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ABSTRACT 

Use of Phase and Amplitude Gradient Estimation for Acoustic 
Source Characterization and Localization 

 
Joseph Scott Lawrence 

Department of Physics and Astronomy, BYU 
Master of Science 

 
Energy-based acoustic quantities provide vital information about acoustic fields and the 

characterization of acoustic sources. Recently, the phase and amplitude gradient estimator (PAGE) 
method has been developed to reduce error and extend bandwidth of energy-based quantity 
estimates. To inform uses and applications of the method, analytical and experimental 
characterizations of the method are presented. Analytical PAGE method bias errors are compared 
with those of traditional estimation for two- and three-microphone one-dimensional probes. For a 
monopole field when phase unwrapping is possible, zero bias error is achieved for active intensity 
using three-microphone PAGE and for specific acoustic impedance using two-microphone PAGE. 
A method for higher-order estimation in reactive fields is developed, and it is shown that a higher-
order traditional method outperforms higher-order PAGE for reactive intensity in a standing wave 
field. Extending the applications of PAGE, the unwrapped phase gradient is used to develop a 
method for directional sensing with improved bandwidth and arbitrary array response. 
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1 

Introduction 

1.1 Motivation 

Estimation of energy-based acoustical quantities provides information used in the 

characterization and localization of acoustic sources. These estimates rely on both the acoustic 

pressure, a scalar quantity measured with a microphone, and the acoustic particle velocity, a vector 

quantity often estimated using microphone arrays. Some energy-based quantities include active 

intensity, reactive intensity, and specific acoustic impedance, each of which are discussed in this 

thesis. 

An energy-based quantity of particular importance is active intensity, which represents the 

amount of propagating acoustic energy per unit area in the field. Active intensity is a vector 

quantity that points in the direction of propagation, and can be used in source localization1 or 

holography.2-4 Additionally, through integration of active intensity the sound power of an acoustic 

source can be estimated.5-7 Unlike field quantities such as pressure and particle velocity, sound 

power is a source property, providing information about the source itself. Knowledge of sound 

power and location of a source can inform efforts in noise control, source detection, and source 

characterization. 

A method for estimation of active intensity was developed in the 1970s.8-11 This method is 

still in use today and is referred to as the traditional method throughout the current work. A 

traditional one-dimensional intensity probe consists of two microphones, with center pressure 
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estimated using the pressure sum to obtain the average. The center particle velocity is estimated 

using the pressure difference and Euler’s equation, which relates particle velocity to the pressure 

gradient. Active intensity is calculated using a combination of these two estimates. Configurations 

beyond a two-microphone probe have been explored, including multi-dimensional probes and the 

inclusion of center microphones.12,13 

Two other energy-based acoustic quantities, reactive intensity and specific acoustic 

impedance, are also investigated in the current work. Reactive intensity is a vector pointing in the 

direction of the pressure gradient. It is a measure of the non-propagating energy per unit area in an 

acoustic field, where the pressure and particle velocity are in quadrature, exchanging potential and 

kinetic energy.11 Reactive intensity is strong compared to active intensity in standing wave fields, 

in near fields, and in the presence of evanescent decay, and thus acts as a field indicator for these 

situations.14 Specific acoustic impedance is a scalar quantity measuring the ratio of pressure to 

particle velocity for a given direction, often measured in ducts15,16 but can also be applied to free 

fields.17,18 It is used to estimate absorption and reflection properties of materials, and to 

characterize the radiation of structures. Similar to active intensity, both of these quantities rely on 

pressure and particle velocity estimates, and can be estimated for a single direction using a two-

microphone probe. 

In estimating energy-based quantities, each relies on a finite sum for center pressure 

estimation and a finite difference for center particle velocity estimation, which can result in 

estimation error. These errors occur for estimation in both the time and frequency domains. Finite-

sum and finite-difference errors can occur at high frequencies as the wavelength becomes small 

compared to the microphone spacing, thus limiting high-frequency accuracy of the probe. These 
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errors were analyzed for active intensity in several fields by Thompson and Tree,19 and a similar 

analysis was performed for specific acoustic impedance by Champoux and L’espérance.20 

The accuracy bandwidth of energy-based quantity estimation is further limited by 

estimation error at low frequencies due to microphone phase mismatch,10 This limitation requires 

that the microphone separation is carefully selected so the probe yields accurate estimates at the 

frequencies of interest and can even require the use of multiple probes with varying spacing if a 

broader frequency range is needed. 

1.2 Prior Work 

The phase and amplitude gradient estimator (PAGE) method was developed to reduce 

finite-sum and difference errors in active intensity estimation.21 The details of the method are 

found in Sec. 2.2. By relying on the pressure amplitude and the phase gradient instead of the 

complex pressure, the accuracy bandwidth can be extended up to the spatial Nyquist frequency, 

the frequency at which the probe separation is equal to half a wavelength. Additionally, for 

broadband sources it is possible to unwrap the phase gradient, enabling accurate estimation beyond 

the spatial Nyquist frequency as long as there is sufficient coherence between the microphones. 

Phase unwrapping has been shown experimentally to allow an accuracy bandwidth of up to an 

order of magnitude greater than that of the traditional method.22,23 The PAGE method has been 

applied to jet and rocket measurements,24,25 loudspeaker measurements,22 and to a real-time 

intensity-based localization system.26 Additionally, performance of the method has been 

experimentally investigated for several two- and three-dimensional intensity probes.27 

Whiting28 presents initial research in understanding the analytical behavior of the PAGE 

method. In that work, he explores alternative probe configurations, including a three-microphone 

one-dimensional probe and several two-dimensional probes. In addition to active intensity, he 
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explores the performance of the PAGE method for other energy-based quantities, including 

reactive intensity and specific acoustic impedance. The performance is compared to the traditional 

method by deriving bias error expressions for two and three microphone probes. The current work 

expands on that analytical research, further exploring the performance of the PAGE method for 

two-microphone probes (Chapter 2), three-microphone probes (Chapter 3), and higher-order 

probes (Chapter 4), as well as providing experimental verification (Chapter 3) and extending the 

method for use in directional pressure sensing (Chapter 5). 

In addition to the research presented here, current research explores several other aspects 

of the PAGE method. Work has been done to develop coherence-based unwrapping algorithms to 

prevent erroneous phase unwrapping for signals with low coherence.29 Succo30 explores the 

behavior of the PAGE method for narrowband signals, showing increased accuracy up to the 

spatial Nyquist frequency for harmonics of a sawtooth. Furthermore, the principles of the PAGE 

method have been applied to beamforming, extending bandwidth through phase unwrapping and 

array interpolation.31 

1.3 Thesis Overview 

This thesis presents research characterizing the PAGE method for use in energy-based 

quantity estimation and for direction finding. Chapter 2 provides a foundation for comparing the 

analytical performance of the PAGE and traditional methods by comparing bias errors in energy-

based quantity estimation in several acoustic fields. This expands on the work done by Whiting by 

including expressions for a dipole field (Sec. 2.5) and introducing standardized notation and plots, 

and was published in the Journal of the Acoustical Society of America under the title “Bias error 

analysis for phase and amplitude gradient estimation of acoustic intensity and specific acoustic 

impedance.”32 
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Chapter 3 explores the performance of a three-microphone probe, created by adding a 

center microphone. An experiment was performed to validate and compare the two and three-

microphone bias errors. For each energy-based quantity a recommendation is given for the ideal 

microphone count and processing method. This research was published in the Journal of the 

Acoustical Society of America as an Express Letter under the title “Three-microphone probe bias 

errors for acoustic intensity and specific acoustic impedance.”33 

Chapter 4 investigates use of the PAGE method in reactive intensity estimation. Since the 

PAGE formulation of reactive intensity relies on the pressure gradient instead of the phase 

gradient, reactive intensity estimation accuracy is not aided by phase unwrapping. The use of 

additional microphones and higher-order derivatives to extend bandwidth is explored. 

Performance is analyzed for both a monopole field (Sec. 4.3) and a standing wave field (Sec. 4.4). 

This research was published in Proceedings of Meetings on Acoustics under the title “Higher-order 

estimation of active and reactive acoustic intensity.”34 

In Chapter 5, principles of the PAGE method are used to develop a phase gradient based 

method for directional pressure estimation. This allows for the creation of two-microphone 

directional pressure sensors with extended bandwidth and arbitrary array responses (Sec. 5.2). The 

performance of such a sensor is experimentally verified (Sec. 5.3). This research has been 

submitted to the Journal of the Acoustical Society of America as an Express Letter under the title 

“Highly directional pressure sensing using the phase gradient.” 

Chapter 6 summarizes the main conclusions from the research in this thesis, informing use 

of the PAGE method in various applications. Additionally, a summary of future work is given, 

including investigations of the effects of noise and the extension to other applications.  
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Two-microphone bias errors 

2.1 Introduction 

Sound intensity is a vital measurement in energy-based acoustics, as can be seen from its 

use in sound power and source characterization and localization. Acoustic intensity cannot be 

measured directly, but is rather estimated using pressure and particle velocity. One method 

measures particle velocity directly using heated wires.35 However, this sensor is sensitive to mean 

flow effects, which may make it less robust for outdoor measurements involving wind or 

temperature fluctuations (e.g., jet noise measurements).36,37 Another method for estimating 

acoustic intensity uses microphone pairs and their cross spectra. In this formulation, pressure is 

estimated as the average measured pressure, and particle velocity is estimated using the pressure 

gradient across the microphones. This method, referred to in this article as the traditional method, 

was developed in the 1970s and is still in use today.8-11 In an attempt to extend the frequency 

bandwidth of intensity calculations, the phase and amplitude gradient estimator method (PAGE) 

has been developed.21 To provide an analytical foundation for the PAGE method, bias errors in 

calculations of active and reactive intensity and specific acoustic impedance using the PAGE 

method are compared to those of the traditional method. This chapter was modified from a 2017 

paper published in the Journal of the Acoustical Society of America under the title “Bias error 

analysis for phase and amplitude gradient estimation of acoustic intensity and specific acoustic 

impedance.”32 
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Several sources of error limit the bandwidth of intensity estimates using the traditional 

method. Low-frequency errors arise from phase and amplitude mismatch present in nonideal 

microphones,10,38 whereas high-frequency errors arise from calculation bias errors inherent to the 

method caused by limitations in the finite-difference and finite-sum formulas,11,19,39 as well as 

scattering from the microphones.40-42 Of particular note to this paper is the work done by Fahy,11 

and Thompson and Tree,19 who report bias errors from the traditional method of calculating active 

acoustic intensity for the fields created by several analytical sources. 

A related quantity, specific acoustic impedance, can be used to determine the absorption 

of materials. As with intensity, the measurement depends on pressure and particle velocity, and 

can be estimated using two microphones in a similar manner. This method was developed first for 

use in tubes,15,16 and later for free-field measurements.17,18 An error analysis similar to that of 

Thompson and Tree has been carried out by Champoux and L’espérance20 for free-field 

measurements of specific acoustic impedance. 

Recently, the PAGE processing method has been shown experimentally to reduce, and in 

some cases completely remove, high-frequency calculation bias error from energy-based acoustic 

quantities.28 Initial laboratory experimental validation of the method has been done,22,23 and the 

method has been applied to jet and rocket noise measurements.23-25 With the use of phase 

unwrapping, the PAGE method has extended the bandwidth of intensity measurements for 

broadband sources to be an order of magnitude greater than that of the traditional method.23 In this 

work, we seek to validate the PAGE method analytically by examining its improvement of 

calculation bias errors over the traditional method. 

Just as in the traditional method, the PAGE method estimates particle velocity by 

estimating the pressure gradient across multiple microphones. However, the amplitude and the 
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phase of the pressure are treated separately, resulting in a more robust method. In this paper, the 

two-microphone bias errors for the PAGE method are reported for three ideal fields: a plane wave, 

and fields from a monopole source and a dipole source. This investigation complements work of 

Fahy, Thompson and Tree, and Champoux and L’espérance by doing a similar analysis for the 

PAGE method, and extends their work by including reactive intensity. The PAGE method is shown 

to be more accurate at higher frequencies than the traditional method for active intensity and 

specific acoustic impedance, both with and without phase unwrapping. 

2.2 Methodology 

In order to show the advantages of using the PAGE processing method, the bias errors of 

the PAGE method for estimating intensity and specific acoustic impedance are reported and 

compared to those of the traditional method. An overview of the two methods is provided in this 

section. 

Although more than two microphones can be used as shown by Cazzalato and Hansen12 

and Pascal and Li13 for the traditional method, this paper considers only a two-microphone probe 

for one-dimensional quantity estimation. The frequency-dependent complex pressures at the 

locations of the two microphones are  

 
𝑝1 = 𝑃1𝑒

𝑗𝜙1 

𝑝2 = 𝑃2𝑒
𝑗𝜙2 

(2.1) 

with 𝑃 denoting the magnitude and 𝜙 the phase at the location of the microphone. The microphones 

are in line with the source (as illustrated in Fig. 2.1), with microphone 1 closer to the source, and 

a distance 𝑑 between the microphones. This paper considers only ideal point microphones, whereas 

in practice, high-frequency error would be introduced by scattering, which may include scattering 

from a solid spacer placed intentionally between the microphones.40 
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Figure 2.1. Schematic of a one-dimensional intensity probe consisting of two microphones. The 
probe axis points towards the source, such that the sound first passes microphone 1. The distance 
between the microphones is 𝑑. 

Complex pressures obtained from microphone measurements are used to estimate acoustic 

quantities at the center of the probe, including pressure, acoustic particle velocity, active and 

reactive vector intensity and specific acoustic impedance. The center pressure is estimated as the 

average of the measured pressures. The acoustic particle velocity is found using Euler’s equation, 

 𝒖 =
𝑗

𝜌0𝜔
∇𝑝, (2.2) 

where 𝜌0 is the density of air and 𝜔 the angular frequency. The bold font indicates a vector. The 

complex acoustic vector intensity is 

 𝑰𝑐 =
1

2
𝑝𝒖∗, (2.3) 

with * indicating complex conjugate. 𝑰𝑐 can be separated into the active (real) and reactive 

(imaginary) parts,  

 𝑰 =
1

2
Re{𝑝𝒖∗} (2.4) 

 𝑱 =
1

2
Im{𝑝𝒖∗}. (2.5) 

The factor of 1/2 is due to the time or ensemble averaging of complex peak amplitudes [see Fahy11 

Eqs. (4.34c) and (4.34d)]. If using root-mean-square values instead of amplitudes, the factor of 

1/2 disappears. Finally, the complex specific acoustic impedance is 
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 𝑧 =
𝑝

𝑢𝑒
 (2.6) 

where 𝑢𝑒 is the particle velocity in the direction the specific acoustic impedance is to be measured. 

