟔. (b) Temporal quality, 𝝃𝝃𝑻𝑻, versus 𝑹𝑹𝑻𝑻𝟔𝟔𝟔𝟔. (c) Spatial clarity, 𝜦𝜦𝑺𝑺, 
versus 𝑹𝑹𝑻𝑻𝟔𝟔𝟔𝟔. 

 

In general, the inclusion of frequency dependent absorption in a room does not significantly 

impact the trends of how changing absorption and volume effect TR focusing. The key trends of 

increasing 𝐴𝐴𝑃𝑃 and 𝛬𝛬𝑆𝑆 and decreasing 𝜉𝜉𝑇𝑇 when absorption or volume are decreased still hold. 

 

2.4 Experimental Results 
Experimental data was obtained in a few selected rooms in order to compare with the 

simulated results. This required two types of rooms: one with the ability to incrementally change 
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the absorption while leaving the volume constant and the other with the ability to change the 

volume while maintaining constant absorption.  

In both experimental setups, a custom built 20 cm diameter dodecahedron loudspeaker, 

powered by a Crown CT4150 amplifier, was used as the sound source and a G.R.A.S. 46AQ 1.27 

cm (0.5 inch) random-incidence microphone, powered by a G.R.A.S. 12AX constant current 

power module, was used to record the signals. A 14-bit Spectrum M2i.6022 generator was used to 

generate signals broadcast by the loudspeaker and a 16-bit Spectrum M2i.4931 digitizer was used 

to acquire the microphone signal with a 50 kHz sampling rate. During the first step of the TR 

process, a band-limited, three-second duration, linear-chirp signal spanning 500 to 7,500 Hz is 

broadcast from the dodecahedron loudspeaker, and the microphone records the chirp response.  

The cross correlation between the chirp signal and the chirp response is used to approximate 

ℎ𝐴𝐴𝐴𝐴(𝑡𝑡) between the loudspeaker and microphone.29 ℎ𝐴𝐴𝐴𝐴(−𝑡𝑡) is then calculated, normalized, and 

broadcast from the loudspeaker. The resulting signal at the microphone is the focal signal. The 

focal signal is then filtered between 500 and 7,500 Hz with a 8th order, linear phase, bandpass IIR 

filter to eliminate noise present outside of the excited frequencies. The maximum focal amplitude, 

𝐴𝐴𝑃𝑃, and the temporal quality, 𝜉𝜉𝑇𝑇, are then calculated for each measurement. The spatial extent of 

the focusing is not measured in these experiments. 

 

 Changing Absorption 

A reverberation chamber with dimensions 4.96 x 5.89 x 6.98 m (204 m3) was used to test 

the effect that changing absorption has on TR. Twenty-four large foam anechoic wedges (0.30 x 

0.30 x 0.95 m) were incrementally added to the floor of the reverberation chamber to lower the 

reverberation time from 8.1 s down to 1.5 s. However, this absorption could not be applied 
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uniformly throughout the room, nor was the absorption applied uniformly on one surface within 

the room. The process outlined in the previous paragraph was followed using five averages for 

both measuring the impulse response and focal signal. The maximum focal amplitude, 𝐴𝐴𝑃𝑃, and the 

temporal quality, 𝜉𝜉𝑇𝑇, were determined for six different amounts of wedges (0, 2, 4, 8, 16 and 24). 

Reverse Schroeder integration34 was used to determine each 𝑅𝑅𝑅𝑅60 (8.1, 5.7, 4.5, 3.0, 1.8, and 1.5 s 

respectively). Figure 2.9 shows a photograph of the experimental configuration with 24 wedges.  

 

 

FIG. 2.9. Photograph of the experimental set up in a reverberation chamber with 24 wedges. 
A is the location of the dodecahedron sound source and B is the location of the random-

incidence microphone. 

 

Image source simulations were created for each wedge configuration by increasing the 

absorption coefficient of only the floor surface (the absorption coefficients for the other 5 walls 

were held constant) by the appropriate amount to achieve each measured 𝑅𝑅𝑅𝑅60. Figure 2.10 

compares simulated with measured 𝐴𝐴𝑃𝑃 with respect to 𝑅𝑅𝑅𝑅60. In the simulations, the amplitudes 

were uniformly scaled to better match the experimental data trend. These results show the expected 
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linear trend of 𝐴𝐴𝑃𝑃 with increasing 𝑅𝑅𝑅𝑅60 (R2 = 0.9940), confirming the results shown in Fig. 2.6 

pertaining to changing absorption and matching the assertion of Ribay et al.21 The absolute values 

for 𝜉𝜉𝑇𝑇 are greater for the simulated data than the measured data. This is likely due to the sensitivity 

of 𝜉𝜉𝑇𝑇 to noise. According to Eq. (2.4), noise in experimental data increases the summation result 

in the denominator, leading to a lower value of 𝜉𝜉𝑇𝑇. This also leads to higher values of 𝜉𝜉𝑇𝑇 for the 

noiseless simulations. The simulations of this room suggest there is no dependence of 𝜉𝜉𝑇𝑇 on 𝑅𝑅𝑅𝑅60, 

while the experimental results show a decreasing trend. The reason for this discrepancy is unknown 

but may be due to the uneven distribution of the foam wedges on the floor in the experimental 

case, whereas the simulated room had a uniform absorption coefficient for the floor. 

 

 

FIG. 2.10. Experimental results obtained in the room shown in Fig. 2.9. (a) Maximum focal 
amplitude, 𝑨𝑨𝑷𝑷, versus 𝑹𝑹𝑻𝑻𝟔𝟔𝟔𝟔 as a result of changing absorption. (b) Temporal quality, 𝝃𝝃𝑻𝑻, 

versus 𝑹𝑹𝑻𝑻𝟔𝟔𝟔𝟔 as a result of changing absorption with filtered focal signals.  

 

 Changing Volume 

 Experimentally validating the effects that changing volume has on TR required multiple 

rooms with the same absorption characteristics (or at least similar absorption characteristics) but 

with different volumes. A multi-purpose room with two room dividers each having high 
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transmission loss was chosen for its ability to easily change volume while maintaining similar 

absorption characteristics. With two room dividers, this multi-purpose room allowed for six 

different volume conditions: three small volume rooms with all room dividers closed, two medium 

volume rooms with one of the room dividers closed and one large room with all room dividers 

open. This resulted in the following room volumes: 64, 73, 79, 137, 151 and 215 m3, which resulted 

in 𝑅𝑅𝑅𝑅60 values of 0.482, 0.485, 0.487, 0.498, 0.499, and 0.502 s, respectively, estimated used Eq. 

(2.6). Absorption coefficients were estimated using the absorption coefficients of similar building 

materials found in this room.34 Figure 2.11 shows an example of one of the medium room 

configurations with a volume of 137 m3 with source and receiver locations identified. For each 

measurement, the dodecahedron loudspeaker and microphone were placed 3.0 m apart. Any 

changes in the direct sound between source and receiver have an effect on the TR process, thus a 

constant source to receiver distance is vital to isolating the effects that room volume has on TR. 

Two measurements were taken in each of the small volume rooms; one with the dodecahedron 

loudspeaker at the far end of the room and the microphone at the near end of the room (as seen in 

Fig. 2.11) and the other with the source and receiver positions interchanged. Six measurements 

were taken in the medium and large volume rooms: two with the midpoint between the loudspeaker 

and microphone near the center of the room and four with midpoints near the centers of each small 

volume room that comprises the medium or large volume rooms. Each pair of measurements 

followed the same loudspeaker and microphone location interchange that occurred in the small 

volume room measurements.  

Figure 2.12 shows the results from the 24 different measurements. Although there is a 

notable variance in values of 𝐴𝐴𝑃𝑃 for each 𝑅𝑅𝑅𝑅60, there is evidence that mean value of 𝐴𝐴𝑃𝑃 for each 

room condition decreases with 𝑅𝑅𝑅𝑅60 (statistical probability value < 0.0001). This decreasing trend 
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agrees with the simulation results for the changing volume case displayed in Fig. 2.6 and, thus, 

also disagrees with the assertion of Ribay et al.21 The experimental and simulation results for 𝜉𝜉𝑇𝑇 

in Fig. 2.12 agree in that neither has a strong dependence on 𝑅𝑅𝑅𝑅60. From Fig. 2.6, it would be 

expected that 𝜉𝜉𝑇𝑇 should increase with increasing 𝑅𝑅𝑅𝑅60. The apparent discrepancy between the 

simulation results in Figs. 2.6 and 2.12 may be due to the limited range of values in 𝑅𝑅𝑅𝑅60 leading 

to a limited dataset for 𝜉𝜉𝑇𝑇 or the fact that the absorption properties of the room used here did not 

stay perfectly constant when the volume was increased. The absolute values for 𝜉𝜉𝑇𝑇 are greater for 

the simulated data than the measured data for the same reasons given in Section 2.4.1. 

 

       

FIG. 2.11. (left) Source A and receiver B locations in a medium room configuration with one 
room divider closed and the other open. (right) a photograph representing this same 

configuration where A is the location of the dodecahedron sound source and B is the location 
of the random-incidence microphone.  
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FIG. 2.12. Experimental results obtained in the room shown in Fig. 2.11. (a) Maximum focal 
amplitude, 𝑨𝑨𝑷𝑷, versus 𝑹𝑹𝑻𝑻𝟔𝟔𝟔𝟔 as a result of changing volume. (b) Temporal quality, 𝝃𝝃𝑻𝑻, versus 

𝑹𝑹𝑻𝑻𝟔𝟔𝟔𝟔 as a result of changing absorption with filtered focal signals. 

 

2.5 Conclusion 
The absorption characteristics and volume of a room have significant and differing impacts 

on TR focusing. Image source modeling has been used to determine the effects that changing 

absorption and volume have on maximum focal amplitude, 𝐴𝐴𝑝𝑝, temporal quality, 𝜉𝜉𝑇𝑇, and spatial 

clarity, 𝛬𝛬𝑆𝑆. Less absorption increases 𝐴𝐴𝑝𝑝 and 𝛬𝛬𝑆𝑆 while decreasing 𝜉𝜉𝑇𝑇 slightly. Dissimilarly, larger 

volumes decrease 𝐴𝐴𝑝𝑝 and 𝛬𝛬𝑆𝑆 while increasing 𝜉𝜉𝑇𝑇. The reasons can be traced back to the effect of 

absorption and volume on the reverberant field and proximity of image sources to the actual source. 

Higher absorption and larger volumes lead to lower-amplitude reflected arrivals. Higher amplitude 

reflected arrivals lead to improved 𝐴𝐴𝑝𝑝 and 𝛬𝛬𝑆𝑆 and diminished 𝜉𝜉𝑇𝑇, thus smaller, reverberant rooms 

with high-amplitude early arrivals produce the highest 𝐴𝐴𝑝𝑝 and 𝛬𝛬𝑆𝑆. Limited experimental results 

confirmed expected trends for 𝐴𝐴𝑝𝑝. Experimental confirmation of the trends in 𝜉𝜉𝑇𝑇 seen in simulated 

results were limited; further work should be conducted in a more ideal set of rooms. 
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The relationship between 𝐴𝐴𝑝𝑝 and 𝑅𝑅𝑅𝑅60 proposed by Ribay et al. was confirmed only if 𝑅𝑅𝑅𝑅60 

is changed via changing absorption.21 The relationship is not true if 𝑅𝑅𝑅𝑅60 is changed via changing 

volume. Larger volume rooms with similar absorption characteristics compared to smaller rooms 

result in lower values of 𝐴𝐴𝑝𝑝. For larger rooms, the early reflections arrive later in time and have 

undergone more spherical spreading loss than in smaller rooms and would thus contribute less to 

TR focusing.  