Once estimates of pressure and particle velocity are obtained, the intensity and impedance 

quantities in Eqs. (2.3)–(2.6) can be estimated. The following two subsections explain how these 

quantities are estimated for both the traditional and the PAGE processing methods. 

2.2.1 Traditional method 

The traditional method of measuring intensity and specific acoustic impedance has been in 

use for decades and is used in many measurement standards.43,44 In this method, the complex 

pressure at the center of the probe, 𝑝, is estimated by averaging the real and imaginary parts of the 

complex pressures 𝑝1 and 𝑝2:  

 𝑝TRAD =
1

2
(𝑝1 + 𝑝2), (2.7) 

The traditional estimate of particle velocity is found from finite-differencing both the real and 

imaginary parts of the complex pressure:  

 𝒖 
TRAD =

𝑗

𝜌0𝜔
(
𝑝2 − 𝑝1

𝑑
). (2.8) 

These estimated quantities, 𝑝TRAD and 𝒖 
TRAD can exhibit bias errors when 𝑑 becomes large relative 

to the acoustic wavelength. Bias errors associated with 𝑝TRAD and 𝒖 
TRAD lead to bias errors in 

𝑰TRAD, 𝑱TRAD and 𝑧TRAD. The traditional method bias errors are discussed in Sections 2.3 through 

2.5 for the ideal planar, monopolar, and dipolar fields. These sections refer to the spatial Nyquist 

frequency, which is a limiting case where the microphone spacing equals half an acoustic 

wavelength. This occurs at 𝑘𝑑 = 𝜋 when the wave is incident along the probe axis.  
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2.2.2 PAGE method 

 To increase the reliable bandwidth of both pressure and particle velocity estimates, the 

PAGE method was developed.21 The PAGE method estimates the complex pressure using phase 

and amplitude as, 

 𝑝PAGE = �̂�𝑒−𝑗�̂�, (2.9) 

where an overhat indicates an estimated quantity. Here, �̂� is the estimated pressure amplitude at 

the center of the probe, computed as the mean of the pressure amplitudes of the two microphones, 

 �̂� =
1

2
(𝑃1 + 𝑃2).  (2.10) 

The center phase estimate �̂� is a relative phase, and in practice it can be replaced with zero as it 

has no effect on energy-based quantities. Mann et al.45 showed that when the complex pressure is 

expressed in terms of phase and amplitude, Euler’s equation for particle velocity takes on a 

different form. Thomas et al.21 used this formulation in the PAGE method to estimate particle 

velocity as  

 𝒖PAGE =
𝑒−𝑗�̂�

𝜌0𝜔
(�̂� ∇�̂� + 𝑗∇�̂�), (2.11) 

The gradients of pressure amplitude and phase are estimated as  

 ∇�̂� =
𝑃2 − 𝑃1

𝑑
 (2.12) 

 ∇�̂� =
𝜙2 − 𝜙1

𝑑
.  (2.13) 

When finding phase in practice, phase differences between the microphones are wrapped for   

𝑘𝑑 > 𝜋, such that estimates of ∇𝜙 are incorrect. To find an accurate estimate of ∇𝜙, an unwrapping 

algorithm can be used on the phase difference as a function of frequency. Unwrapping can usually 

be successfully applied when the source is broadband with a smoothly varying phase and there is 
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sufficient coherence between the microphones.23,31 The PAGE bias error equations reported in 

Sections 2.3 through 2.5 of this paper assume successful unwrapping. Without unwrapping, the 

bias errors would be different for 𝑘𝑑 > 𝜋. 

The expressions for 𝑝PAGE and 𝒖PAGE lead to expressions for 𝑰PAGE, 𝑱PAGE, and 𝑧PAGE: 

 𝑰PAGE =
�̂�2∇�̂�

2𝜌0𝜔
  (2.14) 

 𝑱PAGE = −
�̂� ∇�̂�

2𝜌0𝜔
  (2.15) 

 𝑧PAGE =
�̂�𝜌0𝜔

[�̂�∇�̂� + 𝑗∇�̂�] ∙ �̂�
=

�̂�2

2𝑰𝑐
∗ ∙ �̂�

 (2.16) 

The expression for active intensity in Eq. (2.14) has been reported previously by Mechel,46 

although with the development of the PAGE method, this formulation has progressed to a 

measurement tool. The estimate of specific acoustic impedance in Eq. (2.16) is in a particular 

direction, denoted by the unit vector �̂�. The remainder of this paper compares performance of the 

traditional and PAGE methods for a plane wave, a monopole source, and a dipole source. This 

systematic evaluation of the bias errors for these propagating wave fields provides an analytical 

foundation for the PAGE method that can guide future application and development. 

2.3 Plane wave 

This section reports bias errors for a plane wave. A plane wave is an ideal field with 𝑝 and 

𝑢 in phase, similar to the far-field behavior of many acoustic sources. Errors in traditional and 

PAGE estimates of 𝑝 and 𝒖 lead to errors in 𝑰 and 𝑧, all of which are reported. Since a plane wave 

has zero reactive intensity, 𝑱 is not discussed in this section. 
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2.3.1 Pressure 

 The complex pressure of a plane wave can be represented as 𝑝 = 𝐴𝑒−𝑗𝑘𝑥, where 𝐴 is the 

amplitude, 𝑥 is the distance from the origin, and 𝑘 = 𝜔/𝑐 is the acoustic wavenumber. The 

traditional method estimates the pressure at the center of the intensity probe by averaging the real 

and imaginary parts of the frequency-dependent complex pressure, which vary in space. Fahy11 

evaluates the traditional method bias error by considering the error ratio of estimated pressure over 

actual pressure [see his Eq. (5.40a)]:  

 
𝑝TRAD

𝑝
= cos(𝑘𝑑 2⁄ ). (2.17) 

The traditional method bias error level, 𝐿𝜀,𝑝 = 20log10(|𝑝
TRAD/𝑝|), is plotted as a function of 𝑘𝑑 

in Fig. 2.2(a). The phase of the error ratio is shown in Fig. 2.2(b). The error is nearly zero for small 

values of 𝑘𝑑, but the error increases as 𝑘𝑑 approaches the spatial Nyquist limit of 𝜋. Previous 

authors have given differing criteria for acceptable error, although in this work we will use Fahy’s 

criterion of less than 5% error.11 The error in pressure is less than 5% (about 0.4 dB) for             

𝑘𝑑 < 0.64. 

In contrast, the PAGE formulation given in Eq. (2.9) estimates the correct pressure 

amplitude at all frequencies, which is also shown in Fig. 2.2(a). As shown in Fig. 2.2(b), the phase 

is correct above 𝑘𝑑 = 𝜋 only if unwrapping is applied, but since only pressure magnitude is used 

for 𝑰PAGE and 𝑧PAGE, phase error has no effect on these estimates. 
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Figure 2.2. Bias errors in estimates of center pressure (a) amplitude and (b) phase of a plane wave 
as a function of 𝑘𝑑 using the traditional method, 𝑝𝑇𝑅𝐴𝐷 , and the PAGE method, 𝑝𝑃𝐴𝐺𝐸 , without and 
with phase unwrapping. The solid, vertical line is the spatial Nyquist frequency. 

2.3.2 Particle velocity 

For the plane wave case, the analytical particle velocity differs from the pressure by a factor 

of 𝜌0𝑐,  

 𝒖 =
𝐴

𝜌0𝑐
𝑒−𝑗𝑘𝑥 �̂�, (2.18) 

where �̂� is the unit vector in the direction of propagation. Fahy11 [Eq. (5.40b)] gives the traditional 

method error ratio as 

 
𝒖 

TRAD

𝒖 
= sinc(𝑘𝑑 2⁄ ).  (2.19) 

The error (one minus the error ratio) is low for small 𝑘𝑑 and grows more slowly than the pressure 

error given in Eq. (2.17). The error level, 𝐿𝜀,𝑢 = 20log10(|𝒖
TRAD/𝒖|), is plotted in Fig. 2.3(a) and 

is less than 5% (0.4 dB) for 𝑘𝑑 < 1.1. 

The PAGE method estimate of particle velocity given in Eq. (2.11) has zero error up to 

𝑘𝑑 = 𝜋. Without phase unwrapping, errors in the estimate of ∇𝜙 lead to bias errors in amplitude 
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for 𝑘𝑑 > 𝜋 and phase for 𝑘𝑑 > 2𝜋. For cases where phase unwrapping may be applied, however, 

𝒖 
PAGE has zero error for 𝑘𝑑 > 𝜋. 

 

Figure 2.3. Bias errors in estimates of particle velocity (a) amplitude and (b) phase of a plane wave 
as a function of 𝑘𝑑 using the traditional method, 𝒖 

𝑇𝑅𝐴𝐷, and the PAGE method, 𝒖 
𝑃𝐴𝐺𝐸, without and 

with phase unwrapping. The solid, vertical line is the spatial Nyquist frequency. 

2.3.3 Active intensity 

Bias errors in both the estimates of 𝑝 and 𝒖 contribute to bias errors in 𝑰. Analytically, the 

active intensity of a plane wave of amplitude 𝐴 is 𝑰 = 𝐴2/2𝜌0𝑐. By combining the bias errors in 

Eqs. (2.17) and (2.19) and simplifying, the traditional method bias error for active intensity is 

found to be 

 𝑰TRAD 

𝑰
= sinc(𝑘𝑑). (2.20) 

Figure 2.4 shows the error level 𝐿𝜀,𝐼 = 10log10(|𝑰
TRAD/𝑰|) as well as the phase error. For the 

traditional method, the error in active intensity is less than 5% (0.2 dB) for 𝑘𝑑 < 0.55—half the 

range for particle velocity. The direction of 𝑰TRAD is correct until 𝑘𝑑 = 𝜋. 𝑰PAGE has zero error up 

to 𝑘𝑑 = 𝜋 because there was zero error in 𝑝 and 𝒖. If the phase is unwrapped, there is zero error 

for any 𝑘𝑑. 
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Figure 2.4. Bias errors in estimates of active intensity (a) magnitude and (b) direction of a plane 
wave as a function of 𝑘𝑑 using the traditional method, 𝑰 

𝑇𝑅𝐴𝐷 , and the PAGE method, 𝑰 
𝑃𝐴𝐺𝐸 , without 

and with phase unwrapping. 

2.3.4 Specific acoustic impedance 

The specific acoustic impedance of a plane wave is 𝑧 = 𝜌0𝑐. The bias errors in 𝑧 depend 

on the bias errors in estimates of 𝑝 and 𝒖, and result in an expression equivalent to one given by 

Champoux and L’espérance20 [see Eq. (12) in that paper]: 

 
zTRAD

𝑧
=

cos(𝑘𝑑/2)

sinc(𝑘𝑑/2)
. (2.21) 

The error level 𝐿𝜀,𝑧 = 20log10(|𝑧
TRAD/𝑧|) and the phase error are shown in Fig. 2.5. For the 

traditional method, the error in specific acoustic impedance is less than 5% (0.4 dB) for              

𝑘𝑑 < 0.77, whereas the phase remains correct until spatial aliasing occurs at 𝑘𝑑 =  𝜋. Since the 

PAGE method with phase unwrapping has no errors in pressure or particle velocity, there are no 

errors in 𝑧PAGE, even above 𝑘𝑑 = 𝜋. 
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Figure 2.5. Bias errors in estimates of specific acoustic impedance (a) amplitude and (b) phase of 
a plane wave as a function of 𝑘𝑑 using the traditional method, 𝑧 

𝑇𝑅𝐴𝐷 , and the PAGE method, 𝑧 
𝑃𝐴𝐺𝐸 , 

without and with phase unwrapping. 

In summary for the plane wave case, traditional estimates of acoustic quantities have 

increasing error as 𝑘𝑑 increases. Table 2.1 shows the maximum value of 𝑘𝑑 that has less than 5% 

error for traditional estimation of each quantity. The approximate bandwidth for active intensity is 

limited to 𝑘𝑑 < 0.55, and for specific acoustic impedance to 𝑘𝑑 < 0.77, both of which are well 

below the spatial Nyquist frequency of 𝑘𝑑 = 𝜋. In contrast, the PAGE estimates are accurate up 

to 𝑘𝑑 = 𝜋, and if unwrapping is successfully applied, there are no bias errors at any 𝑘𝑑. The 

absence of bias errors for the planar case is significant because many propagating sound fields can 

be approximated as planar at distances sufficiently far from the source. This was verified 

experimentally in previous work23 where the bandwidth of active intensity calculations using the 

PAGE method was extended at least an order of magnitude past the traditional method. For very 

high frequencies, the method broke down due to insufficient coherence between the microphones. 
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Table 2.1. The maximum value of 𝑘𝑑 for each quantity that results in less than 5% error in a plane-
wave field using traditional processing. PAGE processing has no error up to 𝑘𝑑 = 𝜋 for each 
quantity, and is accurate beyond that if unwrapping is successfully applied. 

Quantity TRAD 𝑘𝑑 limit 

𝑝 0.64 

𝒖 1.1 

𝑰 0.55 

𝑧 0.77 

2.4 Monopole source 

Examining the traditional and PAGE bias errors in a monopole-radiated field shows how 

these methods perform in both near and far-field environments. Unlike the plane-wave case, where 

there is no near field, the bias errors for the monopole case depend on both the size of the probe, 

𝑑, and the distance from the source, 𝑟. 

2.4.1  Pressure 

 The analytical expression for the complex pressure a distance 𝑟 from a monopole with 

amplitude 𝐴 is 𝑝 = 𝐴𝑒−𝑗𝑘𝑟/𝑟. The traditional method error ratio for center pressure, based on Eq. 

(2.7), is 

 
𝑝TRAD

𝑝
=

1

1 − 𝛽2 4⁄
 [cos(𝑘𝑑/2) +

𝑗𝛽

2
sin(𝑘𝑑/2)], (2.22) 

where 

 𝛽 =
𝑘𝑑

𝑘𝑟
. (2.23) 

The PAGE method formulation given in Eq. (2.9) results in an estimated-to-analytical ratio for the 

monopole field of 
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𝑝PAGE

𝑝
=

1

1 − 𝛽2 4⁄
 . (2.24) 

Unlike the plane-wave case, the bias error in 𝑝PAGE is nonzero and depends on the ratio 𝛽 for the 

monopole source. A large value of 𝛽 means the probe is close to the source relative to the 

microphone spacing, with a limit of 𝛽 = 2. The value of 𝛽 approaches zero as the microphone 

spacing becomes small or the distance from the source becomes large. 

The monopole pressure bias errors in Eqs. (2.22) and (2.24) are equivalent to the plane 

wave pressure bias errors shown in Fig. 2.2 for the far-field case of 𝛽 = 0. For nonzero values of 

𝛽, error is introduced even at low values of 𝑘𝑑. Both methods have greater than 5% error when 

𝛽 > 0.44, although the traditional method has additional error for large 𝑘𝑑, as in the monopole 

case. If unwrapping is applied to broadband signals, the PAGE method has the correct phase past 

𝑘𝑑 = 𝜋. 

2.4.2 Particle velocity 

The analytical expression of the acoustic particle velocity a distance 𝑟 from a monopole 

source is 

 𝒖 =
𝐴(−𝑗 + 𝑘𝑟)

𝜌0𝜔

𝑒−𝑗𝑘𝑟

𝑟2
�̂�, (2.25) 

where �̂� is the unit vector pointing away from the source. The ratio of the traditional estimate of 

the acoustic particle velocity [calculated using Eq. (2.8)] to the analytical expression is 

 
𝒖TRAD

𝒖
 =

1

1 − 𝛽2 4⁄
 
𝑗𝑘𝑟 sinc(𝑘𝑑/2) + cos(𝑘𝑑/2)

(1 + 𝑗𝑘𝑟)
. (2.26) 

From Eq. (2.11), the PAGE method error ratio is 

 
𝒖PAGE

𝒖
 =

1

1 − 𝛽2 4⁄
.  (2.27) 
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Similar to the bias errors in the center pressure, estimates in the monopole field, 𝒖TRAD and 𝒖PAGE, 

have nonzero bias errors for small 𝑘𝑑, which depend on 𝛽. The PAGE method maintains constant 

bias error up to 𝑘𝑑 = 𝜋 equal to the pressure bias error, and is constant for all frequencies if 

unwrapping is applied. 

2.4.3 Active intensity 

From the expressions for pressure and particle velocity, the analytical expression for active 

intensity radiated from a monopole source with amplitude 𝐴 is 

 𝑰 =
𝐴2

2𝜌0𝑐𝑟2
 �̂�. (2.28) 

The traditional method’s intensity error ratio for a monopole is similar to the plane wave [see Eq. 

(2.20)] but with an additional factor that depends on 𝛽. The ratio is reported by Thompson and 

Tree19 [see their Eq. (14)] to be 

 
𝑰TRAD

𝑰
=

1

1 − 𝛽2 4⁄
sinc(𝑘𝑑). (2.29) 

The PAGE method error ratio calculated using Eq. (2.14) is 

 𝑰 
PAGE

𝑰
= (

1

1 − 𝛽2 4⁄
)

2

, (2.30) 

which is frequency independent but does depend on 𝛽. This bias error in Eq. (2.30) is larger than 

the bias error of the traditional method in Eq. (2.29) at low values of 𝑘𝑑. 

Since the active intensity of the sound field from a monopole source depends on both the 

size of the probe, 𝑑, and the distance from the source, 𝑟, it is useful to plot the bias errors as a 

function of both variables. The 𝑘𝑑 versus 𝑘𝑟 plots in Fig. 2.6 show the bias errors in (a) 𝑰 
TRADand 

(b) 𝑰 
PAGE with phase unwrapping. Lines of constant 𝛽 run diagonally, over which only the 

frequency varies. 
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Both methods have significant errors close to the source as 𝑘𝑟 approaches 𝑘𝑑/2 and 𝛽 

approaches 2. Far from the source, both methods approach zero error as 𝛽 approaches 0. Both plots 

in Fig. 2.6 have a solid, black line tracing the limit of 5% error. At low 𝑘𝑑, the traditional method 

has less than 5% error when 𝛽 < 0.44. The bias errors in 𝑰TRAD are large as 𝑘𝑑 increases, and 

when 𝑘𝑟 is also large, the results converge to the plane wave case with less than 5% error for   

𝑘𝑑 < 0.55. The PAGE method maintains constant error over frequency, with less than 5% error 

when 𝛽 < 0.31. If a 50 mm microphone spacing is used, this corresponds to a minimum distance 

from the center of the probe to the source of 160 mm. At low frequencies, the traditional method 

outperforms the PAGE method, although the difference is negligible except over a small range of 

near-field locations corresponding to 0.31 < 𝛽 < 0.44 where the traditional method is within 5% 

error and the PAGE method is not. Otherwise, the PAGE method, with its extended bandwidth is 

preferable. 

 

Figure 2.6. Bias errors in estimates of the magnitude of active intensity for a monopole field as a 
function of 𝑘𝑑 and 𝑘𝑟: (a) 𝑰𝑇𝑅𝐴𝐷  and (b) unwrapped 𝑰𝑃𝐴𝐺𝐸 . The vertical dashed line is the spatial 
Nyquist limit. To the left of this line, wrapped and unwrapped PAGE give the same results. The 
diagonal dashed line follows 𝑟 = 𝑑/2. The solid black lines trace the limit of 5% error. 
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2.4.4 Reactive intensity 

The bias errors for the reactive intensity of the sound field from a monopole source also 

depend on 𝛽. The analytical expression for reactive intensity from a monopole source is  

 𝑱 =
𝐴2

2𝜌0𝜔𝑟3
�̂�. (2.31) 

For a two-microphone probe, expressions for 𝑱TRAD and 𝑱PAGE are equivalent regardless of the 

field, since both methods result in an expression involving a difference in autospectra.28 However, 

since reactive intensity bias errors have not been previously reported in the literature, it is 

worthwhile to report them here. The reactive intensity error ratios are 

 𝑱TRAD

𝑱
=

𝑱PAGE

𝑱
= (

1

1 − 𝛽2 4⁄
)

2

, (2.32) 

The reactive intensity bias errors for both methods are plotted in Fig. 2.7. Both estimates, (a) 𝑱TRAD 

and (b) 𝑱PAGE have less than 5% error for 𝛽 < 0.31, and infinite error as 𝑟 approaches 𝑑/2. 

 

Figure 2.7. Bias errors in estimates of the magnitude of reactive intensity for a monopole field as a 
function of 𝑘𝑑 and 𝑘𝑟: (a) 𝑱𝑇𝑅𝐴𝐷  and (b) 𝑱𝑃𝐴𝐺𝐸 . The vertical dashed line is the spatial Nyquist limit. 
The diagonal dashed line follows 𝑟 = 𝑑/2. The solid black line traces the limit of 5% error. 
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2.4.5 Specific acoustic impedance 

The analytical expression for the specific acoustic impedance in the radial direction for a 

monopole field is  

 𝑧 =
𝜌0𝑐𝑘𝑟

𝑘𝑟 − 𝑗
 (2.33) 

The error ratio for 𝑧TRAD can be found from the ratios for 𝑝TRAD and 𝒖TRAD, given in Eqs. (2.22) 

and (2.26), respectively. The resulting expression matches (with some reworking and allowance 

for a typographical error) an expression given by Champoux and L’espérance20 [see their Eq. (11)]: 

 
𝑧TRAD

𝑧
= 𝛽

(1 + 𝑗𝑘𝑟)[2 cos(𝑘𝑑/2) + 𝑗𝛽 sin(𝑘𝑑/2)]

2[𝛽 cos(𝑘𝑑/2) + 𝑗2 sin(𝑘𝑑/2)]
. (2.34) 

For the PAGE processing method, the bias errors in 𝑝PAGE [Eq. (2.24)] and 𝒖 
PAGE [Eq. (2.27)] are 

identical, which cancel out in the estimation of 𝑧PAGE. This means that regardless of distance from 

the source, there is zero error in specific acoustic impedance or in any impedance-based quantities 

such as absorption. This is true up to 𝑘𝑑 = 𝜋, and for all frequencies where unwrapping is 

successfully applied. Figure 2.8(a) shows the bias errors for the traditional method as a function 

of 𝑘𝑑 and 𝑘𝑟. The traditional estimate 𝑧TRAD has large errors at high frequencies (near and above 

𝑘𝑑 = 𝜋), whereas 𝑧PAGE has no bias errors, shown in Fig. 2.8(b). 
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Figure 2.8. Bias errors in estimates of the amplitude of specific acoustic impedance for a monopole 
field as a function of 𝑘𝑑 and 𝑘𝑟: (a) 𝑧𝑇𝑅𝐴𝐷 , and (b) unwrapped 𝑧𝑃𝐴𝐺𝐸 . The vertical dashed line is 
the spatial Nyquist limit. To the left of this line, wrapped and unwrapped PAGE give the same 
results. The diagonal dashed line follows 𝑟 = 𝑑/2. The solid black lines trace the limit of 5% error. 

To summarize the bias errors for the monopole case, the errors depend not only on 𝑘𝑑 as 

seen in the plane wave case, but also on the ratio 𝛽. In the case of active intensity, the PAGE 

method is somewhat more limited in terms of how close the probe can be to the source. However, 

for all the quantities reported except reactive intensity, the traditional method has increasing errors 

as 𝑘𝑑 approaches 𝜋, whereas the PAGE method error does not change as 𝑘𝑑 approaches 𝜋 for any 

quantity. With unwrapping, the PAGE error in active intensity remains constant as a function of 𝛽 

for frequencies past 𝑘𝑑 = 𝜋, and the specific acoustic impedance estimate has zero bias error. 

2.5 Dipole source 

The final case considered is the field from an acoustic dipole, defined to be two out-of-

phase sources with equal amplitudes and closely spaced such that their spacing is much smaller 

than a wavelength. A dipole creates a highly reactive near field, with a pressure term that decays 

as 1/𝑟2, in addition to the 1/𝑟 term that is present for the monopole. Furthermore, the particle 

velocity has terms that decay as 1/𝑟3, 1/𝑟2, and 1/𝑟. Thus, there is a stronger distinction between 
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the near and far fields and greater opportunities to observe bias errors in the intensity and specific 

acoustic impedance estimates. 

2.5.1 Pressure 

In addition to dependence on radial distance 𝑟, the dipole field varies with the angle 𝜃 from 

the dipole axis. The analytical expression for the complex pressure at location (𝑟, 𝜃) is written as11 

 𝑝 = 𝐴 cos(𝜃)
1 + 𝑗𝑘𝑟

𝑟2
𝑒−𝑗𝑘𝑟 , (2.35) 

where A is the dipole moment source strength. Assuming the two-microphone probe axis is pointed 

at the center of the dipole, the angular dependence of 𝑝 in Eq. (2.35) can be separated from the 

radial dependence, and the bias errors are independent of 𝜃. 

For the two-microphone probe the ratio of traditionally estimated pressure [Eq. (2.7)] to 

Eq. (2.35) is 

 𝑝TRAD

𝑝
=

[1 + 𝑗𝑘𝑟 + (1 − 𝑗𝑘𝑟)𝛽2/4] cos(𝑘𝑑/2) + [𝑗𝛽 − 𝑘𝑑(1 − 𝛽2 4⁄ )/2] sin(𝑘𝑑/2)

(1 − 𝛽2 4⁄ )2(1 + 𝑗𝑘𝑟)
. (2.36) 

For the PAGE formulation [Eq. (2.9)], the estimated-to-analytical ratio is 

 
𝑝PAGE

𝑝
=

(𝑘𝑟)2(𝑃1 + 𝑃2)

2(1 + 𝑗𝑘𝑟)
𝑒𝑗(𝛼1+𝛼2)/2, (2.37) 

where  

 

𝑃1 =
√1 + (𝑘𝑟 − 𝑘𝑑 2⁄ )2

(𝑘𝑟 − 𝑘𝑑 2⁄ )2
 

𝑃2 =
√1 + (𝑘𝑟 + 𝑘𝑑 2⁄ )2

(𝑘𝑟 + 𝑘𝑑 2⁄ )2
, 

(2.38) 

which are the pressure amplitudes at microphone locations 1 and 2 for the dipole case [with the 

amplitude terms 𝐴 and cos(𝜃) omitted]. Additionally, 



 

26 

 𝛼1 = arctan(𝑘𝑟 − 𝑘𝑑 2⁄ ) 

𝛼2 = arctan(𝑘𝑟 + 𝑘𝑑 2⁄ ). 
(2.39) 

For large values of 𝑘𝑟, the probe is in the far field where the pressure amplitude has a 1/𝑟 

dependence rather than a 1/𝑟2 dependence. In this case, the dipole pressure bias errors in Eqs. 

(2.36) and (2.37) converge to Eqs. (2.22) and (2.24) for the monopole case. Otherwise, the dipole 

bias errors are larger than the monopole bias errors for both methods, dependent on 𝑘𝑟. Bias errors 

in 𝑝TRAD oscillate similar to the plane wave and the monopole cases, severely limiting the usable 

bandwidth. Bias errors in 𝑝PAGE also change, but the error decreases as frequency increases. 

2.5.2 Particle velocity 

The radial component of the particle velocity is  

 𝒖𝑟 = 𝐴 cos(θ)
−2𝑗 + 𝑘𝑟(2 + 𝑗𝑘𝑟)

𝑐𝑘𝑟3𝜌0
𝑒−𝑗𝑘𝑟�̂� (2.40) 

With the probe oriented towards the center of the dipole, only the radial component of 

particle velocity is estimated. The angular dependence cancels out in the traditional estimated-to-

analytical ratio. Using Eq. (2.8), this ratio is  

 𝒖𝑟
TRAD

𝒖𝑟
=

[𝑗𝛽 − 𝑘𝑑(1 − 𝛽2 4⁄ )/2] cos(𝑘𝑑/2) − [1 + 𝑗𝑘𝑟 + (1 − 𝑗𝑘𝑟)𝛽2/4] sin(𝑘𝑑/2)

(1 − 𝛽2 4⁄ )2[−2𝑗 + 𝑘𝑟(2 + 𝑗𝑘𝑟)]𝛽/2
.  (2.41) 

The PAGE estimated-to-analytical ratio for the particle velocity, based on Eq. (2.11), is 

 
𝒖𝑟

PAGE

𝒖𝑟
=

(𝑘𝑟)2[2𝑗(𝑃2 − 𝑃1) + (𝑃1 + 𝑃2)(𝑘𝑑 + α1 − α2)]

[−2𝑗 + 𝑘𝑟(2 + 𝑗𝑘𝑟)]2𝛽
𝑒𝑗(α1+α2)/2. (2.42) 

As with pressure, the dipole case shows increased error for low 𝑘𝑟 and a convergence to the 

monopole case for high 𝑘𝑟. 
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2.5.3 Active intensity 

The radial component of the active intensity for the dipole is obtained from the expression 

for pressure in Eq. (2.35) and for particle velocity in Eq. (2.40). The active intensity may be written 

as 

 𝑰𝑟 =
𝑘2𝐴2 cos2 𝜃

2𝑐𝑟2𝜌0
�̂�. (2.43) 

Again, the angular dependence is independent of the 1/𝑟2 radial dependence, such that a one-

dimensional probe can obtain the radially dependent active intensity. 