Many TR applications that involve communication of signals require high 𝜉𝜉𝑇𝑇. This paper 

presents the first known analysis of the effects of room absorption and volume on 𝜉𝜉𝑇𝑇. A decrease 

in 𝜉𝜉𝑇𝑇 indicates a distorted carrier signal for communications, thus it is important to understand 

what conditions lead to high values of 𝜉𝜉𝑇𝑇. 𝛬𝛬𝑆𝑆 is defined for the first time. It is unique in relation to 

other metrics designed to measure spatial focusing in that it compares the value of 𝜉𝜉𝑇𝑇 at the focus 

location to the values of 𝜉𝜉𝑇𝑇 at other locations. This is useful for applications where strong temporal 

focusing is desired only at the focus location.  
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The Effects of Source Placement on 
Acoustic Time Reversal Focusing in 
Rooms 

3.1 Introduction 
 

For the past 16 years, time reversal (TR) focusing in rooms has been studied within the 

audible frequency range.7,14,16,17,18,21,22 Many of these studies have applied concepts learned from 

underwater applications of TR and from nondestructive evaluation applications of TR to room 

acoustic applications. These applications often desire at least one of the three main characteristics 

of TR: a high focal amplitude, narrow temporal focusing and/or tightly confined spatial focusing. 

The use of multiple TR sources and increased bandwidth have been used to improve all 

characteristics of TR.16 Decreasing the absorption in a room or decreasing the volume of a room 

has led to increased maximum focus amplitude and more precise spatial focusing while decreasing 

temporal quality somewhat (see Chapter 2).21   

TR consists of two simple steps, usually referred to as the forward and backward 

propagation steps. The forward step involves obtaining the impulse response, ℎ𝐴𝐴𝐴𝐴(𝑡𝑡), between the 

source at location 𝐴𝐴 and the desired focus position at location 𝐵𝐵. ℎ𝐴𝐴𝐴𝐴(𝑡𝑡) is then time reversed to 

form ℎ𝐴𝐴𝐴𝐴(−𝑡𝑡). For reciprocal TR, the backward step broadcasts ℎ𝐴𝐴𝐴𝐴(−𝑡𝑡) from the source, which 

remains at location 𝐴𝐴.4 The direct and reverberant sound information contained in ℎ𝐴𝐴𝐴𝐴(−𝑡𝑡) then 
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retraces their respective paths and coalesces at the focus location (location 𝐵𝐵). The response at the 

focus location is known as the focal signal.  

When multiple TR sources are closely spaced relative to wavelength, the array of 

transducers is often called the Time Reversal Mirror (TRM).35,36,37 An advantage to using a TRM 

is that the direction of arrival of a traveling wave is encoded within the impulse responses of the 

array if TR elements are spaced within a half of a wavelength. TRMs are commonly composed of 

linearly spaced elements.7,16,21 Instead of a closely spaced TRM, Willardson et al. placed eight 

loudspeakers, without consistent, half-wavelength spacing, near boundaries of a reverberation 

chamber to increase maximum focal amplitude.22 Likewise, Harker and Anderson found that TR 

with widely spaced transducers can be used to locate a source in a half-space environment if the 

source is known to be within a region of certainty.38  

For single-source acoustic TR, no studies have been found that relate TR characteristics to 

the distance between the source and focus location in an enclosure. TR characteristics are expected 

to change significantly with distance between the source and focus location since TR involves the 

coherent addition of direct sound and reverberant sound. The ratio of the energy of the direct sound 

to the energy of the reverberant sound changes with the distance between the source and the focus 

location. Likewise, no studies have been found that recommend optimal source locations and focus 

locations within a rectangular room. Further, a comparison of different layouts of source 

transducers used in an enclosure has not been explored in the literature. 

The purpose of this paper is to study the effects of source placement on TR focusing in 

rooms using simulations based on the image source method. For single-source TR focusing, the 

distance between the source location and the focus location and the arrangement of the source and 

receiver with respect to the room are considered. Maximum focal amplitude and spatial clarity are 
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found to increase while temporal quality is found to decrease when the focus location is dual 

coplanar to the source location in comparison to the source and focus location sharing only one 

plane. TR focal amplitude is found to be at a minimum when the focus location is at the critical 

distance and increases closer and farther away from the source while temporal quality steadily 

decreases and spatial clarity steadily increases farther from the source.   

A TRM may not always be feasible nor the ideal layout for every application of TR.  For 

example, sources may be too large to achieve less than half wavelength spacing for the higher 

frequencies of interest. Different array configurations are considered in Section 3.4.3, including 

three line arrays with different spacing, a curved arc array, and a circular array that completely 

surrounds the focus location. The maximum focal amplitude and the temporal quality are not 

greatly affected by the array type, but a circular array is ideal for maximizing spatial clarity. These 

findings suggest that the half wavelength spacing of a TRM is not optimal for all applications of 

TR. 

 

3.2 Numeric Acoustic Simulation 
TR simulations of focusing audible sound in rooms can be done using any method that 

accurately predicts an impulse response. The autocorrelation of an impulse response can be used 

to represent a focal signal.7,15 The responses at other locations during TR focusing are needed to 

determine the spatial clarity. They can be determined by computing the time-reversed, cross 

correlation of the impulse response, ℎ𝐴𝐴𝐴𝐴(𝑡𝑡), and the impulse response at an away location 𝐶𝐶, 

ℎ𝐴𝐴𝐴𝐴(𝑡𝑡). Correlation operations are used because they are more computationally efficient operations 

than are convolution operations. 
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This paper utilizes the image source method to calculate impulse responses. The image 

source method models specular reflections off wall surfaces as sound coming from image sources 

outside of the room.24 An impulse response is created by summing together the contributions of 

many images sources at their respective arrival times. The Allen and Berkley image source 

algorithm25 was implemented in MATLAB and impulse responses were band limited between 500 

and 20,000 Hz. Full details of the implementations of the image source method are described in 

Section 2.2.1.  

 

 Temporal Quality 

Temporal quality is a metric that compares the energy in the peak amplitude of the focal 

signal, 𝐴𝐴𝑃𝑃, to the average energy of the focal signal,22,28  

 
𝜉𝜉𝑇𝑇 = �

[𝐴𝐴𝑃𝑃]2
1
𝑀𝑀∑ [𝐴𝐴(𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0,𝑚𝑚)]2𝑀𝑀

𝑚𝑚=1

, 
(3.1) 

where 𝐴𝐴(𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0,𝑚𝑚) is the amplitude of the 𝑚𝑚th sample of the focal signal at position (𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0) 

(this corresponds to location 𝐵𝐵) and 𝑀𝑀 is the number of discrete samples in the signal 𝑃𝑃. Additional 

discussion on the proper use of 𝜉𝜉𝑇𝑇 and its limiting cases can be found in Chapter 2. 

 

 Spatial Clarity 

Spatial clarity is a metric that compares the value of 𝜉𝜉𝑇𝑇 at the focus location to the values 

of 𝜉𝜉𝑇𝑇 across a region of interest (ROI). This paper only considers two-dimensional ROIs along an 

x-y plane at height 𝑧𝑧0. This metric gives greater insight into the impulsive nature of the signal at 

the focus location compared to the resulting signals elsewhere. Spatial clarity is defined as 
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𝛬𝛬𝑆𝑆 = �

[𝜉𝜉𝑇𝑇(𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0)]2
1

𝑁𝑁𝑥𝑥 𝑁𝑁𝑦𝑦
∑ ∑ �𝜉𝜉𝑇𝑇�𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦, 𝑧𝑧0��

2𝑁𝑁𝑦𝑦
𝑛𝑛𝑦𝑦=1

𝑁𝑁𝑥𝑥
𝑛𝑛𝑥𝑥=1

, 
(3.2) 

where (𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0) are the Cartesian coordinates for the focus location, 𝑁𝑁𝑥𝑥 and 𝑁𝑁𝑦𝑦 are the amount 

of measurement locations in the 𝑥𝑥 and 𝑦𝑦 directions respectively, and 𝜉𝜉𝑇𝑇�𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦, 𝑧𝑧0� is the temporal 

quality at a given location, �𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦, 𝑧𝑧0�. In an anechoic environment, the values of 𝜉𝜉𝑇𝑇 across the 

ROI are constant and 𝛬𝛬𝑆𝑆 is equal to one.  

 

3.3 Room Acoustics and Normalization 
In room acoustics, the energy density at one location due to a sound source at another is 

the combination of direct sound field and the reverberant sound field. Hopkins and Stryker 

developed this expression for the local, average energy density, 𝜌𝜌𝑎𝑎𝑎𝑎, in an enclosure:39 

 

 
𝜌𝜌𝑎𝑎𝑎𝑎 =

𝐸𝐸
4𝜋𝜋𝜋𝜋

�
𝛾𝛾
𝑟𝑟2

+
16𝜋𝜋
𝑅𝑅
� , 

(3.3) 

 

where 𝐸𝐸 is the rate at which the source emits energy, 𝜋𝜋 is the speed of sound, 𝛾𝛾 is the directivity 

factor of the sound source (𝛾𝛾 = 1 is assumed for the simulated omnidirectional source and 

receiver), 𝑟𝑟 is the distance between the source and receiver, and 𝑅𝑅 is the room constant. 𝑅𝑅 is defined 

as  

 
𝑅𝑅 =

〈𝛼𝛼〉𝑆𝑆 𝑆𝑆
1 − 〈𝛼𝛼〉𝑆𝑆

, 
(3.4) 
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where 〈𝛼𝛼〉𝑆𝑆 is the absorption coefficient averaged over the room surface area and 𝑆𝑆 is the surface 

area of the room. The term 𝛾𝛾 𝑟𝑟2⁄  in Eq. (3.3) represents the direct sound field contribution and 

follows the inverse square law. The term 16𝜋𝜋 𝑅𝑅⁄  in Eq. (3.3) represents the reverberant sound field 

contribution and is constant throughout the enclosure. The distance from the source at which the 

total field has equal contributions of direct sound field and reverberant sound field can be 

determined by setting the two terms of Eq. (3.3) equal and solving for 𝑟𝑟. This distance is known 

as the critical distance, 𝑟𝑟𝑐𝑐, and is defined as 

 
𝑟𝑟𝑐𝑐 = � 𝛾𝛾 𝑅𝑅

16 𝜋𝜋
. 

(3.5) 

When 𝑟𝑟 < 𝑟𝑟𝑐𝑐, the total sound field is dominated by the direct sound field and when 𝑟𝑟 > 𝑟𝑟𝑐𝑐 the total 

sound field is dominated by the reverberant sound field.  

The direct sound and reverberant sound energies can be visualized in impulse responses. 

A simulated impulse response when the receiver is at a distance 𝑟𝑟𝑐𝑐/2, an impulse response when 

the receiver is at a distance 𝑟𝑟𝑐𝑐, and an impulse response when the receiver is at a distance 2𝑟𝑟𝑐𝑐 are 

shown in Fig. 3.1(a)-(c), respectively. Notice how the initial peak of the signal in Fig. 3.1(a), the 

direct sound, is much greater than the initial peak of the signal in Fig. 3.1(b) which is greater than 

the initial peak of the signal in Fig. 3.1(c). This is because the direct sound field contribution is 

much greater as the receiver is brought closer to the source location. The reverberant sound field 

that exists after the direct sound peak in all signals from Fig. 3.1(a), Fig. 3.1(b) and Fig. 3.1(c) is 

expected to have similar amounts of energy in all three signals.  

When experimentally performing TR, it is common practice to normalize ℎ𝐴𝐴𝐴𝐴(−𝑡𝑡) to the 

maximum allowable voltage input to an amplifier before broadcasting the amplified signal from 

the sound source in order to maximize the focal amplitude. Similarly, each simulated ℎ𝐴𝐴𝐴𝐴(𝑡𝑡) is 
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normalized to have a maximum magnitude of one before cross correlating it with ℎ𝐴𝐴𝐴𝐴(𝑡𝑡) or ℎ𝐴𝐴𝐴𝐴(𝑡𝑡). 

Figures 3.1(d-f) show the normalized versions of the signals in Figs. 3.1(a-c), respectively. The 

total energy of the normalized signal in Fig. 3.1(f) is the greatest of the three signals. This is due 

to the direct sound energy to reverberant sound energy ratio being lowest for the signal in Fig. 

3.1(c), which results in a greater total energy after the impulse response is normalized. When the 

reverberant sound field in ℎ𝐴𝐴𝐴𝐴(𝑡𝑡) is larger, the contribution to the focal amplitude due to the 

reverberant sound field is greater. 

 

 

FIG. 3.1. Examples of impulse responses at locations of (a) 𝒓𝒓𝒄𝒄/𝟐𝟐, (b) 𝒓𝒓𝒄𝒄, and (c) 𝟐𝟐𝒓𝒓𝒄𝒄 from the 
source. Plots (d), (e) and (f), respectively, display the normalized impulse responses from (a), 

(b) and (c). 
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The amount of energy in the reverberant and direct fields shown in the impulse responses 

have a direct impact on the resulting focal signal. Figure 3.2 shows different focal signals obtained 

from using the impulse responses shown in Fig 3.1. Figure 3.2(a) shows a focal signal when the 

receiver is at a distance 𝑟𝑟𝑐𝑐/2, Fig. 3.2(b) shows a focal signal when the receiver is at a distance 𝑟𝑟𝑐𝑐 

and Fig. 3.2(c) shows a focal signal when the receiver is at a distance 2𝑟𝑟𝑐𝑐. Figure 3.2(b) has the 

lowest 𝐴𝐴𝑝𝑝. 

While viewing the entire focal signals, it is difficult to notice significant differences in the 

side lobes (energy located on either side of the main focal peak). Differences in the side lobes lead 

to different values of 𝜉𝜉𝑇𝑇. For this reason, Figs. 3.2(d-f) show normalized and zoomed in views of 

Fig. 3.2(a-c), respectively. The side lobes of Fig. 3.2(d) are spaced farther apart with less energy 

between adjacent side lobe peaks. As 𝑟𝑟𝑐𝑐 increases, the distance between side lobe peaks deceases 

and the energy between prominent side lobe peaks increases. This increased separation leads to a 

total net increase of energy within the side lobes which should cause a lower value of 𝜉𝜉𝑇𝑇. 
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FIG. 3.2. Examples of focal signals at locations of (a) 𝐫𝐫𝐜𝐜/𝟐𝟐, (b) 𝐫𝐫𝐜𝐜, and (c) 𝟐𝟐𝐫𝐫𝐜𝐜 from the source. 
Plots (d), (e) and (f), respectively, display the normalized and narrow views of the focal 

responses from (a), (b) and (c). 

 

𝑟𝑟𝑐𝑐 can be easily altered by changing 〈𝛼𝛼〉𝑆𝑆. Changing 〈𝛼𝛼〉𝑆𝑆 will also have a strong effect on 

the reverberation time, 𝑅𝑅𝑅𝑅60, of a room. This paper predicts 𝑅𝑅𝑅𝑅60 using the Norris-Eyring 

reverberation formula:32 

 𝑅𝑅𝑅𝑅60 =
0.161𝑉𝑉

− ln(1 − 〈𝛼𝛼〉𝑆𝑆) 𝑆𝑆
, (3.6) 

where 𝑉𝑉 is the volume of the room, and the factor of 0.161 assumes MKS units and 𝜋𝜋 = 343 m/s.  

Modal effects can cause significant differences in pressure responses for different locations 

in a reverberant environment. To minimize modal effects, only frequencies in the diffuse field 
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regime are included. The cut-on frequency for diffuse fields is called the Schroeder frequency, 

defined as30 

 
𝑓𝑓𝑆𝑆 = 2000�

𝑅𝑅𝑅𝑅60
𝑉𝑉

, 
(3.7) 

where the factor of 2000 assumes MKS units. A frequency of 500 Hz is above 𝑓𝑓𝑆𝑆 for all simulated 

rooms in this paper, and is the reason for the high pass frequency limit specified towards the 

beginning of Section 3.2. This high-pass limit should ensure that modal effects do not significantly 

contribute to the spatially dependent focus responses.  

3.4 Simulated Results 

The Allen and Berkley Image Source Method was used to simulate impulse response for 

each of the test procedures outlined in this section. In each case, 0.8 s duration impulse responses, 

sampled at 50 kHz, were simulated. A focal signal was created using the autocorrelation of the 

impulse response ℎ𝐴𝐴𝐴𝐴(𝑡𝑡). 𝐴𝐴𝑃𝑃 was found and 𝜉𝜉𝑇𝑇 was determined using Eq. (3.1). A 1 x 1 m ROI, 

with 10 cm spacing between points within the ROI, was created with its center at the focus location, 

resulting in 121 scanning points. 10 cm spacing was determined to be sufficient to accurately 

calculate 𝛬𝛬𝑆𝑆 for this study, meaning that the trends (shown later on) for 𝛬𝛬𝑆𝑆 did not change 

significantly for finer spacing. Finer spacing would be necessary to study other features of TR 

focusing, such as the spatial focal spot width. The response at each point due to TR focusing was 

simulated using the time-reversed, cross correlation of ℎ𝐴𝐴𝐴𝐴(𝑡𝑡) and the ROI location impulse 

response ℎ𝐴𝐴𝐴𝐴(𝑡𝑡). 𝛬𝛬𝑆𝑆 was computed for each ROI using Eq. (2).  

 



52 Chapter 3  

  

 Distance from Source 

A room with 12.6 x 15.9 x 10.0 m dimensions with a uniform average absorption 

coefficient of 0.35 was created. The resulting 𝑟𝑟𝑐𝑐 = 3.22 m and 𝑅𝑅𝑅𝑅60 = 0.77 s. The source location 

was placed at (8.75, 4.57, 4.51) m. Forty-three focus locations were chosen, evenly spaced between 

0.03 m (0.0093𝑟𝑟𝑐𝑐) and 6.38 m (1.97𝑟𝑟𝑐𝑐) from the source with 0.15 m spacing. The focus locations 

traverse at a 45-degree angle along the x-y plane. Figure 3.3 shows the source location, focus 

locations, room surfaces, and 𝑟𝑟𝑐𝑐 for this simulation in plan view. 

 

 

FIG. 3.3. Schematic of the source location, focus locations, room boundaries and critical 
distance, 𝒓𝒓𝒄𝒄, used to create the results shown in Fig. 3.4. 
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TR simulations were performed for each focus location. Figure 3.4 shows the results for 

𝐴𝐴𝑃𝑃, 𝜉𝜉𝑇𝑇, and 𝛬𝛬𝑆𝑆 for the focus locations at different distances away from the source. Figures 3.4 (a) 

shows 𝐴𝐴𝑃𝑃 on a logarithmic scale, and Fig. 3.4 (b) shows 𝐴𝐴𝑃𝑃 on a linear scale and excludes values 

of 𝑟𝑟/𝑟𝑟𝑐𝑐 less than 0.5. The curved trends in Figs. 3.4(a) and 3.4(b) can be attributed to the decreasing 

influence of the direct sound, the normalization, and 𝑟𝑟𝑐𝑐. 𝐴𝐴𝑃𝑃 is at a minimum near 𝑟𝑟𝑐𝑐, where the 

impulse response and thus the focal signal have equal contributions of direct sound and reverberant 

sound energy. Since the direct sound field falls off as 1
𝑟𝑟
, high 𝐴𝐴𝑃𝑃 is seen for focus locations near 

the source. As seen in Fig. 3.2, a higher direct sound field to reverberant sound field ratio near the 

source leads to less energy in the side lobes which causes an increase in 𝜉𝜉𝑇𝑇. However, a strong 

reverberant field improves the spatial constraint of the focusing, thus focus locations near the 

source lead to a low value for 𝛬𝛬𝑆𝑆.3 At distances greater than 𝑟𝑟𝑐𝑐, the reverberant field dominates and 

normalization causes the total energy from the source to increase. This increased distance leads to 

higher values of 𝐴𝐴𝑃𝑃 and increasing values of 𝛬𝛬𝑆𝑆. This is similar to the results found by Anderson 

et al. who found that pointing a directional source away from the focus location can increase 𝐴𝐴𝑃𝑃;14 

the direct field was decreased by effectively lowering the value of 𝛾𝛾 in Eq (3.3) and (3.5). In both 

cases, decreasing the direct sound leads to a relative increase in the reverberant field upon 

normalization. 