The traditional method has an estimated-to-analytical intensity ratio of 

 
𝑰𝑟
TRAD

𝑰𝑟
=

𝑘𝑑cos(𝑘𝑑) − [1 + (𝑘𝑟)2(1 − 𝛽2/4)]sin(𝑘𝑑)

𝑘𝑑(𝑘𝑟)2(1 − 𝛽2/4)2
, (2.44) 

which is equivalent to an expression given by Thompson and Tree19 [see their Eq. (18)]. The PAGE 

processing method, calculated using Eq. (2.14), has a ratio of 

 
𝑰𝑟
PAGE

𝑰𝑟
= −

𝑘𝑟

4𝛽
(𝑃1 + 𝑃2)

2(−𝑘𝑑 + 𝛼2 − 𝛼1). (2.45) 

The bias errors in the magnitude of 𝑰𝑟 depend on both 𝑘𝑑 and 𝑘𝑟, as displayed in Fig. 2.9. As 𝑟 

approaches 𝑑 (below 𝑘𝑑 = 𝜋), the bias error in 𝑰𝑟
PAGEincreases more rapidly than for 𝑰𝑟

TRAD, similar 

to the monopole case. As 𝑘𝑑 increases, 𝑰𝑟
TRAD underestimates the magnitude of 𝑰𝑟. Using PAGE 

processing, 𝑰𝑟
PAGE (with phase unwrapping) has less than 5% error at low 𝑘𝑟 if 𝛽 < 0.18, and for 

high 𝑘𝑟 the limit is the same as the monopole case, namely 𝛽 < 0.31. 
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Figure 2.9. Bias errors in estimates of the magnitude of active intensity for a dipole field as a 
function of 𝑘𝑑 and 𝑘𝑟: (a) 𝑰𝑇𝑅𝐴𝐷 , and (b) unwrapped 𝑰𝑃𝐴𝐺𝐸 . The vertical dashed line is the spatial 
Nyquist limit. To the left of this line, wrapped and unwrapped PAGE give the same results. The 
diagonal dashed line follows 𝑟 = 𝑑/2. The solid black lines trace the limit of 5% error. 

2.5.4 Reactive intensity 

The analytical expression for the radial component of the reactive intensity is 

 𝑱𝑟 =
2 + (𝑘𝑟)2

2𝜔𝑟5𝜌0
𝐴2 cos2 𝜃 �̂�. (2.46) 

The traditional and PAGE processing methods produce the same estimated-to-analytical ratio: 

 
𝑱𝑟
TRAD

𝑱𝑟
=

𝑱𝑟
PAGE

𝑱𝑟
=

1

(1 − 𝛽2/4)4
[1 +

𝛽2[1 + (𝑘𝑑)2 8⁄ − (𝑘𝑟)2]

2[2 + (𝑘𝑟)2]
]. (2.47) 

Figure 2.10 shows this bias error as a function of 𝑘𝑑 and 𝑘𝑟. There is less than 5% error for low 

𝑘𝑟 if 𝛽 < 0.20, and for high 𝑘𝑟 it converges to the monopole case of 𝛽 < 0.31. 



 

29 

 

Figure 2.10. Bias errors in estimates of the magnitude of reactive intensity for a dipole field as a 
function of 𝑘𝑑 and 𝑘𝑟: (a) 𝑱𝑇𝑅𝐴𝐷  and (b) 𝑱𝑃𝐴𝐺𝐸 .The vertical dashed line is the spatial Nyquist limit. 
The diagonal dashed line follows 𝑟 = 𝑑/2. The solid black line traces the limit of 5% error. 

2.5.5 Specific acoustic impedance 

The last quantity to consider is the specific acoustic impedance. The analytical expression 

for the dipole case is 

 𝑧 =
𝜔𝜌0𝑟(1 + 𝑗𝑘𝑟)

−2𝑗 + 𝑘𝑟(2 + 𝑗𝑘𝑟)
. (2.48) 

The estimated-to-analytical ratio for the traditional method is 

 𝑧TRAD

𝑧
 

=
[−2𝑗 + 𝑘𝑟(2 + 𝑗𝑘𝑟)]𝛽

2(1 + 𝑗𝑘𝑟)
[
[1 + 𝑗𝑘𝑟 + (1 − 𝑗𝑘𝑟)𝛽2/4] cos(𝑘𝑑/2) + [𝑗𝛽 − 𝑘𝑑(1 − 𝛽2 4⁄ )/2] sin(𝑘𝑑/2)

[𝑗𝛽 − 𝑘𝑑(1 − 𝛽2 4⁄ )/2] cos(𝑘𝑑/2) − [1 + 𝑗𝑘𝑟 + (1 − 𝑗𝑘𝑟)𝛽2/4] sin(𝑘𝑑/2)
]. 

(2.49) 

Although the PAGE method had zero error for the plane wave and monopole cases, bias errors in 

𝑝PAGE [Eq. (2.37)] and 𝒖 
PAGE [Eq. (2.42)] are not identical for the dipole case. Combining the 

errors results in the ratio  
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𝑧PAGE

𝑧
=

𝛽[−2𝑗 + 𝑘𝑟(2 + 𝑗𝑘𝑟)](𝑃1 + 𝑃2)

(1 + 𝑗𝑘𝑟)[2𝑗(𝑃2 − 𝑃1) + (𝑃1 + 𝑃2)(𝑘𝑑 + α1 − α2)]
. (2.50) 

Figure 2.11 shows the bias errors for specific acoustic impedance. Approaching 𝑘𝑑 = 𝜋, the 

traditional method has increasingly large errors. In contrast, the PAGE method has decreasing 

error above 𝑘𝑑 = 𝜋, and has less than 5% error for all values of 𝑘𝑑 if 𝛽 < 0.45. 

 

Figure 2.11. Bias errors in estimates of the amplitude of specific acoustic impedance for a dipole 
field as a function of 𝑘𝑑 and 𝑘𝑟: (a) 𝑧𝑇𝑅𝐴𝐷 , and (b) unwrapped 𝑧𝑃𝐴𝐺𝐸 . The vertical dashed line is 
the spatial Nyquist limit. To the left of this line, wrapped and unwrapped PAGE give the same 
results. The diagonal dashed line follows 𝑟 = 𝑑/2. The solid black lines trace the limit of 5% error. 

In summary, this bias error analysis for the case of the acoustic dipole provides insights 

into the near-field performance of the traditional and PAGE estimates of intensity and impedance. 

For active intensity, there is a small range of 𝛽 values over which traditional estimates at low 

frequencies have less than 5% error and the PAGE estimates do not. However, not only is PAGE 

comparable outside this narrow range but it also has the advantage of decreasing error with 

increasing frequency, as opposed to the traditional method, which has increasing error with 

increasing frequency and becomes unusable much before 𝑘𝑑 = 𝜋. The extended bandwidth of the 

PAGE estimates are advantageous when calculating the intensity and specific acoustic impedance 
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from an acoustic dipole, and when unwrapping can be applied, this advantage is even more 

pronounced. 

2.6 Conclusion 

Analytical bias error calculations for simple sound fields have long been a foundational 

part of the method of calculating acoustic intensity and specific acoustic impedance from two-

microphone probes. This paper has provided a similar foundation for the phase and amplitude 

gradient estimator method (PAGE) by showing the bias errors for planar, monopolar, and dipolar 

sound fields. This bias error study has confirmed that the main advantage of the PAGE method is 

the bandwidth extension possible in these calculations for broadband fields. For the active intensity 

and specific acoustic impedance for the fields studied, the traditional method has increasing error 

as 𝑘𝑑 approaches 𝜋. On the other hand, the PAGE method does not have increasing error with 

increasing 𝑘𝑑. Traditional estimates of reactive intensity do not exhibit error increasing with 𝑘𝑑, 

and the PAGE method leaves the estimate unchanged. 

As long as the probe is sufficiently far from the source (based on the source type and 

quantity of interest), the PAGE method is accurate in estimating acoustic intensity and specific 

acoustic impedance up to 𝑘𝑑 = 𝜋, a significant improvement in bandwidth over the traditional 

method. For broadband fields, if phase unwrapping is successfully applied, the method is accurate 

beyond 𝑘𝑑 = 𝜋, and is limited in bandwidth only by other sources of error such as scattering or a 

lack of coherence between the microphones. Because the PAGE method with unwrapping 

overcomes the restrictions of the spatial Nyquist limit, the microphones used for these calculations 

can be spaced farther apart than required by the traditional method, which in turn improves the 

estimates of intensity and impedance at low frequencies. Thus, the PAGE method can potentially 

extend the reliable bandwidth of these calculations on both the high and low end.  
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This bias error analysis of the PAGE method yields a foundation upon which future work 

can be built. An investigation into the optimal number and arrangement of microphones for 

multidimensional probes should be conducted along with an examination of how bias errors 

change when a center microphone is included in the probe. PAGE method performance in a wider 

range of applications, such as sound power calculations, standing wave fields and narrowband 

noise need to be evaluated. In addition, techniques, such as higher-order estimates of the gradient,34 

could be implemented to improve the estimates of the phase and pressure gradients for less 

smoothly varying fields. 
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Three-microphone bias errors 

3.1 Introduction 

Acoustic intensity and specific acoustic impedance are vital quantities for characterization 

of fields and sources. The traditional method for estimation of acoustic intensity using multi-

microphone probes was introduced in the 1970s.8-11 Due to high-frequency bias errors in the finite-

sum and finite-difference formulations, this method has a limited bandwidth determined by the 

microphone spacing. To overcome these bias errors, the Phase and Amplitude Gradient Estimator 

method (PAGE) has been developed.21,32 This processing method uses the same multi-microphone 

probes as the traditional method, and the PAGE method has been shown experimentally to extend 

intensity estimation bandwidth by at least an order of magnitude for broadband sources.23,25,47 In 

addition to active intensity, the method can be used to obtain multi-microphone estimates of 

reactive intensity and free-field specific acoustic impedance. 

Analytical work for two-microphone traditional intensity estimation has been done by 

Fahy11 and Thompson and Tree,19 who report bias errors of the method in several ideal fields. 

Champoux and L’espérance20 performed a similar analysis for two-microphone specific acoustic 

impedance estimation in the free-field. Building off this work, the analytical bias errors of the 

PAGE method for acoustic intensity and specific acoustic impedance have been reported by 

Whiting et al.32 for a two-microphone probe in several ideal fields. 
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In this work, we seek to further develop the analytical foundation of Whiting et al. by 

extending it for a three-microphone probe in one dimension. Additionally, we seek to validate the 

analytical bias errors for both two and three microphones by presenting experimental data taken 

in a field produced by a monopole-like source. This chapter was modified from a 2018 paper 

published in the Journal of the Acoustical Society of America as an Express Letter under the title 

“Three-microphone probe bias errors for acoustic intensity and specific acoustic impedance.”33 

3.2 Methodology 

With a three-microphone probe [depicted in Fig. 3.1(a)], both the traditional and PAGE 

methods use the center microphone to obtain the complex pressure 𝑝, removing the need to 

estimate center pressure by averaging. This method has been previously employed in the literature 

for the traditional method, albeit rarely.12,13 The outer two microphones are used for estimation of 

the pressure gradient, from which particle velocity is estimated using Euler’s equation,                  

𝒖 = (𝑗/𝜌0𝜔)∇𝑝. Here, boldface represents a vector quantity, 𝑝 is the frequency-dependent 

complex pressure, 𝜌0 is the air density, and 𝜔 is the angular frequency. The estimates of active 

intensity and reactive intensity are 𝑰 =
1

2
Re{𝑝𝒖∗} and 𝑱 =

1

2
Im{𝑝𝒖∗}, respectively, with * 

indicating complex conjugate. The estimate of specific acoustic impedance is 𝑧 = 𝑝/𝑢𝑒, with 𝑢𝑒 

indicating 

 

Figure 3.1. (a) Schematic of a one-dimensional intensity probe consisting of three microphones. 
The probe axis points towards the source, such that the sound first passes microphone 1. The 
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distance between the microphones is 𝑙/2. (b) Layout of the experiment. The three-microphone probe 
is shown in its closest position to the source and is moved away from the source by a scanning 
system. The speaker approximates a monopole source over the frequency range analyzed. 

the particle velocity in the direction the specific acoustic impedance is to be measured.  

The PAGE method differs from the traditional method by treating the complex pressure as 

an amplitude and phase, 𝑝 = 𝑃𝑒−𝑗𝜙. With this formulation, the PAGE formulas for active 

intensity, reactive intensity, and specific acoustic impedance are32 

 𝑰PAGE =
𝑃2∇�̂�

2𝜌0𝜔
=

�̅�2∇�̂�

𝜌0𝜔
 (3.1) 

 𝑱PAGE = −
𝑃 ∇�̂�

2𝜌0𝜔
 = −

�̅� ∇�̂̅�

𝜌0𝜔
 (3.2) 

 𝑧PAGE =
𝑃𝜌0𝜔

[𝑃∇�̂� + 𝑗∇�̂�] ∙ �̂�
=

𝑃2

2𝑰𝑐
∗ ∙ �̂�

 =
�̅�2

𝑰𝑐
∗ ∙ �̂�

 , (3.3) 

where an overhat indicates an estimated quantity, �̅� is the ensemble-averaged root-mean-square 

pressure amplitude at frequency 𝜔, 𝑰𝑐 is the complex intensity calculated as 𝑰𝑐 = 𝑰 + 𝑗𝑱, and �̂� is 

the direction that specific acoustic impedance is to be measured in. 

In practice, ∇�̂� is obtained via the argument of pairwise transfer functions and is therefore 

wrapped to be within – 𝜋 and 𝜋, which makes 𝑰PAGE inaccurate past the spatial Nyquist frequency, 

where 𝑘𝑙 = 𝜋. However, for a broadband source and with sufficient coherence between the 

microphones, the phase difference can be unwrapped and 𝑰PAGE can be accurate for 𝑘𝑙 > 𝜋. The 

remainder of this letter assumes that unwrapping is possible for the collected data.25,29,32,47 

This letter reports the three-microphone bias errors of both the traditional and PAGE 

methods in an analytical monopole field. Additionally, any phase mismatch present in the 

microphones can cause low-frequency estimation errors. These can be reduced by using phase-

matched microphones, performing a switching technique to calibrate phase, or by increasing the 



 

36 

microphone separation distance. The traditional method requires that all three microphones be well 

phase-matched. However, the PAGE method uses the center microphone only for pressure 

amplitude, eliminating the need for phase matching of the third microphone and making a PAGE-

based three-microphone probe more cost effective.  

 To validate these analytical errors, and to compare the experimental performance between 

the two and three-microphone probes, bias errors were measured using a small loudspeaker 

approximating a monopole, as shown in Fig. 3.1(b). Three microphones were attached to a 

scanning system in an anechoic chamber, with the axis of the probe in line with the source and a 

probe length of 𝑙 = 12 cm. Using the scanning system to move the probe, broadband noise was 

recorded at multiple values of 𝑟 that ranged from 10 cm to 5 m. 