A comparison between TR focusing and direct sound emission (i.e., simply outputting an 

impulse) using the same source, receiver and enclosure as before allows identification of the 

benefits provided by the addition of TR processing. The same analyses for 𝐴𝐴𝑃𝑃, 𝜉𝜉𝑇𝑇, and 𝛬𝛬𝑆𝑆 are now 

conducted on the forward propagation impulse responses (instead of analyzing the focal signals) 

leading to the open-circle results seen in Fig 3.4. The maximum amplitude in the impulse responses 

are the direct sound, hence 𝐴𝐴𝑃𝑃 is a measure of the direct sound amplitude. Figure 3.4(a) shows that 
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the values of 𝐴𝐴𝑃𝑃 for locations very close to the source are nearly equal for the TR focusing and 

direct sound emission. This is due to the strong direct sound contribution to TR focusing when 

𝑟𝑟 < 𝑟𝑟𝑐𝑐. For 𝑟𝑟 > 𝑟𝑟𝑐𝑐, 𝐴𝐴𝑃𝑃 for direct sound emission continues to decrease while 𝐴𝐴𝑃𝑃 for TR focusing 

increases. Direct sound emission at distances below approximately 0.75 𝑟𝑟𝑐𝑐 have slightly larger 

values of 𝜉𝜉𝑇𝑇. At larger distances, TR focusing has increasingly larger values of 𝜉𝜉𝑇𝑇 compared to 

direct sound emission. Direct sound emission provides no spatial focusing, thus the values of 𝛬𝛬𝑆𝑆 

are held constant at one (meaning that the values for 𝜉𝜉𝑇𝑇 across the ROI is constant). Increasing the 

distance results in a greater ratio of reverberant sound energy to direct sound energy, which 

contributes to improved spatial clarity for TR. Thus, the farther the focus location is away from 

the source, the more advantageous TR is compared to direct sound emission (with the exception 

of a slight advantage for direct sound emission in 𝜉𝜉𝑇𝑇 for distances below 0.75 𝑟𝑟𝑐𝑐).   
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FIG. 3.4. Results of TR focusing (filled circles) and direct sound (open circles) compared to 
𝒓𝒓/𝒓𝒓𝒄𝒄 for (a) the maximum focal amplitude, 𝑨𝑨𝑷𝑷, on a logarithmic scale, (b) 𝑨𝑨𝑷𝑷 of TR focusing 
for values above 𝒓𝒓/𝒓𝒓𝒄𝒄 = 𝟔𝟔.𝟓𝟓 on a linear scale, (c) temporal quality, 𝝃𝝃𝑻𝑻, and (d) spatial clarity, 

𝜦𝜦𝑺𝑺. 

 

 Dual Coplanar Source and Focus 

This section explores whether the arrangement of the source and receiver with respect to 

the room effects TR focusing. A room with 8.8 x 11.1 x 7 m dimensions with a uniform broadband 

absorption coefficient of 0.18 was simulated, resulting in a room with an 𝑅𝑅𝑅𝑅60 = 1.17 s and 𝑟𝑟𝑐𝑐 = 

1.44 m. Ten different arrangements of source/receiver locations were used and averaged together 

to form the results. As seen in Fig. 3.5, a focus location was chosen and 144 source locations were 
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placed 2 m (1.39𝑟𝑟𝑐𝑐) away from the focus location at 2.5° spacing, constituting one of the ten 

arrangements. For each arrangement, the focus location was located at 3.5 m in the z dimension, 

but its location in the x and y dimensions were different. The focus location was always 0.5 m 

away from the center of the room but changed by 36 degrees with respect to the center of the room 

for each arrangement (see Fig. 3.5(a)) resulting in ten evenly spaced focus locations surrounding 

the center of the room. For each of the arrangements with its respective focus location, the 144 

source locations were placed coplanar with the focus (at the same height) and with the focus at 

their center (see Fig. 3.5(b)). The average results from these ten arrangements was used in order 

to eliminate potential boundary effects that could increase or decrease TR focusing.  

 

 

FIG. 3.5. (a) The focus locations for each of the ten source/receiver arrangements. (b) The 
source locations (closely spaced dots that form a circle), example focus location (x), and ROI 
scanning grid (dashed box) for a single arrangement. The image in (b) also indicates the zero 

degree definition (horizontal line) and the direction of increasing angle. 
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For each of the ten focus location arrangements with their corresponding 144 source 

locations, 𝐴𝐴𝑃𝑃, 𝜉𝜉𝑇𝑇, and 𝛬𝛬𝑆𝑆 were calculated, with the same size and density ROI as before, centered 

about each focus location. The average over the ten room arrangements of each of these quantities 

is shown in Fig. 3.6. For each of these quantities, local extrema exist when a source is located at 

0, 90, 180, and 270 degrees (from the perspective of Fig. 3.5(b), directly right, up, left, and down, 

respectively, towards a wall). The source locations at these angles are coplanar to the focus location 

in both a x-z plane (for 0 and 180 degrees) and a y-z plane (for 90 and 270 degrees) with every 

source in the simulation being coplanar to the focus location in the x-y plane. On average, the dual 

coplanar source locations result in a 20.7% increase in 𝐴𝐴𝑃𝑃, a 0.6% decrease in 𝜉𝜉𝑇𝑇, and a 7.3% 

increase in 𝛬𝛬𝑆𝑆 relative to these metric values obtained for source locations that were not dual 

coplanar. 
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FIG. 3.6. Averaged values over ten source/receiver arrangements as a function of source 
locations at different angles for (a) maximum focal amplitude, 𝑨𝑨𝑷𝑷, (b) temporal quality, 𝝃𝝃𝑻𝑻, 

and (c) Spatial clarity, 𝜦𝜦𝑺𝑺. 

 

The reason for the local extrema of 𝐴𝐴𝑃𝑃, 𝜉𝜉𝑇𝑇, and 𝛬𝛬𝑆𝑆 at dual coplanar source/receiver 

locations is uncertain. Future work in this area is needed to give further insight into the reasons for 

these effects. In addition to the findings given in this section, additional simulations not presented 

in this paper showed that an increase in 𝐴𝐴𝑃𝑃 is observed when the source and receiver are coplanar, 

in an x-y plane for example, compared to when the source and receiver do not share a Cartesian 

plane. 
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 Array Configuration 

Five simple array configurations with eight array elements where chosen in order to 

determine whether the array layout has a significant effect on TR focusing in rooms. For this 

section, impulse responses were band limited between 500 to 4000 Hz. This bandwidth made the 

construction of a practical TRM possible, where elements must be spaced less than half the 

smallest wavelength (4.2 cm in this case).40 The configurations include a tight line array with 4.2 

cm array element spacing forming a TRM, a medium line array with 16.5 cm array element spacing 

(the same spacing as the array used by Yon et al., although their frequency range was 300 to 4000 

Hz16), a wide line array with 85.7 cm array element spacing, a circular array with array elements 

evenly spaced circularly around the focus location (45° spacing), and an arc array with 85.7 cm 

array element spacing following a circular curvature (spanning an arc of 115°). Line arrays are 

being tested since they are commonly used in TR experiments. The circular and arc arrays are 

being tested to determine if there are additional benefits to using curved arrays over line arrays. In 

each array layout, the average distance between each array element and the focus location was 3 

m in order to mitigate the source and receiver distance effects outline in Section 3.4.1. Figure 3.7 

shows each array configuration relative to the focus and ROI locations.  
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FIG. 3.7. Source, focus and ROI scanning grid locations for (a) tight line array, (b) medium 
line array, (c) wide line array, (d) circular array and (e) arc array. 

 

A room with 8.8 x 11.1 x 7.0 m dimensions was used with a uniform absorption coefficient. 

The focus was located at (4, 6, 3) m and the same size and density ROI as before is used, centered 

around the focus. Each array element was located at a height of 3 m, with x and y location 

coordinates determined based on the array configuration. Like before, ℎ𝐴𝐴𝐴𝐴(𝑡𝑡) is normalized before 

computing the autocorrelation for the focal signal or the reversed cross correlation for the away 

position signal. For each array configuration, four different uniform absorption coefficients were 

used: 〈𝛼𝛼〉𝑆𝑆 = 0.79 which resulted in 𝑅𝑅𝑅𝑅60 = 0.15 s and 𝑟𝑟c = 6.0 m , 〈𝛼𝛼〉𝑆𝑆 = 0.50 which resulted in 
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𝑅𝑅𝑅𝑅60 = 0.35 s and 𝑟𝑟c = 3.0 m, 〈𝛼𝛼〉𝑆𝑆 = 0.11 which resulted in 𝑅𝑅𝑅𝑅60 = 2.0 s and 𝑟𝑟c = 1.1 m, and 

〈𝛼𝛼〉𝑆𝑆 = 0.04 which resulted in 𝑅𝑅𝑅𝑅60 = 5.7 s and 𝑟𝑟c = 0.63 m. The variety of absorption coefficients 

will help determine whether 𝑅𝑅𝑅𝑅60 and the ratio of the distance between the source(s) and the focus 

location to the critical distance, 𝑟𝑟/𝑟𝑟c, are factors in the differences in TR results from each array 

configuration.  

Relative standard deviation (RSD) is used to compare variation in TR metric results (𝐴𝐴𝑃𝑃, 

𝜉𝜉𝑇𝑇, and 𝛬𝛬𝑆𝑆) for each array configuration. RSD is defined as 

 RSD =
𝜎𝜎

|𝜇𝜇| ∗ 100%, (3.8) 

where 𝜎𝜎 is the standard deviation of the data set and 𝜇𝜇 is the mean value of the data set. A low 

value of RSD corresponds to a small standard deviation compared to the mean, or that the data is 

tightly clustered around the mean. A large value of RSD corresponds to a large standard deviation 

compared to the mean, or that the data is more spread out around the mean. When comparing array 

configurations, a high value of RSD will correspond to a larger variation between the different 

array configurations. Low RSD values will signify insignificant differences between the different 

array configurations.  

The TR results 𝐴𝐴𝑃𝑃, 𝜉𝜉𝑇𝑇, and 𝛬𝛬𝑆𝑆 are shown in Tables 3.1, 3.2 and 3.3 show for each array 

configuration in rooms with the four different values of 〈𝛼𝛼〉𝑆𝑆 and the resulting four values of RSD. 

The results for 𝐴𝐴𝑃𝑃 have been normalized to the highest value (circular array in a room with 

〈𝛼𝛼〉𝑆𝑆 equal to 0.04). Table 3.1 shows that 𝐴𝐴𝑃𝑃 increases with lower absorption, as expected (see 

Chapter 2).21 The largest RSD value for 𝐴𝐴𝑃𝑃 occurs in the room when 〈𝛼𝛼〉𝑆𝑆 is equal to 0.04 and RSD 

decreases with larger 〈𝛼𝛼〉𝑆𝑆. The array configuration that results in the largest value of 𝐴𝐴𝑃𝑃 is 

inconsistent between different 〈𝛼𝛼〉𝑆𝑆. For 〈𝛼𝛼〉𝑆𝑆 equal to 0.79 and 0.50, the wide line array created 
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the largest 𝐴𝐴𝑃𝑃 by a narrow margin, but for 〈𝛼𝛼〉𝑆𝑆 equal to 0.11 and 0.04, the circular array created 

the largest 𝐴𝐴𝑃𝑃, also by a narrow margin. The wide line array results in a larger 𝐴𝐴𝑃𝑃 because the 

middle elements of the array are closer to the focus location than for any other array, a consequence 

of the choice to have a constant average distance from each element to the focus location for each 

array configuration. RSD values in Table. 3.1 are all relatively small, thus the array configuration 

has a small impact on 𝐴𝐴𝑃𝑃.  

 

Table 3.1. The normalized maximum focus response, 𝑨𝑨𝑷𝑷, due to each array configuration in 
four different rooms with different 〈𝜶𝜶〉𝑺𝑺. 

 𝑨𝑨𝑷𝑷  

〈𝜶𝜶〉𝑺𝑺  Tight Line Regular Line Wide Line Circular Arc RSD 

0.79 0.044 0.043 0.044 0.043 0.043 1.06 

0.50 0.068 0.068 0.070 0.070 0.070 1.05 

0.11 0.382 0.382 0.384 0.398 0.390 1.60 

0.04 0.987 0.968 0.958 1.000 0.981 1.61 

 

 

𝜉𝜉𝑇𝑇 does not significantly change when absorption is changed (see Chapter 2) as shown in 

Table 3.2. The highest value of RSD for 𝜉𝜉𝑇𝑇 occurs when 〈𝛼𝛼〉𝑆𝑆 is 0.50 (which corresponds to 𝑟𝑟/𝑟𝑟c =

1) with a slight decrease when 〈𝛼𝛼〉𝑆𝑆 is 0.79 and a significant decrease at decreasing values of 〈𝛼𝛼〉𝑆𝑆. 

Unlike 𝐴𝐴𝑃𝑃, a wide line array consistently results in slightly higher values of 𝜉𝜉𝑇𝑇, again because of 
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the closer middle elements of this array. Once again, the RSD values are small for each 〈𝛼𝛼〉𝑆𝑆, thus 

the array configuration has a minimal impact on 𝜉𝜉𝑇𝑇. 

 

Table 3.2. The temporal quality, 𝝃𝝃𝑻𝑻, due to each array configuration in four different rooms 
with different 〈𝜶𝜶〉𝑺𝑺. 

 𝝃𝝃𝑻𝑻  

〈𝜶𝜶〉𝑺𝑺  Tight Line Regular Line Wide Line Circular Arc RSD 

0.79 107.8 110.5 116.4 111.7 111.5 2.03 

0.50 100.1 103.9 112.3 106.9 106.9 2.82 

0.11 105.9 109.2 110.8 108.4 110.3 0.87 

0.04 106.2 110.3 111.0 109.4 110.7 0.54 

 

 

𝛬𝛬𝑆𝑆 significantly changes when absorption is changed (see Chapter 2) as shown in Table 

3.3. RSD values are much higher for 𝛬𝛬𝑆𝑆 than for 𝐴𝐴𝑃𝑃 and 𝜉𝜉𝑇𝑇. Like 𝜉𝜉𝑇𝑇, the largest value of RSD for 

𝛬𝛬𝑆𝑆 occurs when 〈𝛼𝛼〉𝑆𝑆 is 0.50 and decreases with higher and lower values of 〈𝛼𝛼〉𝑆𝑆. The highest value 

of 𝛬𝛬𝑆𝑆 is consistently produced by the circular array with each 〈𝛼𝛼〉𝑆𝑆. 
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Table 3.3. The spatial clarity, 𝜦𝜦𝑺𝑺, due to each array configuration in four different rooms 
with different 〈𝜶𝜶〉𝑺𝑺. 

 𝛬𝛬𝑆𝑆  

〈𝜶𝜶〉𝑺𝑺  Tight Line Regular Line Wide Line Circular Arc RSD 

0.79 1.07 1.50 1.63 2.22 1.67 15.7 

0.50 1.34 1.90 2.34 3.09 2.42 17.5 

0.11 3.78 4.37 6.01 6.58 6.00 14.4 

0.04 6.20 6.11 7.03 7.12 7.01 6.0 

 

Based on the results from Tables 3.1, 3.2 and 3.3, in general, array configurations make 

the largest difference in TR focusing for the 〈𝛼𝛼〉𝑆𝑆 =0.5 case. This case corresponds to 𝑟𝑟c = 3 m, 

the average distance between the focus location and the array elements. Although some difference 

in 𝐴𝐴𝑃𝑃 and 𝜉𝜉𝑇𝑇 can be attributed to different array configurations, the differences are insignificant. 

The greatest differences are seen in 𝛬𝛬𝑆𝑆, where, for example, using a circular array can result in up 

to a 130.6% increase in 𝛬𝛬𝑆𝑆 compared to using a tight line array.  

These results show that the commonly used, tightly spaced, linear TRM is not necessarily 

the ideal array configuration for TR focusing in rooms. Arrays with greater angular coverage 

provide improved 𝛬𝛬𝑆𝑆 when compared to tightly spaced arrays. The array configuration has little 

impact on 𝐴𝐴𝑃𝑃 and 𝜉𝜉𝑇𝑇 as long as the mean distances between arrays and the focus location are equal 

and distances between each array element and the focus location do not greatly deviate from the 

mean. The reason that arrays with greater angular coverage are optimal for improving 𝛬𝛬𝑆𝑆 is because 

the sources are widely spaced apart and the direct sound from the sources do not beam and form 
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regions of coherent wave fronts near the focus location, rather they only coherently combine at the 

focus location.  

3.5 Conclusion 

This section summarizes the results from Sections 3.4 as a whole and provides detailed 

strategies for achieving desired TR characteristics (i.e., maximum values for 𝐴𝐴𝑃𝑃, 𝜉𝜉𝑇𝑇, and/or 𝛬𝛬𝑆𝑆).  

 

 Single TR Element 

To maximize 𝐴𝐴𝑃𝑃, the TR focus location should not be placed near 𝑟𝑟𝑐𝑐 from the source. In a 

reverberant room, this should not be difficult since 𝑟𝑟𝑐𝑐 will likely be very close to the source. The 

farther the focus location is from 𝑟𝑟𝑐𝑐, the more reverberant field energy will be created through 

normalization and the greater 𝐴𝐴𝑃𝑃 will become. Maximizing 𝐴𝐴𝑃𝑃 for a room with low reverberation 

time requires planning of optimal source placement since 𝑟𝑟𝑐𝑐 is larger in less reverberant rooms. A 

way to increase 𝐴𝐴𝑃𝑃 would be to focus at a location very close to the source, allowing the strong 

direct sound field to dominate. However, focusing very close to the source will greatly lower 𝛬𝛬𝑆𝑆, 

thereby defeating the need for TR processing. In either type of room, focusing to locations that are 

dual coplanar with the source will also increase 𝐴𝐴𝑃𝑃. 

To maximize 𝜉𝜉𝑇𝑇, the focus location should be very close to the source, again defeating the 

purpose of using TR processing. This results in an impulse response and focus response that are 

each dominated by the direct sound. Values of 𝜉𝜉𝑇𝑇 may be 28% higher very close to the source 

compared to far away. Whether the focus location is dual coplanar with the source or not makes 

little difference in 𝜉𝜉𝑇𝑇. 
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To maximize 𝛬𝛬𝑆𝑆, the focus location should be as far away from the source as possible, 

confirming the expected spatial focusing performance that the TR process provides. The decrease 

in direct sound allows for a more incoherent field throughout the ROI except at the focus location. 

𝛬𝛬𝑆𝑆 also benefits if the focus location is dual coplanar to the source location. 

 

 Multiple TR Elements 

The array configuration had little impact on 𝐴𝐴𝑃𝑃 and 𝜉𝜉𝑇𝑇. The highest value of 𝛬𝛬𝑆𝑆 was 

achieved with a circular array, with TR elements completely surrounding the focus location. This 

array configuration is superior to the commonly used, tightly spaced, linear TRM. For the circular 

array, the sources are widely spaced apart and the direct sound from the sources do not beam and 

form regions of coherent wave fronts near the focus location, rather they only coherently combine 

at the focus location. This results in a high value of 𝜉𝜉𝑇𝑇 at the focus location compared to the average 

value of 𝜉𝜉𝑇𝑇 across the ROI, thus resulting in a large value for 𝛬𝛬𝑆𝑆. 



 

 

 

  

Conclusion 

Image source acoustic simulations were used to predict TR focusing in a variety of different 

rooms with different source and focus location arrangements. Optimal room characteristics, as 

well as source position and focus location arrangements were found for maximum focal amplitude, 

𝐴𝐴𝑃𝑃, temporal quality, 𝜉𝜉𝑇𝑇, and/or spatial clarity, 𝛬𝛬𝑆𝑆. Decreasing wall surface absorption and/or 

decreasing room volume leads to higher 𝐴𝐴𝑃𝑃 and improved 𝛬𝛬𝑆𝑆 while also leading to lower 𝜉𝜉𝑇𝑇. For 

a single source, 𝐴𝐴𝑃𝑃 is increased either by focusing very close to the source or far away from the 

source. 𝜉𝜉𝑇𝑇 decreases with source/focus location distance while 𝛬𝛬𝑆𝑆 increases. Dual coplanar source 

and focus locations lead to improving 𝐴𝐴𝑃𝑃 and 𝛬𝛬𝑆𝑆 while lowering 𝜉𝜉𝑇𝑇. For multiple sources, the type 

of array configuration does not have a significant impact on 𝐴𝐴𝑃𝑃 and 𝜉𝜉𝑇𝑇, while a circular array with 

sources completely surrounding the focus location leads to significantly improved 𝛬𝛬𝑆𝑆 compared to 

commonly used time reversal mirror (TRM) line arrays.  
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4.1 Impact 

A new metric, 𝛬𝛬𝑆𝑆, has been introduced in this thesis. Depending on the TR application, 𝛬𝛬𝑆𝑆 

may be more useful than existing metrics such as spatial quality or SNR, each of which have been 

used by others to characterize the spatial focusing of TR at the instant of peak focusing. 𝛬𝛬𝑆𝑆 

compares 𝜉𝜉𝑇𝑇 at the focus location to other locations in a region of interest (ROI). For private speech 

communication applications, 𝛬𝛬𝑆𝑆 may help the researcher understand if the signal is likely to be 

intelligible at locations other than the focus location.  

The results from Chapter 2 confirm the limited findings in the current literature but also go 

beyond those. Chapter 2 results confirm the relationship between 𝐴𝐴𝑃𝑃 and 𝑅𝑅𝑅𝑅60 predicted by Ribay 

et al. when 𝑅𝑅𝑅𝑅60 is changed by changing absorption.21 However, the results of Ribay et al. were 

disproven when one changes 𝑅𝑅𝑅𝑅60 by changing volume. In fact the results in Chapter 2 showed a 

completely opposite trend to the generalization given by Ribay et al. Before this study, researchers 

would have expected a higher 𝐴𝐴𝑃𝑃 in a very large room with similar absorption characteristics to a 

small room. Here it is shown that 𝐴𝐴𝑃𝑃 will be smaller in the larger room. Researchers now have a 

better understand how TR focusing in a large room will compare to TR focusing in a small room.  

Results from Chapter 3 include the first study of its kind to relate TR focusing to the 

distance between the source and focus location, 𝑟𝑟, with respect to the critical distance, 𝑟𝑟𝑐𝑐, which is 

a parameter commonly used in room acoustics. This will help researchers determine the optimal 𝑟𝑟 

to use in experimental setups to optimize TR focusing. Dual coplanar source and receiver locations 

are also studied for the first time. Although an explanation for why this would change TR focusing 

has not yet been found, researchers can nonetheless select appropriate source locations and focus 

location based on desired TR focusing qualities by whether source locations and focus location are 

dual coplanar with each other or not.  
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Finally, Chapter 3 also includes results showing that the commonly used, tightly spaced, 

linear TRM is not necessarily the ideal array configuration for TR focusing in rooms. Circular 

arrays that completely encompass the source have greater angular coverage (larger aperture), 

resulting in improved spatial focusing, without sacrificing 𝐴𝐴𝑃𝑃 or 𝜉𝜉𝑇𝑇. Much of the current literature 

uses linear TRMs. Researchers can improve their results if they consider using a circular array 

over a line array. 