3.3 Monopole field 

In order to understand performance of the PAGE method using three microphones, the bias 

errors are presented in this section for estimation of active intensity, reactive intensity and specific 

acoustic impedance in an ideal monopole field. 

The analytical bias errors depend on both the probe size relative to a wavelength, 𝑘𝑙, and 

the distance from the source relative to a wavelength, 𝑘𝑟. Here 𝑘 is the acoustic wavenumber, 𝑙 is 

the distance between outer microphones (expressed by Whiting et al.32 as 𝑑 for the two-

microphone case), and 𝑟 is the distance from the source to the probe center. It is useful to define a 

ratio 𝛽 where 𝛽 = 𝑘𝑙/𝑘𝑟. As 𝛽 approaches a minimum value of 0, the probe is far from the source 

relative to the microphone spacing, and the field becomes planar. The maximum value for 𝛽 is 2, 

where an outer microphone overlaps the source location. In this near-field case, the sound field 

has significant curvature and is highly reactive, whereas in the far field, the field has nearly 

constant amplitude and is primarily active. 
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The spatially-dependent complex pressure in an ideal monopole field can be expressed as 

𝑝 = 𝐴𝑒−𝑗𝑘𝑟/𝑟, where 𝐴 is the amplitude. The analytical radial active intensity is 𝑰 = 𝐴2/2𝜌0𝑐𝑟
2, 

where c is the sound speed. Table 3.1 reports ratios of estimated-to-analytical active intensity for 

the two methods, for both two and three-microphone probes. These error ratios are derived by 

evaluating the traditional and PAGE expressions for estimation in a monopole field and dividing 

by the analytical quantity. The two-microphone ratios were reported previously by Whiting et al.32 

Table 3.1. The estimated-to-analytical error ratios for traditional and PAGE estimation of active 
intensity, for both two and three-microphone probes. 

Quantity 3-microphone 2-microphone 

𝑰TRAD 

𝑰
 

1

1 − 𝛽2/4
sinc(𝑘𝑙/2) 

1

1 − 𝛽2 4⁄
sinc(𝑘𝑙) 

𝑰 
PAGE

𝑰
 1 (

1

1 − 𝛽2 4⁄
)
2

 

The three-microphone traditional method error level, 𝐿𝜀,𝐼 = 10log10(|𝑰
TRAD/𝑰|), is shown 

in Fig. 3.2(a). This color plot (as well as the other color plots in this letter) shows the error 

magnitude in dB versus both 𝑘𝑙 and 𝑘𝑟. A black diagonal line shows where 𝛽 = 2, where an outer 

microphone overlaps the source. Lines of constant 𝛽 run parallel to this line, and 𝛽 is smallest 

towards the top left corner of the plot, where the field becomes more planar. For the traditional 

method, there is significant error in active intensity estimation close to the source, and the 

estimation error is greater than 5% for 𝛽 > 0.44. For a probe length of 12 cm as in Fig. 3.1(b), 

this corresponds to a distance from the source to the probe center of 0.11 m. Additionally, there is 

error as 𝑘𝑙 increases, with more than 5% error for 𝑘𝑙 > 1.1, which corresponds to a frequency limit 

of 500 Hz for 𝑙 = 12 cm. This is twice the bandwidth of the two-microphone case of 𝑘𝑙 > 0.55 32 

since the center pressure is measured and has no estimation error. 
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Figure 3.2. Bias errors in estimates of the magnitude of active intensity for a monopole field as a 
function of 𝑘𝑙 and 𝑘𝑟: three-microphone, analytical (a) 𝑰𝑇𝑅𝐴𝐷  and (b) unwrapped 𝑰𝑃𝐴𝐺𝐸; three-
microphone, experimental (c) 𝑰𝑇𝑅𝐴𝐷  and (d) unwrapped 𝑰𝑃𝐴𝐺𝐸; and two-microphone, experimental 
(e) 𝑰𝑇𝑅𝐴𝐷  and (f) unwrapped 𝑰𝑃𝐴𝐺𝐸 . The vertical dashed line is the spatial Nyquist limit. To the left 
of this line, wrapped and unwrapped PAGE give the same results. The black diagonal dashed lines 
follow 𝑟 = 𝑙/2. In the analytical plots, the solid black lines trace the limit of 5% error, and the 
white diagonal dashed line follows the closest distance to the source achievable in the experiment, 
for reference.  

The three-microphone PAGE method results in zero bias error for active intensity in a 

monopole field, plotted in Fig. 3.2(b). Unlike two-microphone PAGE which has near-field error,32 

three-microphone PAGE is accurate no matter the microphone spacing or distance to the source. 

Therefore, of the methods considered here, three-microphone PAGE is the most accurate for active 

intensity estimation in a monopole field. Also, since the PAGE method uses the additional center 

microphone only to measure pressure amplitude, it only needs to be amplitude-calibrated and not 

phase calibrated. 

The experimental three-microphone bias errors are shown in Figs. 3.2(c)-(d), and Figs. 

3.2(e)-(f) show the two-microphone bias errors using the outer microphones, to be compared with 
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the analytical bias errors in Fig. 2.6. The error plotted is the ratio between the experimental 

intensity estimate and the expected intensity calculated from the measured center pressure, on a 

log scale as in Figs 3.2(a)-(b). The expected intensity in a monopole field is 𝑰 = 𝑃2/2𝜌0𝑐. For 

both probes, the traditional method shows near-field error and high-frequency error as expected. 

By using three-microphone PAGE, both the distance requirement and the upper-frequency limit 

vanish. This is an improvement over two-microphone PAGE, which has significant near-field 

error. 

Another quantity of interest is reactive intensity, which in a monopole field is                       

𝑱 = 𝐴2/2𝜌0𝑐𝑘𝑟3. Unlike the two-microphone case where the traditional and PAGE estimations of 

reactive intensity are equivalent,32 the three-microphone estimates are different for the two 

methods. The estimated to analytical error ratios are reported in Table 3.2, calculated from the 

expressions for traditional and PAGE estimation of reactive intensity. 

Table 3.2. The estimated to analytical error ratios for traditional and PAGE estimation of reactive 
intensity, for both two and three-microphone probes. 

Quantity 3-microphone 2-microphone 

𝑱TRAD 

𝑱
 

1

1 − 𝛽2/4
cos(𝑘𝑙/2) (

1

1 − 𝛽2 4⁄
)
2

 

𝑱 
PAGE

𝑱
 

1

1 − 𝛽2/4
 (

1

1 − 𝛽2 4⁄
)
2

 

The analytical error ratio, 𝐿𝜀,𝐽 = 10log10(|𝑱
TRAD/𝑱|), is plotted in Fig. 3.3(a). Similar to 

active intensity, traditional reactive intensity estimates have errors both in the near-field and for 

large 𝑘𝑙. For small values of kl, the three-microphone probe has less than 5% error for 𝛽 < 0.44, 

which is better than the two-microphone probe with the constraint 𝛽 < 0.31.32 However, the three-

microphone probe also requires 𝑘𝑙 < 0.64 due to errors in the cross-spectral terms.  
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The analytical PAGE error level is plotted in Fig. 3.3(b). Three-microphone PAGE 

outperforms two-microphone PAGE for all values of 𝑘𝑙, with less than 5% error for 𝛽 < 0.44 as 

opposed to 𝛽 < 0.31.32 Also, three-microphone PAGE outperforms three-microphone traditional 

at high values of 𝑘𝑙. 

 

Figure 3.3. Similar to Fig. 3.2, except for the reactive intensity, 𝑱. 

Experimental data for reactive intensity are plotted in Figs. 3.3(c)-(f), showing error from 

the expected reactive intensity of 𝑱 = 𝑃2/2𝜌0𝑐𝑘𝑟. The three-microphone data is compared with 

the analytical results shown in Fig. 3.3(a)-(b). The near-field behavior matches the analytical 

errors, and the traditional method shows the correct trend of increasing error as 𝑘𝑙 approaches 𝜋. 

The two-microphone data also shows correct trends, matching the analytical results shown in Fig. 

2.7. However, for all cases, large estimation errors occur at far distances as the field becomes more 
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planar (active). For example, 𝑱 is an order of magnitude smaller than 𝑰 at the plot limit of 𝑘𝑟 = 10. 

For these small values, the estimation accuracy is limited by signal-to-noise ratio and scattering.  

The final quantity explored here is specific acoustic impedance, which in a monopole field 

is 𝑧 = 𝜌0𝑐𝑘𝑟/(𝑘𝑟 − 𝑗). Table 3.3 reports the estimated to analytical error ratios, calculated from 

the expressions for traditional and PAGE estimation of specific acoustic impedance. 

Table 3.3. The estimated to analytical error ratios for traditional and PAGE estimation of specific 
acoustic impedance, for both two and three-microphone probes. 

Quantity 3-microphone 2-microphone 

𝑧 
TRAD

𝑧
 

𝛽(1 − 𝛽2/4)(1 + 𝑗𝑘𝑟)

𝛽 cos(𝑘𝑙/2) + 2𝑗 sin(𝑘𝑙/2)
 𝛽

(1 + 𝑗𝑘𝑟)[2 cos(𝑘𝑑/2) + 𝑗𝛽 sin(𝑘𝑑/2)]

2[𝛽 cos(𝑘𝑑/2) + 𝑗2 sin(𝑘𝑑/2)]
 

𝑧 
PAGE

𝑧
 

𝑘𝑟 − 𝑗

𝑘𝑟 − 𝑗/(1 − 𝛽2/4)
 1 

Figure 3.4(a) shows the traditional error level, 𝐿𝜀,𝑧 = 20log10(|𝑧
TRAD/𝑧|), Fig. 3.4(b) 

shows the PAGE error level, and Figs. 3.4(c)-(f) show the experimental data, to be compared with 

analytical results shown in Fig. 3.4(a)-(b) and in Fig. 2.8. The experimental data shows error from 

the analytical value, which depends on 𝑟. The analytical three-microphone traditional method 

shows an improved high-frequency limit of 𝑘𝑙 < 1.08 over two-microphone traditional with    

𝑘𝑙 < 0.77. On the other hand, the three-microphone PAGE method has no high-frequency limit. 

However, both methods have a near-field limit of 𝛽 > 0.44, as opposed to the two-microphone 

case with no near-field limit for either method. Because two-microphone PAGE has zero bias 

error, it is preferred over three-microphone PAGE for specific acoustic impedance. The 

experimental data in Fig. 3.4(f) match these trends. Figure 3.4(e) is corrected from a previously 

published version of the plot33 that didn’t plot the sign of the error correctly. 
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Figure 3.4. Similar to Fig. 3.2, except for the specific acoustic impedance, z. 

3.4 Conclusion 

In this letter, the theoretical foundation of the PAGE method has been extended by 

presenting monopole bias errors for a three-microphone probe for three quantities: active intensity, 

reactive intensity, specific acoustic impedance. To validate these bias errors, and to make an 

experimental comparison with the two-microphone bias errors reported by Whiting et al.,32 bias 

errors were obtained using a small loudspeaker to approximate a monopole. 

The analytical and experimental results support the following findings. First, the accuracy 

of active intensity estimates is significantly improved by adding a center microphone, removing 

error in center pressure estimation. The bandwidth of traditional method active intensity is twice 

that of using two microphones. Second, the three-microphone PAGE method has zero error in 

active intensity estimation up to the spatial Nyquist frequency, regardless of probe size or distance 
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to the source. For broadband sources and with sufficient coherence between the microphones, the 

phase can be unwrapped, which can extend the bandwidth to be an order of magnitude greater than 

that of the traditional method.23 Third, the PAGE method does not require the center microphone 

to be phase-matched with the other microphones, so three-microphone PAGE is the most accurate 

of the discussed methods with no loss of feasibility other than obtaining an amplitude-calibrated 

center microphone. Fourth, calculation of reactive intensity with three-microphone PAGE is 

improved over the two-microphone methods. Finally, the three-microphone PAGE method 

introduces error to specific acoustic impedance estimates, so this quantity is best estimated using 

a probe’s outer two microphones. Future work may include consideration of multi-dimensional 

probes, and higher-order estimation of gradients.34 
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Higher-order estimation 

4.1 Introduction 

Obtaining accurate estimates of acoustic intensity is vital for intensity-based sound power 

measurements, as well as source characterization and location. A method for estimating intensity 

using two microphones and their cross-spectra was developed in the 1970s and is still in use 

today.8-11 This method, referred to in this article as the traditional method, has a limited bandwidth 

highly dependent on microphone spacing. At high frequencies, when the distance between the 

microphones becomes large compared to a wavelength, the method has inherent bias errors due to 

inaccuracies in the finite-difference and finite-sum formulas.19 On the other hand, phase mismatch 

of non-ideal microphones causes error when the microphone spacing is small compared to a 

wavelength, at low frequencies. These two constraints limit the estimation bandwidth of a two-

microphone intensity probe.  

In order to overcome the high-frequency bias errors and extend estimation bandwidth, the 

Phase and Amplitude Gradient Estimator method (PAGE) has been developed.21 By separating the 

frequency-dependent complex pressures into amplitude and phase, calculations of active and 

reactive intensity take a new form. The PAGE method has extended the bandwidth of plane wave 

measurements by at least an order of magnitude for broadband sources.23 

For an ideal plane wave, the PAGE method estimation of active and reactive intensity has 

zero bias errors at higher frequencies.28 Thus, the remaining error is the low-frequency phase 
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mismatch error, which occurs as the probe spacing is small relative to a wavelength. Therefore, 

probes with larger microphone separation are preferred over probes with smaller separation. 

However, with a larger probe, it can be harder for the PAGE method to function accurately in non-

planar fields, such as a monopole field or a standing wave field. In this work, we explore how the 

use of additional microphones and higher-order estimates of the first derivatives can improve 

intensity estimation accuracy in these high-curvature fields. This chapter was modified from a 

2017 publication in Proceedings of Meetings on Acoustics under the title “Higher-order estimation 

of active and reactive acoustic intensity.”34 

4.2 Methodology 

The multiple-microphone approach to estimating intensity has been explored by Cazzalato 

and Hansen12 and Pascal and Li.13 Under these formulations, gradients are estimated using a least-

squares method across the microphones. This traditional method can be extended with the PAGE 

formulation resulting in a process referred to as least-squares PAGE. 

An overview of the traditional and PAGE methods is given here. The general formulas for 

frequency-domain calculations of active and reactive intensity are 

 𝑰 =
1

2
𝑅𝑒{𝑝𝒖∗} (4.1) 

 𝑱 =
1

2
𝐼𝑚{𝑝𝒖∗} (4.2) 

where 𝑝 is the complex pressure at the center of the probe, 𝒖 is the complex particle velocity, and 

∗ denotes a complex conjugate. In the traditional method, 𝑝 is either obtained from a microphone 

at the center of the probe or estimated as a weighted average from multiple microphones at 

surrounding locations. These weights are determined for the probe configuration either according 
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to a least-squares estimation scheme or by using the higher-order method that will be explained 

later in this article. The traditional method estimates particle velocity using Euler’s equation, 

 𝒖 
𝑇𝑅𝐴𝐷 =

𝑗

𝜌0𝜔
𝛻�̂�, (4.3) 

where 𝜌0 is the ambient air density, 𝜔 is the angular frequency, and an overhat indicates that the 

quantity is estimated. The estimated gradient of the complex pressure, 𝛻�̂�, comes from a finite-

difference between the probe microphones. In the traditional method, the complex forms of 𝑝 and 

𝒖 
𝑇𝑅𝐴𝐷 are used in Eqs. (4.1) and (4.2) to estimate active and reactive intensity. 

The PAGE method, on the other hand, treats complex pressure not in terms of real and 

imaginary parts, but as amplitude and phase, where 𝑝 = 𝑃𝑒−𝑗𝜙. The amplitude of the pressure at 

the center of the probe, 𝑃, is either measured by a microphone at the center of the probe or 

estimated as a weighted average of the amplitudes of the outer microphones. The PAGE equations 

for active and reactive intensity are21 

 𝑰𝑃𝐴𝐺𝐸 =
�̂�2𝛻�̂�

2𝜌0𝜔
  (4.4) 

and 

 𝑱𝑃𝐴𝐺𝐸 = −
𝑃  ̂𝛻�̂�

2𝜌0𝜔
. (4.5) 

The estimate of the gradient of the phase across the probe, 𝛻�̂�, is obtained via the phase of the 

transfer functions between microphone pairs. In a plane wave field, the PAGE formulation for 

active and reactive intensity has zero bias errors up to the spatial Nyquist frequency. If the source 

is broadband, and there is sufficient coherence between the microphones, a transfer function’s 

phase can be unwrapped, allowing an estimate of active intensity to be accurate above the spatial 

Nyquist frequency. The success of the PAGE method in extending the bandwidth of reliable 
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intensity estimates has been shown for propagating (active) sound fields.23 However, performance 

of the PAGE method in standing wave (reactive) sound fields has been relatively unexplored. 

To hopefully obtain more accurate intensity estimates in reactive sound fields, the higher-

order PAGE method has been developed, following the work of Jensen.48 This allows for higher-

order estimation of �̂�, 𝛻�̂�, and 𝛻�̂�, which are needed for 𝑰PAGE and 𝑱PAGE. In his work, Jensen 

developed a method to obtain higher-order estimates of a function and its derivatives using an 

arbitrary grid of measurement points. Following Jensen’s notation, the function 𝑓 (which could 

represent either 𝑃 or 𝜙) is sampled at several measurement positions each as 𝑔𝑖, where 𝑖 is the 

index of the grid position. Each value of 𝑔𝑖 can be expressed as a linear combination of 𝑓 and its 

derivatives evaluated at the origin, according to the Taylor series expansion. In two dimensions, 

𝑔𝑖 can be expressed as 

 

𝑔𝑖 ≡ 𝑓(𝛼𝑖, 𝛽𝑖) 

= 𝑓(0,0) + (𝛼𝑖

𝜕

𝜕𝑥
+ 𝛽𝑖

𝜕

𝜕𝑦
) 𝑓(0,0) + ⋯+ (𝛼𝑖

𝜕

𝜕𝑥
+ 𝛽𝑖

𝜕

𝜕𝑦
)
𝑚

𝑓(0,0)
1

𝑚!
− 𝛿𝑖 

(4.6) 

where 𝛼𝑖 and 𝛽𝑖 are the 𝑥 and 𝑦 coordinates, respectively, of grid position 𝑖 relative to the origin, 

𝑚 is the desired accuracy order, and 𝛿𝑖 is an error constant of order 𝑚 + 1. The origin can be 

defined arbitrarily, although it is usually placed at the center of the probe. Equation (4.6) can be 

written in matrix form to include all the grid positions as 

 𝑇𝑚𝐹𝑚 = 𝐺𝑚 + 𝜀𝑚. (4.7) 

The vector 𝐹𝑚 contains the derivatives in the Taylor series (along with their appropriate factorial 

coefficients): 

 𝐹𝑚 = (𝑓  
𝜕𝑓

𝜕𝑥
 ⋯ 

1

𝑖!

𝜕𝑖𝑓

𝜕𝑥𝑖−𝑗𝜕𝑦𝑗
 ⋯ 

1

𝑚!

𝜕𝑚𝑓

𝜕𝑦𝑚
)

𝑇

, (4.8) 
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where 𝑇 denotes a vector transpose. The matrix 𝑇𝑚 contains a row for each grid position, where 

each row consists of the grid coordinates raised to appropriate powers matching the Taylor series 

derivatives in 𝐹𝑚, 

 𝑇𝑚 =

[
 
 
 
1 𝛼1 𝛽1 𝛼1

2 2𝛼1𝛽1 ⋯ 𝛽1
𝑚

1 𝛼2 𝛽2 𝛼2
2 2𝛼2𝛽2 ⋯ 𝛽2

𝑚

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
1 𝛼𝑛𝑚

𝛽𝑛𝑚
𝛼𝑛𝑚

2 2𝛼𝑛𝑚
𝛽𝑛𝑚

⋯ 𝛽𝑛𝑚

𝑚
]
 
 
 

, (4.9) 

and 𝑛𝑚 is the number of grid positions. If 𝐹𝑚 includes all the derivatives in the two-dimensional 

Taylor series, then the number of grid positions needed to achieve the desired accuracy order, 𝑚, 

is 

 𝑛𝑚 = (𝑚 + 1)(𝑚 + 2)/2. (4.10) 

The right side of Eq. (4.7) consists of a vector of the grid measurements 

 𝐺𝑚 = (𝑔1  𝑔2  ⋯ 𝑔𝑛𝑚
)
𝑇
 (4.11) 

and an error vector 

 𝜀𝑚 = (𝛿1  𝛿2  ⋯ 𝛿𝑛𝑚
)
𝑇
. (4.12) 

Estimates of the function 𝑓 and its derivatives, evaluated at the origin, are found by solving Eq. 

(4.7) for 𝐹𝑚, 

 𝐹𝑚 = 𝑇𝑚
−1𝐺𝑚 + 𝐸𝑚 (4.13) 

where 𝐸𝑚 is an unknown error vector of order 𝑚 + 1, 

 𝐸𝑚 = 𝑇𝑚
−1𝜀𝑚. (4.14) 

Because the error vector 𝐸𝑚 is unknown, the accuracy order of estimates in Eq. (4.13) is 𝑚, the 

order of the terms used in the Taylor series. For any probe geometry, the rows of 𝑇𝑚
−1 give sets 

of finite difference coefficients that, when combined with the quantities measured at the grid 

locations, calculate the function 𝑓 and its derivatives evaluated at the origin. Once these finite 
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difference coefficients are obtained, they can be reused for any data set, provided the probe 

geometry and estimation location remain constant. 

In order to estimate active and reactive intensity using the PAGE method [Eqs. (4.4)–(4.5)], 

�̂�, 𝛻�̂�, and 𝛻𝜙 ̂ are needed. �̂� and 𝛻�̂� can be obtained by following the above procedure with 

measurements of 𝑃 at each microphone making up 𝐺𝑚. Since phase is a quantity wrapped between 

– 𝜋 and 𝜋, measurements of 𝜙 at each microphone are not absolute phases, and cannot be used to 

accurately obtain 𝛻�̂�. To circumvent this issue, one microphone is chosen as a reference 

microphone, and relative phases are obtained at each microphone by unwrapping the phase of the 

transfer function relative to the reference microphone. These relative phases can be used in 𝐺𝑚 to 

obtain 𝛻�̂�. It is often preferable to calculate the transfer function relative to a center microphone 

to minimize distances between microphone pairs, as this minimizes unwrapping errors. 

By choosing which derivatives to include in 𝐹𝑚, as well as the corresponding coordinates 

in 𝑇𝑚, the higher-order method for estimating 𝑓 can be employed for one, two, or three dimensions. 

However, the matrix 𝑇𝑚 must be non-singular or the inverse cannot be obtained. For example, if 

the three-dimensional Taylor series is used, the grid points cannot lie in a line or in a plane. The 

impact of including higher-order estimates of �̂�, 𝛻�̂�, and 𝛻𝜙 ̂ in the PAGE method are now 

discussed for the case of a one-dimensional probe near a monopole and in a standing wave field, 

followed by an examination of how to apply this technique for two-dimensional probes. 

4.3 Monopole 

In order to understand how higher-order PAGE performs in a field with curvature, we have 

analyzed the method’s performance for active intensity estimation in a monopole field. Figure 4.1 

shows three one-dimensional probes used in this simulated field, consisting of two, four, and six 
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microphones evenly spaced along a line pointing to the source, where 𝑑 is the distance between 

microphones and 𝑟 is the distance from the center of the probe to the source. 

 

Figure 4.1. Schematic of one-dimensional probes consisting of two, four and six microphones. The 
distance between microphones is 𝑑, and the distance from the center of the probe to the source is 𝑟. 

PAGE estimation of active intensity [Eq. (4.4)] relies on �̂� and 𝛻𝜙 ̂ , which are both 

estimated using the higher-order method. To illustrate how the higher-order method functions in 

this case, the following three equations show how 𝛻�̂� is obtained using two, four, and six 

microphones, respectively: 

 ∇�̂� =
1

𝑑
(−𝜙3 + 𝜙4) (4.15) 

 ∇�̂� =
1

𝑑
(

1

24
𝜙2 −

9

8
𝜙3 +

9

8
𝜙4 −

1

24
𝜙5) (4.16) 

 ∇�̂� =
1

𝑑
(−

3

640
𝜙1 +

25

384
𝜙2 −

75

64
𝜙3 +

75

64
𝜙4 −

25

384
𝜙5 +

3

640
𝜙6) (4.17) 

In practice, each phase 𝜙 is the phase of an unwrapped transfer function relative to one of the 

microphones. Similar equations exist to estimate 𝑃 with different coefficients, although they are 

not shown here. 

The bias errors in active intensity in a simulated monopole field for two, four and six 

microphones, shown in Figure 4.2, illustrate the effect of higher-order PAGE. When the PAGE 

method with unwrapping is used, these errors are independent of frequency. Each of the probes 
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has large error as one of the outer microphones approaches the source, which happens at a larger 

value of 𝑟/𝑑 for more microphones due to the larger probe size. However, since having more 

microphones allows for better sampling of the sound field, the bias error converges to zero faster. 

As the probe moves away from the source, the 4-microphone probe is the first to achieve less than 

0.2 dB error at 𝑟/𝑑 = 2.15. The 2-microphone probe does not achieve less than 0.2 dB error until 

𝑟/𝑑 = 3.31, making use of the 4-microphone probe advantageous over that range in the near-field. 

The six-microphone probe achieves less than 0.2 dB error at 𝑟/𝑑 = 2.98, which, due to the large 

size of the probe, is farther from the source than the four-microphone probe. Thus, the 4-

microphone probe is generally preferable, achieving less than 0.2 dB error at the closest distance 

to the source.  

 

Figure 4.2. Active intensity error in a simulated monopole field for one-dimensional probes 
consisting of two, four and six microphones. The three dashed vertical lines correspond to values 
of 𝑟/𝑑 for each probe where an outer microphone is at the source. 

4.4 Standing wave 

The performance of higher-order PAGE is further evaluated by considering a standing 

wave field, which is purely reactive. Figure 4.3(a) shows performance of the higher-order PAGE 
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method reactive intensity estimation for probes consisting of two, four and six microphones in a 

simulated standing wave versus 𝑘𝑑. The probe center for all three probes is placed at a point of 

maximum reactive intensity, halfway between a pressure node and a pressure antinode. Probes 

with higher numbers of microphones perform better; however, this benefit is reduced at high values 

of 𝑘𝑑 when the probe becomes large enough to span a null. As a purely real field, the complex 

pressure is either positive or negative, alternating across nulls. Since the PAGE expressions 

involve only the magnitude of the pressure, the entire field has positive amplitude under this 

method, interfering with the estimate of center pressure when the probe spans a null. PAGE with 

two microphones is within 0.2 dB error for 𝑘𝑑 < 0.56, whereas higher-order PAGE with six 

microphones is within 0.2 dB error for 𝑘𝑑 < 0.97, nearly doubling the frequency range of accurate 

reactive intensity estimation. 

To compare with higher-order PAGE, the higher-order formulation in Sec. 4.2 can also be 

used to develop a higher-order traditional method. The higher-order traditional calculation uses 

the methods explained in Sec. 4.2 to estimate the complex pressure and its gradient, rather than 

estimating pressure amplitude and phase gradients as in the PAGE method. The performance of 

the higher-order traditional method for estimating reactive intensity in the same standing wave 

field is shown in Figure 4.3(b). The two-microphone traditional method result is identical to the 

two-microphone PAGE calculation because both calculations depend on a difference of 

autospectra.32 However, the higher-order traditional method outperforms higher-order PAGE for 

reactive intensity in a standing wave field, with less than 0.2 dB error for 𝑘𝑑 < 1.54 for the six 

microphone probe, which is closer to the spatial Nyquist limit of 𝑘𝑑 = 𝜋 than the higher-order 

PAGE estimate. By using the higher-order traditional method with six microphones, the frequency 
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range of accurate reactive intensity estimation in a standing wave field is nearly three times that of 

using two microphones. 

 

Figure 4.3. Reactive intensity error in a simulated standing wave field using (a) higher-order PAGE 
and (b) higher-order traditional. The probe center is halfway between a pressure node and a 
pressure antinode. 

4.5 Two-dimensional probe 

The higher-order method can be extended to two and three-dimensional probes. As an 

example, Fig. 4.4 shows a two-dimensional probe used in several applications.22,23,25 This probe 

consists of microphones in an equilateral triangle with a fourth microphone at the centroid. 

 

Figure 4.4. A two-dimensional intensity probe. Each microphone is labeled with a microphone 
number and its (x, y) coordinates, where d is the distance from each outer microphone to the center 
microphone. 