4.2 Future Work 

 Experimental results for Chapter 3 

Unlike Chapter 2, Chapter 3 is lacking experimental results to compare with the simulated 

results. Experimental results comparing TR focusing at different distances will require an 

omnidirectional source and a random incidence microphone, so that 𝛾𝛾 ≈ 1. A variety of rooms 

may also be required. For the large BYU reverberation chamber, 𝑟𝑟𝑐𝑐 ≈ 0.29 m. This short distance 

makes studying focal signals at 𝑟𝑟 < 𝑟𝑟𝑐𝑐 difficult, however, there will be many locations that can be 

studied where 𝑟𝑟 > 𝑟𝑟𝑐𝑐. Similar sized rooms to the BYU reverberation chamber with higher 

absorption such that 𝑅𝑅𝑅𝑅60 = 0.5 s will result in 𝑟𝑟𝑐𝑐 ≈ 1.37 m. This type of room will more easily 

allow for studying focal signals at 𝑟𝑟 < 𝑟𝑟𝑐𝑐. The room constant, 𝑅𝑅, and, as a result the 𝑟𝑟𝑐𝑐, are 

frequency dependent quantities. This may require a band limited ℎ𝐴𝐴𝐴𝐴(𝑡𝑡) that corresponds to 𝑟𝑟𝑐𝑐 over 

a certain frequency range.  
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 Explore rooms with non-uniform absorption 

All simulations in this thesis use equal absorption on the six surfaces of the rectangular 

parallelepiped with the exception of Section 2.3.3, where different absorption coefficients were 

chosen to match the experimental setup. A study involving simulated TR focusing in two rooms 

with the same 𝑅𝑅𝑅𝑅60, one with uniform absorption and the other with one surface that is very 

absorptive compared to the other five, may lead to different values of 𝐴𝐴𝑃𝑃, 𝜉𝜉𝑇𝑇, and 𝛬𝛬𝑆𝑆. It is likely 

that having a single surface that is more absorptive than the rest will lead to a less symmetric 

converging wave front for TR focusing. This may lead to significant changes in 𝛬𝛬𝑆𝑆. 

 

 Source and focus proximity to boundaries 

Experimental TR has shown that placing sources near boundaries has increased 𝐴𝐴𝑃𝑃. This 

is unsurprising due to expected changes in the radiation impedance of sources near boundaries. 

Early attempts at simulating this effect proved futile. Sources and focus locations placed near 

boundaries provided no benefit to 𝐴𝐴𝑃𝑃 according to simulations. These simulations used an 

alternative filtering method for band-limiting ℎ𝐴𝐴𝐴𝐴(𝑡𝑡). Since radiation impedance changes are not 

typically modeled with the image source method, it is not anticipated that this effect can be 

replicated with simulations.  

 

 TR focusing in real rooms using simulated 𝒉𝒉𝑨𝑨𝑨𝑨(𝒕𝒕) 

One challenge of using reciprocal TR in some applications is the difficulty involved in 

determining ℎ𝐴𝐴𝐴𝐴(𝑡𝑡). This usually requires a transducer located at location 𝐵𝐵. In some 

communications applications, such as private communications in hostile environments, it may be 
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impossible to have a transducer located at location 𝐵𝐵, among other potential issues. This will 

require a new strategy for the forward step of TR. Acoustic simulations could be used to 

approximate ℎ𝐴𝐴𝐴𝐴(𝑡𝑡) in such environments. If the simulated impulse response, ℎ𝑆𝑆,𝐴𝐴𝐴𝐴(𝑡𝑡), accurately 

predicts the actual ℎ𝐴𝐴𝐴𝐴(𝑡𝑡), it could be used for these applications. Broadcasting ℎ𝑆𝑆,𝐴𝐴𝐴𝐴(−𝑡𝑡) would 

lead to TR focusing at location 𝐵𝐵. In practice, this may prove to be very difficult. TR focusing is 

very sensitive to accurate geometry measurements and the speed of sound. Any geometric errors 

or an inaccurate speed of sound in the simulation may result in a greatly reduced ability to perform 

TR focusing. This study should include relationships between simulation accuracy and resulting 

𝐴𝐴𝑃𝑃, 𝜉𝜉𝑇𝑇, and 𝛬𝛬𝑆𝑆.  
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Appendix A: MATLAB Code for Allen 
and Berkley Simulations  

This appendix includes MATLAB code that can be used to implement the Allen and 

Berkley image source method for TR simulations. Additional code used to generate all of the 

figures throughout this thesis can be found on the acoustics shared drive (Z:\Students\Michael 

Denison\Research\Room Models).  

 

Allen and Berkley Image Source Code 

function [IR,t] = IRImageMod(RL,R0,R,FS,alpha,NPTS,FP,NN) 
% Computes the impulse response of a common source in a rectangular room 
% using the Allen and Berkley method 
  
% RL = [lx ly lz] Rooom Dimensions (m) 
% R0 = [x0 y0 z0] Source Position (m) 
% R = [x y z] Receiver Position (m) 
% alpha = [[alphaback alphaleft alphadown];[alphafront alpharight 

alphaup]]; 
% NPTS = number of points of IR to be computed (ex 2^16;) 
% FP = Lowpass filter passband frequency. Recommend FP = 20000. If FP = 

0,  
% then the IR will not be lowpassed.  
% NN = filter order (length) 
% length of IR is NPTS + N 
  
%                           Front 
%                      ___________________ 
%                     |                   | 
%                     |                   | 
%             Left    |                   |  Right 
%                     |                   | 
%                     |                   | 
%                   |->___________________| 
%                 (0,0)  ^+Y   +X-> 
%                           Back 
  
  
% constants 
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c = 343;  
T = 1/FS;  
IR = zeros(1,NPTS);  
tmax = NPTS/FS;  
dt = T;  
t = 0:dt:tmax-dt;  
  
% Room Dimensions 
RL = RL/(c*T); %Vector of box dimensions in sample periods 
  
% Source Position 
R0 = R0/(c*T); %Vector radius to source in sample periods 
  
% Receiver Position 
R = R/(c*T);%Vector radius to reciever in sample periods 
  
% Reflection Coefficients (alpha = 1-betta^2) (0 < Beta <= 1) 
betafront = abs(sqrt(alpha(2,1)-1)); betaback = abs(sqrt(alpha(1,1)-1)); 

%Reflection Coefficients 
betaleft = abs(sqrt(alpha(1,2)-1)); betaright = abs(sqrt(alpha(2,2)-1));  
betaup = abs(sqrt(alpha(2,3)-1)); betadown = abs(sqrt(alpha(1,3)-1)); 
  
Beta = [[betaback betaleft betadown];[betafront betaright betaup]]; 
  
N1 = floor(NPTS/(2*RL(1))+1); %ranges of summation in x 
N2 = floor(NPTS/(2*RL(2))+1); %ranges of summation in y 
N3 = floor(NPTS/(2*RL(3))+1); %ranges of summation in z 
  
for nx = -N1:N1 % Start summations 
    for ny = -N2:N2 
        for nz = -N3:N3 
  
            % LTHIMAGE subroutine 
            DR = R;  
            DR0 = R0; 
            RP = zeros(3,8); 
            I0 = 1; 
             
            for L =-1:2:1 
                for J = -1:2:1 
                    for K = -1:2:1             
                        RP(1,I0) = DR(1) + L*DR0(1); 
                        RP(2,I0) = DR(2) + J*DR0(2); 
                        RP(3,I0) = DR(3) + K*DR0(3); 
                         
                        I0 = I0+1; 
                         
                    end 
                end 
            end 
             
            R2L = zeros(1,3); 
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            R2L(1) = 2*RL(1)*nx; 
            R2L(2) = 2*RL(2)*ny; 
            R2L(3) = 2*RL(3)*nz; 
             
            DELP = zeros(1,8); 
             
            for I = 1:8 
                DELSQ=0; 
                    for J = 1:3 
                        R1 = R2L(J)-RP(J,I); 
                        DELSQ = DELSQ+R1^2; 
                    end 
                DELP(I) = sqrt(DELSQ); 
  
            end 
             
            I0=0; 
             
            for L = 0:1 
                for J = 0:1 
                    for K = 0:1 
                        I0 = I0+1; 
                        ID = round(DELP(I0)+0.5); 
                        FDM1 = ID; 
                        ID = ID + 1; 
                        if (ID > NPTS) 
                        else % Contributions from Loss Factors from each 

wall 
                            GID = Beta(1,1)^abs(nx-

L)*Beta(2,1)^abs(nx)...   
                                *Beta(1,2)^abs(ny-

J)*Beta(2,2)^abs(ny)... 
                                *Beta(1,3)^abs(nz-

K)*Beta(2,3)^abs(nz)/FDM1; 
                             
                            IR(ID) = IR(ID) + GID; % Impulse Response 
                        end 
                    end 
                end 
            end 
  
        end 
    end 
end 
  
f = FS/100;  % Low pass cutoff at 1 percent of FS 
w = 8*atan(1)*f;  
T = 1/FS;  
  
R1 = exp(-w*T);  
R2 = R1;  
B1 = 2*R1*cos(w*T);  
B2 = -R1*R1;  
A1 = -(1+R2);  
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A2 = R2;  
Y1 = 0;  
Y2 = 0;  
Y0 = 0;  
  
for I = 1:NPTS 
    X0 = IR(I);  
    IR(I) = Y0+A1*Y1+A2*Y2;  
    Y2 = Y1;  
    Y1 = Y0;  
    Y0 = B1*Y1+B2*Y2+X0;  
end 
  
if FP ~= 0 % Lowpass filter 
    N   = NN;        % FIR filter order 
    Fp  = FP;       % passband-edge frequency 
    Fs  = FS;       % sampling frequency 
    Rp  = 0.00057565; % Corresponds to 0.01 dB peak-to-peak ripple 
    Rst = 1e-4;       % Corresponds to 80 dB stopband attenuation 
  
    eqnum = firceqrip(N,Fp/(Fs/2),[Rp Rst],'passedge'); % eqnum = vec of 

coeffs 
%     fvtool(eqnum,'Fs',Fs,'Color','White') % Visualize filter 
  
    IR = conv(IR,eqnum); 
    t = 0:dt:dt*length(IR)-dt; 
end 

 
 
 
Compute an Impulse Response  

% An example of generating an impulse response using the Allen and Berkley 
% algorithm in the function IRImageMod 
  
clear; close all; 
  
FS = 50000; % Sampling Frequency 
  
lz = 10; lx = lz*2^(1/3); ly = lz*4^(1/3); % Room Dimensions in m 
% Ideal Ratio (1:2^1/3:4^1/3) 
RL = [lx ly lz]; %Vector of room dimensions (m) 
  
x0 = 3; y0 = 13; z0 = 8; % Source location 
R0 = [x0 y0 z0]; %Vector radius to source 
  
x = 8; y = 2; z = 3; % Focus location 
R = [x y z]; %Vector radius to focus (m) TEMP 
  
alphafront = 0.15; alphaback = 0.1; % absorption coef. for each surface 
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alphaleft = 0.5; alpharight = 0.1;  
alphaup = 0.1; alphadown = 0.15; 
alpha = [[alphaback alphaleft alphadown];[alphafront alpharight alphaup]]; 
  
FP = 20000; % Lowpass frequency 
NN = 100; % Lowpass filter order (length) 
  
NPTS = 2^16; % length of the impulse response 
  
[IR,t] = IRImageMod(RL,R0,R,FS,alpha,NPTS,FP,NN); % creates the impulse  
% response, IR, and the time array, t. 
  
figure; plot(t,IR) 
title('Impulse Response') 
xlabel('Time (s)') 
ylabel('Amplitude') 
grid on 
 
 
 

Temporal Quality 

function [Max,TemporalQuality,LargestValue] = FocusQualityT(focus,fs) 
% returns max value at focus and temporal quality. Focus is the time 
% signal at the focal point.  
% Q_t = sqrt([A_p]^2/(T/M*sum([A(x_0,y_0,m)]^2))) 
  
Max = max(focus); 
TemporalQuality = sqrt(Max^2/(1/length(focus)*sum(focus.^2))); 
LargestValue = sqrt(1/(1/length(focus))); 
 
 
 

Spatial Clarity 

function [SpatialQuality,LargestValue] = 
FocusQualityS(TemporalQualityArray,x,y,R) 
 
% returns spatial quality value. TemporalQualityArray is an array that  
% fits the scanning grid with computed temporal qualities at each point. 
% x = array of scan locations in x 
% y = array of scan locations in y 
% dx and dy are grid spacings in x and y respectively 
% R = focus location R = [x,y,z]; 
% Q_S = sqrt([Q_T0]^2/(Lx*Ly/(Nx*Ny)*sum(sum([Q_T(x,y)]^2))) 
% Lx = length in x, Ly in y 
% Nx and Ny are number of scan points in x and y respectively 
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if length(x)~=1 
    dx = x(2)-x(1); 
    if length(y) == 1 
        dy = dx; 
    else  
        dy = y(2)-y(1); 
    end 
else 
    dy = y(2)-y(1); 
    dx = dy; 
end 
  
Nx = length(x); 
Ny = length(y); 
  
focusx = find(round(x,4)==round(R(1),4)); 
focusy = find(round(y,4)==round(R(2),4)); 
  
SpatialQuality = 
sqrt(TemporalQualityArray(focusx,focusy)^2/(1/Nx/Ny*sum(sum(TemporalQualityAr
ray.^2)))); 
  
LargestValue = sqrt(1/(1/Nx/Ny)); 
 
 
 

TR Scan Example 

% An example of generating an impulse response using the Allen and Berkley 
% algorithm in the function IRImageMod and then using it to for TR focusing 
% in a room.  
  
clear; close all; 
  
%% define room and IR parameters 
  
FS = 50000; % Sampling Frequency 
  
lz = 10; lx = lz*2^(1/3); ly = lz*4^(1/3); % Room Dimensions in m 
% Ideal Ratio (1:2^1/3:4^1/3) 
RL = [lx ly lz]; %Vector of room dimensions (m) 
  
x0 = 3; y0 = 13; z0 = 8; % Source location 
R0 = [x0 y0 z0]; %Vector radius to source 
  
x = 8; y = 2; z = 3; % Focus location 
R = [x y z]; %Vector radius to focus (m) TEMP 
  
alphafront = 0.15; alphaback = 0.1; % absorption coef. for each surface 
alphaleft = 0.5; alpharight = 0.1;  
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alphaup = 0.1; alphadown = 0.15; 
alpha = [[alphaback alphaleft alphadown];[alphafront alpharight alphaup]]; 
  
FP = 20000; % Lowpass frequency 
NN = 100; % Lowpass filter order (length) 
  
NPTS = 4e4; % length of the impulse response 
  
  
%% Define ROI grid 
px = 1; py = 1; % 1x1m grid 
dx = 0.1; dy = 0.1; % grid spacing 
x = R(1)-px/2:dx:R(1)+px/2; % x grid  
y = R(2)-py/2:dy:R(2)+py/2; % y grid 
  
%% Foward Step 
% IRfocus = zeros(length(mult),NPTS+NN); 
% IRfocusNorm = zeros(length(mult),NPTS+NN); 
% focus = zeros(length(mult),2*(NPTS+NN)-1); 
  
[IRfocus,t] = IRImageMod(RL,R0,R,FS,alpha,NPTS,FP,NN); % computes h_AB(t) 
IRfocusNorm = IRfocus/max(IRfocus); % normalizes h_AB(t) 
  
Max = zeros(length(x),length(y)); 
TemporalQuality = zeros(length(x),length(y)); 
  
for m = 1:length(x) % loops over x grid 
    for n = 1:length(y) % loops over y grid 
        Rscan = [x(m) y(n) z]; 
  
        [IRscan,~] = IRImageMod(RL,R0,Rscan,FS,alpha,NPTS,FP,NN); % Impulse 
        % response at scanning point, h_AC(t) 
        resp = fliplr(xcorr(IRfocusNorm,IRscan)); % The response at  
        % location C to the source broadcasting H_AB(-t) 
        [Max(m,n),TemporalQuality(m,n),~] = FocusQualityT(resp,FS); 
        % Computes the maximum focal amplitude, Max, and temporal quality 
  
    end  
end 
  
[SpatialQuality,~] = FocusQualityS(TemporalQuality,x,y,R); % Computes  
% Spatial Clarity based off of Temporal Quality values 
  
%% Show Results 
mx0 = ceil(length(x)/2); 
my0 = ceil(length(y)/2); 
  
Max = Max(mx0,my0); 
TemporalQuality = TemporalQuality(mx0,my0); 
  
table(Max,TemporalQuality,SpatialQuality) 
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Appendix B: Tutorial for Performing 
Time Reversal with the Spectrum 
Example vi 

This appendix demonstrates how to experimentally perform TR using 

SpectrumExample.vi. This vi program is implemented in LabVIEW and interfaces with 14-bit 

Spectrum M2i.6022 generator cards and a 16-bit Spectrum M2i.4931 card. It allows for 

simultaneous broadcast of up to eight channels and recording of up to four channels. Additional 

details about the block diagram are included to help future researchers modify this vi for their 

needs. 

 

SpectrumExample.vi Instructions 

 The vi is only used to broadcast and acquire data. MATLAB is used in conjunction with 

this vi to perform all of the signal processing. All MATLAB code is included in its own section of 

this appendix. 

 

The Forward Step 

First, chirpgen.m is used to create a linear chirp. Top and bottom frequencies are specified 

as well as length in time. RT is set to the approximate reverberation time of room. "chirp.wav" is 

created. 

chirp2binsingle.m reads in "chirp.wav" and creates five bin files that can be read into 

SpectrumExample.vi. They are: 
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chirpchannel1.bin 

chirpchannel2.bin 

chirpchannel3.bin 

chirpchannel4.bin 

zeros.bin 

These files contain a chirp going through one channel at a time. Zeros is a file with nothing. 

The spectrum example takes the first 1/4 of a signal as channel 1, the second 1/4 as channel 

2, etc. Example: chirpchannel1.bin has a sweep followed by silence (needs to be close to the RT 

of the room) for the first 1/4 of signal. The rest of the signal is blank (so no signal for channels 2-

4). 

Now, open SpectrumExample.vi. Figure B.1 shows an example of the front panel. To start, 

load chirpchannel1.bin into card 1 and zeros.bin into card 2 by typing the appropriate text into the 

File Name (Replay Card 1) and File Name (Replay Card 2) text boxes. The sampling rate for 

M2i.49xx should be greater than 3000 kHz (this is a result of a bug in the code that I have not been 

able to resolve, but it is the only way it works). The sampling rate for M2i.60xx should be 50 kHz 

(or whatever your desired sampling rate is). Mem and Post for M2i.49xx and Mem for M2i.60xx 

should be set to mem that is outputted from chirpgen.m and chirp2binsingle.m. It represents the 

amount of samples that will be broadcast and recorded. Reduce gain to an appropriate value for 

the M2i.60xx card channels. (Begin with less than 500 or so to avoid overloading). Flip the toggle 

switch (to the right of the plot) for which channel(s) you want to save. Begin the run by clicking 

on “single” on the top left. Recordings should be saved as "chirpresp(num2str(n))" where n is the 

nth loudspeaker. Example: "chirpresp1" for the first loudspeaker. Repeat for channels 2-4 by 
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loading in chirpchannel2.bin into card 1 etc. For channels 5-8 (card 2) load in zeros.bin for card 1 

and chirpchannel1.bin for channel 5, chirpchannel2.bin for channel 6 etc. Record each response. 

 

FIG. B.1. The front panel for SpectrumExample.vi. showing the result of TR focusing with 
eight loudspeakers in a reverberation chamber.  

 

createTRIR_averages.m will be used to load in chirp responses and create "TRIR1.bin" 

and "TRIR2.bin". Put in the correct IRlength (same as mem from chirpgen.m). Adjust N for the 

correct amount of loudspeakers used and M for the correct amount of averages (averaging is 

explained later). Like "chirpcannel(n).bin", "TRIR1.bin" and "TRIR2.bin" have all four signals 

concatenated together for each card. This file is ready to be loaded into the spectrum example for 

simultaneously output. 
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The Backward Step 

"TRIR1.bin" and "TRIR2.bin” are then loaded into SpectrumExample.vi. Change Mem 

and Post for M2i.49xx and Mem for M2i.60xx to the newmem that is outputted from 

createTRIR_averages.m (should be twice the value of the original mem). Run the vi and save the 

desired output.  

savefocus_averages.m will plot and save the result. 

 

Averaging 

Most of the forward and backward steps for incorporating averaging are the same. For M 

averages, the main idea is to output and record M signals and perform the averaging in MATLAB. 

Set M2i.60xx settings from singleshot to continuous. Set Loop to how ever many averages 

you want (M). Mem and Post in M2i.49xx need to be M*Mem from the M2i.60xx Settings. Save 

the signal as before (chirpresp1 for example). createTRIR_averages.m reads in the file and 

performs the averaging. Update M to the amount of averages.  Like before, this creates TRIR1.bin 

and TRIR2.bin for the N channels. After changing Mem to the appropriate value, and Mem and 

Post in M2i.49xx need to M*Mem, repeat and save the file as "focusresp" like before. 

savefocus_averages.m will compute the average and save the result. 