For this probe, intensity estimation differs between the least-squares and higher-order 

PAGE methods. In both methods, pressure is obtained directly by the center microphone. Both 
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methods estimate the x-component of the gradients using a difference of microphones 4 and 3. The 

methods differ in estimating the y-component of the gradients. The least-squares estimate of the 

y-component of ∇𝜙 is 

 
𝜕𝜙

𝜕𝑦
=

1

𝑑
(−

2

3
𝜙2 +

1

3
𝜙3 +

1

3
𝜙4). (4.18) 

Again, in practice each value of 𝜙 is the unwrapped phase of a transfer function relative to one of 

the microphones. The higher-order estimate is 

 
𝜕𝜙

𝜕𝑦
=

1

𝑑
(−𝜙1 −

1

3
𝜙2 +

2

3
𝜙3 +

2

3
𝜙4). (4.19) 

The higher-order PAGE estimate shown in Eq. (4.19) uses all four microphones instead of three, 

providing a higher-order of accuracy. Additionally, the higher-order method centers the y 

component of the gradient correctly at the origin. The least-squares method centers the estimate at 

(0, −𝑑/4), which means that the pressure and the particle velocity estimate are not collocated, 

causing error in the intensity estimate. The usefulness of higher-order PAGE in extending the 

bandwidth needs to be experimentally verified. 

4.6 Conclusion 

The method described in this paper can be used to obtain higher-order intensity estimates 

from probes in one, two, and three-dimensions, given a sufficient number of microphones. Both 

the traditional and the PAGE methods can benefit, in certain cases, from the higher-order estimates 

presented in this paper. The higher-order processing can be utilized with currently existing probes, 

as well as guide the creation of new probe designs. 

The higher-order method can improve accuracy of active intensity estimation; however, 

the efficacy of higher-order estimation is of particular interest in reactive sound fields. In a 

monopole case, estimation of active intensity using four microphones and the higher-order PAGE 
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method is within 0.2 dB error for distances closer to the monopole than using two microphones 

with the least-squares PAGE method. For reactive intensity in a standing wave field, using six 

microphones with the higher-order PAGE method is more accurate, but using six microphones 

with the higher-order traditional method extends the frequency range over which error is less than 

0.2 dB even further, by nearly three times the two-microphone result. Future work may include 

investigation of more complicated analytical fields, experimental validation of bias errors, and 

considerations of additional probe designs. 
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Directional pressure 

5.1 Introduction 

Directional pressure sensors have a variety of uses, including direction finding, energy-

based quantity estimation, and source discrimination. One common approach is pressure gradient 

sensing using a microphone array, such as in the case of a cardioid microphone.49-51 Pressure 

gradient sensors serve as a basis for intensity estimation, and can be extended to create higher-

order sensors such as a particle velocity gradient sensor.52-55 Another approach is beamforming, 

using time (or phase) delays to steer a microphone array in arbitrary directions.56,57 Several more 

complicated methods of directional sensing exist.58-62 

Recently, the phase and amplitude gradient estimator (PAGE) method has been 

developed,21 which relies on the phase gradient to accurately estimate acoustic vector intensity up 

to the spatial Nyquist frequency for propagating fields. For broadband sources and with sufficient 

coherence between the microphones,29 the phase gradient can be unwrapped,23 allowing the 

method to be accurate at frequencies much higher than the spatial Nyquist frequency.32 In this 

letter, we report a directional pressure method similar to particle velocity gradient sensing, utilizing 

the phase gradient to increase both the directionality and the bandwidth of frequency-dependent 

source localization using two microphones. This chapter was modified from a paper submitted for 

publication in the Journal of the Acoustical Society of America as an Express Letter under the title 

“Highly directional pressure sensing using the phase gradient.” 
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5.2 Theory 

As shown by Bastyr,52 the continuity equation can be used to estimate pressure using spatial 

derivatives of the particle velocity. This estimate can be combined with particle velocity to create 

a 𝑢-𝑢 intensity sensor, or used alone as a directional pressure sensor as done by de Bree and 

Wind.53 For a time-harmonic process with 𝑒𝑗𝜔𝑡 dependence, complex pressure relates to the 

divergence of the particle velocity as 

 𝑝 =
𝑗𝜌0𝑐

2

𝜔
∇ ∙ 𝒖, (5.1) 

where 𝜌0 is the air density, 𝑐 is the sound speed, 𝜔 is the angular frequency, 𝒖 is the particle 

velocity, and 𝑗 = √−1. In Cartesian coordinates, the divergence in Eq. (5.1) is separated into three 

components, expressing the complex pressure as a summation: 

 𝑝 =
𝑗𝜌0𝑐

2

𝜔
[
𝜕𝑢𝑥

𝜕𝑥
+

𝜕𝑢𝑦

𝜕𝑦
+

𝜕𝑢𝑧

𝜕𝑧
]. (5.2) 

In the far field of a source, the three derivative terms in Eq. (5.2) each represent sound pressure 

corresponding with particle motion in a single direction. Pressure from a single direction can be 

evaluated with a one-dimensional array, used to estimate a single derivative from Eq. (5.2): 

 𝑝𝑥 =
𝑗𝜌0𝑐

2

𝜔

𝜕𝑢𝑥

𝜕𝑥
, (5.3) 

where 𝑥 is the direction along the array axis. This directional pressure quantity can be estimated 

using two particle velocity sensors and a finite difference. Alternatively, since particle velocity can 

be related to the pressure gradient through the time-harmonic Euler equation, the directional 

pressure in Eq. (5.3) can be obtained using three microphones in a line to estimate a second 

derivative of pressure. The directivity associated with these derivatives produces a cos2 𝜃 array 

response. 
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In estimating Eq. (5.3) using multiple sensors, finite-difference errors cause high-

frequency inaccuracy, as the wavelength becomes small relative to the microphone separation.32 

The PAGE method was developed to remove such errors in frequency-domain active intensity. By 

expressing pressure as an amplitude and a phase, 𝑝 = 𝑃𝑒−𝑗𝜙, Euler’s equation for particle velocity 

takes a new form that relies on the unwrapped phase gradient, and is expressed as 

 𝒖 =
𝑒−𝑗𝜙

𝜌0𝜔
(𝑃 ∇𝜙 + 𝑗∇𝑃). (5.4) 

Use of Eq. (5.4) as opposed to the gradient of complex pressure removes finite difference error for 

plane waves up to the spatial Nyquist frequency.32 Additionally, the method can produce accurate 

gradient estimates beyond the spatial Nyquist frequency for broadband sources when phase 

unwrapping can properly be applied.23  

By substituting Eq. (5.4) into Eq. (5.3), the contribution to pressure in the direction of the 

array axis can be expressed in terms of 𝑃 and 𝜙 as 

 𝑝𝑥 =
1

𝑘2
[𝑗𝑃

𝜕2𝜙

𝜕𝑥2
+ 2𝑗

𝜕𝑃

𝜕𝑥

𝜕𝜙

𝜕𝑥
−

𝜕2𝑃

𝜕𝑥2
+ 𝑃 (

𝜕𝜙

𝜕𝑥
)
2

] 𝑒−𝑗𝜙, (5.5) 

where 𝑘 = 𝜔/𝑐 is the acoustic wavenumber. Each of the phase derivatives in Eq. (5.5) can be 

estimated using the phase of transfer functions between microphones, removing finite-difference 

error and extending bandwidth up to the spatial Nyquist frequency, and even higher when the phase 

can be unwrapped. 

To investigate the behavior of Eq. (5.5), each term can be evaluated in a monopole field. 

For a source at the origin, the monopole pressure field is 𝑃 = 𝐴/𝑟 = 𝐴/√𝑥2 + 𝑦2 and                   

𝜙 = 𝑘𝑟 = 𝑘√𝑥2 + 𝑦2, where 𝐴 is amplitude, 𝑟 is the array distance to the source, and 𝑥 and 𝑦 are 

components of 𝑟, with 𝑥 being the component of 𝑟 along the array axis. Partial derivatives of 𝑃 
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and 𝜙 in Eq. (5.5) are evaluated for the monopole field (for example,                                                        

𝜕𝜙/𝜕𝑥 = 𝑘𝑥/√𝑥2 + 𝑦2 = 𝑘 cos 𝜃), resulting in the response, 

 𝑝𝑥,monopole =
𝐴

𝑘2
[
𝑘2

𝑟
cos2 𝜃 + (

𝑗𝑘

𝑟2
+

1

𝑟3
) (sin2 𝜃 − 2 cos2 𝜃)] 𝑒−𝑗𝜙. (5.6) 

 
This response is shown in Fig. 1(a) for several frequencies, for 𝑟 = 2.1 m (7 ft). The first term in 

Eq. (5.5) results in a cos2 𝜃 response at all distances, represented by the first term in Eq. (5.6). The 

remainder of Eq. (5.6) results from the last three terms in Eq. (5.5), altering the response in the 

near field, with a sin2 𝜃 term creating a significant response when pointing perpendicular to the 

source (𝜃 = 90∘). Therefore, using components of the divergence as done by de Bree and Wind53 

leads to ineffective direction finding in the near field. 

 

Figure 5.1. Theoretical response for (a) divergence-based [Eq.(5.5)] and (b) phase gradient-based 
[Eq.(5.7)] directional pressure components as a function of angle 𝜃 for several values of 𝑘𝑟, where 
𝑟 is fixed to be 2.1 m (7 ft). 

By assuming that the array is at least several wavelengths from the source, Eq. (5.5) can be 

simplified as 

 𝑝𝑥 =
1

𝑘2
(
𝜕𝜙

𝜕𝑥
)
2

𝑃𝑒−𝑗𝜙. (5.7) 
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dropping the terms that altered the near-field response for a monopole. Since Eq. (5.7) contains no 

second derivatives, 𝑝𝑥 can be estimated using only two microphones instead of three. Additionally, 

despite being a far-field limit, the simplified directional pressure in Eq. (5.7) has a cos2 𝜃 array 

response when used in either the near or the far field, as shown in Fig. 1(b). 

The modified form of the particle velocity divergence sensor in Eq. (5.7) serves as the basis 

for calculating directional pressure using the phase gradient. In a field produced by a monopole, 

the magnitude of the phase gradient is |∇𝜙| = 𝑘, so 𝑝 can be expressed as 

 𝑝 =
1

𝑘2
|∇𝜙|2𝑃𝑒−𝑗𝜙. (5.8) 

The phase gradient in Eq. (5.8) can be split into its components as 

 𝑝 =
1

𝑘2
[(

𝜕𝜙

𝜕𝑥
)
2

+ (
𝜕𝜙

𝜕𝑦
)
2

+ (
𝜕𝜙

𝜕𝑧
)

2

] 𝑃𝑒−𝑗𝜙 (5.9) 

such that the complex pressure is expressed as a summation of three components in orthogonal 

directions. As opposed to divergence-based components in Eq. (5.2), Eq. (5.9) contains 

components of the phase gradient, which relate directly to the sound propagation. Since active 

intensity can also be expressed in terms of the phase gradient,21 a single directional pressure 

component has a maximum response in the same direction as a one-dimensional intensity estimate, 

but with a cos2 𝜃 response as opposed to a cos 𝜃 response. 

An additional advantage of using phase gradient-based directional pressure is the 

possibility to achieve an arbitrary array response through modification of Eq. (5.7). Since the 

relative array response is simply a function of (𝜕𝜙/𝜕𝑥)/𝑘, a modification of this directivity factor 

changes the response of the array. Several possibilities for improving array response are discussed 

in the remainder of this section. 
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A higher-order bidirectional sensor can be created to achieve an array response narrower 

than cos2 𝜃. This is done by changing the power on the directivity factor in Eq. (5.7), raising it to 

an arbitrary power 𝑀, resulting in 

 𝑝𝑥,𝑀 =
1

𝑘𝑀
(
𝜕𝜙

𝜕𝑥
)
𝑀

𝑃𝑒−𝑗𝜙, (5.10) 

which achieves a cos𝑀 𝜃 array response with the use of only two microphones. Figure 2(a) shows 

the simulated response for a two-microphone directional sensor achieving a cos𝑀 𝜃 response by 

using Eq. (5.10) with different values of 𝑀. 

 

Figure 5.2. Simulated array response for (a) bidirectional [Eq.(5.9)] and (b) unidirectional sensors 
[Eq.(5.10)] using two microphones and the phase-gradient method, for different orders, 𝑀. 

In many cases, it may be beneficial to have an array response that is unidirectional instead 

of bidirectional, such that the array is sensitive in one direction instead of two. This is done by 

further modifying the directional pressure expression, combining even and odd powers of the 

directivity factor from Eq. (5.10). Since odd powers of the directivity factor have a negative 

response in the back of the array, the array response in that direction nearly cancels when combined 

with an even power. The unidirectional pressure can be expressed as 



 

62 

 𝑝𝑥,𝑢𝑛𝑖 =
1

2
[

1

𝑘𝑀
(
𝜕𝜙

𝜕𝑥
)

𝑀

+
1

𝑘𝑀−1
(
𝜕𝜙

𝜕𝑥
)
𝑀−1

] 𝑃𝑒−𝑗𝜙. (5.11) 

The resulting unidirectional array response is shown in Fig. 2(b) for several values of M. 

A final modification allows for computational steering of the array response. With a two-

dimensional array, two components of the phase gradient can be estimated. Using both 

components, the direction of sensitivity is not constrained by the array axis, and the beam can be 

steered computationally to an arbitrary angle 𝜃0. For a unidirectional sensor,  

 
𝑝𝑥,𝑢𝑛𝑖 =

1

2
[

1

𝑘𝑀
(cos 𝜃0

𝜕𝜙

𝜕𝑥
+ sin 𝜃0

𝜕𝜙

𝜕𝑦
)

𝑀

+
1

𝑘𝑀−1
(cos 𝜃0

𝜕𝜙

𝜕𝑥
+ sin 𝜃0

𝜕𝜙

𝜕𝑦
)
𝑀−1

] 𝑃𝑒−𝑗𝜙, (5.12) 

where 𝜃0 is the angle from the 𝑥-axis on the 𝑥-𝑦 plane. 

Using these modifications, an array response cos𝑀 𝜃 can be created using two 

microphones. With a two-dimensional array (three or more microphones), that response can be 

steered to an arbitrary direction. Further manipulation of the directivity factor can lead to additional 

array responses, suited for a variety of purposes. 

5.3 Experiment 

To validate the phase gradient formulation of directional pressure, and to compare the array 

response with those of other methods, an experiment was performed in an anechoic chamber. A 

microphone array was attached to a turntable, composed of two, perpendicular microphone pairs, 

each with a separation, 𝑑 = 10 cm (4 in). The microphones were 1.27 cm (1/2 in) free-field, 

condenser microphones, and each pair was phase-matched. One pair acted as a broadside array for 

time-domain, additive beamforming, and the other pair was used for the pressure-gradient and 

phase-gradient methods, sensing along the array axis. To map the array response of each two-
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microphone method, the array was rotated in increments of 5° relative to a fixed loudspeaker 2.1 

m (7 ft) away producing white noise. The measurement schematic and array response for several 

two-microphone processing methods at three frequencies are shown in the top row of Fig. 3.  