 

MATLAB Code 

chirpgen.m  

% creates a linear chirp. 
clear; 
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close all; 
  
f1 = 500; % lower frequency 500 
f2 = 7500; % upper frequency 7000 
  
fs = 50000; % sampling rate 50000 
t = 0:1/fs:3; % length in time of chirp 
y = chirp(t, f1, t(end), f2, 'linear',-90); %change phase~~ 
  
signaltime = length(y)/fs; %finds length of chirp in seconds 
RT = 6; % Approximate reverberation time 
totaltime = signaltime + RT; %add RT seconds of reverb 
mem = 0; 
n=0; 
while mem < totaltime*fs 
    n = n+1; 
    mem = 2^n; 
end 
mem 
  
zeropad = zeros(1,mem-length(y)); 
  
y = [y zeropad]; 
  
audiowrite('chirp.wav',y,fs); 
 
 

chirp2binsingle.m  

% turns chirp.wav into bin files that the spectrum example can use. 
clear; close all; 
[sample,fs]=audioread('chirp.wav'); 
  
mem = 0; 
n=0; 
while mem < length(sample) 
    n = n+1; 
    mem = 2^n; 
end 
mem 
  
post=5000; %maybe wrong name 
gain=1; 
  
ch1=int16(post*sample*gain); 
ch2=int16(0*sample*gain); % no signal for ch2 
ch3=ch2; 
ch4=ch2; 
  
data1=[ch1; ch2; ch3; ch4;]; 
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fileID = fopen('chirpchannel1.bin','w'); 
fwrite(fileID,data1,'*int16'); 
fclose(fileID); 
  
ch1=int16(0*sample*gain); % no signal for ch1 
ch2=int16(post*sample*gain);  
ch3=ch1; 
ch4=ch1; 
  
data2=[ch1; ch2; ch3; ch4;]; 
  
fileID = fopen('chirpchannel2.bin','w'); 
fwrite(fileID,data2,'*int16'); 
fclose(fileID); 
  
ch1=int16(0*sample*gain); 
ch2=ch1;  
ch3=int16(post*sample*gain); 
ch4=ch1; 
  
data3=[ch1; ch2; ch3; ch4;]; 
  
fileID = fopen('chirpchannel3.bin','w'); 
fwrite(fileID,data3,'*int16'); 
fclose(fileID); 
  
ch1=int16(0*sample*gain); 
ch2=ch1;  
ch3=ch1; 
ch4=int16(post*sample*gain); 
  
data4=[ch1; ch2; ch3; ch4;]; 
  
fileID = fopen('chirpchannel4.bin','w'); 
fwrite(fileID,data4,'*int16'); 
fclose(fileID); 
  
ch1=int16(0*sample*gain); 
ch2=ch1;  
ch3=ch1; 
ch4=ch1; 
  
data5=[ch1; ch2; ch3; ch4;]; 
  
fileID = fopen('zeros.bin','w'); 
fwrite(fileID,data5,'*int16'); 
fclose(fileID); 
 

createTRIR_averages.m  



APPENDIX B 89 

 

% creates TRIR from chirp responses. Uses the appropriate amount of 
% averages 
close all; clear; 
  
IRlength = 262144; % set equal to mem 
%% extract and save data 
  
N=1; %number of loudspeakers 
  
M=1; %number of averages 
  
trir = zeros(N,IRlength); 
for n=1:N 
     
    filename = ['chirpresp',num2str(n)]; 
    file = dlmread(filename,'\t',4,1);  
    chirpresp = file(:,1); 
  
    % Averaging Part 
     
    temp=zeros(IRlength,M); 
    for m=1:M 
        temp(:,m)=chirpresp((m-1)*IRlength+1:m*IRlength); 
    end 
    chirpresp = sum(temp,2)/M; 
     
    [chirpsig,FS] = audioread('chirp.wav'); 
  
    [IR,b] = impresp(chirpsig,chirpresp); 
    save('IR.mat','IR') 
  
    trir(n,:) = 100/max(abs(b'))*b'; % normalizes trir to 100 
    n/N*100 % percent done 
end 
  
post=1; %maybe wrong name 
  
if N == 1 
    data1=[int16(post*trir(1,:)) int16(zeros(length(trir(1,:)),1))']; 
    data1=[data1 int16(zeros(6*length(trir(1,:)),1))']; %fills the rest of 
the signal with zeros 
elseif N == 2 
    data1=[int16(post*trir(1,:)) int16(zeros(length(trir(1,:)),1))' 
int16(post*trir(2,:)) int16(zeros(length(trir(1,:)),1))']; 
    data1=[data1 int16(zeros(4*length(trir(1,:)),1))']; 
elseif N == 3 
    data1=[int16(post*trir(1,:)) int16(zeros(length(trir(1,:)),1))' 
int16(post*trir(2,:)) int16(zeros(length(trir(1,:)),1))' 
int16(post*trir(3,:)) int16(zeros(length(trir(1,:)),1))']; 
    data1=[data1 int16(zeros(2*length(trir(1,:)),1))']; 
elseif N == 4 
    data1=[int16(post*trir(1,:)) int16(zeros(length(trir(1,:)),1))' 
int16(post*trir(2,:)) int16(zeros(length(trir(1,:)),1))' 
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int16(post*trir(3,:)) int16(zeros(length(trir(1,:)),1))' 
int16(post*trir(4,:)) int16(zeros(length(trir(1,:)),1))']; 
elseif N == 5 
    data1=[int16(post*trir(1,:)) int16(zeros(length(trir(1,:)),1))' 
int16(post*trir(2,:)) int16(zeros(length(trir(1,:)),1))' 
int16(post*trir(3,:)) int16(zeros(length(trir(1,:)),1))' 
int16(post*trir(4,:)) int16(zeros(length(trir(1,:)),1))']; 
    data2=[int16(post*trir(5,:)) int16(zeros(length(trir(1,:)),1))']; 
    data2=[data2 int16(zeros(6*length(trir(1,:)),1))']; %fills the rest of 
the signal with zeros 
elseif N == 6 
    data1=[int16(post*trir(1,:)) int16(zeros(length(trir(1,:)),1))' 
int16(post*trir(2,:)) int16(zeros(length(trir(1,:)),1))' 
int16(post*trir(3,:)) int16(zeros(length(trir(1,:)),1))' 
int16(post*trir(4,:)) int16(zeros(length(trir(1,:)),1))']; 
    data2=[int16(post*trir(5,:)) int16(zeros(length(trir(1,:)),1))' 
int16(post*trir(6,:)) int16(zeros(length(trir(1,:)),1))']; 
    data2=[data2 int16(zeros(4*length(trir(1,:)),1))']; 
elseif N == 7 
    data1=[int16(post*trir(1,:)) int16(zeros(length(trir(1,:)),1))' 
int16(post*trir(2,:)) int16(zeros(length(trir(1,:)),1))' 
int16(post*trir(3,:)) int16(zeros(length(trir(1,:)),1))' 
int16(post*trir(4,:)) int16(zeros(length(trir(1,:)),1))']; 
    data2=[int16(post*trir(5,:)) int16(zeros(length(trir(1,:)),1))' 
int16(post*trir(6,:)) int16(zeros(length(trir(1,:)),1))' 
int16(post*trir(7,:)) int16(zeros(length(trir(1,:)),1))']; 
    data2=[data2 int16(zeros(2*length(trir(1,:)),1))']; 
elseif N == 8 
    data1=[int16(post*trir(1,:)) int16(zeros(length(trir(1,:)),1))' 
int16(post*trir(2,:)) int16(zeros(length(trir(1,:)),1))' 
int16(post*trir(3,:)) int16(zeros(length(trir(1,:)),1))' 
int16(post*trir(4,:)) int16(zeros(length(trir(1,:)),1))']; 
    data2=[int16(post*trir(5,:)) int16(zeros(length(trir(1,:)),1))' 
int16(post*trir(6,:)) int16(zeros(length(trir(1,:)),1))' 
int16(post*trir(7,:)) int16(zeros(length(trir(1,:)),1))' 
int16(post*trir(8,:)) int16(zeros(length(trir(1,:)),1))']; 
elseif N > 8 
    display('Too many speakers') 
end 
  
newmem = 2*IRlength 
  
gain = 4000/max(abs(data1));% scale to 4000 
data1 = gain*data1; 
  
fileID = fopen('TRIR1.bin','w'); % creates output for card 1 
fwrite(fileID,data1,'*int16'); 
fclose(fileID); 
  
if N > 4 
    gain = 4000/max(abs(data2));% scale to 4000 
    data2 = gain*data2; 
    fileID = fopen('TRIR2.bin','w'); % creates output for card 2 
    fwrite(fileID,data2,'*int16'); 
    fclose(fileID); 
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end 
 

savefocus_averages.m  

% close all; clear; 
Focuslength = 1048576; 
  
filename='focus'; 
file=dlmread(filename,'\t',4,1);  
resp=file(:,1); 
  
% averaging  
  
M = 5; %number of averages 
  
temp=zeros(Focuslength,M); 
for m=1:M 
    temp(:,m)=resp((m-1)*Focuslength+1:m*Focuslength); 
end 
resp = sum(temp,2)/M; 
  
FS=50000; 
  
%% zero mean 
ampl = max(abs(resp)) 
  
DCoff2 = mean(resp); 
  
resp = resp - DCoff2; 
  
away=resp; 
  
% ampl = max(abs(resp)) 
%% Save file 
  
% audiowrite([filename ,'.wav'],resp/(max(abs(resp))),FS); % reduces gain to 
avoid clipping 
fileID = fopen('focus.bin','w'); 
fwrite(fileID,resp,'*int16'); 
fclose(fileID); 
  
save('focus.mat','resp') 
  
%% plot 
figure 
hold on 
plot(resp) 
title(['Signal ' filename]) 
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SpectrumExample.vi Block Diagram Explanation 

As seen in Fig. B.2, the LabVIEW code mainly consists of a while loop and a case structure 

with 10 cases.  

 

 

FIG. B. 2 Case structure cases. 

 

The while loop continues iterating until the .vi is quit. Each of the 10 cases follows a logical 

step in the data acquisition process. A brief description of each case is outlined below. 

1. Idle: The condition of the .vi while waiting for a command. 

2. Init: Determines the status of the cards.  

3. Setup Acquisition Card: Inputs the acquisition parameters defined by the user. 

4. Setup Replay Cards: Inputs the generation parameters defined by the user and loads in the 

user-defined signal. There are two tabs in the stacked sequence structure, one for the first 

generator card and the other for the second. Below are four key steps in this case (see Fig. 

B.3). 

a. The .vi reads in the user named data file. 
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b. The file is separated into four different signals and are ready to be sent to the 

generator card. 

c. The signals are read into the generator card. 

d. The signals are plotted.  

 

 

FIG. B.3. SpectrumExample.vi setup replay cards. 

 
5. Setup Sync: Allows for synchronous generation and acquisition.  

6. Start Cards: Checks for errors before starting generator cards.  

7. Wait Cards Ready: Final check before starting both generation and acquisition. 

8. Get Acquired Data: The digitizer card reads in data from the four input channels and they 

are plotted and saved (see Fig. B.4.) 

a. Data from the digitizer card. 

b. Data is sent to save options and is saved depending on the user input.  
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c. Data is plotted.  

 

 

FIG. B.4. Data paths in Get Acquired Data 

 

9. Stop: Stops the current generator/acquisition iteration and resets the .vi. 

10. Quit: Allows the .vi to quit.  

Figures B.3 and B.4 are shown to help future researchers understand where the raw data is 

in SpectrumExample.vi. Manipulation in the forward step, including deconvolution, one-bit, 

clipping, and decay compensation signal processing strategies, can be incorporated in the window 

shown by Fig. B.3. Additional processing of the focal signal could be included in the window 

shown by Fig. B.4.  
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