 

Figure 5.3. Top: Measured, two-microphone array response using a single loudspeaker at 𝑘𝑑 =
𝜋/8 , 7𝜋/8, and 2𝜋 using different processing methods: beamforming, traditional gradient sensing, 
and phase-gradient sensing. The gradient and phase gradient sensors were oriented such that at 
𝜃 =  0∘ the two microphones (black dots) were in line with the source, whereas the beamformer 
requires the source be broadside the microphones (red dots). The microphone separation, 𝑑, and 
source distance in the schematic is not to scale. Bottom: Same for two loudspeakers separated by 
60 degrees. 

To compare the methods’ ability to resolve a single source, beamforming, traditional 

gradient sensing, and phase-gradient sensing are compared for the single loudspeaker experiment. 

While the first two method have erroneous sidelobes at higher frequencies (e.g., 𝑘𝑑 = 2𝜋), the 

phase-gradient estimate of the directional pressure in Eq. (5.7) does not; the phase-gradient method 

shows a successful cos2 𝜃 array response up to the spatial Nyquist frequency (𝑘𝑑 = 𝜋) and beyond 

when phase gradients can be properly unwrapped. As opposed to the other methods, this phase-

gradient method yields consistent results over the entire frequency range where the microphones 

are receiving sufficiently coherent signals. 
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A beamformer involves time delays to steer the array,57 although in the broadside case 

investigated here the time delays are zero and the signals are simply added. The broadside 

beamformer responds nearly omnidirectionally at low frequencies. At high frequencies the pattern 

becomes more directional, although grating lobes appear above the spatial Nyquist frequency of 

𝑘𝑑 = 𝜋. Additional microphones make beamforming more effective at high frequencies, but the 

response still varies with frequency, and is nearly omnidirectional at low frequencies (small 𝑘𝑑). 

A traditional gradient sensor adds pressure signals together multiplied by finite-difference 

coefficients. In this two-microphone case, one microphone signal is subtracted from the other. This 

produces a cos 𝜃 response for low frequencies.49 However, at frequencies approaching and above 

the spatial Nyquist frequency (𝑘𝑑 = 𝜋), finite-difference errors cause changes in the array 

response. 

To test the methods’ behavior in the presence of multiple sources, the experiment was 

repeated with two incoherent loudspeakers spaced 60° apart, and the results are shown in the 

bottom row of Fig. 3. None of the two-microphone methods resolve the individual sources. 

However, the peak response of the phase-gradient method is aimed between the two sources with 

a well-defined cos2 𝜃 pattern, clearly indicating the direction of the group of sources. The response 

angle at each frequency depends on the relative source amplitudes. The response of the 

beamformer and traditional gradient sensor have no strong peaks or nulls, resulting in an 

inconclusive estimate of the location of the group of sources.  

In addition to the results above, the array response of the phase-gradient method can be 

increased by raising the power on the directivity factor, as in Eq. (5.10). Higher-order estimates 

calculated from the single-loudspeaker experiment are shown in Fig, 4(a), which matches the 

theoretical pattern shown in Fig. 2(a). Experimental noise causes the directivity factor to be slightly 
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higher than 1 when pointed at the source, a small error that is magnified by raising the directivity 

factor to higher orders. Figure 4(b) shows the experimental response of a unidirectional sensor of 

various orders [Eq. (5.11)], which can be compared with the theoretical response in Fig. 2(b). The 

response of the two-dimensional, four-microphone array is displayed in Figure 4(c) and obtained 

by computationally steering the unidirectional sensor in Eq. (5.12) without rotating the array. 

 
Figure 5.4. Measured, single-loudspeaker array response for phase-gradient method of order 𝑀 = 
2, 4, 6, and 8 for (a) a two-microphone bidirectional sensor, (b) a two-microphone unidirectional 
sensor obtained from rotating the array, and (c) a computationally-steered two-dimensional, 
unidirectional sensor, using a single measurement with the loudspeaker at 60 degrees from the 𝑥-
axis of the 4-microphone array. All data shown is for 200 Hz, which in this case is 𝑘𝑑 = 0.37. 

5.4 Conclusion 

The phase-gradient method for directional pressure sensing explained in this letter avoids 

high-frequency, finite-difference error present in other methods. This approach allows for the 

creation of a two-microphone, frequency-domain array response with an arbitrary directivity order 

that is accurate up to the spatial Nyquist frequency. For broadband sources and with proper 

unwrapping, accuracy can be extended up to the limit of inter-microphone coherence. 

Conventional gradient-based sensors have the advantage of returning signals in the time 

domain, allowing for the creation of live filtering such as in a cardioid microphone. However, the 

array responses of these microphones break down at higher frequencies due to finite-difference 

errors. Some finite-difference error is avoided by using particle velocity sensors, as done by de 

Bree and Wind.53 However, these sensors can be sensitive to wind noise, complicating outdoor 
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measurements.36 With sufficient distance between microphones, or with a phase-matching 

calibration, the low-frequency accuracy of microphone arrays can be made sufficient for most 

applications. 

An additive beamformer avoids the finite-difference errors present in gradient 

microphones; however, the array response changes with frequency. At low frequencies, the 

response is nearly omnidirectional, whereas at high frequencies the directivity is much narrower 

but grating lobes appear. Beamforming can be used as a time-domain filter, but for use with 

intensity probes, the dimensions are too small and the microphone count is too low for the 

beamforming to be effective over most frequencies of interest. These comparisons indicate that 

phase gradient-based directional sensing is more effective for highly directional frequency-domain 

pressure sensing using a small number of microphones. 

A primary drawback of the phase-gradient method for directional pressure is its limitation 

to the frequency domain. However, the possibility exists to use the frequency-dependent phase 

gradient to inform a time-domain filter for stationary systems. By using the phase gradient, the 

average direction of incoming sound at each frequency could be determined, which could then be 

used to filter the signal in the time domain. This filtering could either be done in blocks for 

recorded data or using an adaptive filter in real-time. Source discrimination would be possible up 

to the spatial Nyquist frequency. The robustness of this approach has yet to be determined.  
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Conclusion 

6.1 Conclusions 

In determining the efficacy of the PAGE method for energy-based quantity estimation, it 

is vital to understand both the advantages and limitations of the method. This thesis furthers that 

objective through theoretical development, experimental verification, and extension of the PAGE 

formulation to additional quantities and applications. 

Comparison of PAGE and traditional bias errors for two- and three-microphone probes 

shows bandwidth extension as a primary advantage of the PAGE method, removing high-

frequency error when unwrapping is properly applied. This allows for the creation of probes with 

large microphone separation for improved low-frequency accuracy without losing high-frequency 

bandwidth. The addition of a center microphone removes the need to estimate center pressure by 

averaging, reducing near-field error. Therefore, the ideal method for one-dimensional active 

intensity estimation is three-microphone PAGE, with zero near-field or high-frequency error in a 

monopole field. However, specific acoustic impedance is best estimated using two-microphone 

PAGE. These results were verified experimentally. 

With two microphones, PAGE and traditional estimates of reactive intensity are exactly 

the same, and the addition of a center microphone does little to reduce error in the near-field, the 

area where reactive intensity is the strongest and of greatest interest. A method for using additional 

microphones and higher-order derivatives was developed, and error reduction was shown 
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numerically. Although the PAGE method performs well in propagating fields, higher-order PAGE 

is out-performed in a standing wave field by a higher-order traditional method. 

In extending the applications of the PAGE method, a method was developed for directional 

pressure sensing based on the phase gradient. Although limited to the frequency domain, use of 

the phase gradient extends the method’s bandwidth over that of traditional methods, enabling 

accuracy up to the spatial Nyquist frequency and beyond when unwrapping is possible. 

Additionally, the phase gradient acts as a directivity factor, and can be modified to produce higher-

order bidirectional and unidirectional responses using two microphones, as well as steerable 

responses using multi-dimensional arrays. These responses were experimentally verified. 

6.2 Future Work 

Although the current work characterizes the PAGE method for many relevant uses, the 

research was limited to ideal analytical fields and experimental verification in a nearly ideal 

anechoic environment. Mylan Cook is performing concurrent work in exploring behavior of the 

PAGE method in the presence of noise. Initial results indicate that the PAGE method is sensitive 

to the injection of uncorrelated noise whereas the traditional method is not. To obtain more 

accurate gradient estimates, especially in the presence of noise, a method for obtaining a 

coherence-weighted gradient estimate is under development. For an overdetermined microphone 

array containing more microphones than is strictly necessary to estimate a gradient, the least-

squares gradient fit can utilize frequency-dependent coherence weights for each microphone pair 

to reduce the influence of microphones with poor signal. 

Future work may synthesize the research presented in this thesis and the research done by 

Cook. The behavior of PAGE reactive intensity and directional pressure in the presence of noise 

can be explored. The higher-order method presented in Chapter 4 could be combined with the 
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coherence-weighted gradient fit, such that the gradient estimation would be neither fully 

determined as in the higher-method, nor strictly first-order as in the coherence-weighted method. 

In this way, a balance can be found between accurate higher-order modeling of the field and the 

rejection of sensors with poor signal. Current knowledge of the performance of the PAGE method 

in various applications and in the presence of noise could inform a thorough analysis of optimal 

probe design. Furthermore, work by Succo30 could help incorporate the treatment of narrowband 

sources in these studies. 

Further applications of the PAGE method may include further development of directional 

pressure. Applications for the directional pressure may be investigated, including potential 

modification of a real-time localization system developed by Young26 to use directional pressure 

rather than active intensity. The directional pressure sensor developed in Chapter 5 is currently 

limited to the frequency domain, preventing use of the method for obtaining a filtered time-domain 

signal for potential applications. However, development of a time-domain method may be the 

subject of further study. 

The possibility exists to use the phase gradient to inform a time-domain filter that can filter 

sources by direction. Taking the inverse Fourier transform of Eq. (5.10) shows that the time-

domain directional pressure can be obtained by filtering the time-domain pressure of a single 

microphone. The filter is represented in the frequency domain as (𝜕𝜙/𝜕𝑥)𝑀/𝑘𝑀, where 𝑀 is the 

arbitrarily-chosen filter order. This filter is applied either by multiplication in the frequency 

domain before the inverse Fourier transform, or by convolution in the time domain. Effectively, 

this scales the magnitude at each frequency dependent on the direction of the phase gradient, 

creating a spatially-filtered time-domain signal sensitive to a particular direction. By using the 

phase gradient, the method is accurate up to the spatial Nyquist frequency for single or multiple 
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sources, and can be extended higher when unwrapping is possible. It will be important to 

investigate appropriate strategies for dealing with noise in the phase of the transfer function, as 

unwanted noise in the filter could corrupt the output signal. If a robust form of this method could 

be developed, it would be useful to obtain block-processed time-domain signals. Additionally, the 

phase gradient could be used to inform an adaptive filter that could be used for live audio with 

minimal lag. 

Further analytical development of the PAGE method for energy-based quantity estimation 

may be possible. The directional pressure method discussed in Chapter 5 estimates pressure from 

a particle velocity gradient, similar to the pressure estimate obtained by a 𝒖-𝒖 intensity probe.52 

This formulation for pressure could be incorporated into a 𝒖-𝒖 form of the PAGE method. Also, 

the PAGE expressions for energy-based quantities could be extended to the time domain. 

Combination of an oscillating signal with its Hilbert transform creates an “envelope,”14,63 a process 

that could be performed on the pressure to obtain a time-domain pressure amplitude, 𝑃, for use in 

instantaneous PAGE active and reactive intensity estimates. The phase gradient term, ∇𝜙, in the 

active intensity expression could be expressed as a time-domain filter using an inverse Fourier 

transform, as explained above for directional pressure.  

In addition to the gradient-based directional sensing discussed in Chapter 5, the PAGE 

method could be applied to beamforming-based methods of directional sensing. This could include 

particle velocity beamformers, such as the one introduced by Gur.64 This beamformer relies on 

particle velocity sensors and spatial derivatives of the particle velocity to obtain a highly-directive 

response with a small aperture. Replacing the particle velocity sensors with a microphone array 

and using principles of the PAGE method to obtain particle velocity derivatives may extend the 
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bandwidth of this method. Additionally, using microphones in place of particle velocity sensors 

would make the beamformer more robust for outdoor measurements.36 
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Appendix 

A Implementation 

The codes used to create the plots in this thesis are made available for members of the BYU 

Acoustics Research Group at https://pulsar.byu.edu/acoustics, and on the acoustics gamma drive. 

The main codes that create the plots for each chapter are Ch2_Plots.m, Ch3_Plots.m, Ch4_Plot2.m, 

Ch4_Plot3.m, and Ch5_Plots.m. JASA_2_Mic_Plots.m produces modified versions of the plots in 

Chapter 2 that were used in the article published in the Journal of the Acoustical Society of 

America.32 

The repository also contains all dependent code for PAGE processing and plotting. This 

includes PAGE_func.m, which applies PAGE processing to given measured or simulated data. 

TRAD_func.m does the same for traditional processing, while PAGE_func_HO.m and 

TRAD_func_HO.m perform higher-order PAGE and higher-order traditional processing, 

respectively. The PAGE processing functions rely on unwrap_func.m to perform various 

unwrapping options, including the coherence-based unwrapping developed by Cook.29 

Ch3_ProcessData.m prepares the Chapter 3 data, creating an output structure file needed 

by Ch3_Plots.m. The code relies on spectra.m, which loads the data for processing. 

The folder Plot Tools contains code used for plotting. The codes with names beginning 

with ColormapPlot produce the color plots with either 1, 2, or 6 subplots, relying on 

fancyContours2.m for the plot creation and pcold2hot_generator.m for the colormap. The line plots 

are made by plotErrorM.m (magnitude only) and plotErrorPM.m (phase and magnitude). 

Export_fig is used to create high resolution TIFF images. The latest version of export_fig should 

be downloaded from https://github.com/altmany/export_fig. For export_fig to work with modern 

https://pulsar.byu.edu/acoustics
https://github.com/altmany/export_fig
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versions of MATLAB, Ghostscript needs to be installed. Refer to the online documentation for 

export_fig for more information.  

B Data 

Three sets of data were used for plots in this thesis, all of which can be found on the 

acoustics gamma drive at Students\Joseph Lawrence\Thesis\Thesis Data. The first is 

13OctBBSmall_Speaker, which was used for the experimental bias errors in Figs. 3.2, 3.3 and 3.4 

in Chapter 3. Each scan was at a different distance from the probe, starting close to the probe and 

moved away in increments as given by the grid in Ch3_ProcessData.m. Channel 0 is the center 

microphone, Channel 1 is closest to the source, and Channel 2 is farthest. The outer two 

microphones were used for the two-microphone bias errors. 

The other two data sets, 2Feb2D and 2Feb2D2Speaker were used for the measured array 

responses shown in Figs. 5.3 and 5.4 in Chapter 5. For both sets, the turntable was rotated 5 degrees 

for each scan, with the probe configuration given in Ch5_Plots.m. 
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